Some Advances on Isogeometric Analysis at KAUST

Victor M. Calo

Applied Mathematics & Computational Science Earth Science & Engineering King Abdullah University of Science and Technology

Joint work with:

N.O. Collier, L. Demkowicz, J. Gopalakrishnan, K. Kuznik, I. Muga, A.H. Niemi, D. Pardo, M. Paszynski, H. Radwan, G. Stenchikov, W. Tao, and J. Zitelli

The Cost of Continuity

Victor M. Calo

Applied Mathematics & Computational Science Earth Science & Engineering King Abdullah University of Science and Technology

Joint work with:

N.O. Collier, D. Pardo, M.Paszynski, H. Radwan, G. Stenchikov, and W. Tao

Claim: *C*^{*p*-1} space economical *p*-refinement

Problem:

True w.r.t. DOFs, but ignores solution cost

Goal: Understand solution cost Canonical Laplace problem on unit cube

Record for direct solver (MUMPS):

- Solve time
- Required memory while varying polynomial order and continuity of discretization

MUMPS: Multi-frontal direct solver

Solution strategy split into 2 parts:

- 1. Static condensation of fully assembled dofs
- 2. LU-factorization of remaining problem (skeleton problem)

Increasing polynomial order increases static condensation work, but skeleton problem is limiting cost and remains fixed!

Computational estimates of cost for C⁰ spaces

• Bubbles in ea. element: $(p-1)^3 \Rightarrow$ Elimination time $O((p-1)^3)^3 \approx O(p^9)$

• N_e (# elements) $\approx O(N_{dof} / p^3) \Rightarrow$ Static condensation time $O(N_e p^9)$

- Squeleton problem:
 - N_e # elements \Rightarrow N_f (# faces) = $3N_e$ \Rightarrow Size: $N_f p^2 = 3N_e p^2$
 - Average bandwidth $O((p-1)^2)$

 \Rightarrow Elimination time: $O\left(\left(3N_e p^2\right)^2 \left(p-1\right)^2\right) \approx O\left(N_e^2 p^6\right)$

• Total problem complexity estimate:

 $time = O(N_e p^9) + O(N_e^2 p^6) + lower order terms$

 \Rightarrow for N_{dof} squeleton problem cost is $O(N_{dof}^2)$

 \Rightarrow for $N_{dof} \gg O(p^6)$ then static condensation time \ll squeleton problem

• Total problem memory usage estimate: $O(Np^3) + O(N^{4/3}) + \text{lower order terms}$

The high price of continuity

Computational estimates of cost for C^{p-1} spaces

- Elimination problem:
 - N_e # elements \Rightarrow Size: $N_e (p+1)^3$
 - Average bandwidth $O((p+1)^3)$

$$\Rightarrow \text{Elimination time: } O\left(\left(N_e\left(p+1\right)^3\right)^2\left(p+1\right)^3\right) \approx O\left(N_e^2p^9\right)$$

• Total problem complexity estimate:

time = $O(N_e^2 p^9)$ + lower order terms $\approx O(N^2 p^6)$

• Total problem memory usage estimate: $O(N^{4/3}p^2)$ + lower order terms

The high price of continuity

Increasing Continuity

Higher continuous basis result in element stiffness matrix blocks overlapping, causes performance loss of multi-frontal algorithm

Goal: Understand value of continuity Canonical Laplace problem on unit cube

$$-\nabla \cdot (\nabla u) = f \quad \text{on } \Omega$$
$$u = 0 \quad \text{on } \Gamma_D$$
$$(\nabla u) \cdot \mathbf{n} = 0 \quad \text{on } \Gamma_N$$

$$f(x, y, z) = \frac{3C^2 \pi^2}{4} \left[\sin\left(\frac{C\pi}{2}x\right) \sin\left(\frac{C\pi}{2}y\right) \sin\left(\frac{C\pi}{2}z\right) \right]$$
$$u(x, y, z) = \sin\left(\frac{C\pi}{2}x\right) \sin\left|\left(\frac{C\pi}{2}y\right) \sin\left(\frac{C\pi}{2}z\right)\right|$$

$$\Omega = [0, 1]^3, \ \Gamma_D = (0, :, :) \cup (:, 0, :) \cup (:, :, 0),$$

$$\Gamma_N = (1, :, :) \cup (:, 1, :) \cup (:, :, 1)$$

The value of continuity?

Table I. Results for Problem 1, C = 5, $||E||_{H_1} \approx 10^{-2}$

N_x	N_y	N_{z}	p	k	N_{dof}	$ E _{L_2}$	$\ E\ _{H_1}$	t_{ass}	t_{solve}	t_{total}	$rac{t_{solve}}{N_{dof}}$
62	62	61	1	0	246078	4.78e-04	1.77e-01	230.26	722.82	953.08	2.94e-03
33	33	34	2	0	309741	3.85e-05	9.96e-03	516.67	994.32	1510.99	3.21e-03
33	33	34	2	1	44100	3.94e-05	1.00e-02	146.42	183.72	330.14	4.17e-03
9	9	9	3	0	21952	9.15e-05	1.00e-02	13.23	3.84	17.07	1.75e-04
11	10	11	3	1	12672	1.34e-04	1.01e-02	17.45	9.45	26.9	7.46e-04
11	11	12	3	2	2940	1.53e-04	1.03e-02	13.36	2.02	15.38	6.87e-04
5	4	5	4	0	7497	1.31e-04	9.28e-03	6.52	0.63	7.15	8.40e-05
5	4	5	4	1	4046	2.14e-04	1.14e-02	5.76	1.07	6.83	2.64e-04
6	6	5	4	2	2925	2.40e-04	1.05e-02	9.84	1.78	11.62	6.09e-04
7	7	7	4	3	1331	2.79e-04	1.06e-02	17.35	1.14	18.49	8.56e-04

The value of continuity?

 N_{dof} $\|error\|_{L_2} t_{total}$ N_y N_{z} $\|error\|_{L_2}$ N_x k t_{ass} t_{solve} t_{total} p20 20 1 0 7.964055e-05 0.83 20 9261 0.8 1.63 1.30e-04 92.0 2.15e-05 20 20 20 2 0 68921 2.331762e-07 47.57 44.43 20 20 20 2 10648 2.95832e-07 13.89 6.6 20.49 6.06e-06 1 20 20 20 3 0 226981 2.159312e-10 493.72 637.11 1130.83 2.44e-07 20 20 20 74088 1.942879e-09 250.91 462.83 713.74 1.39e-06 3 1 26.12 134.9 20 20 20 3 2 12167 3.086729e-09 108.78 4.16e-07 20 20 20 4 0 531441 1.456711e-13 3471.63 3878.85 7350.48 1.07e-09 8459.04 20 20 20 4 238328 1.663401e-13 2029.75 6429.29 1.41e-09 1 20 4 2897.19 20 20 2 79507 1.320435e-11 1152.44 1744.75 3.83e-08 20 20 20 4 3 13824 2.805228e-11 592.4 74.61 667.01 1.87e-08

Table II. Results for Problem 1, C = 3, constant elements

Isogeometric-Specific Multi-Frontal Solver

Victor M. Calo

Applied Mathematics & Computational Science Earth Science & Engineering King Abdullah University of Science and Technology

Joint work with: K. Kuznik and M.Paszynski

N0,1 N1,1 N2,1 N3,1 N4,1 N5,1 N6,1

	_						_	-	
N0,1	1	0		0		0	0		
N1,1	$\frac{1}{h^2}$	$-\frac{2}{h^2}$	$\frac{1}{h^2}$	0		0	0	$\left \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \right $	
N2,1	0	$\frac{1}{h^2}$	$-\frac{2}{h^2}$	$\frac{1}{h^2}$	0		0		
N3,1	0		$\frac{1}{h^2}$	$-\frac{2}{h^2}$	$\frac{1}{h^2}$		0	$\begin{cases} x_i \end{cases}$	$\left\{ = \left\{ \right. \right\} $
N4,1	0		0	$\frac{1}{h^2}$	$-\frac{2}{h^2}$	$\frac{1}{h^2}$	0	x ₆	0
N5,1	0	0		0	$\frac{1}{h^2}$	$-\frac{2}{h^2}$	$\frac{1}{h^2}$	x _{.7}	[20
N6,1	0	0		0		0	1		

E.g., contribution of b(N2,1;N3,1)

Construct multiple frontal matrices s.t. they sum up to the full matrix

Variables must be split into parts

$$\mathbf{x}_i \ = \ \mathbf{x}_i^I \ ^+ \mathbf{x}_i^I$$

$$\begin{array}{ccc} 1 & 0 \\ 1/ & -1/ \\ h^2 & -h^2 \end{array} \left\{ \begin{array}{c} x_1 \\ x_2^1 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \end{array} \right.$$

$$\begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_2^{\text{II}} \\ x_3^{\text{I}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} \mathbf{x}_3^{\mathrm{II}} \\ \mathbf{x}_4^{\mathrm{I}} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

$\begin{bmatrix} 1 & 0 \\ 1/h^2 & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2^{\mathrm{I}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_2^{\mathrm{II}} \\ x_3^{\mathrm{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_3^{\mathrm{II}} \\ x_4^{\mathrm{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\mathrm{II}} \\ x_5^{\mathrm{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\mathrm{II}} \\ x_5^{\mathrm{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\mathrm{II}} \\ x_5^{\mathrm{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\mathrm{II}} \\ x_5^{\mathrm{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\mathrm{II}} \\ x_5^{\mathrm{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\mathrm{II}} \\ x_5^{\mathrm{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\mathrm{II}} \\ x_5^{\mathrm{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\mathrm{II}} \\ x_5^{\mathrm{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\mathrm{II}} \\ x_5^{\mathrm{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\mathrm{II}} \\ \frac{1}{h^2} & -\frac{1}$

First all frontal matrices are constructed

$\begin{bmatrix} 1 & 0 \\ 1/h^2 & -\frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2^{\text{I}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} = \begin{bmatrix} 0 \\ x_3^{\text{I}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_2^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}$

- Assemble frontal matrices 1 and 2 into new 3x3 frontal matrix
- Rows 1 and 2 are fully assembled

Column 1 eliminated using first row

=> $2^{nd} row = 2^{nd} row - [1/h^2] * 1^{st} row$

 2^{nd} row = 2^{nd} row - $[1/h^2] * 1^{st}$ row

$\begin{bmatrix} 1 & 0 \\ 1/h^2 & -\frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2^{\text{I}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} = \begin{bmatrix} 0 \\ x_3^{\text{I}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_2^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_4^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_5^{\text{II}} \\ x_6^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}$

Assemble frontal matrices 3 and 4 into new frontal matrix Only row 2 is fully assembled

Change of the ordering

 $\begin{bmatrix} 1 & 0 \\ 1/h^2 & -\frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2^{\text{I}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} = \begin{bmatrix} 0 \\ x_3^{\text{I}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_2^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_4^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_5^{\text{II}$

Eliminate entries in column 1 below row 1

 2^{nd} row = 2^{nd} row - $[1/h^2] / [-2/h^2] * 1^{st}$ row 3^{rd} row = 3^{rd} row - $[1/h^2] / [-2/h^2] * 1^{st}$ row

 $\begin{bmatrix} 1 & 0 \\ 1/h^2 & -\frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2^{\text{I}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} = \begin{bmatrix} 0 \\ x_3^{\text{I}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_2^{\text{II}} \\ x_3^{\text{I}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_3^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1^{\text{II}} \\ x_1^{\text{II}}$

Eliminate entries below the diagonal

 $2^{nd} row = 2^{nd} row - [1/h^2] / [-2/h2] * 1^{st} row$

 3^{rd} row = 3^{rd} row - $[1/h2] / [-2/h2] * 1^{st}$ row

Recursevely eliminate remaining frontal matrices

$\begin{bmatrix} 1 & 0 \\ 1/h^2 & -1/h^2 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_2^{\Pi} \\ x_3^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_3^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_3^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_4^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^{\Pi} \\ x_5^1 \\ 1/h^2 & -1/h^2 \end{bmatrix} \begin{bmatrix} x_1^$

All frontal matrices are generated at the same time

Procesor 1 Procesor 2 Procesor 3 Procesor 4 Procesor 5 Procesor 6 Assembly and elimination are executed concurrently over pairs of frontal matrices

 $\begin{bmatrix} 1 & 0 \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2^{\text{I}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_2^{\text{II}} \\ x_3^{\text{I}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_3^{\text{II}} \\ x_4^{\text{I}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_3^{\text{II}} \\ x_4^{\text{I}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_3^{\text{II}} \\ x_5^{\text{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_4^{\text{II}} \\ x_5^{\text{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{h^2} & \frac{1}{h^2} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ x_7^{\text{II}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ \frac{1}{h^2} & -\frac{1}{h^2} \end{bmatrix} \begin{bmatrix} x_6^{\text{II}} \\ \frac{1$

Procesor 1 Procesor 2 Procesor 3 Procesor 4 Procesor 5 Procesor 6

Concurrent assembly and elimination executed over different pairs of frontal matrices

Computational complexity = height of the tree = $log(N_{dof})$

- NVIDIA CUDA
- GeForce GTX 260
- Multiprocessors x Cores/MP =
- Cores: 24 (MP) x 8 (Cores/MP) = 192 (Cores)
- Memory: 896MB

p = 3

Numerical results

Numerical results

Flood Modeling

Joint work with: N.O. Collier, H. Radwan, G. Stenchikov, and W. Tao

Overview

- Motivation:
 - KAUST and Jeddah flood
 - Model Problem: Manning's model
- Application to KAUST topographic data
 - Numerical results

Diffusive-Wave Approximation

• Strong Form

$$\begin{cases} \dot{u} - \nabla \cdot (\kappa(u, \nabla u) \nabla u) = f & \text{on } \Omega \times (0, T] \\ u = u_0 & \text{on } \Omega \times \{t = 0\} \\ (\kappa(u, \nabla u) \nabla u) \cdot n = B_N & \text{on } \Gamma_N \times (0, T] \\ u = B_D & \text{on } \Gamma_D \times (0, T] \end{cases}$$

where
$$\kappa(u,\nabla u) = \frac{(u-z)^{\alpha_M}}{C_f |\nabla u|^{1-\gamma_M}}$$

• Weak Form

$$B(w,u) = \left(w, \frac{\partial u}{\partial t}\right)_{\Omega} + (\nabla w, \kappa(u, \nabla u) \nabla u)_{\Omega} + (w, f)_{\Omega} = 0$$

Relevant Topography

Relevant Topography (Zoom in)

2D Results

Discontinuous Petrov-Galerkin Method

Joint work with: N.O. Collier, L. Demkowicz, J. Gopalakrishnan, I. Muga, A.H. Niemi, D. Pardo, and J. Zitelli Towards Discretization without Numerical Dispersion

- Motivation
 - Model Problem
 - Dispersion/Phase error Pollution effect
- DPG framework
 - Features and Characteristics
- Application to the Helmholtz Equation
 - Numerical results
- DPG formulation details

Wave Propagation

- Equation governing wave propagation (at speed c): $\Delta p \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} = 0$
- Assuming time-harmonic dependance: $p(\mathbf{x},t) = \exp(i\omega t)p(\mathbf{x})$
- ω is the angular frequency
- Helmholtz equation (second order formalism):

 $\begin{cases} \Delta p + k^2 p = -ikf & \text{in } \Omega\\ \partial_n p + ikp = 0 & \text{on } \partial \Omega \end{cases}$ (**A**)

- $k = \frac{\omega}{c}$ is the wave number
- $p(\mathbf{x}) = \exp(ik\mathbf{v} \cdot \mathbf{x})$ are particular solutions to (\blacktriangle)

(time-harmonic wave trains)

Dispersion Analysis

After discretization and numerical solution of (\blacktriangle), wave trains with discrete wave-number $k^h (\neq k)$ are obtained

Dispersion analysis: analysis of wave-number error

Spectrum analysis is equivalent to dispersion analysis in the regime where k^h is real

Duality principle

Pollution Effect

- Mathematical characterization of dispersion
- Given exact solution $p \in U$ and its discrete approximation $p^h \in U^h \subset U$

 $_{k}$

Discontinuous Petrov-Galerkin Method

Objective

Eliminate pollution error in multi-dimensions

Features

- Hermitian positive definite algebraic systems
- Unconditional stability

Characteristics

- Discontinuous Galerkin (DG) method
- Petrov-Galerkin method
- Least-squares-type Galerkin method

Discontinuous Petrov-Galerkin Method

- Optimal convergence rate in "energy" norm of problem irrespective of physical parameters
 - Constructed discrete weighting space guarantees optimal convergence in energy norm
 - Uses weighting test function space fully discontinuous
 - Discrete variational problem is local to each element
 - Local problems are symmetric and are solved approximately using standard Galerkin method
 - Attractive for problem with strong dependence on physical parameters
 - Parametric dependence complicates computation of optimal basis functions
- Discrete approximation of field variables, traces, and fluxes

Six linear elements per wavelength

 $p(x) = \exp(ikx)$

Ratio between error and best approximation error as a function of k

Error magnitude

$$p(\mathbf{x}) = \exp\left(ik\left(x_1\cos\frac{\pi}{4} + x_2\sin\frac{\pi}{4}\right)\right)$$

4 bilinear elements per wavelength, pure impedance boundary cond.

Ratio between error and best approximation error as a function of $\frac{k}{2\pi}$

Steady Transport Problem

- Motivation for DPG framework
 - Design discretization such that
 - Trial space grants approximability
 - Weighting space grants stability
 - Parameter-free convergence rate
- Application to the Transport Equations
 - Numerical results

Advection-Diffusion-Reaction in 1D

• Conservative second order form:

$$s(x)u(x) + \left(a(x)u(x) - \kappa u(x)'\right)' = f(x) \quad \text{in }]a, b[$$
$$u(a) = g_a, \quad u(a) = g_a$$

where

- $\kappa > 0$ is the constant diffusion coefficient
- a(x), s(x) smoothly varying coefficients (advection velocity, reaction term) • f(x) source term
- Equivalent first order form:

$$\begin{bmatrix} \sigma(x) - \left(a(x)u(x) - \kappa u(x)'\right) = 0 & \text{in }]a, b[\\ s(x)u(x) + \sigma(x)' = f(x) & \text{in }]a, b[\end{bmatrix}$$

Ultra Weak Formulation

- Discontinous Petrov-Galerkin formalism (ultra weak form):
 - Integration by parts over $K = (x_k, x_{k-1})$,

where $a = x_0 < x_1 < ... < x_N = b$

$$0 = \int_{x_{k-1}}^{x_k} \tau(\sigma - au) dx - \int_{x_{k-1}}^{x_k} \tau' \kappa u dx + \kappa \tau u \Big|_{x_{k-1}}^{x_k}$$
$$+ \int_{x_{k-1}}^{x_k} v(su - f) dx - \int_{x_{k-1}}^{x_k} v' \sigma dx + v \sigma \Big|_{x_{k-1}}^{x_k}$$

for all test functions $v, \tau \in H^1(x_k, x_{k-1})$

• Let $\hat{\sigma}, \hat{u}$ denote traces of σ, u , which are independent variables

Ultra Weak Formulation

• The resulting abstract ultra weak form is:

Find $\mathbf{u} = \{\sigma, u, \hat{\sigma}, \hat{u}\} \in U \text{ s.t. } b(\mathbf{v}, \mathbf{u}) = I(\mathbf{v}) \quad \forall \mathbf{v} \in V$

where

$$b(\mathbf{v},\mathbf{u}) = \sum_{k=1}^{N} \left\{ \int_{x_{k-1}}^{x_k} \left(\tau - \mathbf{v}' \right) \sigma \, dx + \int_{x_{k-1}}^{x_k} \left(-\tau' \kappa - a \, \tau + s \, \mathbf{v} \right) u \, dx + \left(\mathbf{v} \, \hat{\sigma} - \kappa \, \tau \, \hat{u} \right) \Big|_{x_{k-1}}^{x_k} \right\}$$
$$I(\mathbf{v}) = \sum_{k=1}^{N} \int_{x_{k-1}}^{x_k} \mathbf{v} \, f \, dx$$

and

$$U = L_{2}(a,b) \times L_{2}(a,b) \times R^{N+1} \times R^{N+1}$$
$$V = W_{N} \times W_{N}$$
$$W_{N} = \left\{ W : W \Big|_{(x_{k},x_{k-1})} \in H^{1}(x_{k},x_{k-1}), \ k = 1,2,...,N \right\}$$

Computational Considerations

- Fields $\{\sigma, u\}$ approximated using Bernstein polynomials of order *p*
 - Optimal weighting space computed on an enriched polynomial space
 - Enrichment: uniform Δp degree elevation to $p_e = p + \Delta p$
 - Discrete variational problem develops exponential boundary layers
 - Using p-FEM recipes, boundary layer mesh of size $p_{e}\kappa$ is added
 - $\circ C^0$ and $C^{p_e^{-1}}$ B-splines are used

Subgrid within each element (boundary layer mesh)

Model Transport Problem

Four elements, $\kappa = 10^{-1}$, $\Delta p = 2$

Model Transport Problem

Hemker's $\begin{cases} \left(x u(x) - \kappa u(x)'\right)' = \kappa \pi^2 \cos(\pi x) + \pi x \sin(\pi x) & \text{in }]0,1[\\ u(-1) = -2, \quad u(1) = 0 \end{cases}$ Transport $(-1) = -2, \quad u_{1,j}$ $\Rightarrow \quad u(x) = \cos(\pi x) + \frac{\operatorname{erf}\left(\frac{x}{\sqrt{2\kappa}}\right)}{\operatorname{erf}\left(\frac{1}{\sqrt{2\kappa}}\right)}$ **Problem** p = 1p = 2u(x)u(x) DPG solution DPG solution Exact solution Exact solution -1.0 х -1.0 1.0 0.5 0.5 -0.5-0.5 -1-2 -2

Eight elements, $\kappa = 10^{-3}$, $\Delta p = 2$

х

1.0

Hemker's Transport Problem

Advection-Diffusion-Reaction in 2D

• Conservative second order form:

$$\begin{cases} s u + \nabla \cdot (\mathbf{a} u - \kappa \nabla u) = f, & \text{in} \nabla \\ u = g, & \text{on} \partial \Omega \end{cases}$$

where

- $\kappa > 0$ is the constant diffusion coefficient
- $\mathbf{a}(\mathbf{x}), \mathbf{s}(\mathbf{x})$ smoothly varying coefficients (adv. velocity, reaction term) • $f(\mathbf{x})$ source term
- Equivalent first order formalism:

$$\begin{bmatrix} \boldsymbol{\sigma} - (\mathbf{a} \, \boldsymbol{u} - \kappa \, \nabla \boldsymbol{u}) = 0 & \text{in } \Omega \\ \boldsymbol{s} \, \boldsymbol{u} + \nabla \cdot \boldsymbol{\sigma} = \boldsymbol{f} & \text{in } \Omega \end{bmatrix}$$

Ultra Weak Formulation

- Discontinous Petrov-Galerkin formalism:
 - Integration by parts over a single element K in a mesh Ω_h

$$0 = \int_{K} \tau \cdot (\sigma - \mathbf{a} \, u) \, dx - \int_{K} \nabla \cdot \tau \, \kappa \, u \, dx + \int_{\partial K} \kappa \, \mathbf{n} \cdot \tau \, u \, dx$$
$$+ \int_{K} v \, (s \, u - f) \, dx - \int_{K} \nabla v \cdot \sigma \, dx + \int_{\partial K} v \, \mathbf{n} \cdot \sigma$$
for all test functions $v \in H^1(K), \, \tau \in \mathbf{H}(\operatorname{div}, K)$

Let σ̂_n, û denote traces of **n** ⋅ **σ**, *u*, which are independent variables
The functional setting is not trivial
û ∈ H^{1/2}₀(∂Ω^h), ô_n ∈ H^{-1/2}₀(∂Ω^h)

Variational Crimes

• Discrete Trial-to-Test operator:

 $\begin{cases} \text{Find } \boldsymbol{v}_{A}^{h} \in \boldsymbol{V}^{h+} \text{ s.t.} \\ \left(\boldsymbol{v}_{A}^{h}, \boldsymbol{w}^{h} \right)_{V} = \boldsymbol{b} \left(\boldsymbol{N}_{A}, \boldsymbol{w}^{h} \right) \quad \forall \boldsymbol{w}^{h} \in \boldsymbol{V}^{h+} \end{cases}$

where:

- V^{h+} is an enriched (h and p) finite element space, not in infinite dimensional (continuous) V
 - \circ 3 × 3-spline grid constructed analogously to the 1D case
- N_A is each trial basis function
 - σ , *u* are approximated using L_2 -conforming piecewise Bernstein polynomials of degree *p*
 - $\hat{\sigma}_n$, \hat{u} are approximated using $H^{1/2}$ and $H^{-1/2}$ -conforming piecewise Bernstein polynomials of degree p + 1 on wireframe (continuous/discontinuous)

Advection Skew to Mesh

 5×5 mesh, p = 1, $\kappa = 10^{-4}$, $\Delta p = 2$

Advection Skew to Mesh u 1.003038 El 0.75 0.5 0.25 0 -0.04003 20×20 mesh, p = 2, $\kappa = 10^{-4}$, $\Delta p = 3$

Advection Skew to Mesh

Advection Skew to Mesh

 5×5 mesh, p = 1, $\kappa = 10^{-6}$, $\Delta p = 5$

Conclusions

Helmholtz

- DPG for multiD Helmholtz has best approximation property
 - Pollution/Dispersion effects are significantly reduced for discrete approximation (numerical evidence)
- Robust methodology for small perturbation problems
 - Advection-diffusion, Helmholtz, thin structures, etc.

Steady Transport

- Studied numerically the approximation of advection-diffusionreaction problems using the discontinuous Petrov-Galerkin method with Bernstein polynomials and B-splines
- Constructed robust algorithm based on optimal test space norm and element subgrid enrichment for resolving weighting functions
- Smooth B-splines yield some computational saving when computing weighting function space