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1 Definitions

Quadrature
Mathematical problem: Known a, b ∈ R and f (x) : [a, b]→ R calculate:

I( f ) ≡
∫ b

a
f (x) dx

Numerical problem: Choose n distinct points xi ∈ [a, b] (nodes) and relative
coefficients wi ∈ R (weights) such that:

In( f ) ≡
n∑

i=1

wi f (xi) u I( f )

This means:

1. approximate the linear operator I by the quadrature rule In;

2. approximate the measure dx by a finite combination of Diracs’ delta:
dx ≈

∑
i widδxi .

With no constrains, how we choose nodes and weights? Consider now to
know (or know how to calculate) the following:

M j ≡ I(φ j(x)) =

∫ b

a
φ j(x)dx [Modified Moments]

for some choice of functions φ j(x).Then we can require that:∑
i

wiφ j(xi) = M j ∀ j = 1, . . . (exactness equations)

This is equivalent to require that the approximating measure solves the (modi-
fied) moment problem. Notice that if the previous holds true ∀ j = 1 . . .m then
we have, by linearity, that:

I(a1φ1(x) + · · · + amφm(x)) = In(a1φ1(x) + · · · + amφm(x))

∀a j ∈ R

thus the integration formula is exact for all the generalized polynomials.
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2 Exactness

In the usual case, exactness is required with respect to polynomials. This is
done by the following definition:

Definition, degree of exactness
We will call degree of exactness of the formula In the greatest positive integer r
such that: ∫ b

a
xq dµα − In(xq) = 0 ∀ 0 ≤ q ≤ r .

(We are taking in the previous as functions φ j(x) the monomials x j−1, and
thus considering ordinary moments). It is well known that every quadrature
rule with n nodes of degree of exactness at least n−1 is based on interpolation.

Theorem 1. The quadrature rule In has degree of exactness d = n − 1 + k , k ≥ 0 if
and only if both of the following conditions are satisfied:

1. the formula integrates exactly is the (unique) polynomial of degree n interpolating
the function f at the nodes xi;

2. the following orthogonality property holds true:∫ b

a
ωn(x)p(x)dx = 0 ∀ p ∈ Pk−1 (P−1

≡ ∅) (1)

where ωn(x) ≡
∏n

j=1(x − xi) (nodal polynomial)

(Pk is the space of polynomials of degree k)
In the proof of the previous result the necessity is trivial, because both the

interpolating polynomial and the product ω(x)p(x) are polynomials, and the
second vanishes on the quadrature nodes. For sufficiency, consider to take
q(x) ∈ Pn−1+k and write q(x) = r1(x)ω(x) + r2(x) with r1(x) ∈ Pk−1, r2(x) ∈ Pn−1.
Now: ∫ b

a
q(x)dx =

∫ b

a
ωn(x)r1(x)dx +

∫ b

a
r2(x)dx =

∫ b

a
r2(x)dx = (2)

now, since r2(x) ∈ Pn−1 the quadrature formula is exact, and thus:

n∑
i=1

wir2(xi) =

n∑
i=1

wi[q(xi) − r1(xi)ωn(xi)] =

n∑
i=1

wiq(xi) (3)

where the last holds true because the nodal polynomial vanishes on the quadra-
ture nodes. This completes the proof.

Observe that if the construction of a quadrature rule is made in a reference
interval the rule that achieves the same degree of exactness in a general interval
is obtained simply rescaling linearly the nodes and multiplying the weights by
the measure of the interval. For this reason we will often refer ourselves to
some special case, say [0, 1] or [−1, 1].
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This is the theorem that permits to construct the quadrature rules. First,
consider to know the nodes of the quadrature rule and call:

Li(x) =

 n∏
p=1; p,i

x − xp

xi − xp

 , Πn(x) =

n∑
i=1

f (xi)Li(x)

Li(x) , Πn(x) ∈ Pn−1 ,

the interpolating polynomial in the Lagrange form.
With this notation, from the theorem we have:

1. Weights of quadrature rules of degree of exactness≥ n−1 can be calculated
as integrals of the Lagrange fundamental polynomials:

wi =

∫ b

a
Li(x) dx

2. From the interpolation error, a simple error estimate con be derived:∫ b

a
f (x) dx − In f =

∫ b

a
f (x) dx −

∫ b

a
Πn(x) dx =

=

∫ b

a

[
f (x) −Πn(x)

]
dx =

1
n!

∫ b

a
f (n)(ξx)ωn(x) dx

The best that we can try to achieve in the Theorem is k = n. This is trivial,
because the condition (1) for k = n + 1 would imply that ωn(x) is orthogonal to
all polynomials of degree n, and in particular to itself.

Gauss Rules, degree of exacness = 2n − 1
Optimal rules (from the degree of exactness point of view) are referred as Gauss
quadrature rules. We will denote the unique Gauss rule on n point by Gn.

Before considering how to construct this rules, we will notice some impor-
tant features of gaussian quadrature.

Let us see that Gauss rules have positive weights. As before, call L the
Lagrange fundamental polynomials, we have Li(ξ j) = δi j and Li ∈ P

n−1. Now
observe that ∫ b

a
L

2
i (x) dx > 0 .

By the other side the rule is exact on the polynomials L2
i (x) ∈ P2n−2:∫ b

a
L

2
i (x) dµ(x) = Gn(L2

i ) =

n∑
j=1

w jL
2
i (ξ j) = wi ,

and thus the weights are positive, as requested.
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Gauss quadrature is equivalent to exact integration of a particular interpo-
lating polynomial.

Let us introduce the elementary Hermite interpolation polynomials (or Her-
mite characteristic polynomials):{

hi(ξ j) = δi j
h′i (ξ j) = 0

{
ki(ξ j) = 0
k′i (ξ j) = δi j

hi(x), ki(x) ∈ P2n−1
∀i = 1, . . . ,n

The Hemite-Birkoff polynomial is defined by: ΠH
n (x) =

∑n
i=1 hi(x) f (ξi)+ki(x) f ′(ξi).

It interpolates the values of the function on nodes ξ again with the values of
the derivatives on the same nodes.

Due to the fact that the Gauss quadrature integrates exactly op to degree
2n − 1 we obtain:∫ b

a
f (x) dx −Gn f =

∫ b

a
f (x) dx −

∫ b

a
ΠH

n (x) dx =

∫ b

a

[
f (x) −ΠH

n (x)
]

dx =

=
1

2n!

∫ b

a
f (2n)(ζx)ω2

n(x) dx =
f (2n)(ζ)

2n!

∫ b

a
ω2

n(x) dx

We can also write a characterization of Gauss quadrature in terms of the
elementary Hermite polynomials.

Theorem 2. The points ξi are nodes of a Gaussian rule iff

Fi = 0 ∀i = 1, . . . ,n where Fi =

∫ b

a
ki(x) dx .

The calculation of Gauss quadrature rule from this property is in principle
possible, ma it is very expensive, due to the necessity to solve iteratively the
interpolation problem for functions ki. Details can be found in: J. Ma, V.
Rokhlin, and S.Wandzura, Generalized Gaussian quadrature rules for systems
of arbitrary functions, SIAM J. Numer. Anal. 33 (1996), no. 3, 971–996.

Also form the nonlinear map

G : R2n
→ R2n , G j(x1, . . . , xn,w1, . . . ,wn) =

 n∑
i=1

wi(xi) j−1

 −M j

we can define a procedure for the calculation of the formulae. This because:

1. A quadrature rule is gaussian if and only if G j = 0 , ∀ j = 1, . . . , 2n;

2. The map G is always invertible

The calculation of the zero of this functional cen be done with a Newton (or
some other of greater order) method but the Jacobian matrix is ill-conditioned,
and also this method turns out to be not favorable.
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3 Construction via orthogonal polynomials

Construction of the rules
As seen, the weights are fixed once the nodes are known.
From the theorem, we need to construct the nodes in such a way that the

corresponding nodal polynomial respects an orthogonality property.
This can be done orthogonalizing the powers x j with respect to the inner

product 〈u(x), v(x)〉 =
∫ b

a u(x)v(x) dx.
The procedure is the following. Fix π0(x) = 1. For all j ≥ 1 find π j(x) a

monic polynomial of degree exactly j such that
∫ b

a π j(x)πk(x) dx = 0 ∀k < j.
This is always possible because it is equivalent to the orthogonalization of

Gram Schmidt of the consecutive powers.
This construction, in the case of the Lebesgue measure in a compact interval,

leads to the so called Legendre orthogonal polynomials.
The important property is that:

Theorem 3. All zeros of πn(x) are real, simple, and located in the interior of the
support interval [a, b] .

Proof Since
∫ b

a πn(x)dx = 0, there must exist at least one point in the interior
of [a, b] at which πn(x) changes sign. Let x1, x2, . . . , xk , k ≤ n, be all such points.
If we had k < n, then by orthogonality∫ b

a
πn(x)

k∏
j=1

(x − x j)dx = 0.

This, however, is impossible since the integrand has constant sign. Therefore,
k = n.

From this property we can conclude that the nodes of the Gauss n-point
quadrature rule are exactly the zeros of the orthogonal polynomial πn(x).

There are mainly two approaches in order to calculate the zeros of the
polynomial πn(x).

The first one passes through the three term relation and is of algebraic type.
The algorithm is due to Golub and Welsch, This is the method implemented in
all numerical codes.

Main Reference
Golub & Welsch, ”Calculation of Gauss quadrature rules” Math. Comp., v. 23,
1969, 221-230.

The second, very recent and powerful, uses the fact that the Legendre poly-
nomials (in fact all the Jacobi ones) satisfy a Strum Liouville problem.

Main Reference
Glaser, Liu & Rokhlin, ”A fast algorithm for the calculation of the roots of
special functions” SIAM Journal on Scientific Computing, 2007.
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Three term recursion
In order to construct the three term relation, we notice that the polynomials

{πk}k=0,...,n are a basis for the space Pn and, moreover, because πn+1 is monic, we
have:

πn+1(x) − xπn(x) = −αnπn(x) − βnπn−1(x) +

n−2∑
k=0

γk,nπk(x)

From this equation, taking on both sides the scalar product with πn(x) first and
πn−1(x) then we get the following expressions for αn and βn:

αn =
〈xπn(x), πn(x)〉
〈πn(x), πn(x)〉

, n = 0, 1, . . . βn =
〈πn(x), πn(x)〉
〈πn−1(x), πn−1(x)〉

, n = 1, 2, . . .

Moreover taking the scalar product with πk(x) for k ≤ n − 2 gives γk,n = 0.
From the first n of these coefficients we can construct the following tridiag-

onal matrix:

T ≡



α0 1 0
β1 α1 1

β2
. . .

. . .
. . .

. . .
. . .

. . .
. . . 1

0 βn−1 αn−1


The three term relation for polynomials π(x) written in matrix form reads:

xπ(x) = Tπ(x) + αnenπn(x)

where en ∈ R
n×1 , en = (0, . . . , 0, 1).

Hence, if ξi is a zero of πn(x), there follows ξiπ(ξi) = Tπ(ξi), and the eigen-
values of T are the requested quadrature nodes.

Making use of the Christoffel Darboux identity and the fact that πn(ξi) = 0,
the Gaussian weights are then expressed in terms of the eigenvectors of the
Jacobian matrix. In particular, the weights can be computed from the first
component of the orthonormal eigenvectors of T.

In the case of Legendre polynomials the coefficients αi, βi are known in
closed form. In the case [a, b] = [−1, 1] we have:

αi = 0 ∀i ≥ 0 , βi = (4 − i−2)−1
∀i ≥ 1
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Usually, for computational purpose, the following symmetric tridiagonal
matrix (usually refereed to as Jacobi matrix) is considered instead:

Jn ≡



α0
√
β1 0√

β1 α1
√
β2√

β2
. . .

. . .
. . .

. . .
. . .

. . .
. . .

√
βn−1

0
√
βn−1 αn−1


This is due to the fact that it is diagonally similar to the previous and the
computation of it’s eigenvalues is simpler. Notice that the matrix identity
xπ̃(x) = Jnπ̃(x) + αnenπ̃n(x) defines the orthonormal (not monic) version of the
polynomials πi(x).

The calculation of the integral with Gauss quadrature rule, finally, reduces
to:

• function I = gauss(f,n)

• beta = 1√
1−(2∗[1:n−1])∗∗(−2)

• J = diag(beta, 1) + diag(beta,−1);

• [V,D] = eig(J)

• x = diag(D); [x,i] = sort(x);

• w = 2 ∗ V(1, i) ∗ ∗2

• I = w ∗ f eval( f , x);

This procedure is numerically stable and costs o(n2) operations.

Sketch of second method for the calculation of the zeros of orthogonal poly-
nomials

The Legendre orthogonal polynomial πn(x) can be defined as the common
polynomial solutions of the differential equation:

(1 − x2)
d2πn

dx2 (x) − 2x
dπn

dx
(x) + n(n + 1)πn(x) = 0,

The proposed method takes two steps to find each root. In the first step, an
approximation to the root is found via a well-known analytical approximation.
In the second step, the root is found via the Newton method, coupled with a
Taylor series-based scheme for the solution of the original ODE equation.
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Preliminary Definitions In the general case, we want to consider integration
with respect to a general measure µ:∫

f dµ

The only hypothesis for the measure µ that we need is that Λ : R →
R , Λ(t) ≡

∫ t

−∞
dµ is nondecreasing with at least n points of increase.

Notice that this hypothesis includes the weighted measures dµ = ω(x)dx
with ω(x) integrable nonnegative and non identically zero.

Moreover, we consider that the measure µ admits the modified moments
defined by:

Mi ≡

∫ +∞

−∞

φi(x) dµ , ∀i = 1, . . . , 2n .

On the system of functions {φi(x)}i , i = 1, . . . , 2n we will have that the most
general result on existence (but no uniqueness) of Gauss quadrature formulae
is in:

Reference
Micchelli, C. A. and Pinkus, A. ”Moment theory for weak Chebyshev systems
with applications to Monospolines, quadrature formulae and best one sided L-
approximation by Spline functions with fixed knots”, SIAM J. MATH. ANAL.
Vol. 8, No. 2, April 1977
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4 Existence of Gauss Quadrature

4.1 Chebychev Systems

We will say that {φi(x)} j=1,...,m form a Weak Chebyshev System if contains at least
one strictly positive function and the following holds true:

φ1(x1) φ1(x2) . . . φ1(xm)
φ2(x1) φ2(x2) . . . φ2(xm)
...

... . . .
...

φm(x1) φm(x2) . . . φm(xm)

≥ 0

∀x j s.t. , j = 1, . . . ,m a ≤ x1 < x2 < · · · < xm ≤ b .

If {φi(x)}i=1,...,2n form a weak Chebyshev system and µ is in the hypothesis
seen previously we have that there exists a choice of points ξi , i = 1, . . . ,n , a ≤
ξ1 < ξ2 < · · · < ξn ≤ b and of weights wi , i = 1, . . . ,n , wi ≥ 0 such that:

n∑
i=1

wiφ j(ξi) =

∫
φ j dµ , ∀ j = 1, . . . , 2n .

We will call this quadrature rule Generalized Gauss formula.

If the previous determinant condition is satisfied with the strict inequality
the family of functions {φ j(x)} is sayed Chebyshev (or Haar) system and again
with the existence of the gaussian quadrature we can prove uniqueness.

The important property of Chebychev systems is the following:

Theorem 4. If {φi(x)}i=1,...,m is a Chebyshev system in I then:

1. each Φ(x) =
∑m

i=1 aiφi(x) has at most m − 1 distinct zeros in I;

2. if x1, . . . , xm are distinct points of I and f1, . . . , fm are arbitrary numbers, then
there exists a unique choice of the coefficients ai such that

∑m
i=1 aiφi(x j) = f j , ∀ j =

1, . . . ,m.

Examples of Chebyshev systems are:

• Spline - The l + r functions:

ui(x) = xi−1 i = 1, . . . , l ; ul+ j(x) =
(
x − y j

)l−1

+
j = 1, . . . , r

where

yp
+ =

{
yp i f x ≥ 0
0 i f x < 0

and y j are distinct (fixed) points ∈ (−1, 1) form a weak Chebyshev system
in [−1, 1].
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• Muntz System - Let η1 < η2 < · · · < ηm. The family of functions
{xη1 , . . . , xηm } is a Chebyshev system on (0,+∞)

• Let η1 < η2 < · · · < ηm. The system of functions eη1 , xeη1 , . . . , eηm , xeηm is a
Chebyshev system on (0,+∞).

• Trigonometric or Riesz interpolation - The family of functions {1, cosx, sinx, cos2x, sin2x, . . . , cosmx, sinmx}
is a Chebyshev system in [0, 2π)

• The set of functions {1, cosx, cos2x, . . . , cosmx} is a Chebyshev system on
[0, π) and also {sinx, sin2x, . . . , sinmx} in (0, π).

• With concentrated singularities- The family of functions: {1, ψ(x), x, xψ(x), . . . , xl−1ψ(x), xl
}

where ψ(x) = log(x + δ) or ψ(x) = (x + δ)α, with α > −1 are Chebyshev
systems.

4.2 Stability of interpolation on Gauss nodes

A remark on interpolation on Gauss nodes for Chebyshev orthonormal sys-
tems

As seen, if {φi(x)}i=1,...,m is a Chebyshev system then there exists a unique
solution to the interpolation problem: a = B−1 f where B = (b ji), b ji = φi(x j). Let
us see something on it’s condition number. Suppose now that the functions
{φi(x)} are orthonormal w.r.t. dµ and that the quadrature rue respects this
orthogonality property:∫

φi(x)φ j(x) dµ = δi j ,
n∑

p=1

wpφi(xp)φ j(xp) = δi j

In this hypothesis the matrix A = (ai j) , ai j =
√w jφi(x j) is orthogonal. thus we

have B−1 = A ∗D where D is the diagonal matrix dii =
√

wi
In this case we can say: whenever the nodes of a generalized Gaussian

quadrature formula are used as interpolation nodes, the resulting interpolation
formula tends to be stable.

This is because, as long as the quadrature formula is reasonably accurate
for all pairwise products of the functions φi(x), the matrix A is close to being
orthogonal; therefore, the condition number of A is close to unity, and the
interpolation based on the nodes ξ1, ξ2, . . . , ξn is stable.
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4.3 Hermite Systems

A particular case of Chebyshev systems are the so called extended Chebyshev
systems for which the determinant condition is required also for some of the
derivatives of the functions.

Let us see in particular the case that leads to uniqueness of Hermite inter-
polation. We will say that a family of functions {φi(x)}i=1,...,2n is an extended
Hermite system if φi ∈ C1, {φi(x)} is a Chebyshev system and the matrix F
defined as:

F =



φ1(x1) φ2(x1) . . . φ2n(x1)
φ1(x2) φ2(x2) . . . φ2n(x2)
...

...
...

φ1(xn) φ2(xn) . . . φ2n(xn)
φ′1(x1) φ′2(x1) . . . φ′2n(x1)
...

...
...

φ′1(xn) φ′2(xn) . . . φ′2n(xn)


is such that det(F) , 0 ∀x j s.t. , j = 1, . . . ,n a ≤ x1 < x2 < · · · < xn ≤ b .

It turns out that the columns of the inverse of the matrix F are exactly the
vectors αi and βi that solve the Hermite interpolation problem:

• given the set of nodes {xi}

• find αih and βih such that: σi(x) =
∑

h αihφh(x), ηi(x) =
∑

h βihφh(x) and:

{
σi(x j) = 0
σ′i (x j) = δi j

{
ηi(x j) = δi j
η′i (x j) = 0 .

(Thus invertibility of the matrix F coincides to the existence and uniqueness of
the solution to the Hermite interpolation problem)

Examples are:

• Polynomials

• Muntz System - Let η1 < η2 < · · · < ηm. The set of functions {xη1 , . . . , xηm }

is a Hermite system on (0,+∞)

• The exponentials {eλ1x, eλ1x, . . . , eλnx
} form an Hermite system for anyλ1, . . . , λn >

0 on the interval [0, 1).
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5 Construction of the formulae

For the construction of generalized Gauss quadrature formulae the proposed
algorithms take in account the resolution of one of the two nonlinear systems
(each of the two define the quadrature rule uniquely): F = 0 ; G = 0.

Fi(x1, . . . , xn) =

∫
σi(x) dµ i = 1, . . . ,n

G j(x1, . . . , xn,w1, . . . ,wn) =

 n∑
i=1

wiφ j(xi)

 −M j j = 1, . . . , 2n

For both this functionals the Jacobian can be calculated explicitly, and thus
Newton algorithm can be implemented.

In the case of functional F the explicit calculation of the Jacobian and an
elegant result on quadratic convergence of Newton’s algorithm with inexact
Jacobian can be found in Theorem 4.5 of:

Reference
J. Ma, V. Rokhlin, and S.Wandzura, Generalized Gaussian quadrature rules for
systems of arbitrary functions, SIAM J. Numer. Anal. 33 (1996), no. 3, 971–996.

The case of functional G is considered in the two works:

References
N. Yarvin and V. Rokhlin ”Generalized Gaussian quadratures and singular
value decomposition of integral operators”, SIAM J. SCI. COMPUT. Vol. 20
(1998), No. 2, pp. 699–718; H. Cheng, N. Yarvin and V. Rokhlin ”Nonlinear
optimization, quadrature and interpolation”, SIAM J. OPTIM. Vol. 9 (1999),
No. 4, pp. 901–923

In this case the Jacobian is exactly the matrix J = D∗F where D = diag(1, dots, 1,w1, . . . ,wn,
and also in this case the (local) quadratic convergence can be proven.

Drawback of all this procedure is the ill condition of the numerical problem
that imposes to:

• Find a starting pont for Newton algorithm in a proper manner (continu-
ation algorithm)

• Eventually modify the functions φi(x) in order to obtain better stability
(projection and orthogonalization)
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