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Context of the work

This research work is part of a project between the of Pavia and

the company which aims to treat complex contact problems
with isogeometric analysis.

It has been done in collaboration with A. Buffa ( Pavia), G. Elber

( ), M. Martinelli ( Pavia), F. Massarwi ( ), L.
Wunderlich ( ) and B. Wohlmuth ( ).
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IGA basics
Univariate B-Splines

The parametric unit interval
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IGA basics
Univariate B-Splines

The parametric unit interval is split by the breakpoints
ζj (j = 1, . . . ,N) leading to a parametric mesh.
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Each breakpoint ζj has a multiplicity mj . The breakpoints and their
multiplicities define the knot vector

Ξ = {ζ1, . . . , ζ1︸ ︷︷ ︸
m1 times

, ζ2, . . . , ζ2︸ ︷︷ ︸
m2 times

, . . . , ζN , . . . , ζN︸ ︷︷ ︸
mN times

}.
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Each breakpoint ζj has a multiplicity mj . The breakpoints and their
multiplicities define the knot vector

Ξ = {ζ1, . . . , ζ1︸ ︷︷ ︸
m1 times

, ζ2, . . . , ζ2︸ ︷︷ ︸
m2 times

, . . . , ζN , . . . , ζN︸ ︷︷ ︸
mN times

}.

Given a degree p and a knot vector Ξ, the univariate (p + 1)-order
B-Splines can be defined recursively.
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IGA basics
Univariate B-Splines

Important properties
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We note the C0 continuity in
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Each B̂p
i is a piecewise positive polynomial of degree p and has a

local support.
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i is a piecewise positive polynomial of degree p and has a

local support.
On each element, at most (p + 1) functions have non-zero values.
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We note the C0 continuity in
ζj = 2

5 .

Each B̂p
i is a piecewise positive polynomial of degree p and has a

local support.
On each element, at most (p + 1) functions have non-zero values.
The inter-element continuity is defined by the breakpoint multiplicity:
the basis is Cp−mj at ζj .
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IGA basics
Multivariate B-Splines and NURBS

For any direction δ, we have pδ, Uδ, Ξδ and nδ. Then we introduce

U = (U1 × U2 × . . .× Ud),
Ξ = (Ξ1 × Ξ2 × . . .× Ξd) and
I = {i = (i1, . . . , id) : 1 ≤ iδ ≤ nδ}

to define multivariate B-Splines by a tensor product of univariate
B-Splines.
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Multivariate B-Splines and NURBS

For any direction δ, we have pδ, Uδ, Ξδ and nδ. Then we introduce

U = (U1 × U2 × . . .× Ud),
Ξ = (Ξ1 × Ξ2 × . . .× Ξd) and
I = {i = (i1, . . . , id) : 1 ≤ iδ ≤ nδ}

to define multivariate B-Splines by a tensor product of univariate
B-Splines.

Given a set of positive weights {ωi, i ∈ I}, the Non-Uniform
Rational B-Splines functions are defined as rational functions of
multivariate B-Spline functions by

N̂p
i (ζ) =

ωi B̂
p
i (ζ)∑

i∈I ωi B̂
p
i (ζ)

.

Sp(Ξ) is the spline space spanned by the functions Ŝp
i (ζ), Np(Ξ) the

NURBS space spanned by the functions N̂p
i (ζ).
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IGA basics
Geometrical parametrisation

In CAGD, NURBS and splines are widely spread as they are capable of
accurately describing various geometries.
Given a set of Control Points Ci ∈ Rd , i ∈ I, a NURBS parametrization of
a curve (d=1), a surface (d = 2) or a solid (d = 3) is given by

F : Ω̂→ Ω F(ζ) =
∑
i∈I

Ci N̂
p
i (ζ).

F

→
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IGA basics
Geometrical approximation

The computational domain Ω is generally decomposed into K
non-overlapping subdomains, i.e.,

Ω =
K⋃

k=1

Ωk , Ωi ∩ Ωj = ∅, i 6= j .

Figure: A tire kindly given by

Some of the reasons:

Geometrical definition purposes

Different materials
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IGA basics
Some model problems

Strong formulations

Laplace problem
−∆u = f in Ω,
u = uD on ΓD ,
∇u · n = l on ΓN .

Static mechanical balance problem
−div(σ) = f in Ω,

u = uD on ΓD ,
σ · n = l on ΓN .

under the following assumptions:

linear elasticity
ε = 1

2 (∇u + (∇u)T ) =∇su,

small displacement-deformation
σ = λLamé tr(ε) I + 2 µLamé ε.
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IGA basics
Some model problems

Weak formulations

Find u ∈ VD such that

a(u, v) = f (v), ∀v ∈ V0.

Laplace problem

a(u, v) =

∫
Ω
∇u ·∇v dx ,

f (v) =

∫
Ω
f ·v dx +

∫
ΓN

l ·v ds.

Static mechanical balance problem

a(u, v) =

∫
Ω
λLamé div(u) · div(v) +

2µLamé∇su :∇sv dx ,

f (v) =

∫
Ω

f · v dx +

∫
ΓN

l · v ds.
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IGA basics
Motivations

Each Ωk is parametrised by a NURBS parametrization Fk .
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Each Ωk is parametrised by a NURBS parametrization Fk .

Each subdomain is discretized independently
→ non-conforming meshes at the subdomain interfaces !

The approximation space on Ωk is

Vk,h = {vk = v̂k ◦ F−1
k , v̂k ∈ (Npk (Ξk))dP},

i.e., a push-forward of a NURBS space.
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IGA basics
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Each Ωk is parametrised by a NURBS parametrization Fk .

Each subdomain is discretized independently
→ non-conforming meshes at the subdomain interfaces !

The approximation space on Ωk is

Vk,h = {vk = v̂k ◦ F−1
k , v̂k ∈ (Npk (Ξk))dP},

i.e., a push-forward of a NURBS space.

at the interfaces ?
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Where we are

1 IGA basics

2 Isogeometric mortar methods

3 Applications in contact mechanics
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Isogeometric mortar methods
The discrete mortar problem

We define the interface γk1k2 by γk1k2 = ∂Ωk1 ∩ ∂Ωk2 ∀k1, k2 such that
1 ≤ k1 < k2 ≤ K .
For each interface, one of the adjacent subdomains is chosen as the
master side and the other one as the slave side.
The skeleton Γ is the union of all the interfaces.

n1

n2

Ω1

Ω2
Ω3

γ2

ΩM(2)

γ1

ΩS(1)

ΩM(1)

ΩS(2) n1

n2

Ω1

Ω2

Ω3γ1

ΩS(1)

γ2

ΩS(2)

ΩM(1)

ΩM(2)

Figure: Geometrical conforming case (left) and slave conforming case (right)
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Isogeometric mortar methods
The discrete mortar problem

Mortar method ⇒ weak continuity imposition of u at each interface.

Discrete mortar saddle point formulation

Find (uh, λh) ∈ Vh ×Mh, such that

a(uh, vh) + b(vh, λh) = f (vh), vh ∈ Vh,

b(uh, φh) = 0, φh ∈ Mh,

with Vh =
K∏

k=1

Vk,h and b(uh, φh) =

∫
Γ
uh · φh ds.
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Isogeometric mortar methods
The discrete mortar problem

Mortar method ⇒ weak continuity imposition of u at each interface.

Discrete mortar saddle point formulation

Find (uh, λh) ∈ Vh ×Mh, such that

a(uh, vh) + b(vh, λh) = f (vh), vh ∈ Vh,

b(uh, φh) = 0, φh ∈ Mh,

with Vh =
K∏

k=1

Vk,h and b(uh, φh) =

∫
Γ
uh · φh ds.

Choose properly Mh
→ Two requirements on each interface to have an optimal method

an appropriate approximation order for the multiplier space

a uniform inf-sup stability between the primal and multiplier spaces
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Where we are

1 IGA basics

2 Isogeometric mortar methods
The discrete mortar problem
Lagrange multiplier spaces
A key issue: the evaluation of the mortar integrals

3 Applications in contact mechanics
Contact problem definition
Example of treatment of deformable-deformable contact in a
Lagrange multiplier formulation
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Isogeometric mortar methods
Lagrange multiplier spaces

Mh =
L∏

l=1

Ml ,h where Ml ,h is the multiplier space on an interface.

From now on, we focus on the one interface case.

Mh is generated from a parametric multiplier space M̂h.

We consider the following choices for this latter one:

choice 1: M̂h ⊆ SpS (Γ̂),

choice 2: M̂h ⊆ SpS−1(Γ̂),

choice 3: M̂h ⊆ SpS−2(Γ̂).
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Isogeometric mortar methods
Lagrange multiplier spaces

Choice 1

M̂h ⊆ SpS (Γ̂)
A boundary modification can be necessary.

0 h 2h 3h

−1

0

1

2
B̃

2 i

ζ

Figure: Left boundary modification of B-Spline functions of degree p = 3

→ A degree reduction in the boundary elements.
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Isogeometric mortar methods
Lagrange multiplier spaces

Choice 2

M̂h ⊆ SpS−1(Γ̂)

Chapelle-Bathe1 tests to estimate the stability constant
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→ Unstable pairings
1

The inf-sup test. D. Chapelle, K. J. Bathe. Computers & Structures, Vol. 47 (1993), No. 4/5, pp. 537-545
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Isogeometric mortar methods
Lagrange multiplier spaces

Choice 3

M̂h ⊆ SpS−2(Γ̂)

Proof for the pS/pS − 2 pairing in 2D

inf
φ̂∈SpS−2

sup
û∈SpS

0

∫
Γ̂
φ̂ û dŝ

‖û‖L2‖φ̂‖L2

≥ α̂

Regularity of the mapping

Quasi-uniformity of the meshes

Choose û ∈ SpS
0 such that ∂2

xx û = φ̂

D : SpS
0 → SpS−1 \ R and D : SpS−1 \ R→ SpS−2 are bijections

Work with Sobolev norms
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Isogeometric mortar methods
Lagrange multiplier spaces

inf
φ̂∈SpS−2

sup
û∈SpS

0

∫
Γ̂
φ̂ û dŝ

‖û‖L2‖φ̂‖L2

≥ α̂

From parametric to physical space

inf
φ∈Mh

sup
u∈Wh

∫
Γ φ u ds

‖u‖L2‖φ‖L2

≥ α

Wh = {u|Γ , u ∈ VS ,h} ∩ H1
0 (Γ)

Variable change:
∫

Γ φ u ds =
∫

Γ̂
φ̂ û ρ dŝ,

Super-convergence resultsa

Π : L2(Γ̂)→ M̂h ‖φ̂ρ− Π(φ̂ρ)‖L2(Γ̂) ≤ Ch‖φ̂‖L2(Γ̂)

a
Superconvergence in Galerkin Finite Element Methods. L. Wahlbin. Lecture Notes in Mathematics (1995),

Vol. 1605, Springer, Berlin
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Isogeometric mortar methods
Lagrange multiplier spaces

inf
φ̂∈SpS−2

sup
û∈SpS

0

∫
Γ̂
φ̂ û dŝ

‖û‖L2‖φ̂‖L2

≥ α̂

From parametric to physical space

inf
φ∈Mh

sup
u∈Wh

∫
Γ φ u ds

‖u‖L2‖φ‖L2

≥ α

Wh = {u|Γ , u ∈ VS ,h} ∩ H1
0 (Γ)

Variable change:
∫

Γ φ u ds =
∫

Γ̂
φ̂ û ρ dŝ,

Super-convergence resultsa

For h small enough, the stability holds !

a
Superconvergence in Galerkin Finite Element Methods. L. Wahlbin. Lecture Notes in Mathematics (1995),

Vol. 1605, Springer, Berlin
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Isogeometric mortar methods
Lagrange multiplier spaces

Dependence of the stability constant on the degree
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→ Exponential dependence in p
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Isogeometric mortar methods
Lagrange multiplier spaces - Summary

For VS ,h a push-forward of a NURBS space of degree pS , and :

Mh a push-forward of a spline space of degree pS
=⇒ problems at cross points.

Mh a push-forward of a spline space of degree pS − 1
=⇒ stability is NOK.

Mh a push-forward of a spline space of degree pS − 2
=⇒ stability is OK.
And more generally, for a push-forward of a spline space of degree
pS − 2k (k ∈ N and k > 1).

Pairing pS − pS Pairing pS − (pS − 2)

||u − uh||L2(Ω) pS + 1 pS + 1
2

||λ− λh||L2(Γ) pS − 1
2 pS − 1

Table: Optimal order of convergence of isogeometric mortar methods
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Where we are

1 IGA basics

2 Isogeometric mortar methods
The discrete mortar problem
Lagrange multiplier spaces
A key issue: the evaluation of the mortar integrals

3 Applications in contact mechanics
Contact problem definition
Example of treatment of deformable-deformable contact in a
Lagrange multiplier formulation
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Isogeometric mortar methods
A key issue: the evaluation of the mortar integrals

We recall the bilinear form

b(u, φ) =

∫
ΓS

φ · uS |ΓS
ds −

∫
ΓS

φ · uM |ΓM
ds.
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∫
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φ · u− ds −
∫
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φ · u+ ds.

→ A challenge: the evaluation of the second integral due to the
product of functions which are defined on different meshes.
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Isogeometric mortar methods
A key issue: the evaluation of the mortar integrals

We recall the bilinear form

b(u, φ) =

∫
ΓS

φ · u− ds −
∫

ΓS

φ · u+ ds.

→ A challenge: the evaluation of the second integral due to the
product of functions which are defined on different meshes.

Finite element litterature

Dedicated quadrature rules have been studied.a,b

Approximating these integrals taking the quadrature of one side is
inducing large (consistency or approximation) errors.

a
Numerical quadrature and mortar methods. L. Cazabeau, C. Lacour, Y. Maday. Computational Science for

the 21st Century, John Wiley and Sons (1997), pp. 119-128
b

The influence of quadrature formulas in 2D and 3D mortar element methods. Y. Maday, F. Rapetti, B.I.
Wohlmuth. Recent developments in domain decomposition methods. Some papers of the workshop on domain
decomposition. ETH Zürich, Switzerland, June 7-8. 2001, pp. 203-221. Springer (2002)
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Isogeometric mortar methods
A key issue: the evaluation of the mortar integrals

Slave integration approach
One could expect the sensitivity with respect to the slave
quadrature to be less than for finite element methods.

a(ũh, vh) +
∑
−(v−h − v+

h ) λ̃h = f (vh), vh ∈ Vh,∑
−(ũ−h − ũ+

h ) φh = 0, φh ∈ Mh.

Mixed integration approach
We also consider another approach which leads to a non-symmetric
saddle point problem. It is motivated by different requirements for
the integration of the primal and multiplier test functions.

a(ũh, vh) +
∑
−v
−
h λ̃h −

∑
+v

+
h λ̃h = f (vh), vh ∈ Vh,∑

−(ũ−h − ũ+
h ) φh = 0, φh ∈ Mh.
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Isogeometric mortar methods
A key issue: the evaluation of the mortar integrals

Numerical results

Problem settings

Standard Poisson problem
−∆u = f

Analytical solution
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Isogeometric mortar methods
A key issue: the evaluation of the mortar integrals

Numerical results - Slave integration approach
L2 primal and multiplier errors as a function of the number of additional
quadrature points
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Isogeometric mortar methods
A key issue: the evaluation of the mortar integrals

Numerical results - Mixed integration approach
L2 primal error as a function of the number of additional quadrature points
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Isogeometric mortar methods
A key issue: the evaluation of the mortar integrals

Numerical results - Mixed integration approach
L2 primal error as a function of the number of additional quadrature points
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Where we are

1 IGA basics

2 Isogeometric mortar methods

3 Applications in contact mechanics
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Applications in contact mechanics
Contact problem definition - Strong formulation

Assumption: frictionless contact
→ the contact variables are thus the gap gN and the contact
pressure σN defined as:

gN = (xS − xM) · nM = [x ], σN = −(σS · nS) · nM .

2 types

Rigid-Deformable contact

gN = uS · nM + (XS − XM) · nM

Deformable-Deformable contact

gN = (uS−uM)·nM +(XS−XM)·nM
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Applications in contact mechanics
Contact problem definition - Strong formulation

Assumption: frictionless contact
→ the contact variables are thus the gap gN and the contact
pressure σN defined as:

gN = (xS − xM) · nM = [x ], σN = −(σS · nS) · nM .

2 types

Rigid-Deformable contact

gN = uS · nM + g

Deformable-Deformable contact

gN = (uS−uM)·nM +g
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Applications in contact mechanics
Contact problem definition - Strong formulation

Assumption: frictionless contact
→ the contact variables are thus the gap gN and the contact
pressure σN defined as:

gN = (xS − xM) · nM = [x ], σN = −(σS · nS) · nM .

2 types

Rigid-Deformable contact Deformable-Deformable contact

On Ω =
⋃

k Ωk

with either k = {S}, or k = {S , M},

the mechanical equilibrium with contact conditions is written


−div(σk) = fk in Ωk ,

uk = uD,k on ΓD,k ,
σk · nk = lk on ΓN,k ,

gN ≥ 0, σN ≤ 0, gN σN = 0 on ΓC ,S .
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Applications in contact mechanics
Contact problem definition - Weak formulations

Different formulations to enforce the contact constraints: penalty,
Lagrange multiplier, augmented lagrangian, Nitsche’s.
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Applications in contact mechanics
Contact problem definition - Weak formulations

Different formulations to enforce the contact constraints: penalty,
Lagrange multiplier, augmented lagrangian, Nitsche’s.

In the following, we focus on a Lagrange multiplier formulation.

To do so, we introduce a multiplier space M defined by

M = {φ ∈ H−1/2(ΓC ,S)},

as its subspace

M− = {φ ∈ M,

∫
ΓC ,S

φ [u] ds ≤ 0, ∀ [u] ∈ H1/2(ΓC ,S), [u] ≥ 0}.
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Applications in contact mechanics
Contact problem definition - Weak formulations

Different formulations to enforce the contact constraints: penalty,
Lagrange multiplier, augmented lagrangian, Nitsche’s.

In the following, we focus on a Lagrange multiplier formulation.

We also introduce the following bilinear and linear forms:

b : V ×M → R, b(u, φ) =

∫
ΓC ,S

φ [u] ds,

g : M → R, g(φ) =

∫
ΓC ,S

φ g ds.
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Applications in contact mechanics
Contact problem definition - Weak formulations

Different formulations to enforce the contact constraints: penalty,
Lagrange multiplier, augmented lagrangian, Nitsche’s.

In the following, we focus on a Lagrange multiplier formulation.

Contact problem - Lagrange multiplier formulation

Find (u, λ) ∈ VD ×M− such that{
a(u, v) + b(v , λ) = f (v), ∀v ∈ V0,
b(u, λ− φ) ≤ −g(λ− φ), ∀φ ∈ M−.
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Applications in contact mechanics
Contact problem definition - Semi-discrete formulations

On each subdomain Ωk with either k = {S} (R-D contact) or k = {S , M}
(D-D contact), based on its relative NURBS geometrical parametrization,
we introduce the displacement approximation space

Vk,h = {vk = v̂k ◦ F−1
k , v̂k ∈ (Npk (Ξk))du}.

Ericka Brivadis Isogeometric mortar & contact January 19th, 2017 31 / 45



Applications in contact mechanics
Contact problem definition - Semi-discrete formulations

On each subdomain Ωk with either k = {S} (R-D contact) or k = {S , M}
(D-D contact), based on its relative NURBS geometrical parametrization,
we introduce the displacement approximation space

Vk,h = {vk = v̂k ◦ F−1
k , v̂k ∈ (Npk (Ξk))du}.

We note that in the D-D contact case, the discrete product space

Vh =
∏

k={S,M}

Vk,h ⊂ V forms a (H1(ΩS ∪ ΩM))du non-conforming

space discontinuous over the potential region of contact ΓC ,S .
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Applications in contact mechanics
Contact problem definition - Semi-discrete formulations

On each subdomain Ωk with either k = {S} (R-D contact) or k = {S , M}
(D-D contact), based on its relative NURBS geometrical parametrization,
we introduce the displacement approximation space

Vk,h = {vk = v̂k ◦ F−1
k , v̂k ∈ (Npk (Ξk))du}.

We note that in the D-D contact case, the discrete product space

Vh =
∏

k={S,M}

Vk,h ⊂ V forms a (H1(ΩS ∪ ΩM))du non-conforming

space discontinuous over the potential region of contact ΓC ,S .

Need to complete the definition of the discrete formulation to define
remaining discrete datas.
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Applications in contact mechanics
Contact problem definition - To discrete formulations

Discrete multiplier space

For VS ,h a push-forward of a NURBS space of degree pS and :

Mh a push-forward of a spline space of degree pS =⇒ cross points

Mh a push-forward of a spline space of degree pS − 2 =⇒ stability OK

And more generally, for a push-forward of a spline space of degree
pS − 2k (k ∈ N and k > 1).

Discrete gap
→ Use of a lumped L2-projection Π̃ into Mh defined as

Π̃ : R→ Mh, (Π̃gN)j =

∫
ΓC ,S

gN Bφj ds∫
ΓC ,S

Bφj ds
, ∀ j = 1, . . . , nMh

.
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Where we are

1 IGA basics

2 Isogeometric mortar methods
The discrete mortar problem
Lagrange multiplier spaces
A key issue: the evaluation of the mortar integrals

3 Applications in contact mechanics
Contact problem definition
Example of treatment of deformable-deformable contact in a
Lagrange multiplier formulation
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Applications in contact mechanics
Example of treatment of deformable-deformable contact in a Lagrange multiplier
formulation

Numerical resolution strategy

The Lagrange multiplier formulation of the contact problem is solved with
an active set strategy written as:
Find (uh, λh) ∈ VD,h ×M−h such that

a(uh, vh) +

∫
ACT

λh [vh] ds = f (vh), ∀vh in V0,h,

∫
ACT

φh [uh] ds = −
∫
ACT

φh g ds, ∀φh in M−h .
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Applications in contact mechanics
Example of treatment of deformable-deformable contact in a Lagrange multiplier
formulation

Numerical resolution strategy

The Lagrange multiplier formulation of the contact problem is solved with
an active set strategy written as:
Find (uh, λh) ∈ VD,h ×M−h such that

a(uh, vh) +

∫
ACT

λh [vh] ds = f (vh), ∀vh in V0,h,

∫
ACT

φh [uh] ds = −
∫
ACT

φh g ds, ∀φh in M−h .

Need to focus on

the discrete active set region definition,

suitable integration methods to approximate the mixed term
contributions.
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Applications in contact mechanics
Example of treatment of deformable-deformable contact in a Lagrange multiplier
formulation

Giving a discrete definition of the dual cone M−h , e.g.,

M−h,E = {φh ∈ Mh, φh ≤ 0},

M−h,W = {φh ∈ Mh,

∫
ΓC ,S

φh Bj ds ≤ 0, ∀j = 1, ..., nMh
},

M−h,P = {φh =
∑
k

αk Bk , αk ≤ 0, ∀k = 1, ..., nMh
},

→ consists in giving a discrete definition of the active vs inactive
contact region.
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Applications in contact mechanics
Example of treatment of deformable-deformable contact in a Lagrange multiplier
formulation

Giving a discrete definition of the dual cone M−h , e.g.,

M−h,E = {φh ∈ Mh, φh ≤ 0},

M−h,W = {φh ∈ Mh,

∫
ΓC ,S

φh Bj ds ≤ 0, ∀j = 1, ..., nMh
},

M−
h,P = {φh =

∑
k

αk Bk , αk ≤ 0, ∀k = 1, ..., nMh},

→ consists in giving a discrete definition of the active vs inactive
contact region.

According to the R-D contact case study, we choose to define it as the
support of active multiplier functions. This set of functions is
denoted CPACT

λ while the set of inactive ones CPINA
λ .
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Applications in contact mechanics
Example of treatment of deformable-deformable contact in a Lagrange multiplier
formulation

Active set strategy

(i) Initialise CPACT
λ and CPINA

λ

(ii) Compute [
K B(·,CPACT

λ )

B∗
(CPACT

λ , ·) 0(CPACT
λ ,CPACT

λ )

] [
U

Λ(CPACT
λ )

]
=

[
F

G(CPACT
λ )

]

(iii) Check convergence, i.e.,: CPACT
λ and CPINA

λ stable

(iv) Update CPACT
λ and CPINA

λ and go to (ii) until convergence is reached

The constraints are checked on the multiplier control values λj and the

discrete gap control values (Π̃gN)j . The 9 possible cases are:

λj < 0, λj > 0, λj = 0,

(Π̃gN)j = 0 Actif (a) (Π̃gN)j = 0 Inactif (b) (Π̃gN)j = 0 Inactif (c)

(Π̃gN)j > 0 Actif (d) (Π̃gN)j > 0 Inactif (e) (Π̃gN)j > 0 Inactif (f)

(Π̃gN)j < 0 Actif (g) (Π̃gN)j < 0 Actif (h) (Π̃gN)j < 0 Actif (i)
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Applications in contact mechanics
Example of treatment of deformable-deformable contact in a Lagrange multiplier
formulation

Active set strategy

(i) Initialise CPACT
λ and CPINA

λ

(ii) Compute [
K B(·,CPACT

λ )

B∗
(CPACT

λ , ·) 0(CPACT
λ ,CPACT

λ )

] [
U

Λ(CPACT
λ )

]
=

[
F

G(CPACT
λ )

]

(iii) Check convergence, i.e.,: CPACT
λ and CPINA

λ stable

(iv) Update CPACT
λ and CPINA

λ and go to (ii) until convergence is reached

B =

[
BS

BM

]
B∗ =

[
B∗S

B∗M

]
BS
ij =

∫
ACT

Bλ
j (xS ) nM (xM ) · BS

i (xS ) ds,

B∗S
ij =

∫
ACT

Bλ
i (xS ) nM (xM ) · BS

j (xS ) ds,

BM
ij = −

∫
ACT

Bλ
j (xS ) nM (xM ) · BM

i (xM ) ds,

B∗M
ij = −

∫
ACT

Bλ
i (xS ) nM (xM ) · BM

j (xM ) ds.
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Applications in contact mechanics
Example of treatment of deformable-deformable contact in a Lagrange multiplier
formulation

Active set strategy

(i) Initialise CPACT
λ and CPINA

λ

(ii) Compute [
K B(·,CPACT

λ )

B∗
(CPACT

λ , ·) 0(CPACT
λ ,CPACT

λ )

] [
U

Λ(CPACT
λ )

]
=

[
F

G(CPACT
λ )

]

(iii) Check convergence, i.e.,: CPACT
λ and CPINA

λ stable

(iv) Update CPACT
λ and CPINA

λ and go to (ii) until convergence is reached

BS
ij =

∑
S

ACTBλ
j (xS ) nM (xM ) · BS

i (xS ),

B∗S
ij =

∑
S

ACTBλ
i (xS ) nM (xM ) · BS

j (xS ),

BM
ij = −

∑
M

ACTBλ
j (x̃S ) nM (xM ) · BM

i (xM ),

B∗M
ij = −

∑
S

ACTBλ
i (xS ) nM (xM ) · BM

j (xM ).
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Applications in contact mechanics
Example of treatment of deformable-deformable contact in a Lagrange multiplier
formulation

Numerical results - Test 1 - Transmission of a constant pressure
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Applications in contact mechanics
Example of treatment of deformable-deformable contact in a Lagrange multiplier
formulation

Numerical results - Test 1 - Transmission of a constant pressure

P2− P2,
non-conforming meshes,
4× 2 elements for each
subdomain
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Applications in contact mechanics
Example of treatment of deformable-deformable contact in a Lagrange multiplier
formulation

Numerical results - Test 1 - Transmission of a constant pressure

P2− P2,
non-conforming meshes,
64× 32 elements for each
subdomain
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Applications in contact mechanics
Example of treatment of deformable-deformable contact in a Lagrange multiplier
formulation

Numerical results - Test 2
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Applications in contact mechanics
Example of treatment of deformable-deformable contact in a Lagrange multiplier
formulation

Numerical results - Test 2 - Full contact
L2 multiplier errors
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Ref: P4− P4, 511× 128 elements for each subdomain
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Applications in contact mechanics
Example of treatment of deformable-deformable contact in a Lagrange multiplier
formulation

Numerical results - Test 2 - Full contact

P2− P2
Ref. level nb. 3
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Applications in contact mechanics
Example of treatment of deformable-deformable contact in a Lagrange multiplier
formulation

Numerical results - Test 2 - Partial contact
L2 multiplier errors
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Ref: P4− P4, 511× 128 elements for each subdomain
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Where we are

1 IGA basics

2 Isogeometric mortar methods
The discrete mortar problem
Lagrange multiplier spaces
A key issue: the evaluation of the mortar integrals

3 Applications in contact mechanics
Contact problem definition
Example of treatment of deformable-deformable contact in a
Lagrange multiplier formulation
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Conclusion & perspectives

Theoretical and numerical study of isogeometric mortar methods.

Study of alternative integration methods to alleviate the
construction of the merged mesh.

From these former results, proposition of contact methods for
rigid-deformable and deformable-deformable contact.

Additionally, work on a segmentation process for IGA mortar
applications. It has been thought to be suitable for mortar-like
contact methods.

Perspectives: generalisation of the proposed segmentation process,
extension of the methods to the large deformation cases,
consideration of contact problems with friction.
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Conclusion & perspectives

Isogeometric mortar methods. E. Brivadis, A. Buffa, B. Wohlmuth
and L. Wunderlich. Comput. Methods Appl. Mech. Eng. 284 (2015),
pp. 292-319.

The Influence of Quadrature Errors on Isogeometric Mortar Methods.
E. Brivadis, A. Buffa, B. Wohlmuth and L. Wunderlich. Isogeometric
Analysis and Applications 2014. Ed. by B. Jttler and B. Simeon. Vol.
107. 2015, pp. 33-50.

Isogeometric contact mechanics applications. E. Brivadis, A. Buffa.
In preparation.
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Thanks for your attention
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