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Abstract

IsoGeometric Analysis (IGA) has been immediately considered as a

promising technique to approximate Partial Differential Equations (PDEs)

thanks to its most important feature: the use of smooth basis functions.

IGA generates accurate and even exact geometry approximations, but

generally at the price of a computational domain which is split into

numerous patches. Thus, one needs efficient methods to treat the patch

coupling. Weak couplings are privileged compared to strong point-wise

ones as they allow the flexibility in the choice of the patch meshes as well

as of the patch approximation space degrees.

This research work concerns the study of some weak coupling methods

and their applications to contact mechanics. After an introductory chapter,

Chapters 2 and 3 are devoted to the definition and the study of the mortar

method for IGA, while Chapters 4 and 5 to their applications in the

numerical approximation of contact mechanics.

Relying on the mortar mathematical background that exists with Finite

Element Methods (FEMs), mortar methods have been studied theoretically

as well as numerically using IGA in Chapter 2. Two multiplier spaces are

proved to be stable and to provide best approximation results. Both are

spline spaces defined on the slave boundary mesh but of different orders.

Once suitable multiplier spaces have been found, the most critical

issue in the design of a mortar method is the evaluation of the so-called

mortar integrals, i.e., the integrals of product of functions living on dif-

ferent meshes. A study on different integration strategies is presented in

Chapter 3. An approximate integration strategy based on two existing

quadratures gives optimal results, and as expected the exact integration

strategy based on the construction of suitable quadrature formulae. We

note that obtaining this latter requires the definition of a third mesh, called

merged mesh, built during an expensive process known as segmentation

process.

These optimal mortar methods inspired the treatment of a more chal-

lenging interface problem: the frictionless unilateral contact problem with
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initial gap. In Chapter 4, in the design of optimal numerical contact meth-

ods, mixed methods are proposed to treat rigid-deformable contact prob-

lems, i.e., the contact between an elastic body with a rigid ground. Prob-

lem formulation, discretization, constraint enforcement methods and res-

olution strategies are discussed. Finally, in Chapter 5, we propose varia-

tionally consistent methods based on the mortar methods defined above

to approach deformable-deformable contact problems, i.e., the contact be-

tween two elastic bodies. The optimality of the contact methods is shown

on different benchmarks.
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Italian abstract

L’Analisi IsoGeometrica (IGA) è stata considerata fin da subito come

promettente per l’approssimazione delle equazione ai derivati parziali

perché si basa su funzioni di base ad elevata continuità. Il metodo IGA

genera delle geometrie precise o esatte, ma in generale questo comporta

la decomposizione del dominio computazionale in diversi sottodomini,

chiamati patches. È quindi necessario avere metodi efficaci per incollare

questi diversi sottodomini. I metodi misti come i metodi mortar sono

privilegiati rispetto agli altri metodi, poiché permettono la flessibilità nella

scelta delle griglie nei diversi patches e del grado polinomiale dei rispettivi

spazi di approssimazione.

Questo lavoro di ricerca riguarda lo studio di metodi variazionali

di accoppiamento fra patches e le loro applicazioni alla meccanica del

contatto. Dopo un capitolo di introduzione, i Capitoli 2 e 3 sono dedicati

alla definizione ed allo studio del metodo mortar per l’IGA, mentre i

Capitoli 4 e 5 all’applicazione numerica in meccanica del contatto.

Basandosi sulle conoscenze matematiche già esistenti nel contesto del

metodo degli elementi finiti, i metodi mortar sono stati studiati sia teorica-

mente che numericamente usando IGA nel Capitolo 2. Dimostreremo che

due spazi di moltiplicatori sono stabili e che hanno proprietà di approssi-

mazione ottimali. Entrambi sono spazi di splines definiti sul bordo della

griglia slave ma di ordini diversi.

Una volta scelti adeguatamente gli spazi di moltiplicatori, rimane da

affrontare il problema della la valutazione degli integrali mortar, cioè

degli integrali che contengono il prodotto di funzioni definite su griglie

diverse. Uno studio fatto su diverse strategie di integrazione è presentato

nel Capitolo 3. Una strategia di integrazione approssimata basata su

due quadrature esistente dà dei risultati ottimali, così come la strategia

basata sulla costruzione di formule di quadratura opportune. Si noti che

per quest’ultima strategia è richiesta la definizione di una terza griglia,

chiamata griglia di intersezione, costruita durante un costoso processo

chiamato processo di segmentazione.
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Questi metodi ottimali hanno ispirato il trattamento di un problema

d’interfaccia più complesso: il trattamento del problema di contatto senza

attrito con gap iniziale. Nel Capitolo 4, allo scopo di trovare dei metodi

numerici ottimali per il problema di contatto, dei metodi misti sono pro-

posti per trattare il contatto rigido-deformabile, cioè tra un corpo elastico

ed una fondazione rigida. Si discutono in particolare la formulazione del

problema, la sua discretizzazione, l’impostazione delle condizioni di con-

tatto e delle strategie di risoluzione. Infine, nel Capitolo 5, proponiamo dei

metodi variazionali basati sui metodi mortar definiti in precedenza per ap-

prossimare il contatto deformabile-deformabile, cioè tra due corpi elastici.

L’ottimalità di questi metodi è dimostrata tramite diversi esempi numerici.
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French abstract

L’Analyse IsoGéométrique (IGA) a immédiatement été considérée comme

prometteuse pour l’approximation et la résolution des équations aux

dérivées partielles, car elle possède notamment des fonctions de base

très régulières. IGA génère des approximations géométriques précises

ou exactes, mais généralement au prix d’une décomposition du domaine

de calcul en différents sous-domaines appelés patches. Nous avons donc

besoin de méthodes efficaces pour coupler ces différents sous-domaines.

Les méthodes mixtes de mortier sont privilégiées par rapport aux autres

méthodes. En effet, elles permettent de maintenir la flexibilité des mail-

lages des patches comme de leurs degrés d’espaces d’approximation.

Ce mémoire concerne l’étude de méthodes variationnelles de cou-

plage et leurs applications à la mécanique du contact. Après un chapitre

d’introduction, les Chapitres 2 et 3 sont dédiés à la définition et à l’étude

de la méthode de mortier en IGA, tandis que les Chapitres 4 et 5 à leurs

applications numériques aux problèmes de contact.

En s’appuyant sur le recul mathématique qui existe déjà avec la méth-

ode des éléments finis, des méthodes de mortier ont été étudiées théorique-

ment et numériquement en utilisant IGA dans le Chapitre 2. Deux espaces

de multiplicateurs stables fournissent une estimation d’erreur a priori op-

timale. Ces deux espaces sont tous deux définis sur le bord du maillage

esclave mais sont de degrés différents.

Après l’obtention d’un espace de multiplicateur adapté, un challenge

demeure: l’évaluation des intégrales de mortier, c’est-à-dire d’intégrer

le produit de fonctions définies sur des maillages différents. Dans le

chapitre 3, différentes stratégies d’intégration sont présentées. Une ap-

prochée basée sur les deux quadratures existantes conduit à des résultats

optimaux, comme celle basée sur des formules de quadrature adaptées.

Nous précisons que l’obtention de cette dernière stratégie nécessite la déf-

inition d’un troisième maillage, appelé maillage d’intersection, construit

lors d’un processus coûteux de segmentation.
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Ces méthodes optimales ont inspiré le traitement d’un problème

d’interface non-linéaire: le problème de contact unilatéral sans frottement

avec gap initial. Dans le Chapitre 4, dans l’objectif de trouver des méth-

odes numériques optimales spécifiques au contact, des méthodes mixtes

sont proposées pour traiter le contact rigide-déformable, c’est-à-dire en-

tre un corps élastique et une fondation rigide. La formulation du prob-

lème, sa discrétisation, l’imposition des contraintes de contact et les straté-

gies de résolution y sont discutées. Finalement, dans le Chapitre 5, nous

proposons des méthodes variationnelles consistantes qui s’appuient sur

les méthodes de mortier définies ci-dessus pour approcher des problèmes

de contact déformable-déformable, c’est-à-dire entre deux corps élastiques.

L’optimalité de ces dernières est démontrée numériquement sur différents

exemples.
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Preface

Isogeometric analysis, introduced in [60], is a Galerkin method which ap-

proximates the solution of Partial Differential Equations (PDEs) with Non

Uniform Rational B-Spline (NURBS) spaces. The idea of IGA arose from

the desire to mind the gap between Computer Aided Geometrical Design

(CAGD) and PDE solvers, especially to bypass a cost-full step inherent to

other numerical methods, namely, the mesh process. The physical domain

(i.e., the computational domain) is given by NURBS parametrizations, and

the solution relative to the considered problem is approximated by NURBS

spaces built on these geometries (more precisely on their meshes). We refer

to [31] for a complete presentation of isogeometric analysis and to [5, 6] for

its mathematical understanding.

Initially in [60], its pioneers considered a strong concept which is the

isoparametric paradigm, i.e., the space used to generate the geometry is

mapped to the physical domain and used as approximation space for the

PDE solution approximation. Since, IGA has been generalised to a set of

methods which use for the PDE solution approximation, spaces based on

the geometry approximation, but not necessarily the same, see, e.g., [6].

Moreover furnishing a more accurate computational domain, the spline

smoothness provides good approximation properties to their underlying

NURBS spaces. Thanks to that, IGA has already been successfully ap-

plied in different contexts, among them we mention the vibration one, see,

e.g., [32, 61], the electromagnetic one, see, e.g., [22] as well as in challenging

and complete engineering applications, see, e.g., [88]. In Chapter 1 of this

thesis, splines basics are recalled.

Complex geometry as well as complex material distributions can not

be approximated by one NURBS parametrization. Thus with isogeometric

methods, the computational domain is generally split into different parts,
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named patches. Each of them is obtained as a NURBS mapping of the unit

d-cube. On each of them, underlying approximation spaces are defined.

Within this framework, techniques to couple the numerical solution of the

considered PDE are required at the patch interfaces. To retain the flexibility

of the interface meshes as well as of the space degrees, weak coupling

methods are favourable in contrast to strong point-wise couplings.

Let us consider a domain Ω ⊂ Rd, d = 2, 3. Let us define on Ω, V a

Hilbert space and V0 its subspace with homogeneous boundary conditions.

Let a(·, ·) continuous and coercive in V be the bilinear form and f(·) con-

tinuous in V be the linear form associated to the problem. The considered

weak formulation is: find u ∈ V such that

a(u, v) = f(v), ∀v ∈ V0. (1)

Under some assumptions on a(·, ·) and f(·), the problem stated in (1) is

well-posed, see, e.g., [45]. When the domain Ω is a patch, IGA is just the

Galerkin method using splines and NURBS. Let Vh be the solution discrete

space, it is a push-forward of a NURBS space. Let Vh,0 be its subspace with

homogeneous boundary conditions. The discrete problem of Equation (1)

is: find uh ∈ Vh such that

a(uh, vh) = f(vh), ∀vh ∈ Vh,0. (2)

If u satisfies Equation (2), the approximation uh of the solution u is re-

ferred as consistent. Moreover it is conform if Vh ⊂ V .

In a multi-patch setting, Ω is approximated by the union of different

NURBS patches, i.e., Ω =
∑

k

Ωk. In this context, a(·, ·) becomes the sum of

the contributions of each patch, i.e., a(·, ·) =
∑

k

ak(uk, vk). And the same

holds for the right-hand side f(·, ·) =
∑

k

fk(vk). We choose as discrete

space the product space Vh =
∏

k

Vk,h where Vk,h stands for the discrete

space on the patch k. The continuity of the discrete solution should be

ensured at the interfaces in a variationnally way. With mixed methods,

it is done by the use of a Lagrange multiplier. Thus the discrete problem

of Equation (1) results in a saddle-point problem, that is: find (uh, λh) ∈



Preface 3

(Vh,Mh) such that





a(uh, vh) + b(vh, λh) = f(vh), ∀vh ∈ Vh,0,
b(uh, φh) = 0, ∀φh ∈Mh,

(3)

with Mh the discrete multiplier space and b(·, ·) the mixed bilinear form

equal to
∫

Γ λ · JuK ds, where Γ stands for the union of all subdomain

interfaces and J·K for the jump of the unknown u across Γ. Equa-

tion (3) is well-posed if and only if an inf-sup condition is satisfied

between primal and dual spaces on each interface and the form a(·, ·)
is coercive on the kernel relative to the mixed bilinear form defined by

{vh ∈ Vh : b(vh, λh) = 0, ∀λh ∈ Mh}, see, e.g., [13]. Thus given a

primal approximation space, it is influencing the multiplier space choice.

The aim of this thesis is to address and analyse some aspects related to

weak coupling methods that are of a high interest in the IGA multi-patch

context. In particular, we focus our attention on the following topics:

1. isogeometric mortar methods. We lead a theoretical and numeri-

cal study to propose optimal isogeometric mortar methods to ensure

weakly the continuity of the PDE solution at the patch interfaces. Fur-

thermore, we study numerically the impact of some approximations

that can be done on the classical mortar formulation to improve its

efficiency.

2. isogeometric contact methods. We lead a numerical study to propose

optimal mixed contact methods to enforce frictionless unilateral con-

tact conditions with initial gap. We propose numerical methods for

both, rigid-deformable and deformable-deformable contact cases. I.e,

we consider the contact between an elastic body and a ground and

the contact between two elastic bodies. The convergence properties

of the proposed methods are analysed on different benchmarks.

The results of this thesis have been partially published or are about to

be published, see [17, 18]. This research work was funded by the company

Michelin. It was realised in collaboration with the company Michelin and

the IMATI of Pavia. Both are gratefully acknowledged.
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In the following, we describe the thesis content of each of these two

topics.

Isogeometric mortar methods

It is interesting to consider mortar methods, which offer a flexible ap-

proach to domain decomposition to ensure the weak continuity at the in-

terfaces. They were originally applied in spectral and finite element meth-

ods. Mortar methods have been successfully investigated in the finite el-

ement context for over two decades, [12, 11, 10, 8, 71], for a mathematical

overview, see [111]. Further applications of the mortar methods include

contact problems, [9, 69, 115, 112, 114], and interface problems, e.g., in

multi-physics applications, [107].

In the IGA context, the coupling of multi-patch geometries has already

been investigated in several articles, [68, 90, 99, 72, 3, 29, 119, 65, 116, 20,

64], and successful applications of the mortar method are shown in [53, 43,

4]. Additionally the use of mortar-like methods in contact simulations was

considered, see, e.g., [37, 39, 104, 67, 42, 102].

In this thesis, in Chapter 2, the application of mortar methods in the

framework of IGA is presented theoretically as well as numerically. As it

is known, its optimality requires the fulfilment of an inf-sup condition be-

tween the primal and dual spaces and suitable approximation properties

for the dual space. For the Lagrange multiplier two choices of uniformly

stable spaces are given, both of them being spline spaces but of a differ-

ent degree. In one case, we consider an equal order pairing for which a

cross point modification is required to ensure a dual space not bigger than

the primal one. In the other case, the degree of the dual space is reduced

by two compared to the primal one. This pairing is proven to be inf-sup

stable without any necessary cross point modification. Several numerical

examples confirm the theoretical results and illustrate additional aspects.

After this mathematical analysis enlightening the use of various dual

spaces, in Chapter 3, we investigate numerically the impact on the solution

accuracy of a few consistency errors that may be introduced to make the

method easier to implement. First, we examine the use of approximate

L2-projections instead of exact L2-projection. It means in formulation (3)

we replace b(·, ·) by one of its approximation bh(·, ·). The approximation we
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analyse is mainly motivated by the application in contact mechanics, where

replacing the L2-projection with a local one helps in limiting the matrices

fill-in.

Second, we analyse the consistency error that appears when taking into

account the quadrature error in the computation of the terms b(v, λ) and

b(u, φ) in (3), that we referred as mortar integrals. Note that the evalua-

tion of these bilinear forms is numerically challenging as it involves the

evaluation of integrals which contain products of functions defined on dif-

ferent meshes. Obviously, an exact evaluation of the mortar integrals can

be achieved using a quadrature rule defined on a merged mesh, i.e., a mesh

which respects the lines of reduced smoothness of master and slave func-

tions. The construction of this auxiliary mesh is challenging, especially in

the three-dimensional case, since the possible shape of the elements are

many and difficult to determine, see, e.g., [86, 95, 96, 53, 42]. Due to this

computational complexity, it would be very appealing to use a existing

quadrature rule, i.e., one based on one of the two available meshes. How-

ever, early results in [23, 81] have already shown for the finite element case

that it does not yield optimal methods, especially in the case the master

quadrature rule is chosen. Since splines have a higher global smoothness

than finite element functions, one might expect different results in the iso-

geometric analysis context. Motivated by finite element observations, we

firstly consider on the interface a quadrature rule purely based on the slave

mesh, referred as a slave integration approach. Secondly, we consider a

method using on the interface quadrature rules based on both slave and

master meshes, referred as a mixed integration approach. This later one

results in a non-symmetric saddle point problem. While in the first case re-

duced convergence rates can be observed, in the second case barely. There-

fore, it provides a good integration approach which avoids the use of a

merged mesh.

As the construction of the merged mesh still remains of interest to eval-

uate integral of functions defined on different meshes, we also present a

strategy to build it in the isogeometric context in Chapter 3. Its construc-

tion is done in the slave parametric space from the triangularisation of slave

parametric elements by lines relative to master element counterparts. The
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use of a unique normal to associate master to slave points, and thus to ob-

tain these former master counterparts, as well as to associate slave to master

points is a key aspect of the method. This normal is chosen as the master

normal. It is ensuring a well-definition of the segmentation process under

reasonable tessellation parameter and master mesh finesse assumptions.

Isogeometric unilateral contact methods

Even though a huge amount of work had already been done on con-

tact, it is still a actively ongoing research topic. We refer to [66, 73, 115,

112, 38] for a general literature in a finite element and isogeometric analysis

contexts. The use of isogeometric analysis in contact has added great ad-

vantages since it allows for smooth definition of the discrete contact area. It

helps the evaluation of distances and the detection of contact, that are often

delicate steps within a contact algorithm. The contact conditions may be

included in the problem formulation with various approaches that we try

to list as follows:

• via a penalty formulation, see, e.g., [74]. Even though its simple im-

plementation, this formulation suffers from a consistency lack that

prevents the solution to fulfill completely the contact conditions. Fur-

thermore, its efficiency relies on the penalty coefficient definition. In-

deed, it should be defined as a compromise between a not so bad ma-

trix system conditioning number and reasonable constraint enforce-

ment.

• via a Lagrange multiplier formulation, see, e.g., [55, 30, 56]. The ad-

ditional unknown on which the contact constraints have been trans-

ferred allows to reach a solution that fulfills weakly the contact con-

ditions. Although the new constraint system requires an iterative res-

olution strategy which is not always ensured to converge.

• via an augmented Lagrangian multiplier formulation, see, e.g., [1, 93,

97]. It benefits from both, penalty and Lagrange multiplier formu-

lation advantages. The additional unknown coupled with an aug-

mented term leads to a new unconstraint system. Its solution ful-

fills weakly the contact conditions without damaging the matrix sys-

tem conditioning. One needs to evaluate additional matrix terms and

tunes an augmentation parameter.
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• finally, more recently, via a Nitsche’s formulation, see, e.g., [26, 27, 46,

25]. It has the advantage of the Lagrange multiplier formulation, in

the sense the solution fulfills the contact conditions, but this time with

no necessary additional unknown. Although, the additional terms

which restore the consistency involve high order derivative terms that

have to be evaluated.

The choice of the formulation together with the strategy to impose and

check the contact constraints are the ingredients for a resolution method.

We highlight that the method robustness relies on a perfect accordance in

the way the constraints are imposed and checked. In the following, we

briefly recall the main strategies that can be used to impose weakly the

contact conditions. They can be separated into two types, first the Gauss

point to surface methods (initially called knots to surface in IGA) see,

e.g., [48, 78, 105, 37, 41] for which the constraint imposition is done at

the quadrature points, secondly the surface to surface methods for which

it is done on the surface, see, e.g., [86, 95, 67, 39, 94, 42, 102, 54]. The

formulation choice also gives direction to possible resolution strategies. As

a numerical contact method can become easily expensive, some works fo-

cused on the computational cost improvement, see, e.g., [113, 19, 40, 82, 83].

Our work sits in the field of variationally consistent techniques for

frictionless contact. Concerns with the use of mortar algorithms, we devel-

oped ingredients for the design of contact algorithms. This work is original

in the sense, to our knowledge, it is the first to consider isogeometric

mixed methods with different degree pairings. It is of a high interest in

regards to the low regularity of the contact problem solution. Indeed, it

allows to maintain good approximation properties on the displacement

variable while saving some computational cost using a lower degree for

the multiplier. The content of the second topic of the thesis is described in

the following.

In Chapter 4, we present rigid-deformable contact methods. Different

aspects are investigated in a context not yet affected by any integration

issue. An augmented Lagrangian formulation is considered, it allows to

analyse from a numerical perspective penalty and Lagrange multiplier
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formulation counterparts. The use of a lumped L2-projection as well as

discrete active contact region definition choices are discussed. Numerical

results illustrate the study.

In Chapter 5, we propose and analyse algorithms for deformable-

deformable contact problems. The methods we propose are variationally

consistent and based on the mortar methods defined in Chapters 2 and 3

and thus referred as mortar-like methods. We design an active set strategy

which activates and inactivates functions depending on the sign of control

variables of the multiplier and of a given projection of the gap. Such a

projection is chosen as an approximate L2-projection into the multiplier

space (with lumped mass). Moreover, with the results of Chapter 3,

we depict the method in such a way that no merged mesh is needed to

evaluate the integrals and the accuracy is preserved. To our knowledge,

it is the first work to present optimal contact methods without any seg-

mentation process, and thus by using existing quadrature rules to evaluate

the contact integrals. Numerical results show qualitative results, discuss

the optimality of the proposed methods and show result comparisons

with one of the most common integration method currently used in the

deformable-deformable contact context, see, e.g., [48, 108, 37].
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This chapter aims to introduce the different topics of this thesis. Herein,

we recall some concepts and set notations used throughout all the thesis.

We start by spline basics, then we focus on the domain decomposition

context on which we set mortar method basics. And finally, we introduce

the setting of the considered unilateral frictionless contact problem with

initial gap.

In the following, we use the classical bold notation for vector variables

as well as the double underline one for tensor variables.
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1.1 Spline basics

Hereafter, we give the basics of the spline theory used in IGA. For more

details, we refer to the classical literature [36, 92, 98, 100].

1.1.1 Univariate functions

Univariate B-Spline Let us denote by p the degree of the univariate B-

Splines and by Ξ a univariate knot vector, i.e., a ordered sequence of points

called knots. Let us consider

Ξ = {0 = ξ1 = . . . = ξp+1 < ξp+2 ≤ . . . ≤ ξn < ξn+1 = . . . = ξn+p+1 = 1}

where the first and last entries are repeated (p+ 1)-times. This kind of knot

vector is the most common one used and is called an open knot vector. Note

that without loss of generality, the parametric segment is chosen herein as

I = (0, 1), i.e., ξ1 = 0 and ξn+p+1 = 1.

Let us define U = {ζ1, ζ2, . . . , ζE} the knot vector without any repeti-

tion, also called breakpoint vector. For each breakpoint ζj of U , we define

its multiplicity mj as its number of repetitions in Ξ then

Ξ = {ζ1, . . . , ζ1︸ ︷︷ ︸
m1 times

, ζ2, . . . , ζ2︸ ︷︷ ︸
m2 times

, . . . , ζE , . . . , ζE︸ ︷︷ ︸
mE times

}.

The points inU form a partition of the parametric interval I, i.e., a mesh.

The univariate (p+ 1)-order B-Spline is defined recursively by the Cox,

De Boor, Mansfield formula [92, 31] based on the univariate knot vector Ξ.

It defines n univariate B-Spline functions B̂p
i (ζ) (i = 1, . . . , n) starting from

the univariate B-Spline functions of degree 0 defined by:

B̂0
i (ζ) =





1 if ξi ≤ ζ < ξi+1

0 otherwise

to the univariate B-Spline functions of degree q, for 1 ≤ q ≤ p, defined by:

B̂q
i (ζ) =

ζ − ξi
ξi+q − ξi

B̂q−1
i (ζ) +

ξi+q+1 − ζ
ξi+q+1 − ξi+1

B̂q−1
i+1 (ζ).

Where at its occurrence it is formally assumed that 0
0 = 0.
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It holds the following relation between the total multiplicity, the degree

of the basis and its number of functions:

E∑

j=1

mj = n+ p+ 1.

Let us define Sp(Ξ) the univariate spline space of degree p defined on

the knot vector Ξ spanned by the corresponding B-Spline functions, i.e.,

Sp(Ξ) = span{B̂p
i , i = 1, . . . , n}.

We recall hereafter some important properties of the univariate B-

Splines which can be observed on an example of a quadratic B-Spline in

Figure 1.1. Each B̂p
i is a piecewise positive polynomial of degree p and

has a local support. B̂p
i is non-zero only on at most (p + 1) elements and

supp B̂p
i = [ξi, ξi+p+1]. Consequently on an element [ζi, ζi+1], at most (p+1)

basis functions have non-zero values.

The inter-element continuity is defined by the breakpoint multiplicity.

More precisely, the basis functions are Cp−mj at each ζj ∈ Z.

The B-Spline forms a partition of unity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Figure 1.1: A univariate quadratic B-Spline built on the open knot vector Ξ
= {0, 0, 0, 1

5 ,
2
5 ,

2
5 ,

3
5 ,

4
5 , 1, 1, 1}. We note the C0 continuity in ζj = 2

5 .

Assuming that the multiplicities of the internal knots are such that the

B-Spline is at least C1 on (0, 1), the derivative of each function in the basis

can be represented, see [6, 100]. The derivatives belong to the spline space
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Sp−1(Ξ′), where Ξ′ = {ξ2, ξ3, . . . , ξE−1} is an open knot vector with first

and last knots repeated p-times.

Moreover, the application derivation d
dζ : Sp(Ξ) → Sp−1(Ξ′) is a linear

surjective application, i.e., dζSp(Ξ) = Sp−1(Ξ′)( [100] Theorem 4.49). The

derivatives are expressed by

dB̂p
i

dζ
(ζ) =

p

ξi+p − ξi
B̂p−1
i (ζ)− p

ξi+p+1 − ξi+1
B̂p−1
i+1 (ζ) ∀ζ ∈ (0, 1),

where it is formally assumed that B̂p−1
1 (ζ) = B̂p−1

n+1(ζ) = 0.

Univariate NURBS Let us introduce D̂W (ζ) the weight function as

D̂W (ζ) =

n∑

i=1

ωi B̂
p
i (ζ),

with wi some positive coefficients usually called weights.

The NURBS functions of degree p relative to the univariate knot vector

Ξ are defined as a function of the weights and B-Spline functions by

N̂p
i (ζ) =

ωi B̂
p
i (ζ)

D̂W (ζ)
i = 1, . . . , n.

As rational B-Spline functions, they have similar properties to them.

Note that B-Spline functions can indeed be regarded as NURBS functions

with all the weights taken equal to 1, which implies D̂W (ζ) = 1.

Let us define Np(Ξ) the univariate NURBS space of degree p defined on

the knot vector Ξ spanned by the NURBS functions, i.e.,

Np(Ξ) = span{N̂p
i (ζ), i = 1, . . . , n}.

1.1.2 Multivariate B-Splines and NURBS

Multivariate B-Spline These functions are defined as a tensor product of

univariate B-Spline ones.

Let d be the space dimensions. For any direction δ (δ = 1, . . . , d), we

introduce pδ the degree of the relative univariate B-Spline, nδ the number

of the relative univariate B-Spline functions, Ξδ the relative univariate open

knot vector and Uδ the relative univariate breakpoint vector.
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We then define by Ξ = (Ξ1×Ξ2× . . .×Ξd) the multivariate knot vector

and by U = (U1 × U2 × . . . × Ud) the multivariate breakpoint vector. For

simplicity of notation, we are not defining the degree vector but instead

we assume in the following that the degree is the same in all parametric

directions and denote it by p.

U forms a partition M̂ of the parametric domain denoted Ω̂ = (0, 1)d =

⊗dδ=1Iδ. The partition is called cartesian grid or parametric Bézier mesh,

and is defined as

M̂ = {Qj = τ̂1,j1 × . . .× τ̂d,jd , τ̂δ,jδ = [ζδ,jδ , ζδ,jδ+1], j = (j1, . . . , jd),

1 ≤ jδ ≤ Eδ − 1}.

The mesh size of each underlying univariate partition Uδ (δ = 1, . . . , d)

is denoted by ĥδ,j (j = 1, . . . , Eδ − 1). We do the following assumption

regarding the mesh uniformity.

Assumption 1 (Quasi-uniform parametric mesh). The partition defined by the

breakpoints is globally quasi-uniform, i.e., there exists a constant θ such that the

univariate element size ratio is uniformly bounded: ĥδ,i/ĥδ′,j ≤ θ, with δ, δ′ =

1, . . . , d and i = 1, . . . , Eδ − 1, j = 1, . . . , Eδ′ − 1.

Note that Assumption 1 excludes the case of anisotropic meshes which

are used, e.g., for boundary layers and of graded meshes which are used

in case of singularities. This assumption is made here only to reduce the

technicality of the following proofs.

We introduce a set of multi-indices I = {i = (i1, . . . , id) : 1 ≤ iδ ≤ nδ} to

numerate the basis functions. Multivariate B-Spline functions are defined

for each multi-index i by tensorization of the univariate B-Spline ones as

B̂p
i (ζ) = B̂p

i1
(ζ1) . . . B̂p

id
(ζd), i ∈ I.

The multivariate spline space in the parametric domain is then defined

by

Sp(Ξ) = ⊗dδ=1S
p(Ξδ) = span{B̂p

i (ζ), i ∈ I}.

Multivariate NURBS They are rational functions of multivariate B-Spline

functions. A weight ωi (i ∈ I) should be given for each of one of these
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functions. Thus, in general multivariate NURBS functions are not obtained

and indeed can not be obtained as a tensor product of univariate NURBS

functions due to the need of the weights ωi in their definition.

We set Np(Ξ) as the multivariate NURBS space spanned by the multi-

variate NURBS functions N̂p
i (ζ).

1.1.3 Parametrization

NURBS have widely been used in the CAGD since they are capable to de-

scribe various geometries very accurately. For a set of points Ci ∈ Rd, i ∈ I,

called control points, we define F(ζ) a parametrization of a NURBS curve

(d = 1), surface (d = 2) or solid (d = 3) as a linear combination of NURBS

functions and control points

F(ζ) =
∑

i∈I

Ci N̂
p
i (ζ).

A NURBS patch also called NURBS geometry is the image of the para-

metric domain Ω̂ by the parametrization F, i.e.,

F : Ω̂→ Ω, Ω = F(Ω̂), F ∈ Np(Ξ).

F→

Figure 1.2: Left: A parametric mesh. Right: Its geometrical mapping. We note
that the red points are the control points.

We note that F is also called the geometrical mapping. In Figure 1.2,

an example of mapping is given. It is visible that the control points do

not necessarily belong to the NURBS geometry, indeed they are located at a

distance of orderO(h2) to the geometry, see, e.g., [28, 35]. The geometry has

the continuity of the basis which defined it and the control points belong to
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it only at the low continuity locations, i.e, at the C0 and even lower order

continuity locations.

The linear geometrical interpolation of the control points defines the

control lattice. The NURBS geometry is contained inside the convex hull

of the control lattice. Moreover, any affine transformation of the NURBS

geometry can be obtained transforming the control points accordingly.

We define a physical meshM as the image of the parametric mesh M̂
through F, and denote by O its elements, i.e.,

M = {O ⊂ Ω : O = F(Q), Q ∈ M̂}.

We emphasise that according to this definition, the control points do not

enter in the mesh definition, and thus the control lattice should not be

mistaken with the mesh. It is important to highlight that aspect which is a

common mistake done by people from the finite element community. Let

us set the ideas on an example. In Figure 1.3, we consider two patches

with a common interface. On the first line, the two interface meshes are

identical while the interface control lattices are not as the geometries are

approximated by spline spaces of different degrees. On the second line,

both, interface meshes and interface control lattices differ, as the geometries

are approximated by spline spaces defined on different knot vectors.

Let us assume the following regularity of F.

Assumption 2 (Regularity of the mapping F). The parametrization F is a bi-

Lipschitz homeomorphism. Moreover, F|Q is in C∞(Q) for all elements of the

parametric mesh, and F−1
|O is in C∞(O) for all elements of the physical mesh.

Let us define the mesh size for any parametric element as hQj
=

diam(Qj) and analogously for any physical element as hOj
. We note that

Assumption 2 ensures that hQj
≈ hOj

. Thus, no distinction is required

between parametric and physical mesh sizes and we use in the following

the simple notation hj for the mesh size. We denote the maximal one by

h = maxj hj.
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Figure 1.3: Mesh (left) versus control lattice (right) definition. Top: Geometry
approximation spaces of different degrees. Bottom: Geometry approximation
spaces defined on different knot vectors. The red and yellow points are the

control points.

1.1.4 Spaces and refinement procedures

Let v the variable we aim to approximate numerically. It is the solution of a

PDE we are going to approximate on NURBS spaces. We introduce Vh the

approximation space on Ω defined by

Vh = {v = v̂ ◦ F−1, v̂ ∈ Np(Ξ)}.

It is defined on the knot vector Ξ and it is of degree p. This space is a push-

forward of a NURBS space. It is known to have optimal approximation

properties as stated in the following lemma, see, e.g., [5, 100, 7].

Lemma 3. Given a quasi-uniform mesh and let r, s be such that 0 ≤ r ≤ s ≤ p+1.

Then, there exists a constant C depending only on p, θ, F and D̂W , such that for

any v ∈ Hs(Ω) there exists an approximation vh ∈ Vh, such that

‖v − vh‖Hr(Ω) ≤ Chs−r‖v‖Hs(Ω).

Spline and NURBS spaces have three different refinement strategies: h,

p and k-refinement ones which can affect the mesh element number, the

basis function number and the basis degree. We refer to [92, 31] for some
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algorithmic details on the refinement procedures and [33] for a study on

them.

The h-refinement procedure consists in an insertion of further knots in

univariate knot vector(s) defining Ξ. It results either in an increase of the

mesh element number or a local reduction of the space continuity. In Fig-

ure 1.3, to set clearly the idea, we show it influences on some geometry

approximation spaces. E.g., the second line of Figure 1.3 has been obtained

by a non-uniform h-refinement procedure of the top subdomain of the ge-

ometry visible in Figure 1.4.

The p-refinement procedure consists in an increase of the degree, it re-

sults in an increase of the space continuity at the relative mesh lines. E.g.,

the first line of Figure 1.3 has been obtained by a p-refinement procedure of

the top subdomain of the geometry visible in Figure 1.4.

And the k-refinement procedure, specificity of the spline, is a p-

refinement procedure followed by a h-refinement one. It allows to maintain

a certain continuity in the approximation space while refining.

Figure 1.4: Mesh (left) versus control lattice (right) of a geometry split into
two subdomains, each of them being approximated with the coarsest possible

approximation space. The red and yellow points are the control points.

We precise that the refinement procedure is done starting from an ini-

tial mesh denotedM0 for which we require quasi-uniformity, i.e., Assump-

tion 1.

The refinement procedures are such that once a geometry has been ap-

proximated by a NURBS parametrization, i.e., defined on an initial knot

vector, an initial degree, an initial set of control points and weights, any

refinement procedures applied to the NURBS space is not modifying the

geometry approximation.
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In the following, by refinement procedure we only refer to the h-

refinement one, i.e., we keep the degree fixed while refining. Applying the

refinement procedure, it yields a family of meshesMk, each mesh being a

refinement of the initial one. Under the assumptions 1 and 2, this family of

meshes is shape regular.

1.2 Isogeometric methods on multi-patch domains

Hereafter, after stating the problem setting, we define the multi-patch

geometry approximation context. Then we introduce the necessary func-

tional framework and finally we give the discrete problem relative to the

mortar method context.

Let Ω ⊂ Rd, d = 2, 3, be a bounded domain, α, β ∈ L∞(Ω), α > α0 > 0

and β ≥ 0. We consider the following second order elliptic boundary value

problem with homogeneous Dirichlet conditions

−div(α∇u) + βu = f in Ω, (1.1a)

u = 0 on ∂ΩD = ∂Ω. (1.1b)

We assume α, β to be sufficiently regular, but allow jumps in special loca-

tions, which are specified later.

1.2.1 Description of the computational domain

Let a decomposition of the domain Ω into K non-overlapping subdomains

Ωk be given:

Ω =

K⋃

k=1

Ωk, and Ωi ∩ Ωj = ∅, i 6= j.

For 1 ≤ k1 < k2 ≤ K, k1 6= k2, we define the interface as the interior of the

intersection of the boundaries, i.e., γk1k2
= ∂Ωk1∩∂Ωk2 , where γk1k2 is open.

Let the non-empty interfaces be enumerated by γl, l = 1, . . . , L, and define

the skeleton Γ =
⋃L
l=1 γl as the union of all interfaces. For each interface,

one of the adjacent subdomains is chosen as the master side and one as the

slave side.

We denote the index of the former by M(l), the index of the latter one

by S(l), and thus γl = ∂ΩM(l) ∩ ∂ΩS(l). Note that one subdomain can at
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the same time be classified as a master domain for one interface and as a

slave domain for another interface, see Figure 1.5. On the interface γl, we

define the outward normal nl of the master side ∂ΩM(l) and denote by
∂u

∂nl
the normal derivative on γl from the master side.

n1

n2

Ω1

Ω2

Ω3

γ2

ΩM(2)

γ1

ΩS(1)

ΩM(1)

ΩS(2)
n1

n2

Ω1

Ω2

Ω3γ1

ΩS(1)

γ2

ΩS(2)

ΩM(1)

ΩM(2)

Figure 1.5: Geometrical conforming case (left) and slave conforming case (right).

Each subdomain Ωk is given as the image of the parametric space Ω̂

by one single NURBS parametrization Fk : Ω̂ → Ωk, see Subsection 1.1.3,

which satisfies the Assumption 2. The h-refinement procedure, see Sub-

section 1.1.4, yields a family of meshes denoted Mk,h, each mesh being a

refinement of the initial one for which we require Assumption 1. Thus, the

family of meshes is shape regular. We anticipate that a more detailed anal-

ysis may show the same results under milder assumptions on the meshes

(as the local quasi-uniformity).

We furthermore assume that for each interface, the pull-back with re-

spect to the slave domain is a whole face of the unit d-cube in the parametric

space. Under these assumptions, we are not necessarily in a geometrically

conforming situation, but we call it a slave conforming situation, see the right

setting in Figure 1.5. If we also assume that the pull-back with respect to

the master domain is a whole face of the unit d-cube, we are in a fully geo-

metrically conforming situation, see the left picture of Figure 1.5. We note

that in this latter case, for the respective interface, the master-slave choice

is arbitrary.

1.2.2 Variational problem

Hereafter, we recall main functional analysis properties to introduce our

abstract framework and then set the variational problem.

We use standard Lebesgue and Sobolev spaces on a bounded Lipschitz

domain D ⊂ Rd−1 or D ⊂ Rd. L2(D) denotes the Lebesgue space of square

integrable functions, endowed with the norm ‖f‖L2(D) = (

∫

D
|f |2 dx)1/2.
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For l ∈ N, H l(D) denotes the Sobolev space of functions f ∈ L2(D) such

that their weak derivatives up to the order l are also in L2(D). For a frac-

tional index s > 0, Hs(D) denotes the fractional Sobolev space as defined

in [51]. Let us mention that H1/2(∂D) is the trace space of H1(D).

The Sobolev space of order one with vanishing trace is H1
0 (D) = {v ∈

H1(D), tr(v) = 0}. Working on subsets of the boundary γ ⊂ ∂D, special

care has to be taken about the value on the boundary of γ. We define by

H
1/2
00 (γ) ⊂ H1/2(γ) the space of all functions that can be trivially extended

on ∂D \ γ by zero to an element of H1/2(∂D). The dual space of H1/2
00 (γ)

is denoted H−1/2(γ). Note that on closed surfaces, i.e., γ = ∂D, it holds

H1/2(γ) = H
1/2
00 (γ). Furthermore, in the following we omit the trace opera-

tor whenever there is no ambiguity.

For each Ωk, we introduce the space H1
∗ (Ωk) = {vk ∈

H1(Ωk), vk|∂Ω∩∂Ωk
= 0}. And in order to set a global functional framework

on Ω, we consider the broken Sobolev spaces V =

K∏

k=1

H1
∗ (Ωk), endowed

with the broken norm ‖v‖2V =
K∑

k=1

‖v‖2H1(Ωk), and M = ΠL
l=1H

−1/2(γl).

The standard weak formulation of (1.1) reads as follows: find u ∈ H1
0 (Ω)

such that

∫

Ω
α∇u · ∇v + β u v dx =

∫

Ω
f v dx, v ∈ H1

0 (Ω). (1.2)

It is well-known that under the assumptions on α and β, the variational

problem (1.2) is uniquely solvable.

From now on, we assume that jumps of α and β are solely located at the

skeleton, and we define the linear and bilinear forms a : V × V → R and

f : V → R, such that

a(u, v) =

K∑

k=1

∫

Ωk

α∇u · ∇v + β u v dx, f(v) =

K∑

k=1

∫

Ωk

fv dx.

1.2.3 Discretization

On Ω, we define the product space Vh =
K∏

k=1

Vk,h ⊂ V , which forms aH1(Ω)

non-conforming space discontinuous over the interfaces, where Vk,h is the

approximation space defined on the subdomain Ωk
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The mortar method is based on a weak enforcement of continuity across

the interfaces γl in broken Sobolev spaces. Let Ml,h ⊂ L2(γl) be a space of

discrete Lagrange multipliers defined on each interface γl and built on the

slave mesh. On the skeleton Γ, we define the discrete product Lagrange

multiplier space Mh as Mh =
L∏

l=1

Ml,h. Furthermore, we define the discrete

trace space with additional zero boundary conditions by Wl,h = {v|γl , v ∈
VS(l),h} ∩H1

0 (γl).

One possibility for a mortar method, starting from the standard weak

formulation (1.2) on which we impose weakly the interface continuity con-

ditions and then discretise, is to specify the discrete weak formulation as a

saddle point problem: find (uh, λh) ∈ Vh ×Mh, such that

a(uh, vh) + b(vh, λh) = f(vh), vh ∈ Vh, (1.3a)

b(uh, φh) = 0, φh ∈Mh, (1.3b)

where b(u, φ) =

L∑

l=1

∫

γl

φ[u]l ds and [·]l denotes the jump from the master

to the slave side over γl. We note that the Lagrange multiplier λh gives an

approximation of the normal flux across the skeleton.

To completely define the mortar method, it remains to explicit the mul-

tiplier space. We point out that it has to be done carefully, see, e.g., [8, 13].

Choices of different spaces are discussed in Chapter 2.

1.3 Formulations for contact problems

Hereafter, after stating the unilateral frictionless contact problem with ini-

tial gap, we define its weak formulations as well as their discretizations.

1.3.1 Description of the problem

In a contact problem, different elastic bodies may interact. We immediately

restrict our attention to two specific cases, the first one named rigid-

deformable which is the contact between a rigid body and an elastic one,

the second one named deformable-deformable one which is the contact

between two elastic bodies. We note that the general case of self-contact

problems is excluded. Moreover, we do the following linear assumptions,

i.e., the small displacement-deformation and the plane linear isotropic
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elastic material assumptions. The classical slave-master distinction is used.

I.e., one body is referred as the master one and denoted in the following

by the index M. We note that for the rigid-deformable case, the rigid

subdomain is always set as the master. The other subdomain is referred as

the slave one and denoted by the index S.

In presence of potential contact, the boundary of each discretised sub-

domain Ωk is split into three non overlapping parts ΓD,k, ΓN,k and ΓC,k.

The boundary conditions being either a pressure lk on ΓN,k the part of ∂Ωk

referred as its Neumann boundary, or a prescribed displacement uD,k on

ΓD,k the part of ∂Ωk referred as its Dirichlet boundary, or contact condi-

tions on ΓC,k the part of ∂Ωk referred as its potential area of contact. ΓN,k,

ΓD,k and ΓC,k satisfy the following relations which ensure the problem to

be well posed: ∂Ωk = (ΓN,k ∪ ΓD,k ∪ ΓC,k), (ΓN,k ∩ ΓD,k ∩ ΓC,k) = ∅ and

meas(ΓD,k) 6= ∅.
In order to set the frictionless unilateral contact conditions with initial

gap it is necessary to introduce some preliminary contact variables, i.e., the

gap gN and the contact pressure σN for both contact cases.

Figure 1.6: Projection of a slave point on the master.

Given a xS ∈ ΓC,S , we define its projected point(s) xM ∈ ΓC,M as the

solution of:

min
xM∈ΓC,M

d(xS ,xM ),

i.e., the closest point(s) on the master to the current slave point, see some

examples in Figures 1.6, 1.7 and 1.8 and the Appendix. We point out that

the existence as well as the uniqueness of the solution of this minimisation

problem are not warranted and this may have an impact on the optimality
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of the proposed contact methods. Although, in the isogeometric analysis

context, thanks to the high smoothness of splines, they may be better en-

sured than in the finite element context. We note that some assumptions on

the geometry approximations can alleviate these aspects.

Rigid-deformable contact Figure 1.7. In this case, the master domain is

described by a parametric equation, i.e., it is not discretised.

The contact variables gN and σN are respectively defined as a function

of the initial configuration of the two domains XS and XM , the slave dis-

placement uS , the slave stress and the contact normal chosen as the master

normal and thus denoted nM , by

gN = uS · nM + (XS −XM ) · nM = uS · nM + g,

σN = (σS · nS) · nS = −(σS · nS) · nM .

Figure 1.7: Contact problem setting in the rigid-deformable case.

We highlight that even though the small displacement-deformation as-

sumption is done, to define the contact variables and then the active contact

region, one needs to distinguish between the initial and current configura-

tions of the slave domain. Here, the unilateral contact conditions are obvi-

ously verified on ΓC,S .

We point out that in the finite element context choosing the contact nor-

mal as the master normal, i.e., the normal of a parametric equation is a

way to ensure smooth properties on the contact normal. While in the iso-

geometric analysis context they can also be ensured by choosing the slave

normal as the contact normal thanks to the smoothness of splines, functions
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on which the geometry approximations are based on. This arbitrary choice

is done, we note that it will be commented in further details later on.

Deformable-deformable contact Figure 1.8. In this case, the contact vari-

ables gN and σN are respectively defined as a function of either the current

configuration of the two subdomains xS and xM or the initial configura-

tion of the two subdomains XS and XM , their displacements uS and uM ,

either the master or slave stress and the contact normal still chosen as the

master normal, by

gN = (xS − xM ) · nM = (uS − uM ) · nM + (XS −XM ) · nM ,

= (uS − uM ) · nM + g,

σN = (σM · nM ) · nM = (σS · nS) · nS = −(σS · nS) · nM .

Figure 1.8: Contact problem setting in the deformable-deformable case.

We still highlight that even though the small displacement-deformation

assumption is done, to define the contact variables and then the active

contact region, one needs to distinguish between the initial and current

configurations of the two subdomains. Here, we consider that the contact

can occur between ΓC,S and ΓC,M . The unilateral contact conditions are

verified on ΓC,S . Due to the small displacement-deformation assumption,

in the neighbourhood of the active contact region it is implicitly assumed

that ΓC,S and ΓC,M differ only a little as any configuration update is done in
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the resolution process. In a more general case, both subdomain geometries

are updated while getting the solution. Thus even though the unilateral

contact conditions are verified on ΓC,S , as the two different ΓC,k (with

k = {S, M}) tend to match in the active contact region due to the geometry

updates, the contact conditions will be satisfied on both ΓC,k, k = {S, M}.

With the notations introduced above, the contact conditions referred as

unilateral contact conditions or Karush-Kuhn-Tucker conditions are

gN ≥ 0, σN ≤ 0, gN σN = 0 on ΓC,S . (1.4)

The first condition ensures the non-penetration of the subdomains, the

second one ensures a compressive resulting reaction and the third one

ensures the complementary condition, i.e., either an active contact and

thus a compressive force or an inactive contact and thus a separation of the

subdomains.

Let Ωk ⊂ Rd, d the dimension being 2 or 3, be a bounded subdomain

which is subjected to an internal load fk and different boundary conditions

on its boundary ∂Ωk.

The static balance equation relative to Ω =
⋃
k Ωk with either k = {S}

in the rigid-deformable case or k = {S, M} in the deformable-deformable

case is written as





−div(σk) = fk in Ωk,

uk = uD,k on ΓD,k,

σk · nk = lk on ΓN,k.

gN ≥ 0, σN ≤ 0, gN σN = 0 on ΓC,S ,

(1.5)

where nk is the outward normal on ∂Ωk, uk ∈ Rdu is the displacement, σk

and εk are respectively the stress and strain tensors relative to the subdo-

main Ωk. Under plane linear isotropic elastic assumptions, it holds:

σk = λLamé,k tr(εk) I+ 2 µLamé,k εk and εk =
1

2
(∇uk + (∇uk)T ) = ∇suk,
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where div, ∇ and ∇s stand respectively for the standard divergence, gra-

dient and symmetric gradient operators, λLamé,k and µLamé,k for the Lamé co-

efficients. We note that the the Lamé coefficients are related to the Young

modulus Ek and the Poisson ratio νk via the following relations:

λLamé,k =
Ek νk

(1 + νk)(1− 2νk)
, µLamé,k =

Ek
2 (1 + νk)

.

Herein, we have just recalled the balance equation relative to the as-

sumptions done, for more details about solid mechanics see, e.g., [15, 75].

1.3.2 Weak formulation

Hereafter, we present the functional framework relative to each contact case

in order to introduce weak contact formulations for the problem stated in

Equation (1.5).

We use standard Sobolev spaces, as defined in [51], endowed with their

usual norms.

Rigid-deformable contact framework On ΩS , we consider the Sobolev

space

V = (H1(ΩS))du ,

endowed with the norm ‖v‖2V = ‖v‖2
(H1(ΩS))du

, which is the classical H1

vectorial norm in ΩS , and its subspaces

VD = {v ∈ V, v = uD,S on ΓD,S },

V0 = {v ∈ V, v = 0 on ΓD,S}.

We introduce [v] the classical jump of v defined as [v] = vS · nM .

In order to define weak formulations of the considered contact problem,

we define the following linear and bilinear forms:

a : V × V → R, a(u,v) =

∫

ΩS

λLamé,S div(u) · div(v)

+ 2µLamé,S∇su : ∇sv dx,

f : V → R, f(v) =

∫

ΩS

fS · v dx +

∫

ΓN,S

lS · v ds.
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Deformable-deformable contact framework On (ΩS ∪ ΩM ), we consider

the broken Sobolev space

V =
∏

k={S,M}

Vk =
∏

k={S,M}

(H1(Ωk))
du

endowed with the broken norm ‖v‖2V =
∑

k={S,M} ‖v‖2(H1(Ωk))du
, and its

subspaces

VD = {v ∈ V, v = uD,k on ΓD,k k = {S, M} },

V0 = {v ∈ V, v = 0 on ΓD,k k = {S, M} }.

[v] the classical jump of v is defined in this case by [v] = (vS−vM )·nM .

We also define the following linear and bilinear forms:

a : V × V → R, a(u,v) =
∑

k={S,M}

∫

Ωk

λLamé,k div(u) · div(v)

+ 2µLamé,k∇su : ∇sv dx,

f : V → R, f(v) =
∑

k={S,M}

∫

Ωk

fk · v dx +
∑

k={S,M}

∫

ΓN,k

lk · v ds.

In the following, we give three different weak formulations based on

the way the contact constraints are taken account, namely a penalty formu-

lation, a Lagrange multiplier formulation and an augmented Lagrangian

multiplier formulation. We note that we restrict the study to these three

formulations but point out that others exist such as Nitsche’s formulations,

see, e.g., [26, 27, 46, 25].

Penalty formulation Find u ∈ VD such that

a(u, v) +

∫

ΓC,S

ε < gN >− [v] ds = f(v), ∀v ∈ V0 (1.6)

with < · >− the Macauley bracket and ε the penalty parameter that has to

be infinite to ensure an exact contact constraint enforcement.

We note that the Macauley bracket is here considered defined as:

< a >−=





0 if a ≥ 0,

a if a < 0.
(1.7)
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The contact pressure is expressed as σN = ε gN .

Lagrange multiplier formulation This formulation requires a multiplier

space. On the contact interface ΓC,S ⊂ ∂ΩS , we define by H−1/2(ΓC,S) the

dual space of H1/2(ΓC,S), which is the space of all functions that can be

extended on ∂ΩS \ ΓC,S to an element of H1/2(∂ΩS). We then introduce a

multiplier space M defined by

M = {φ ∈ H−1/2(ΓC,S)},

as its subspace

M− = {φ ∈M,

∫

ΓC,S

φ [u] ds ≤ 0, ∀ [u] ∈ H1/2(ΓC,S), [u] ≥ 0}.

We also define the following bilinear and linear forms:

b : V ×M → R, b(u, φ) =

∫

ΓC,S

φ [u] ds,

g : M → R, g(φ) =

∫

ΓC,S

φ g ds.

A mixed formulation of the contact problem is: find (u, λ) ∈ VD×M− such

that





a(u, v) + b(v, λ) = f(v), ∀v ∈ V0,

b(u, λ− φ) ≤ −g(λ− φ), ∀φ ∈M−.
(1.8)

The constraint conditions have been transferred to the dual variable.

It is well known that this problem admits a unique solution, see,

e.g., [52] and that the multiplier, taken here as a scalar, is directly related

to the contact pressure by

λ = σN = (σS · nS) · nS = −(σS · nS) · nM .

Augmented Lagrangian multiplier formulation See, e.g., [49, 1, 93,

97]. This formulation also requires a multiplier space, defined here as

M = L2(ΓC,S). Another mixed formulation of the contact problem is: find
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(u, λ) ∈ VD ×M such that





a(u, v) +

∫

ΓC,S

< λ + ε gN >− [v] ds = f(v), ∀v ∈ V0,
∫

ΓC,S

1

ε
< λ + ε gN >− φ ds −

∫

ΓC,S

1

ε
λ φ ds = 0, ∀φ ∈M.

(1.9)

with < · >− the Macauley brackets (see (1.7)) and ε a penalty parameter.

We note that in this later case the penalty parameter should not nec-

essarily be large to enforce the contact constraints as more than one term

contributes to the constraint imposition.

We point out that this later formulation can only be set by requiring

more regularity on the multiplier λ, i.e., assuming it is in L2(ΓC,S). Other-

wise the sign notion encountered in the Macauley brackets has no meaning.

The contact pressure is in this case σN = λ+ ε gN = λ.

Remark 4. In the following we consider as weak formulations of the contact prob-

lem stated in Equation (1.5), the formulations given above. Although, we would

like to recall that the following problems are equivalent:

• u, solution of the considered contact mechanical equilibrium, Equation (1.5),

is the solution of the variational inequality

find u ∈ K with K = {v ∈ VD, gN ≥ 0 on ΓC,S} such that

a(u, v − u) ≥ f(v − u) ∀v ∈ K,

and of the following energy minimisation problem

u in K, J (u) = min
v∈K
J (v)

with J (v) =
1

2
a(v, v)− f(v).

• (u, λ) is the solution of the problem (1.8) and thus it is the saddle-point of

the functional L(·, ·) over VD ×H−1/2(ΓC,S) with

L(v, φ) =
1

2
a(v,v)− f(v) + b(v, φ) = J (v) + b(v, φ).

Moreover, if we restrict to VD × L2(ΓC,S), (u, λ) is also the solution of the

problem (1.9) and thus it is the saddle-point of the functional LA(·, ·) over
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VD × L2(ΓC,S) with

LA(v, φ) = 1
2 a(v,v)− f(v) + b(v, φ) + ε

2

∫
ΓC,S

gN
2 ds

= L(v, φ) + ε
2

∫
ΓC,S

gN
2 ds.

We note that the ellipticity property of LA(·, ·) contributes to the robustness of

augmented Lagrangian methods compared to Lagrange multiplier ones.

We refer to [50, 49, 14, 58, 52, 62] for more theoretical details.

1.3.3 Discretization

Let us now set the different approximation spaces in each contact case.

Rigid-deformable contact framework ΩS is approximated by a NURBS

parametrization FS based on a knot vector ΞS and a degree pS , see Subsec-

tion 1.1.3, such that ΩS is the image of the parametric space Ω̂ by FS .

Herein, h stands for the mesh parameter and in this context it is equal

to hS .

On ΩS , based on the NURBS parametrization, we introduce the dis-

placement approximation space Vh = {v = v̂ ◦F−1
S , v̂ ∈ (NpS (ΞS))du} ⊂ V

and analogously its subspaces V0,h and VD,h which contain respectively the

homogeneous and inhomogeneous Dirichlet conditions.

Deformable-deformable contact framework In this case, each subdo-

main Ωk is approximated by a NURBS parametrization Fk based on a knot

vector Ξk and a degree pk, see Subsection 1.1.3, such that Ωk is the image of

the parametric space Ω̂ by Fk. Herein, h stands for the global mesh param-

eter defined as the maximal mesh parameter, i.e., h = max
k={S,M}

hk.

On each subdomain Ωk, based on the NURBS parametrization, we in-

troduce the displacement approximation space Vk,h = {vk = v̂k ◦F−1
k , v̂k ∈

(Npk(Ξk))
du}.

On (ΩS∪ΩM ), we define the discrete product space Vh =
∏

k={S,M}

Vk,h ⊂

V , which forms a (H1(ΩS ∪ ΩM ))du non-conforming space discontinuous

over the potential region of contact ΓC,S , and analogously its subspaces

V0,h and VD,h which contain respectively the homogeneous and inhomoge-

neous Dirichlet conditions.
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We point out that under the assumptions done on the meshes, Assump-

tion 1, and parametrizations, Assumption 2, the introduced NURBS spaces

have optimal approximation properties, see Lemma 3 and, e.g., [5, 6].

Moreover, we precise that the potential contact area ΓC,S is defined

as the mapping of a full boundary of the parametric space Ω̂ by the slave

parametrization FS .

In the following, we give the semi-discrete formulations of the weak for-

mulations introduced in Subsection 1.3.2 by simply applying the Galerkin

method. Clearly, in order to have a full discrete problem we should spec-

ify the numerical treatment of the contact non-linearity and the choice of

multiplier spaces. This is the object of Chapters 4 and 5.

The semi-discrete problems can be written as follows:

Penalty formulation

Find uh ∈ VD,h such that

a(uh, vh) +

∫

ΓC,S

ε < (gN )h >− [vh] ds = f(vh), ∀vh ∈ V0,h.

We note the use of the notation (gN )h to refer to the discrete gap which

has to be defined to characterise completely the numerical contact methods.

Remark 5. Even though we introduce a weak penalty formulation of the consid-

ered contact problem, see (1.6), this discrete penalty formulation has not to be seen

as its discretisation. Indeed, once a constraint enforcement is done by penalisation,

its solution is the constraint problem solution if and only if the penalty parameter

is infinite which is never reached in practise. Otherwise it has a different solution

which depends on the penalty parameter value. For this reason, it is more correct

to say that the discrete formulation is penalised to impose the contact constraints

than to mention that a penalty formulation is discretised. In this later case, you are

trying to approximate a solution of a slightly different problem. In other word, the

discretisation is done before the constraint penalisation to approximate the solution

of the desired problem.

The penalty parameter affects the conditioning number of the under-

lying matrix system which affects the solver efficiency. Moreover, it also

influences the order of convergence of the numerical methods. Indeed, it is
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well-known that this parameter should be taken as a function of the mesh

parameter h to keep the optimality of the method, otherwise it is introduc-

ing a threshold error value which is reached at a certain refinement level.

The penalty parameter is defined as a compromise between a not so

high value to ensure a not so bad matrix conditioning and a enough high

value to ensure a fair constraint enforcement.

We note that it is typical for a penalty contact method to have gap values

that do not fulfill exactly (1.4).

Lagrange multiplier formulation

Find (uh, λh) ∈ VD,h ×M−h such that





a(uh, vh) + b(vh, λh) = f(vh), ∀vh ∈ V0,h,

b(uh, λh − φh) ≤ −g(λh − φh), ∀φh ∈M−h .
(1.10)

This formulation contains dual constraints and thus is requiring special nu-

merical strategies to be solved. We refer to [57, 59] for some works on this

topic.

Augmented Lagrangian multiplier formulation

Find (uh, λh) ∈ VD,h ×Mh such that





a(uh, vh) +

∫

ΓC,S

< λh + ε (gN )h >− [vh] ds = f(vh), ∀vh ∈ V0,h,
∫

ΓC,S

1

ε
< λh + ε (gN )h >− φh ds −

∫

ΓC,S

1

ε
λh φh ds = 0, ∀φh ∈Mh.

(1.11)

We also use here the notation (gN )h to refer to the discrete gap which has to

be defined to characterise completely the numerical contact methods. We

point out that its discrete definition is involving the multiplier space, as the

method has to be based on a sign check of the variable (λ + εgN ) which is

approximated by one spline space, i.e., the multiplier one.

The main advantage of this later formulation is to be a formulation

without any constraint. It is also a more robust method than the Lagrange

multiplier ones, although it is requiring more matrix evaluation terms

among them some of the stiffness matrix.
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2.1 Introduction

In this chapter we present the results of a study done on the application of

mortar methods in the framework of isogeometric analysis. It is a joined

work with A. Buffa, B. Wohlmuth and L. Wunderlich which has been pub-

lished in [17].

The important point of a mortar method is the choice of the Lagrange

multiplier. From the classical mixed and mortar theories, two abstract re-

quirements for the Lagrange multiplier space are given, see [13, 8]. One

is the sufficient approximation order, the other is the requirement of an inf-

sup stability condition. For a primal spline space of degree p, we investigate

three different degrees for the Lagrange multiplier: p, p− 1 and p− 2. Each

choice is from some points of view natural but has quite different charac-

teristical features.

This chapter is structured as follows. In Section 2.2, we give the main

results on the proposed isogeometric mortar methods introduced in Chap-

ter 1. In Section 2.3, we explicitly detail three different types of Lagrange

multipliers. The theoretical results are investigated numerically in Sec-

tion 2.4, where also additional aspects are considered.

2.2 Isogeometric mortar theory

Before giving the main results relative to our mortar methods, let us recall

the discrete weak formulation we consider. It was stated in Equation (1.3)

in Chapter 1. It consists in finding (uh, λh) ∈ Vh ×Mh, such that:





a(uh, vh) + b(vh, λh) = f(vh), vh ∈ Vh,
b(uh, φh) = 0, φh ∈Mh.

It is well known that the following abstract requirements guarantee the

method to be well-posed and of optimal order, see [8, 13]. In the following,

we will denote by 0 < C <∞ a generic constant that is independent of the

mesh sizes but possibly depends on pk.

The first assumption is a uniform inf-sup stability for the discrete trace

spaces. Although the primal variable of the saddle point problem is in a

broken H1 space, the inf-sup stability can be formulated as an L2 stability
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over each interface. This implies the H1/2
00 − H−1/2 stability, which can be

used in the geometrically conforming situation for d = 2 and in weighted

L2 norms, for the other cases, see [16].

Assumption 6. For l = 1, . . . , L and any φl ∈Ml,h it holds

sup
wl∈Wl,h

∫
γl
wl φl ds

‖wl‖L2(γl)
≥ C‖φl‖L2(γl).

The second assumption is the approximation order of the dual space.

Since for the dual space weaker norms are used, the approximation order

of Ml,h with respect to the L2 norm can be smaller than the one of Wl,h.

Assumption 7. For l = 1, . . . , L there exists a fixed η(l), such that for any

λ ∈ Hη(l)(γl) it holds

inf
λh∈Ml,h

‖λ− λh‖L2(γl) ≤ Chη(l)‖λ‖Hη(l)(γl)
.

We now give the following a-priori estimates in the broken V and M

norms, which can be shown by standard techniques, see [12, 10].

Theorem 8. Given Assumptions 6 and 7, the following convergence is given for

the primal solution of (1.3). For u ∈ Hσ+1(Ω), 1/2 < σ ≤ mink,l(pk, η(l) + 1/2)

it holds

1

h2
‖u− uh‖2L2(Ω) + ‖u− uh‖2V ≤ C

K∑

k=1

h2σ
k ‖u‖2Hσ+1(Ωk).

We can also give an estimate for the dual solution which approximates the normal

flux:
L∑

l=1

‖α ∂u
∂nl
− λh‖2H−1/2(γl)

≤ C
K∑

k=1

h2σ
k ‖u‖2Hσ+1(Ωk).

In the geometrically non-conforming case, as well as for d = 3, the ratio

of the mesh sizes on the master and the slave side enters in the a priori

estimate, see [70]. But due to our global quasi-uniformity assumption, see

Assumption 1, this ratio does not play a role.

We note that if η(l) = pS(l)−1/2 can be chosen, optimality of the mortar

method holds. Moreover, the dual estimate could still be improved under

additional regularity assumptions, see [87].
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Remark 9. Isogeometric methods allow for smooth approximations, and thus they

are of special interest for higher order PDEs. The abstract concept of mortar meth-

ods can also be used to couple higher derivatives resulting in weakly constrained

solutions. In this case, multiple coupling conditions are necessary on each inter-

face, see, e.g., [85, 117, 84]. As an example, for the biharmonic problem

∆∆u = f in Ω, u = 0, ∂nu = 0 on Γ,

the coupling terms on each interface γl are

∫

γl

φ1[u]l ds = 0,

∫

γl

φ2[
∂u

∂nl
]l ds = 0, φi ∈M i

l,h.

The Lagrange multipliers φ1 and φ2 from appropriate discrete spacesM1
l,h andM2

l,h

approximate respectively the normal derivative ∂∆u
∂nl

and the trace of ∆u.

2.3 Possible choices of Lagrange multiplier spaces

For a given interface γl, we aim at providing multiplier spaces that satisfy

the inf-sup stability of Assumption 6. In our setting, i.e., a geometrically

slave conforming situation, see Figure 1.5, γl is a whole face of ΩS(l), which

is defined as FS(l)(Ω̂) and without loss of generality we suppose that γl =

FS(l)(γ̂ × {0}), γ̂ = (0, 1)d−1. As we consider each interface γl separately, to

shorten the notations we will omit the index l in the following.

Given a Lagrange multiplier space M̂h on the parametric space, we set

the Lagrange multiplier space Mh = {φ = φ̂ ◦ F−1
s , φ̂ ∈ M̂h}. By change of

variable, the integral in Assumption 6 can be transformed into a weighted

integral on the parametric space. Denoting ŵ = (w ◦ Fs) D̂W ∈ Sp(γ̂) for

w ∈Wh and φ̂ = φ ◦ Fs ∈ M̂h for φ ∈Mh, the integral becomes

∫

γ
wφds =

∫

γ̂
(w ◦ Fs) (φ ◦ Fs) det(∇γ̂Fs) dx

=

∫

γ̂
ŵ φ̂ (D̂W )−1 det(∇γ̂Fs) dx, (2.1)

where ∇γ̂ denotes the surface gradient on γ̂. Due to the Assumption 2 and

the uniform positivity of NURBS weights, we can firstly concentrate on the

following problem. Given γ̂ = (0, 1)d−1, a degree p and knot vectors Ξδ

with δ = 1, . . . , d − 1, we denote by Sp(γ̂) the corresponding spline space
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and Sp0(γ̂) = Sp(γ̂) ∩H1
0 (γ̂), and study the following inf-sup stability

sup
ŵ∈Sp0 (γ̂)

∫
γ̂ ŵ φ̂ dx

‖ŵ‖L2(γ̂)
≥ C‖φ̂‖L2(γ̂). (2.2)

for any φ̂ ∈ M̂h for three choices of Lagrange multiplier spaces M̂ . Then,

in the case (2.2) is satisfied, we show that the desired inf-sup stability, i.e.,

Assumption 6, is satisfied.

In the following, we give the details of this inf-sup study, then conclude

the underlying approximation properties of the isogeometric mortar meth-

ods and briefly comment on biorthogonal basis spaces.

2.3.1 Choice 1: unstable pairing p/p− 1

Theorem 8 states that an order p = mink pk a priori bound can only be

obtained if η(l) can be set equal to p − 1/2. This observation motivates

our choice to use a spline space of order p − 1 as dual space. Then η(l) in

Assumption 7 can be set to p and provided that the uniform inf-sup stabil-

ity, Assumption 6, can be proved, a convergence rate equal to p might be

reached.

We denote by M̂1
h = spani=1, ..., n

M̂1
h

{B̂p−1
i } the spline space of order

p − 1 built on the knot vector(s) Ξ′δ with δ = 1, . . . , d − 1 obtained from the

restriction of Ξ to the corresponding direction(s) removing in the under-

lying univariate knot vector the first and the last knots. The superscript 1

refers to the degree difference between the primal and the dual space.

As we will see this choice unfortunately lacks the uniform inf-sup condi-

tion (2.2) and thus also Assumption 6. Indeed, a checkerboard mode which

yields an h-dependent inf-sup constant can be constructed.

Let us consider B-Splines on a uniform knot vector Ξ =

{0, . . . , 0, h, 2h, . . . , 1, . . . , 1} for h = 2−j , where j is the number of

uniform refinements. Let us now construct a multiplier φ̂c ∈ M̂1
h , which

yields an h-dependent inf-sup constant. The choice

φ̂c =

n
M̂1
h∑

i=1

φ̂iB̂
p−1
i , φ̂i = (−1)i(i− 1)(n

M̂1
h
− i),

is shown in Figure 2.1. For the bivariate case, a tensor product using φ̂c in

each direction is chosen. The numerical stability constants were computed
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Figure 2.1: Checkerboard mode for d = 2 and p = 6.

by a direct evaluation of the supremum

sup
ŵ∈Sp(γ̂)

∫
γ̂ ŵ φ̂cdx

‖ŵ‖L2(γ̂)
,

and dividing the result by ‖φ̂c‖L2(γ̂). The results are shown in Figure 2.2 for

d = 2 and d = 3, where an h-dependency of orderO(hd−1) can be observed.

Note that on the same mesh, the stability constant is larger for high degrees,

but the asymptotic rate of the h-dependency is the same.
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Figure 2.2: h-dependency of the L2 inf-sup constant for dimension d = 2 and
d = 3. Left: p = 2, Right: p = 10.

Remark 10. Numerical experiments show that the inf-sup constant can be recov-

ered by the use of a staggered grid, which is similar to the behavior known from

the finite element methods. Another possibility is to use a coarse dual mesh for the

Lagrange multipliers.
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2.3.2 Choice 2: stable pairing p/p− 2

Having an unstable pairing means roughly speaking that the chosen La-

grange multiplier space is too rich. An easy way to overcome this is by us-

ing a smaller space which motivates our second choice. If the spline space

Sp(γ̂) is at least C1, then it is also possible to construct a spline space of

degree p − 2 on the knot vector(s) Ξ′′δ with δ = 1, . . . , d − 1 obtained from

the restriction of Ξ to the corresponding direction(s) removing in the un-

derlying univariate knot vector the first and the last two knots. We denote

this space by M̂2
h = spani=1, ..., n

M̂2
h

{B̂p−2
i }, where the superscript 2 refers to

the degree difference between the primal and the dual space. Clearly, this

choice will never provide an order p convergence rate. The best approxi-

mation property of the Lagrange multiplier space only allows for a p− 1/2

order convergence in the broken V and M norms, provided that the pairing

is uniformly stable. In what follows, we prove that M̂2
h verifies the inf-sup

stability (2.2).

Remark 11. We recall that the internal knot multiplicity is the same for the primal

and the dual space, noting that the requirement Sp ⊂ C1 yields a primal maximal

knot multiplicity of p − 1. It is obvious to see that this requirement can be weak-

ened in one direction: indeed if the univariate knot vector of the primal space is

a h-refinement of the univariate knot vector of the dual space, the inf-sup stability

remains satisfied. Beyond this setting, the proposed proof does not apply in general.

The proof is based on an identification of both spaces using derivatives

and integrals as well as on an auxiliary stability result for the degree p− 1.

Let us first introduce some preliminary notation.

To shorten our notation, we denote by Sq with q = p − 2, p − 1, and

p the spline spaces of degree q constructed on Ξ′′,Ξ′ and Ξ, respectively.

Furthermore let us define the spline space with zero mean value Sp−1
zmv =

{ŝ ∈ Sp−1 :
∫ 1

0 ŝ dx = 0} for d = 2 and

Sp−1
zmv =

{
ŝ ∈ Sp−1 :

∫ 1

0
ŝ(x, ȳ)dx = 0 =

∫ 1

0
ŝ(x̄, y)dy, x̄, ȳ ∈ [0, 1]

}
,

for d = 3. While for d = 2, we consider a single derivative D = ∂x as

the derivative operator, for d = 3, due to the tensor product structure, we

also consider the mixed derivative D = ∂xy. Associated with the mixed
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derivative, we consider the tensor product Sobolev space

H1,1(γ̂) = H1(0, 1)⊗H1(0, 1) = {v̂ ∈ L2(γ̂) : ∂ix∂
j
y v̂ ∈ L2(γ̂), i, j ∈ {0, 1}},

endowed with the norm ‖v̂‖2H1,1(γ̂) = ‖v̂‖2H1(γ̂) + ‖∂xyv̂‖2L2(γ̂). To simplify

the notation, we will denote in the following Z = H1(γ̂) for d = 2 and

Z = H1,1(γ̂) for d = 3. Let Z ′ denotes the dual space of Z.

The following lemma shows that the given derivative operator maps

bijectively the spaces Sp0 , Sp−1
zmv and Sp−2 into each other.

Lemma 12. The operators D : Sp0 → Sp−1
zmv and D : Sp−1

zmv → Sp−2 are bijections.

Moreover for any v ∈ Z ∩H1
0 (γ̂), it holds ‖v‖L2(γ̂) ≤ C‖Dv‖Z′ .

Proof. Based on [100, Theorem 5.9] the derivative of a spline of degree p is

a spline of degree p − 1, see also Section 1.1.1. The injectivity follows from

the additional constraints of the spline space. To show the surjectivity, we

construct an element of the pre-image space. Note that this property holds

independently of the knot multiplicity, as long as Sp−2 is well defined. The

coercivity of the derivative can be seen by an explicit computation using

partial integration.

Case d = 2. Given ŝp−2 ∈ Sp−2, we define ŝp−1(x) =
∫ x

0 ŝ
p−2(ξ)dξ −m,

wherem ∈ R is chosen such that
∫ 1

0 ŝ
p−1dx = 0. Obviously ŝp−1 ∈ Sp−1

zmv . For

any ŝp−1 ∈ Sp−1
zmv we may define ŝp(x) =

∫ x
0 ŝ

p−1(ξ)dξ and it holds ŝp ∈ Sp0 .

To show the coercivity, consider any ŵ ∈ L2(0, 1). We can find ẑ ∈
H1

zmv(0, 1) = {ẑ ∈ Z :
∫ 1

0 ẑ dx = 0}, such that ∂xẑ = ŵ and then

‖v̂‖L2(γ̂) = sup
ŵ∈L2(γ̂)

∫ 1
0 v̂ ŵ dx

‖ŵ‖L2(γ̂)
= sup

ẑ∈H1
zmv(γ̂)

∫ 1
0 v̂ ∂xẑ dx

|ẑ|Z

≤ C sup
ẑ∈H1

zmv(γ̂)

∫ 1
0 ẑ ∂xv̂ dx

‖ẑ‖Z
≤ C‖∂xv̂‖Z′ ,

where C is the Poincaré constant, i.e., ‖ẑ‖Z ≤ C |ẑ|Z for ẑ ∈ H1
zmv(γ̂).

Case d = 3. Given ŝp−2 ∈ Sp−2, we construct the spline ŝp−1(x) =
∫ x

0

∫ y
0 ŝ

p−2(ξ, η) dη dξ− f̂p−1(x)− ĝp−1(y)−m, where m ∈ R and f̂p−1, ĝp−1

are univariate splines of degree p − 1 with zero mean value. These un-

knowns can be chosen such that ŝp−1 ∈ Sp−1
zmv . As for the univariate case,

given ŝp−1 ∈ Sp−1
zmv we consider ŝp(x, y) =

∫ x
0

∫ y
0 ŝ

p−1(ξ, η) dη dξ and it holds

ŝp ∈ Sp0 .
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For the proof of the coercivity, partial integration needs to be performed

twice. The integration will be shown in more details in the proof of Theo-

rem 14.

To apply the bijectivity of the derivative in the proof of the inf-sup con-

dition, we can no longer work with the L2 norm, but need to consider the

Z ′ and Z norms. Let us remark that Sp−1 ⊂ Z holds independently of the

knot multiplicity because of the assumption Sp ⊂ C1.

The following lemma states an auxiliary stability result in these norms.

Lemma 13. For any ĝp−1 ∈ Sp−1
zmv , it holds

sup
f̂p−1∈Sp−1

zmv

∫
γ̂ ĝ

p−1f̂p−1 dx

‖f̂p−1‖Z′
≥ C‖ĝp−1‖Z .

Proof. The equal order pairing Z −Z ′ inf-sup condition of Sp−1 is first con-

sidered by introducing the Fortin operator Π : L2 → Sp−1 and proving its Z

stability. Then we show that the inf-sup condition remains satisfied for the

constrained space Sp−1
zmv . Since the infimum over a sub-space is an upper-

bound of the infimum over a space, the critical part is the restriction of the

primal space.

Case d = 2. Standard techniques show that the Fortin operator asso-

ciated with Sp−1, which is the L2-projection, is uniformly Z stable, see,

e.g., [70, Lemma 1.8]. Thus the Z − Z ′ inf-sup condition holds on Sp−1,

i.e., for q̂p−1 ∈ Sp−1 it holds,

sup
r̂p−1∈Sp−1

∫
γ̂ r̂

p−1q̂p−1 dx

‖r̂p−1‖Z
≥ C‖q̂p−1‖Z′ . (2.3)

Next, we show that the restriction to Sp−1
zmv retains this stability.

Let us consider f̂p−1 ∈ Sp−1
zmv , since the inf-sup condition remains satis-

fied for q̂p−1 ∈ Sp−1 and f̂p−1 ∈ Sp−1
zmv . Let us define ĝp−1 ∈ Sp−1

zmv such that

ĝp−1(x) = q̂p−1(x)−
∫
γ̂ q̂

p−1(ξ)dξ ∈ Sp−1
zmv and note that for f̂p−1 ∈ Sp−1

zmv

∫

γ̂
f̂p−1q̂p−1dx =

∫

γ̂
f̂p−1ĝp−1dx
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and ‖ĝp−1‖Z ≤ ‖q̂p−1‖Z . This shows

inf
f̂p−1∈Sp−1

zmv

sup
ĝp−1∈Sp−1

zmv

∫
γ̂ ĝ

p−1f̂p−1 dx

‖f̂p−1‖Z′‖ĝp−1‖Z
≥ C > 0.

Now using [13, Proposition 3.4.3], we interchange the spaces of the infimum

and the supremum which yields the result.

Case d = 3. Although we follow the same structure as in the case d = 2,

there are some essential differences. We note that Z = H1,1(γ̂) is no longer

a standard Sobolev space, and thus the Z stability of the Fortin operator

cannot be shown as in the case d = 2. Instead, we make use of a tensor

product of the univariate Fortin operators. See [7] for another application

of a tensor product of projection operators.

We first show, that the tensor product of univariate L2-projections is

the multivariate L2-projection, i.e., the Fortin operator. Then we show that

the H1 stability of the univariate projections yield the Z stability of their

tensor product. We define Πi : L2(0, 1) → Sp−1(Ξi) as the L2-projection

into the univariate spline spaces. Their tensor product Π = Π1 ⊗ Π2 is

defined as described in the following. We first extend the projections to γ̂

by Π1 : L2(γ̂)→ L2(γ̂) and Π2 : L2(γ̂)→ L2(γ̂), such that

[Π1f̂ ](ξ, η) = [Π1f̄η](ξ), [Π2f̂ ](ξ, η) = [Π2f̄ξ](η).

Here f̄η denotes the univariate function depending on ξ, where the coordi-

nate η plays the role of a parameter. f̄ξ is defined analogously and it holds

f̂(ξ, η) = f̄ξ(η) = f̄η(ξ). Now the tensor product of the projections can be

defined as Π = Π1 ⊗Π2 : L2(γ̂)→ Sp−1 by Π1 ⊗Π2 = Π1 ◦Π2 = Π2 ◦Π1.

Applying the univariate projection property of Πi, a direct calculation

shows that Π is the L2-projection into Sp−1. Let B̂i,1, B̂j,2 denote the uni-

variate basis functions in the two parametric directions, then we get

∫

γ̂
(Πv̂)(x, y)B̂i,1(x)B̂j,2(y) dx dy =

∫

γ̂
v̂(x, y)B̂i,1(x)B̂j,2(y) dx dy.

For a fixed x̄, ȳ ∈ (0, 1), we denote Iȳ = {(x, ȳ) ∈ (0, 1)2} and Ix̄ =

{(x̄, y) ∈ (0, 1)2}. For the calculation, we need the two steps resulting from

the univariate stability of the unidirectional projectors in L2(Ik) and H1(Ik)

for k = x or y:
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First, for any ȳ ∈ (0, 1), we have

‖∂xyΠ1ŵ‖L2(Iȳ) = ‖∂xΠ1(∂yŵ)‖L2(Iȳ) = |Π1(∂yŵ)|H1(Iȳ) ≤ C‖∂yŵ‖H1(Iȳ)

= C‖∂yŵ‖L2(Iȳ) + C‖∂xyŵ‖L2(Iȳ)

We will use this result for ŵ = Π2v̂. Of course the analogue result for Π2

and any x̄ ∈ (0, 1) also holds.

Hence, we see

‖∂xyΠv̂‖2L2(γ̂) =

∫

y∈I2

‖∂xyΠv̂‖2L2(Iy) dy

≤
∫

y∈I2

‖∂yΠ2v̂‖2L2(Iy) dy +

∫

y∈I2

‖∂xyΠ2v̂‖2L2(Iy) dy

=

∫

x∈I1

‖∂yΠ2v̂‖2L2(Ix) dx+

∫

x∈I1

‖∂xyΠ2v̂‖2L2(Ix) dx

≤ C‖v̂‖2Z ,

i.e., the operator is Z stable.

The Z−Z ′ stability of Sp−1
zmv can be concluded similarly to the univariate

case starting from the Z − Z ′ inf-sup condition for q̂p−1 and r̂p−1 ∈ Sp−1,

see (2.3). We can consider f̂p−1 ∈ Sp−1
zmv , since the inf-sup condition remains

valid for q̂p−1 ∈ Sp−1 and f̂p−1 ∈ Sp−1
zmv . Now we define ĝp−1 ∈ Sp−1

zmv

such that ĝp−1(x, y) = q̂p−1(x, y) − ŝ1
0(x) − ŝ2

0(y) − c ∈ Sp−1
zmv with ŝ1

0 ∈
Sp−1(Ξ1), ŝ2

0 ∈ Sp−1(Ξ2) and c ∈ R, and note that for f̂p−1 ∈ Sp−1
zmv it holds

∫

γ̂
f̂p−1q̂p−1dx =

∫

γ̂
f̂p−1ĝp−1dx.

Now, the Z − Z ′ stability can be concluded by noting that ‖ĝp−1‖Z ≤
‖q̂p−1‖Z . The proof ends the same way as the case d = 2 using [13, Proposi-

tion 3.4.3].

It remains to combine these preliminary results to prove the main the-

orem of this section. We use the bijectivity between the spline spaces of

different degrees, stated in Lemma 12, and partial integration to estimate

the inf-sup term by the equal order p − 1 stability which was estimated in

Lemma 13.
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Theorem 14. Let p ≥ 2 and the knot vectors Ξδ, δ = 1, . . . , d − 1, be such that

Sp(γ̂) ⊂ C1(γ̂). The dual space M̂2
h verifies

sup
ŵ∈Sp0

∫
γ̂ φ̂ ŵ dx

‖ŵ‖L2(γ̂)
≥ C‖φ̂‖L2(γ̂), φ̂ ∈ M̂2

h ,

with a constant C independent of the mesh size, but possibly dependent on p.

Proof. As before, the cases d = 2 and d = 3 are considered separately. We

perform partial integration, noting that in the bivariate case, a tensor prod-

uct structure is exploited.

Given any φ̂p−2 ∈ Sp−2, we may introduce ĝp−1 ∈ Sp−1
zmv , such that

∂xĝ
p−1 = φ̂p−2 as constructed in Lemma 12.

For the case d = 2, partial integration yields

sup
ŵp∈Sp0

∫
γ̂ ŵ

p φ̂p−2dx

‖ŵp‖L2(γ̂)
= sup

ŵp∈Sp0

∫
γ̂ ŵ

p ∂xĝ
p−1dx

‖ŵp‖L2(γ̂)
= sup

ŵp∈Sp0

∫
γ̂ ĝ

p−1 ∂xŵ
pdx

‖ŵp‖L2(γ̂)
.

Now, let us denote f̂p−1 = ∂xŵ
p ∈ Sp−1

zmv and use the coercivity of the deriva-

tive as stated in Lemma 12. Since ∂x is bijective from Sp0 onto Sp−1
zmv , we have

sup
ŵp∈Sp0

∫
γ̂ ĝ

p−1 ∂xŵ
p dx

‖ŵp‖L2(γ̂)
≥ sup

ŵp∈Sp0
C

∫
γ̂ ĝ

p−1 ∂xŵ
p dx

‖∂xŵp‖Z′

= sup
f̂p−1∈Sp−1

zmv

C

∫
γ̂ f̂

p−1 ĝp−1 dx

‖f̂p−1‖Z′
.

Now, we make use of the Z ′ − Z stability on the equal order pairing, as

stated in Lemma 13. Since ∂xĝp−1 = φ̂p−2, we have

sup
f̂p−1∈Sp−1

zmv

C

∫
γ̂ f̂

p−1 ĝp−1 dx

‖f̂p−1‖Z′
≥ C‖ĝp−1‖Z ≥ C

∣∣ĝp−1
∣∣
Z

= C‖φ̂p−2‖L2(γ̂),

which yields the stated inf-sup condition.

The proof for the case d = 3 is analogue, but special care must be

taken due to the tensor product structure. In this case, the suitable dif-

ferential operator is the mixed derivative ∂xy, so the partial integration has

to be performed twice. Since most parts of the proof were shown in the

previous lemmas, proving the analogue partial integration formula is the

only remaining part. Given f̂p−2 ∈ Sp−2
0 , define ĝp−1 ∈ Sp−1

zmv such that

∂xy ĝ
p−1 = φ̂p−2. We apply Gauß theorem twice and note that in both cases
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the boundary term vanishes

∫

γ̂
ĝp−1 ∂iŵ

p dx =

∫

∂γ̂
ŵp ĝp−1ni ds−

∫

γ̂
ŵp ∂iĝ

p−1 dx,

where ni is the i-th component of the outward unit normal on ∂γ̂, i.e., ni ∈
{0,±1}.

Using the zero trace of wp ∈ H1,1
0 (γ̂), the first step

∫

γ̂
ŵp φ̂p−2dx =

∫

γ̂
ŵp∂xy ĝ

p−1dx

= −
∫

γ̂
∂xŵ

p ∂y ĝ
p−1dx+

∫

∂γ̂
ŵp ∂y ĝ

p−1n1dσ

= −
∫

γ̂
∂xŵ

p ∂y ĝ
p−1dx

follows.

For the second step, we use that on the part of ∂γ̂ parallel to the x-axis,

it holds ∂xŵp = 0. On the orthogonal part (parallel to the y-axis), it holds

n2 = 0.

−
∫

γ̂
∂xŵ

p ∂y ĝ
p−1dx =

∫

γ̂
∂xyŵ

p ĝp−1dx−
∫

∂γ̂
∂xŵ

p ĝp−1n2dσ

=

∫

γ̂
∂xyŵ

p ĝp−1dx.

We define f̂p−1 = ∂xyŵ
p ∈ Sp−1

zmv and continue analogously to the univariate

case. Note, that this proof is not restricted to the bivariate case, but can be

applied to tensor products of arbitrary dimensions.

While we considered an inf-sup condition in the parametric space (2.2),

the inf-sup condition, Assumption 6, needs to be fulfilled in the physical

domain. Now we prove from Theroem 14 the inf-sup stability in the physi-

cal space.

Theorem 15. Let (2.2) holds and let M2
h = {φ = φ̂ ◦ F−1

s , φ̂ ∈ Sp−2(γ̂)},
and Wh = {w = ((ŵ/D̂W ) ◦ F−1

s ), ŵ ∈ Sp0(γ̂)} be respectively the Lagrange

multiplier space and the primal trace space given in the physical domain. Then, for

h sufficiently small, the pairing Wh−M2
h fulfills a uniform inf-sup condition, i.e.,
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for each φ ∈M2
h , it holds

sup
w∈Wh

∫
γ φw ds

‖w‖L2(γ)
≥ C‖φ‖L2(γ).

Proof. After a change of variable, the integral over the physical boundary

can be expressed as a weighted integral over the parametric one. The proof

is based on a super-approximation of the product of the dual variable with

the weight. In contrast to the previous proofs, we do not need to distinguish

between the cases d = 2 and 3.

We recall the transformation of the integral onto the parametric space

(2.1)

∫

γ
φw ds =

∫

γ̂
φ̂ ŵ ρ dx,

where ρ = (D̂W )−1 |det∇γFs| is uniformly bounded by above and below

and is h-independent. We also note the norm equivalence

C−1‖v̂‖L2(γ̂) ≤ ‖ρv̂‖L2(γ̂) ≤ C‖v̂‖L2(γ̂). (2.4)

Let Π : L2(γ̂) → Sp−2(γ̂) denote any local projection with best approxi-

mation properties, e.g., [5, Equation 37]. The integration weight ρ is smooth

except at the mesh lines, where it is only Cp−m−1 for a breakpoint of multi-

plicity m and hence the following super-approximation holds

‖φ̂ρ−Π(φ̂ρ)‖L2(γ̂) ≤ Ch‖φ̂‖L2(γ̂). (2.5)

The proof of the super-approximation given in [110, Theorem 2.3.1] can be

easily extended to the isogeometric setting using the standard approxima-

tion results for splines, see [5].

Then, for φ = φ̂ ◦ F−1
s , we choose ŵφ̂ρ ∈ S

p
0(γ̂), such that

∫
γ̂ ŵφ̂ρΠ(φ̂ρ) dx

‖ŵφ̂ρ‖L2(γ)
≥ C‖Π(φ̂ρ)‖L2(γ̂).
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We replace in the inf-sup integral the term φ̂ρ by its projection, use the

super-approximation and the norm equivalence (2.4) to obtain:

sup
w∈Wh

∫
γ φw dx

‖w‖L2(γ)
≥ C sup

ŵ∈Sp0 (γ̂)

∫
γ̂ ŵ φ̂ρ dx

‖ŵ‖L2(γ̂)

= C

∫
γ̂ ŵφ̂ρ Π(φ̂ρ) dx

‖ŵφ̂ρ‖L2(γ̂)
+ C

∫
γ̂ ŵφ̂ρ(φ̂ρ−Π(φ̂ρ)) dx

‖ŵφ̂ρ‖L2(γ̂)

≥ C‖Π(φ̂ρ)‖L2(γ̂) − C‖φ̂ρ−Π(φ̂ρ)‖L2(γ̂)

≥ C‖Π(φ̂ρ)‖L2(γ̂) − C ′h‖φ̂ρ‖L2(γ̂).

Now, we use the approximation result (2.5) and the norm equivalence (2.4)

to bound ‖Π(φ̂ρ)‖L2(γ̂):

‖φ̂‖L2(γ̂) ≤ ‖Π(φ̂ρ)‖L2(γ̂) + ‖Π(φ̂ρ)− φ̂ρ‖L2(γ̂) ≤ ‖Π(φ̂ρ)‖L2(γ̂) + C ′′h‖φ̂‖L2(γ̂),

which shows ‖Π(φ̂ρ)‖L2(γ̂) ≥ C‖φ̂‖L2(γ̂) for sufficiently small h. Then stan-

dard norm equivalences show the inf-sup condition in the physical do-

main.

Remark 16. An analogue proof shows the stability of a pairing of order p and

p − 2k ≥ 0 for k ∈ N. However, for k > 1 the dual approximation order in the

L2 norm p− 2k is very low and will reduce the convergence order drastically, i.e.,

to p − 2k + 3/2. Since for Signorini and contact problems, the regularity of the

solution is usually bounded by H5/2−ε(Ω), see, e.g., [89], low dual degrees might

be reasonably used in these cases.

2.3.3 Choice 3: stable p/p pairing with boundary modification

The first two choices had been motivated by Assumptions 6 and 7. While

the choice 1 does not yield uniformly stable pairings, the choice 2 does

not guarantee optimal order p convergence. Thus let us consider the nat-

ural equal order pairing in more details. In the finite element context,

it is well-known that the simple choice of taking the space of Lagrange

multiplier as the space of traces from the slave side yields to troubles

at the so-called cross points for d = 2 and wirebaskets for d = 3, i.e.,

(
⋃
l 6=j ∂γl∩∂γj)∪ (

⋃
l ∂γl∩∂ΩD). As a remedy, in the finite element method

a modification is performed, see [10, 111]. We adapt this strategy to iso-

geometric analysis, thus a modification of the dual spaces is performed to
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ensure at the same time accuracy, see Assumption 7, and stability, see As-

sumption 6. This modification results in a reduction of dimension of the

dual space such that a counting argument for the dimensions still holds.

Roughly speaking there are two possibilities: in the first case, the mesh

for the Lagrange multiplier is coarsened locally in the neighborhood of the

cross point (resp. wirebasket), and in the second case the degree is reduced

in the neighborhood of the cross point (resp. wirebasket). Here we only

consider the second possibility.

Let us start the construction for the univariate case (d = 2), since the

construction for the bivariate case (d = 3) can be done as a tensor product.

Given an open knot vector and the corresponding B-Spline functions B̂p
i .

We define the modified basis B̃p
i , i = 2, . . . , n− 1 as follows

B̃p
i (ζ) =





B̂p
i (ζ) + αiB̂

p
1(ζ), i ∈ {2, . . . , p+ 1},

B̂p
i (ζ), i ∈ {p+ 2, . . . , n− p− 1},

B̂p
i (ζ) + βiB̂

p
n(ζ), i ∈ {n− p, n− 1}.

The coefficients αi and βi are chosen such that the basis function is a piece-

wise polynomial of degree p−1 on the corresponding element while retain-

ing the inter-element continuity on γ̂, i.e., as

αi = −B̂p (p)
i (ζ)/B̂

p (p)
1 (ζ), ζ ∈ (0, ζ2),

βi = −B̂p (p)
i (ζ)/B̂p (p)

n (ζ), ζ ∈ (ζE−1, 1).

An example for degree p = 3 is shown in Figure 2.3. Note that B̂p
i is a

polynomial of degree p on one single element, so the coefficients are well-

defined and constant. Since derivatives of B-Spline functions are a com-

bination of lower order B-Spline functions, a recursive algorithm for the

evaluation exists, see [31, Section 2.1.2.2]. Using the recursive formula it

can easily be seen that the coefficients are uniformly bounded under the as-

sumption of quasi-uniform meshes. We define the space of Lagrange multi-

pliers of the same order as the primal basis, as M̂0
h = span2, ..., n−1{B̃p

i }. The

construction guarantees that the resulting basis forms a partition of unity.

Theorem 17. Assumption 7 holds for the dual space M̂0
h .
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ζ

Figure 2.3: Boundary modification of a spline of degree 3 for d = 2, left modi-
fication.

Proof. Since the space of global polynomials of degree p− 1 is contained in

the dual space M̂0
h , we can directly argue as in [5, Section 3].

2.3.4 Summary of the three considered trace spaces

Finally hereafter, we summarize the results for the three pairings consid-

ered:

• the pairing p/p − 1 satisfies the necessary convergence order p in the

L2 norm, Assumption 7, but it does not fulfill Assumption 6. As a

result, Theorem 8 cannot be applied and no optimal convergence can

be expected.

• the pairing p/p−2 fulfills Assumption 6 and Assumption 7, hence this

choice yields an order p− 1/2 convergence by Theorem 8.

• the pairing p/p cannot satisfy Assumption 6 without a cross point

modification. We propose a modification based on a local degree re-

duction at the boundary of the interface and show the uniform inf-sup

stability numerically. And obviously it ensures Assumption 7, hence

Theorem 8 guarantees an optimal convergence order p.

2.3.5 An alternative choice: a biorthogonal space as dual space

An alternative concept to the previously considered trace spaces are

biorthogonal basis functions. Hereafter, we briefly discuss their construc-

tions, but note that due to possible difficulties concerning the approxima-

tion order, this approach is not considered in the following.
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A Lagrange multiplier basis {ψi}ni=1 is called biorthonormal, if it fulfills

∫

γ̂
B̂p
i (x)ψj(x)dx = δij

∫

γ̂
B̂p
i (x)dx.

Of special interest, are biorthogonal basis functions which span

on each element the same space as the primal basis and fulfill

supp B̂p
i = suppψi, i = 1, . . . , n. The construction of such a biorthog-

onal basis is easily possible by an inversion of a mass matrix on each

element, see Figure 2.4 for a primal quadratic basis function and its

corresponding biorthogonal basis function.

The inf-sup condition stated in Assumption 6 is easily fulfilled, see [70,

Remark 2.11], but the critical requirement is the approximation property

stated in Assumption 7. As for the high order finite element case, this prop-

erty is not easy to obtain. Indeed, in a finite element context, it has been

shown that the optimal approximation order can only be achieved by a suit-

able change of the primal basis, see [71]. However, the situation is different

if we do not require the condition supp B̂p
i = suppψi. In [91] for high order

finite elements, the existence of biorthogonal basis functions with a local

support and optimal approximation properties has been shown. The algo-

rithm proposed in [91] to build a biorthogonal basis can be tailored to B-

Splines, see an example in Figure 2.4. We highlight that the support of each

biorthogonal basis function consists of no more than 2p + 1 elements, i.e.,

although the support enlarges it still remains local. Due to the complicated

construction and the enlarged support, we do not follow this approach any

further, but we note that biorthogonal bases are particularly popular for

contact problems, see, e.g., [114].
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Figure 2.4: A quadratic basis function and its corresponding biorthogonal ba-
sis function (rescaled) on a uniform mesh. Top: Biorthogonal function with
the same support as the primal basis. Bottom: Biorthogonal function with a

local support and optimal approximation properties.

2.4 Numerical results

In this section, we apply the proposed mortar method to six examples, in

order to validate its optimality and enlighten some additional practical as-

pects. All our numerical results were obtained on a Matlab code, using

GeoPDEs, [34, 109]. Previous to the examples, we numerically evaluate the

inf-sup constant for the considered pairings, and also for further choices.

The first example is a multi-patch NURBS geometry with a curved inter-

face, for which the computed L2 and broken V rates are optimal. The

second example is a re-entrant corner, where we investigate whether the

presence of a singularity disturbs the proposed mortar method. Since the

results are as expected, it can be said that the singularity does not have a

large influence on the proposed coupling. An interface problem with jump-

ing coefficients is considered as a third example, since for these problems

domain decomposition methods are very attractive. Although NURBS are
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capable of exactly representing many geometries, it is not always possible

to have a matching interface between subdomains. For this reason in the

fourth example, we introduce an additional variational crime by a geome-

try approximation. It can be seen, that the proposed method is robust with

respect to a non-matching interface. In the fifth example, the effect on the

Lagrange multiplier of an unstable pairing is considered. The last example

is a problem of linear elasticity and it is shown that the mortar method be-

haves as well as for scalar problems. We note that in all of these examples

the mortar integrals are evaluated in an optimal way. It is achieved by the

use of specific geometry parametrizations that allow to build the merged

mesh in the slave parametric space, and thus without any difficulty.

2.4.1 A numerical evaluation of the inf-sup condition

We consider one subdomain Ωk resulting from the identity mapping of the

unit square and assume that its mesh is uniformly refined. We identify

elements in Ml,h and Wl,h with their algebraic vector representations. Then

the inf-sup condition on one interface γl reads

inf
λ∈Rn′

sup
v∈Rn

λ>Gv

(λ>Sλ)
1/2

(v>Tv)
1/2
≥ C > 0, (2.6)

where n′ = dimMl,h and n = dimWl,h and G,S, T denote the L2 inner

product matrices. Here we use the technique of Chapelle and Bathe, [24],

to verify our theoretical results on the inf-sup stability. The proof of this

approach can be found in [13, Chapter 3].

The h-dependency of the inf-sup condition was studied first for primal

spaces without any Dirichlet boundary condition and with homogeneous

conditions. Precisely, primal spaces are either {v|γl , v ∈ VS(l),h} or {v|γl , v ∈
VS(l),h} ∩ H1

0 (γl) = Wl,h, and dual spaces are {λ = λ̂ ◦ F−1
S(l), λ̂ ∈ Ŝp} or

{
λ = λ̂ ◦ F−1

S(l), λ̂ ∈ span2, ..., n−1{B̃p
i }
}

for same degree pairings as it is

necessary to consider a boundary modification.

This study leads us to the following conclusion: the inf-sup condition

is satisfied for couples of the same parity, see Figure 2.5 for the pairings

of primal degree p = 5. Moreover regarding the p-dependence, a reason-

able behavior has been observed for primal space without boundary con-

dition, whereas an exponential behavior has been found for primal space
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Figure 2.5: Problem of Subsection 2.4.1 - Left: h-dependency for pairing
P5/Pp (p = 0, . . . , 5). Right: p-dependency. Top: primal spaces without
boundary condition. Bottom: primal spaces with homogeneous boundary

conditions.
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with boundary conditions, see Figure 2.5.

Comparing the three stable pairings of the top right picture of Figure 2.5,

we note that although the dual space dimension decreases, the stability con-

stant gets smaller with a lower dual degree. Once more, this shows that the

inf-sup condition is not only a matter of dimensions of the spaces, especially

for splines for which the spaces of different degrees are not nested in gen-

eral. We also note that, considering homogeneous Dirichlet conditions, the

stability constant for the case P5/P3 is less than for the other cases. How-

ever, the difference is quite small and should not lead to any remarkable

effect.

2.4.2 A scalar problem on a multi-patch NURBS domain

Let us consider the standard Poisson equation −∆u = f , solved on the

domain Ω = {(r, ϕ), 0.2 < r < 2, 0 < ϕ < π/2} which is given in polar

coordinates. The domain is decomposed into two patches, which are pre-

sented in Figure 2.6. The internal load and the boundary conditions have

been manufactured to have the solution u(x, y) = sin(πx) sin(πy), given

in Cartesian coordinates. To test the same degree pairings, we consider a

case such that no boundary modification is required. This can be granted

by setting Neumann boundary conditions on ∂ΩN = {(r, ϕ), 0.2 < r < 2,

ϕ ∈ {0, π/2}} and Dirichlet boundary conditions on ∂Ω\∂ΩN .
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Figure 2.6: Problem of Subsection 2.4.2 - Left: a non-conforming mesh. Right:
a conforming mesh.

In Figure 2.7, we show the numerically obtained error decay in the L2

and the broken V norm for the primal variable and p = 2, 3, 4. As expected

from the theory, for an equal order p pairing we observe a convergence or-

der of p + 1 for the L2 error. We also compare the error of a matching and
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Figure 2.7: Problem of Subsection 2.4.2 - L2 (left) and broken V (right) primal
error curves for same degree pairings.

non-matching mesh situation and recall that in the matching case we are

within the standard conforming setting. As Figure 2.7 shows, no signifi-

cant quantitative difference can be observed. Note that the comparison is

based on results issued from similar meshes not from similar control point

repartition, see Figure 2.6. In Table 2.1, the numerically computed order of

the L2 error decay is given. Asymptotically, the optimal order of p + 1 is

obtained in each refinement step.

P2− P2 P3− P3 P4− P4
level error value slope error value slope error value slope

0 1.445757e-01 | 2.603045e-01 | 5.221614e-02 |
1 7.871436e-02 0.877 1.799185e-02 3.855 2.373889e-02 1.137
2 5.651043e-03 3.800 1.100586e-03 4.031 2.897823e-04 6.356
3 5.904159e-04 3.259 4.794994e-05 4.521 5.162404e-06 5.811
4 7.021278e-05 3.072 2.719572e-06 4.140 1.361467e-07 5.245
5 8.663724e-06 3.019 1.661382e-07 4.033 4.059923e-09 5.068
6 1.079348e-06 3.005 1.033782e-08 4.006 1.253044e-10 5.018
7 1.347999e-07 3.001 6.458495e-10 4.001 3.902800e-12 5.005

Table 2.1: Problem of Subsection 2.4.2 - ||u− uh||L2(Ω) and its estimated order
of convergence.

2.4.3 A singular scalar problem

Let us now consider the Laplace equation −∆u = 0, solved on a non-

convex domain Ω with a re-entrant corner decomposed into three patches,

presented in Figure 2.8. We need to precise for this example the mortar

geometry setting. The patches are enumerated from 1 to 3 from the left to

the right. We set the interface 1 as the interface between the subdomain 1

and 3, the interface 2 between 2 and 3 and the interface 3 between 1 and

2, see Figure 2.8. The singular function associated to a re-entrant corner
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with Dirichlet condition is given by r2/3 sin(2/3ϕ), see [51]. We consider

this singular case, which can be granted by setting all the boundary of Ω as

a Dirichlet boundary with the value r2/3 sin(2/3ϕ).

The order of the numerical method is bounded by the singularity.

Standard techniques to obtain better convergence rates include the use of

graded meshes, [2], and hp-refinement, [101, 21]. Here we do not wish to

improve these rates, but to test if the proposed mortar method is disturbed

by the presence of a singularity.
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Figure 2.8: Problem of Subsection 2.4.3 - A non-conforming mesh.

The results are compared to the analytical solution and a numerical

error study is provided. The errors are shown in Figures 2.9 and 2.10, the

L2 and broken V errors are considered for the primal solution and the L2

error for the dual solution.

Considering the same degree pairing the boundary modification is nec-

essary and the results show the optimality of the method with respect to the

regularity of the solution, see Figure 2.9. We note an initial bad behavior of

the L2 dual error on interface 2. The increase in the error might be related

to the fact, that the exact Lagrange multiplier of interface 2 is zero. More

precisely, the convergence rate 1/6 for the dual variable is a very slow rate,

but induced by the regularity of the solution at this interface, as we can see

that the rate on the remaining interfaces is better. Moreover, we have also
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considered different degree pairings, and observed numerically the stabil-

ity of the methods. In Figure 2.9, the results for the pairing P4 − P2 and

P3− P1 are given and show asymptotically the same convergence rates as

best approximations.

10
2

10
4

10
−2

10
−1

primal dof number

||u
−

u
h
|| V

 

 

Mortar P4−P4

Mortar P4−P2

Mortar P3−P3

Mortar P3−P1

O(h
2/3

)

10
2

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

primal dof number

||u
−

u
h
|| L

2
(
Ω

)

 

 

Mortar P4−P4

Mortar P4−P2

Mortar P3−P3

Mortar P3−P1

O(h
4/3

)

10
2

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

primal dof number

||
∂

u
∂

n
−

λ
h
|| L

2
(
γ

1
∪

γ
3
)

 

 

Mortar P4−P4

Mortar P4−P2

Mortar P3−P3

Mortar P3−P1

O(h
4/3

)

10
2

10
4

10
−3

10
−2

primal dof number

||
∂

u
∂

n
−

λ
h
|| L

2
(
γ

2
)

 

 

Mortar P4−P4

Mortar P4−P2

Mortar P3−P3

Mortar P3−P1

O(h
1/6

)

Figure 2.9: Problem of Subsection 2.4.3 - Error curves for several pairings. Top
left: broken V primal error. Top right: L2 primal error. Bottom left: L2 dual

error at the interfaces 1 and 3. Bottom right: L2 dual error at interface 2.

We also studied the error distribution over the different subdomains

and interfaces, see Figure 2.10. The results clearly show the pollution effect

in the L2 norm, i.e., also in the subdomain 1 far away from the singularity

no better L2 convergence rate can be observed. The situation is different if

we consider the H1 norm subdomain-wise. Here a better rate can be ob-

served for subdomain 1 although it is significantly smaller than the best ap-

proximation rate restricted to this subdomain. This effect can be explained

by local Wahlbin type error considerations in combination with the already

mentioned pollution effect. Regarding the dual error, the same behavior as

for the H1 primal error is observed. A discrepancy between the interface 2

and the remaining interfaces can also be seen in the L2 primal trace error.
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Figure 2.10: Problem of Subsection 2.4.3 - Error curves for the pairing P4−P4.
Top left: L2 error on each subdomain. Top right: H1 error on each subdomain.
Bottom left: L2 primal trace error at each interface. Bottom right: L2 dual error

at interface 1 and 3.

2.4.4 A scalar problem with jumping coefficients

We consider the domain Ω = (0, 2) × (0, 2.8) with homogeneous Dirichlet

conditions applied on ∂ΩD = (0, 2)× {0, 2.8} and homogeneous Neumann

conditions on ∂ΩN = ∂Ω\∂ΩD.
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Figure 2.11: Problem of Subsection 2.4.4 - Left: initial mesh. Right: primal L2

error curves for two equal order pairings.
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We consider three patches, see a distribution in Figure 2.11, with α being

constant on each patch, see Equation (1.1). The interface is a B-Spline curve

of degree 3 and exactly represented on the initial mesh. The external layers

have the constant α = 1, and the internal one α = 1/100 and the right hand

side is f = 1. Due to the different values of α, the mesh of the interior layer

is chosen finer compared to the one of the other two layers. A uniform

refinement starting from the initial mesh in Figure 2.11 is performed.

In Figure 2.11 the L2 primal error of an equal degree pairing for p =

3 and p = 4 is shown. Lacking an exact solution, we compute the error

by comparing to a reference solution, visible in Figure 2.12. The reference

solution is obtained by two more h-refinement steps starting from the finest

mesh.

Figure 2.12: Problem of Subsection 2.4.4 - Solution for the pairing P3− P3 on
the finest mesh.

We note that jumping coefficients can cause singularities in the case

where more than two subdomains meet, although it is well-known that the

case of a rectangular subdomains with interfaces parallel to the x-axis yields

to a smooth solution.

Numerically, we obtain optimal convergence for the case p = 3, but

considering the convergence rate, there is no benefit of the degree elevation

to degree p = 4, which indicates that the solution is not sufficiently smooth.

Further numerical investigations let us conjecture that this can have two

reasons, one coming from the fact that the interface is not smooth enough

to have higher regularity. In this example the interface was built from a B-

Spline curve of degree p = 3, hence the continuity on the interface is only

C2. This has an influence on the smoothness of the unit normal along the

interface and thus on the smoothness of the solution. The other reason is to
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have corner singularities in the inner subdomain where interface meets the

outer boundary. We note that in this example, the angles were set to be π/2.

2.4.5 A scalar problem on a two patch domain with a non-

matching interface

Let us consider the standard Poisson equation solved on the unit square

Ω = (0, 1)2, which is decomposed into two patches presented in Figure 2.13.

As the subdomains cannot exactly be represented by the chosen spline

spaces for the geometry approximation, the subdomains do not match at

the interface, see Figure 2.13. And thus, due to this geometry approxima-

tion an additional variational crime is introduced in the weak problem for-

mulation.
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Figure 2.13: Problem of Subsection 2.4.5 - Non-conforming mesh with a non-
matching interface.

The internal load and the boundary conditions have been manufactured

to have the analytical solution u(x, y) = sin(5y) sin(6x). Firstly, to measure

the influence of the geometrical approximation on the mortar method ac-

curacy, we consider the same degree pairing and note that in this case no

boundary modification is required. This is granted by setting homogeneous

Neumann conditions on ∂ΩN = {0, 1} × (0, 1) and Dirichlet conditions on

∂Ω\∂ΩN . In Figure 2.14, we show the numerically obtained error decay in

the L2 norms. We observe for an equal order p pairing a convergence order

of p + 1 for the primal variable, which is the same order as we could the-

oretically expect with an exact geometry. Note that these optimal L2 rates

are in accordance with the theory of finite element methods, see [76]. We
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also compare the primal error of a matching and non-matching mesh sit-

uation. As Figure 2.14 shows, no significant quantitative difference can be

observed in the asymptotical behavior. Moreover, the results of the bottom

right picture of Figure 2.14 show even higher rates for the dual variable

than expected from the theory.
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Figure 2.14: Problem of Subsection 2.4.5 - Several L2 error curves. Top left:
primal error for stable pairings of primal degree p = 4. Top right: primal error
for stable pairings of primal degree p = 3. Bottom left: direct comparison of
the primal error for pairings P4 − P2 and P3 − P1. Bottom right: dual error

for stable pairings of primal degree p = 3 and p = 4.

Secondly, we consider different degree pairings in order to see the accu-

racy of the reduced order mortar method for a problem containing an ad-

ditional approximation. In the bottom right picture of Figure 2.14, we note

that a lower dual degree does not deteriorate the accuracy on the primal

variable. From the theoretical point of view, it is obvious that a p/p−2 pair-

ing gives a priori results for the Lagrange multiplier which are of the same

order as the best approximation of the dual space. However, this is not the

case for the primal variable. Theorem 8 indicates that for this case a
√
h is

lost. This is not observed in our situation. This might be a consequence of

superconvergence arguments which can possibly recover an extra order of
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√
h on uniformly refined meshes.

To conclude, this example shows that the influence of the additional

geometry error in the mortar method context is quite small.

2.4.6 The influence of the unstable p/p− 1 pairing

Let us now consider the p/p− 1 pairing on a simple setting to illustrate the

effects of the instability. We solve the Poisson equation on the unit square,

decomposed into two patches by the interface (0, 1) × {1/2}. The internal

load and the boundary conditions are applied such that the analytical so-

lution is u(x, y) =
(
cos(x) + 16x2(1− x)2

)
exp(y − 1/2). On the boundary

parallel to the interface, we apply Dirichlet conditions. On the remaining

part, we compare two different cases: firstly Neumann conditions and sec-

ondly Dirichlet conditions (i.e., the problem is a pure Dirichlet problem).

Starting from a coarse initial mesh, we refine uniformly and focus on

the Lagrange multiplier. In Figure 2.15, we show numerical results for the

pairing P2 − P2 and P2 − P1, we note that this latter was observed to

be unstable in Section 2.3.1, with an inf-sup constant of order O(h). Persis-

tent spurious oscillations, induced by the lack of a uniform inf-sup stability,

are clearly observed in the P2 − P1 case. Furthermore, the oscillations are

considerably stronger for the pure Dirichlet problem than for the Dirichlet-

Neumann problem. We point out that the primal space in case of the pure

Dirichlet problem is smaller than in the other case, while for the P2 − P1

case the dual space is the same in both cases. This additionally reduces the

inf-sup constant and yields larger spurious oscillations visible in the right

pictures of Figure 2.15. In contrast, for the P2 − P2 pairing the dual space

is changing, indeed for the pure Dirichlet problem a cross point modifica-

tion as introduced in Section 2.3.3 is applied, which preserves the uniform

stability.

2.4.7 A linear elasticity problem

Let us first recall the mechanical equilibrium on a domain Ω as:

−div(σ) = f in Ω,

u = uD on ∂ΩD,

σ · n = g on ∂ΩN .
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Figure 2.15: Problem of Subsection 2.4.6 - Discrete Lagrange multiplier. Left:
Dirichlet-Neumann problem. Right: pure Dirichlet problem. Top: mesh level

3 (h = 1/16). Bottom: mesh level 5 (h = 1/64).

In a plane linear isotropic elastic context, we have the following relations

between the stress tensor σ, the strain tensor ε and the displacement u:

σ = λLamé tr(ε) I + 2 µLamé ε and ε =
1

2
(∇u + (∇u)T ) = ∇su,

where div, ∇ and ∇s stand respectively for the standard divergence,

gradient and symmetric gradient operators, λLamé,k and µLamé,k for the Lamé

coefficients, n, f , uD, g for the unit outward normal to Ω on ∂Ω, the

prescribed data values in Ω, on ∂ΩD and on ∂ΩN .

Let us consider the equilibrium of a linear elastic isotropic infinite

plate with a circular hole subjected to tension loading in x = −∞ and

x = +∞.Considering the load and the boundary condition symmetries,

only a quarter of the plate is modeled. This test, which has an analytical

solution, [106], is a typical benchmark in isogeometric analysis because the

NURBS offer the possibility to exactly represent the geometry. However, it

cannot be parametrized smoothly in a one patch setting, so it is worthwhile

to consider it within a domain decomposition approach such as the mortar

method.
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We consider a domain Ω = {(x, y) ∈ (0, 2)2 : x2 + y2 > 0.04}, shown in

Figure 2.16, apply the exact pressure on ∂ΩN = {2}× (0.2, 2)∪ (0.2, 2)×{2}
and the symmetry condition on ∂ΩD1 = {0} × (0.2, 2) and

∂ΩD2 = (0.2, 2)× {0}.

Let us consider three different parametrizations of this test, see Figure

2.16. Firstly, two geometrically conforming cases which are constituted by 2

and 4 patches, respectively. Only in the four patch situation, we have cross

points where the boundary modification of the dual space is required. Sec-

ondly, let us consider a slave geometrical conforming case constituted by 3

patches for which the boundary modification is necessary considering the

same degree pairing. In each case, the results are compared to the analytical

solution. A numerical convergence study is presented in Figure 2.17 for a

primal degree p = 4 and its corresponding stable reduced degrees.
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Figure 2.16: Problem of Subsection 2.4.7 - Different parametrizations of the
infinite plate with a hole. From left to right: 2, 3 and 4 subdomains.

As it is visible in the left column of Figure 2.17 for the broken V error

of the primal variable, the mortar methods remain optimal in all the cases.

We note that even if we were expecting from the theory a reduced order

regarding the convergence of the primal variable in broken V norm for the

pairing P4 − P2, we numerically obtain for some parametrization a better

order. Additionally as already observed several times, we obtain the best

approximation rates for the L2 error of the dual variable for the different

degree pairings.
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Figure 2.17: Problem of Subsection 2.4.7 - Left: broken V primal error curves.
Right: L2 dual error curves. Respectively from the top to the bottom, for
the 2, 3 and 4 patch parametrizations given in Figure 2.16, for several degree

pairings.

2.5 Conclusion

In this study an isogeometric mortar formulation was presented and inves-

tigated from a mathematical and a practical point of view. For a given pri-

mal order p, dual spaces of degree p, p−1 and p−2 were considered. While

the pairing p/p− 1 was proven unstable, the others satisfied this condition,

noting that the stability is achieved for the same degree pairing because of

a boundary modification. The proposed mortar methods are such that the
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equal order pairing guarantees optimal results, while for the pairing p/p−2

the convergence order can be reduced by at most 1/2. However, we note

that a boundary modification always yields additional effort for the imple-

mentation and the data structure.

Numerical examples showed that mortar methods can also handle fur-

ther difficulties arising from geometry approximations and is not perturbed

by singularities. Also in several cases the obtained convergence order was

superior to the theoretical results.
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Approximation of the mortar inte-
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3.1 Introduction

Mortar methods have been shown to be well-suited for isogeometric anal-

ysis. In this chapter, we present the results of some studies on the impact

that some approximations can do on isogeometric mortar methods.
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The first one regards the use of approximate projections in the mortar

formulation. The second one is focusing on the variational crime intro-

duced by approximate quadrature formulae for the evaluation of the cou-

pling integrals. It is a joined work with A. Buffa, B. Wohlmuth and L. Wun-

derlich which has been published in [18]. The third one is addressing the

build of a merged mesh to integrate in an optimal way the mortar integrals.

It is a collaboration work with A. Buffa, M. Martinelli, G. Elber and F. Mas-

sarwi.

The chapter is organised as follows. First, in Section 3.2, we present

the considered projections and their relative modified mortar formulations.

Secondly, in Section 3.3, we consider a review of numerical quadrature for

mortar integrals as well as additional aspects specific to isogeometric anal-

ysis. And finally, in Section 3.4, we present a segmentation process for iso-

geometric analysis. All the sections are illustrated by numerical results.

3.2 Approximate projection

3.2.1 Approximate mortar formulations

In the bilinear form b(v, λ) (and analogously b(u, φ)) we split the mortar

integral into two counterparts
∫
γl
λ vMds and

∫
γl
λ vSds, where vM denotes

the trace of v from the master domain ΩM(l), and vS the trace of v from the

slave domain ΩS(l). To simplify the notation, let us restrict ourselves to the

case of one single interface and drop the index l in the following.

Let us introduce the classical L2-projection Π into Sp(Ξ), i.e., the multi-

plier space defined as

Π : R→ Sp(Ξ),

∫

γ
(Πu) φ ds =

∫

γ
uφds, φ ∈ Sp(Ξ), (3.1)

and a lumped L2-projection Π̃ into Sp(Ξ) defined as

Π̃ : R→ Sp(Ξ), (Π̃u)j =

∫
γ uB

φ
j ds

∫
γ B

φ
j ds

, ∀ j = 1, . . . , nMh
. (3.2)

This later projection is inducing an error compared to the L2-projection due

to the lumping of the multiplier mass matrix in the projection coefficient

computation. We note that this error disappears in the case the multiplier
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is taken as a piecewise constant, while it increases rising the multiplier ap-

proximation space degree. In the isogeometric analysis context, the error

induced by the lumping of a mass matrix is of order 1. Thus, it pollutes

in principle, the optimality of the method using polynomial degree higher

than 1.

The discrete mortar formulation with the use of the L2-projection of the

displacement in the multiplier space is by construction equivalent to (1.3)

in the one interface case. We emphasize that the equivalence remains valid

only if suitable integral quadrature rules are used to evaluate the mortar

integrals.

While the mortar method with the lumpedL2-projection of the displace-

ment in the multiplier space reads as follows:

in a non-symmetric case, find (uh, λh) ∈ Vh ×Mh, such that

a(uh, vh) +

∫

γ
(vSh − vMh ) λh ds = f(vh), vh ∈ Vh,

∫

γ
Π̃(uSh − uMh ) φh ds = 0, φh ∈Mh,

in a symmetric case, find (uh, λh) ∈ Vh ×Mh, such that

a(uh, vh) +

∫

γ
Π̃(vSh − vMh ) λh ds = f(vh), vh ∈ Vh,

∫

γ
Π̃(uSh − uMh ) φh ds = 0, φh ∈Mh.

In the next section, numerical results show that even though the sym-

metric formulation has some advantages from the computational point of

view, it is leading to non optimal mortar methods. It is not observed with

the non-symmetric formulation, as theoretically expected. Indeed by defi-

nition of the lumped L2-projection, it is easy to see that:

b(vh, λh) = 0, ∀λh ∈Mh if and only if b(Π̃(vh), λh) = 0, ∀λh ∈Mh.

3.2.2 Numerical results

In this subsection, we consider a two-dimensional setting in order to ob-

serve the effects of the approximate L2-projection in the mortar formulation

on the optimality of the mortar method.

Let us consider the Poisson problem −∆u = f solved on the domain
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Ω = (0, 1)× (−1, 1) which is decomposed into two patches by the interface

γ = {(x, y) ∈ Ω, y = 0}, see Figure 3.1. The upper domain is set as the slave

domain. The internal load and the boundary conditions are manufactured

to have the analytical solution:

u(x, y) = cos (πx) (cos
(π

2
y
)

+ sin (2πy)), see Figure 3.1.

The normal derivative on the interface is given by ∂u/∂n(x) = 2π cos (πx) ,

see Figure 3.1. Neumann conditions are applied on the left and right

boundary parts, i.e., such that no cross point modification is necessary.
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Figure 3.1: Top left: Primal solution on Ω. Top right: Lagrange multiplier
along the interface. Bottom: Meshes at mesh refinement level 0.

Regarding the meshes, we consider a family of meshes obtained by uni-

form refinement of a initial mesh. It is such that at any refinement level,

any parts of the slave and master boundary meshes do coincide and such

that both meshes have same number of elements to measure only the per-

turbance due to the approximate projection. On Figure 3.1, the initial mesh

situation is visible.
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In the following, we provide different numerical error study results. In

all cases, the primal L2 and the dual L2 errors are computed by a compari-

son with the analytical solution stated above. With the modified mortar for-

mulations (symmetric and non-symmetric ones), no disturbance compared

to the exact case has been observed on the primal variable in L2 norm and

thus for all the tested pairings, i.e., same degree and different degree pair-

ings, see some results in Figure 3.2. On the contrary, some disturbances

have been observed on the dual variable. More precisely, as visible in Fig-

ure 3.2, the non-symmetric version leads to results similar to the exact inte-

gration case while it is not the case for the symmetric version. It means that

in this later case the way the lumped L2-projection is inserted in the mor-

tar formulation is creating a variational crime. This crime can be imputing

to the use of approximate trial functions, functions on which the weak for-

mulation is based. We point out that for both modified methods with the

pairing P2−P0 the results are as the exact case as expected, see Figure 3.3.

Indeed, in this special case, all the three formulations are equivalent by def-

inition of the lumped L2-projection.
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Figure 3.2: L2 primal (right) and dual (left) error curves: pairing P1−P1 (top),
P4− P4 (bottom) obtained with the symmetric formulation with the lumped
L2-projection (points), with the non-symmetric formulation with the lumped

L2-projection (triangles) and with the exact formulation (circles).
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Figure 3.3: L2 dual error curves for the pairing P2 − P0 obtained with the
symmetric formulation with the lumped L2-projection (points), with the non-
symmetric formulation with the lumpedL2-projection (triangles) and with the

exact formulation (circles).

3.3 Approximate quadrature

3.3.1 Mortar integral evaluation

In a mortar method, we need to evaluate the mortar integrals
∫
γ λ v

Mds

and
∫
γ λ v

Sds. We define the Lagrange multiplier λ on the mesh of the

slave domain ∂ΩS .

One particular challenge is the evaluation of the first interface integral,

i.e., the master-slave mortar integral, due to the product λ vM of functions

defined on a different mesh. Any quadrature rule based on the slave mesh

does not respect the mesh lines of the master mesh and vice versa for a

quadrature based on the master mesh.

It is obvious that the use of a suitable quadrature rule based on a merged

mesh, i.e., a mesh which respects the reduced smoothness of the master and

slave functions at their respective mesh lines, leads to an exact evaluation

of the integral. However, the construction of this auxiliary mesh commonly

named segmentation process is challenging, especially in the three dimen-

sional case since the shape of the elements varies and is difficult to deter-

mine, see, e.g., [86, 95, 96, 53, 42]. Note that in an isogeometric context

the merged mesh needs to be constructed in the physical space and then

pulled back to the parametric space for each subdomain to ensure the map-

ping of each quadrature point to effectively lives on the physical boundary.

The complexity of constructing such a mesh becomes even more severe in
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the case of non-linear and time-dependent problems, where the relative po-

sition of the meshes changes in every time or load step which implies to

recompute the merged mesh at every step.

Due to this computational complexity, it has been seen very appealing

to use a high order quadrature rule either based on the slave mesh or on

the master mesh to approximate the master-slave mortar integral, see [48,

108, 37] for some applications in the finite element and the isogeometric

analysis contexts. However in the finite element case, early results in [23,

81] showed that this strategy does not necessarily yield optimal methods.

More precisely, in the case that only the master mesh is chosen, the best

approximation error is affected, while for the case only the slave mesh

is chosen it is the consistency error. Numerical results confirmed the

lack of optimality with the master integration approach, while with the

slave integration approach reasonable results were obtained although not

optimal in terms of the Lagrange multiplier norm.

Due to the global smoothness of splines, one could expect the sensitiv-

ity with respect to the quadrature rules for isogeometric methods to be less

than for finite element methods. In the mortar context, according to the

finite element results, it seems interesting to consider a slave integration

rule. And, in case of maximal regularity, i.e., Vk,h ⊂ Cpk−1(Ωk) one also

might expect the quadrature error on a non-matching mesh to be signifi-

cantly smaller than in the finite element case. These preliminary observa-

tions motivate us to study the different cases numerically.

Let us denote the quadrature rule based on the boundary mesh of the

slave domain as
∑
−, i.e.,

∫

γ
λ vMds ≈

∑
−
λ vM . We precise that in the

examples a Gaussian quadrature rule is used, and we vary the number of

Gauss nodes. In all cases, we choose sufficiently many nodes such that the

integration on a merged mesh would have been exact. The mortar method

with pure slave integration is obtained by evaluating all interface integrals

in (1.3) using this quadrature rule, i.e., the discrete system in the one inter-

face case reads as follows: find (ũh, λ̃h) ∈ Vh ×Mh, such that

a(ũh, vh) +
∑
−

(vMh − vSh ) λ̃h = f(vh), vh ∈ Vh,
∑
−

(ũMh − ũSh) φh = 0, φh ∈Mh.
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The notation ·̃ is used to stress the difference to the discrete solution with

exact integration.

In the next section, we present numerical examples which show severe

deviations even in the isogeometric case. Hence, even though the global

smoothness of the integrated function is increased compared to the finite

element case, this integration approach reduces the convergence order

drastically.

Moreover, we consider an alternative approach which was proposed

in [23, 81] using both integration rules. Additionally denoting
∑

+ a

quadrature rule based on the boundary mesh of the master domain ΩM ,

this approach, resulting in a non-symmetric saddle point problem, reads as

follows: find (ũh, λ̃h) ∈ Vh ×Mh, such that

a(ũh, vh) +
∑

+
vMh λ̃h −

∑
−
vSh λ̃h = f(vh), vh ∈ Vh,

∑
−

(ũMh − ũSh) φh = 0, φh ∈Mh.

The non-symmetric saddle point problem, which corresponds to a Petrov–

Galerkin approach in the primal formulation, was motivated by different

requirements for the integration of the primal and dual test functions. Nu-

merical examples showed error values very close to the case of exact inte-

gration, but we note that from the theoretical side even the well-posedness

of the non-symmetric saddle point problem remains open. In the next sec-

tion, we present numerical examples which show that also in an isogeomet-

ric context, the results are generally close to those from the exact integration

case.

3.3.2 Numerical results

In this section, we consider two-dimensional and three-dimensional set-

tings in order to observe the effects of inexact quadrature rules on the opti-

mality of the mortar methods.

Two-dimensional example As a first example, let us consider the same

Poisson problem as presented in Subsection 3.2.2.

Regarding the meshes, we consider three different cases, presented in

Figure 3.4. In the first two cases, the initial master mesh is a refinement of
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the initial slave mesh. The initial slave mesh consists of just one element.

In the case M1, one uniform refinement step is applied to build the master

mesh, in the case M2 two uniform refinement steps. Case M3 was chosen

such that at any refinement level any parts of the slave and master bound-

ary meshes do coincide. The initial interior knots of the slave domain were

chosen as {π/10, 1−π/7} in both parametric directions, yielding 9 elements.

The initial master mesh consists of four uniform elements.

The cases M1 and M2 serve as simple tests to investigate the influ-

ence of the quadrature error. We note that inverting the role of the mas-

ter and slave domains is not interesting in these cases as both integration

approaches would be able to exactly evaluate the master-slave mortar inte-

gral.

Figure 3.4: Different meshes at mesh refinement level 1. From the left to the
right: M1 to M3.

In the following, we provide different numerical error studies. Start-

ing from the initial mesh, denoted by refinement level 0, we perform uni-

form refinements for the slave and master domains. We note that the inter-

element smoothness of the dual functions can influence the accuracy of the

quadrature based on the master mesh, but not the one based on the slave

mesh. Therefore for the slave integration approach, the equal order pairing

with maximal smoothness is considered, i.e., Mh = M0
h ⊂ Cp−1(γ), while

for the non-symmetric approach we vary the dual degree. In all cases, the

primal L2 and the dual L2 errors are computed by a comparison with the

analytical solution stated in Subsection 3.2.2.
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Slave integration approach First, we consider the caseM3, see Figure 3.4,

to measure the impact of the integration error in a general situation. A nu-

merical error study is provided in Figure 3.5 for a different number of ad-

ditional Gauss points and different spline degrees. For a spline of degree p,

we start with p+ 1 Gauss points and investigate the effect of increasing the

number of Gauss nodes. It can clearly be seen that the primal and dual so-

lutions are both affected by the inexact quadrature, leading to non-optimal

methods. In all cases, the same characteristical behavior can be seen. Up

to a certain refinement level, the results with inexact quadrature rules coin-

cide with the ones with no quadrature error. Then, at a certain refinement

level, the convergence order is reduced and the error is significantly larger

than the exact integration one. The level where this effect starts depends

on the considered error norm, the order p and the number of additional

Gauss nodes. Moreover, in this situation the higher order splines are more

sensitive to the approximate quadrature than the lower order splines.

In almost all cases of Figure 3.5, we observe poor approximation results

and a reduced convergence order which is numerically independent of the

spline degree. Especially, the rate of the L2 dual error is very low and in

some cases no convergence can be observed anymore.

Secondly, we consider a simple situation to show that even then the

impact of the slave integration is noticeable. Let us focus on the cases M1

and M2, see Figure 3.4, for which the master mesh is a refinement of the

slave mesh. See Figure 3.6 for a comparison of results between the cases

M1 and M2 for a spline degree p = 3. We note that the low convergence

orders of the primal and dual solutions, as remarked above, already appear

in this simple context.

Moreover, for a fixed number of slave elements, the error is increas-

ing with the number of master elements. This is expected as there are

more points of reduced smoothness which are not taken into account by

the quadrature rule. Let us now consider the final numerical convergence

rate in more details. In Table 3.1, estimated convergence orders for degree

p = 5 are given. We notice that the dual L2 rate breaks down to an order of

1/2, while the L2 primal rate lies about 3/2.
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Figure 3.5: 2D results - L2 primal (left) and dual (right) error curves for the
case M3: equal order pairings with p = 1, 3, 5 (from top to bottom) for the
slave integration approach and a different number of additional quadrature

points.

add. primal error dual error
q.p. case M1 case M2 case M1 case M2

0 1.63 1.74 0.50 0.50
1 1.63 1.54 0.50 0.50
2 1.63 1.55 0.50 0.50
3 1.63 1.58 0.50 0.50
4 1.63 1.56 0.50 0.50
5 1.63 1.50 0.50 0.50

Table 3.1: 2D results - Last estimated order of convergence of the primal and
dual L2 errors for the cases M1 and M2: pairing P5 − P5 for the slave inte-

gration approach and a different number of additional quadrature points.
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Figure 3.6: 2D results - L2 primal (top) and dual (bottom) error curves for
the cases M1 (left) and M2 (right): pairing P3 − P3 for the slave integration

approach and a different number of additional quadrature points.

Thirdly, we have additionally compared the case M3 with a similar sit-

uation in which the master and slave roles are reverted. The results also

show that the integration error is increasing with the increase of the mas-

ter element number. Thus, in accordance to the practical applications, in a

slave integration context it seems worthwhile to choose the slave domain

as the finest one.

Moreover, it can be observed that on coarse meshes using the slave inte-

gration method it is possible to recover the accuracy of the optimal mortar

method simply by increasing the number of quadrature points, see Fig-

ure 3.7. However, it has also been shown that the number of necessary

quadrature points is drastically increasing with the refinement level. It

can easily be seen that the number of Gauss points gets soon impractica-

bly large, see the right picture of Figure 3.7. Furthermore, in several cases,

the deviation to the mortar method has been observed to be more severe

for high order functions.
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Figure 3.7: 2D results - L2 primal (left) and dual (right) errors at refinement
level number 6 as a function of the number of additional quadrature points

for the case M3: pairing P3− P3 for the slave integration approach.

Non-symmetric approach The non-symmetric saddle point problem

based on the two existing quadrature rules, see Subsection 3.3.1, was in-

troduced to overcome the non-optimality of the pure slave integration ap-

proach in a finite element context. Due to the suboptimal results seen in

the previous section, it is also interesting to consider it in an isogeometric

context.

First, we consider same degree pairings. In almost all tested cases, the

results of the non-symmetric approach are comparable to the results of the

exact integration case. However, we note that differences could still be seen

in some cases. For example, for a degree p = 1 in the case M3, we obtained

a non-optimal method, see in Figure 3.8 the corresponding primal and dual

error curves. Note that we do not show any curves in the cases where no

disturbance is observed. For example for degree p = 5, we observed con-

vergence almost up to machine precision without any remarkable differ-

ences compared to the exact integration case.
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Figure 3.8: 2D results - L2 primal (left) and dual (right) error curves for the
case M3: equal order pairing p = 1 for the non-symmetric approach and a

different number of additional quadrature points.
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Figure 3.9: 2D results - L2 primal error curves for the case M3: different order
pairings for the non-symmetric approach and a different number of additional
quadrature points. Top left: P2−P0. Top right: P3−P1. Bottom left: P4−P2.

Bottom right: P4− P0.

Secondly, we consider dual spaces with lower degrees than the primal

ones. Note that in [17] stability for these pairings was only observed if the

primal and the dual degrees have the same parity. Similarly to the con-

sidered equal order cases, the dual error did not show a significant devia-

tion by the non-symmetric approach. In Figure 3.9, primal error curves are

shown for all stable different degree pairings up to a primal degree p = 4.

We note that theoretically, we expect sub-optimal primal error rates even in

the exact integration case, although often improved convergence rates were

observed. For a dual degree p− 2k, k ∈ N∗, we can expect a convergence of

order O(hp−2k+5/2) in the L2 norm, see the dashed lines in Figure 3.9. For

the P4−P2 and P3−P1 pairings, we observe small differences compared to

the exact integration results, but note that the convergence rate is not signif-

icantly different from the theoretical expectation. The situation is different

for the P4− P0 and P2− P0 pairings, for which the rate is more disturbed

and even below the theoretical expectation. This can be explained by the

discontinuity of the dual basis functions which introduces large errors in

the integration approximation done with a rule based on the master mesh,
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which does not respect these discontinuities.

Three-dimensional example As a second example, we consider a three-

dimensional problem with a curved interface. Precisely, we consider the

Poisson problem −∆u = f on the domain Ω = (0, 1)3, which is divided

into two patches by the interface γ = {(x, y, ρ(x)), (x, y) ∈ (0, 1)2}, with

ρ(x, y) = 1/8 (1 + x)(1 + y2) + 1/5, see Figure 3.10. The bottom subdomain

is set as the slave domain. The internal load and the boundary conditions

are manufactured to have the analytical solution:

u(x, y, z) = cos(2πx) cos(2πy) sin(2πz).

x

yz

Figure 3.10: Meshes at refinement level 1 (left) and the slave domain (right)
illustrating the curved interface.

Note that due to the curved interface, the normal derivative has a

complex form, but is still explicitly computable. Neumann conditions

are applied such that no cross point modification is necessary. The initial

master mesh has 8 uniform elements, while the initial slave mesh has 8

elements given by the breakpoint vector {0, π/5, 1} in each direction. In the

following, we provide some numerical error studies, considering the slave

integration approach as well as the non-symmetric approach.

The obtained results are in accordance with the two-dimensional results

for both approaches. In Figure 3.11, the deviation for the slave integration

approach is shown for the P4 − P4 pairing. Although not shown here, we

note that the results for the P2 − P2 and P3 − P3 pairing have a similar
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behavior. The non-symmetric approach does not lead to reduced rates con-

sidering equal order pairings, i.e., Mh = M0
h , on the refinement levels we

considered. As previously, with a lower order dual space, a difference to

the exact integration case can be seen. See Figure 3.12 for the disturbance in

the primal variable of the P3− P1 and P4− P2 pairings.
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Figure 3.11: 3D results - L2 primal (left) and dual (right) error curves for
the pairing P4 − P4, for the slave integration approach (top) and the non-
symmetric approach (bottom). Each of the curves being obtained with a dif-

ferent number of additional quadrature points.
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Figure 3.12: 3D results - L2 primal error curves for the pairings P3− P1 (left)
and P4− P2 (right), for the non-symmetric approach and a different number

of additional quadrature points.
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3.4 Construction of an isogeometric segmentation

method

3.4.1 Process details

In this section, we give the details of a segmentation process for isogeomet-

ric meshes. We precise that the construction of the merged mesh is done

master element by master element.

Let us consider a parametric master element. It is tessellated by a certain

amount of points, called tessellation points. They ensure its linear interpo-

lation which is more or less accurate depending on their number. The image

of these points have first to be transferred to the slave physical space. Sec-

ond, they have to be pulled-back in the slave parametric space. To do so,

the image of each tessellation point undergo a ray-tracing from the master

to the slave boundary using the master normal. I.e., it is moved to the slave

boundary along the direction of its master normal, see Figure 3.13 and the

Appendix.

Figure 3.13: A ray-tracing of a master point on the slave.

The ray-tracing operation is unique in the case it exists. We assume its

existence in what follows. In a patch gluing context such as the mortar

one, in general the master and slave boundaries may differ only a little.

Thus, the ray-tracing operation is commonly close to the identity. But as

this segmentation process has been thought to be valid for contact problem

cases for which in general the boundaries do not match and are fairly apart
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one from the other, the method should be able to associate slave to master

points in a well-defined way thus the use of a ray-tracing operation.

Then, each resulting point is pulled-back in the slave parametric space

using the inverse of the slave mapping. The expression of the inverse of

a mapping is not known, but in each point, can be evaluated by the reso-

lution of a non-linear system, see the Appendix. These points define the

counterparts of the current master element in the slave parametric space.

They are not necessarily aligned, indeed they define a curved element. We

note that these points are linearly interpolated, thus the boundary of the re-

sulting element is defined by broken lines. The more tessellation points are

considered, the more accurate is the boundary definition of this element.

To finish, the slave knot spans are split into polygons according to the

resulting curves, i.e., the master element counterparts. Finally, the resulting

polygons are triangularisated. We get a local merged mesh associated to

each master element. The global one could be obtained by overlapping the

local ones. All of this steps are recalled in Figure 3.14.

Local merged mesh construction

Let us consider a parametric master element. The following steps are applied:

1. Tessellation of the parametric element by a certain amount of points.

2. The image of each tessellation point is ray-traced to the slave boundary
using the master normal. We note that the obtained point is uniquely
defined.

3. The resulting points are then pulled-back to the slave parametric space.
It results in a curved master counterpart element in the slave parametric
space described by broken lines.

4. The slave knot spans are split into polygons according to the resulting
curves.

5. Triangularisation of the resulting polygons.

Figure 3.14: Synthesis of the local merged mesh construction steps.

The mortar integrals are then evaluated with new quadrature rules

built on each of these local merged meshes. The new quadrature points

are set in each triangle in the slave parametric space. The slave function

evaluation is immediate, while for the master one, one should associate

each slave quadrature point to a master one. To do so, the mapping of each
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slave quadrature point is projected to the master boundary. We recall that

the projection may either not exist or not be unique. While the existence

could and is assumed, the uniqueness issue is alleviated by the process.

Indeed as a local merged mesh is obtained for each master element, when

a quadrature point is projected to the master boundary, we know that the

projection should be found in the current master element. Thus assum-

ing an enough fine master mesh ensures the uniqueness of the projection.

In Figure 3.15, we give a synthesis of the mortar integral evaluation process.

Mortar integral evaluation

The following steps are applied:

1. Let us loop over the master elements. For each master element, lead the
local merged mesh construction, see Figure 3.14.

2. For each local merged mesh, set slave quadrature points, and associate
each of them with a master point located on its respective master ele-
ment.

3. Let us loop over the master elements and read all the data associated to
these elements, i.e., the couple slave quadrature points-master points
and their underlying values to lead the integral evaluations.

Figure 3.15: Synthesis of the mortar integral evaluation steps.

From the numerical point of view, we note that the quadrature points

set in the slave parametric element, once projected back to the master

boundary may be out of the current master element. It is necessary for

the code to measure the occurrences of this issue. The further the quadra-

ture points are set from the triangle boundaries, the less this problem is

encountered. This issue may be alleviated by a compromise between the

tessellation parameter finesse, the master mesh element finesse and the

necessary quadrature rule order.

In this method, we highlight that a unique normal is considered to

transfer points from the slave to the master and vice versa, i.e., the master

normal. It allows to maintain a unique normal which is of a high interest

in the contact context. In this later context, this normal should be the one

taken as contact normal.
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Figure 3.16: From the top to the bottom: the slave (blue) and master (red) sub-
domains, the slave parametric merged mesh, the master parametric merged
mesh, the slave merged mesh and the master merged mesh. Note that the
paraview element representation is based on a linear interpolation with a pa-

rameter equal to 5.
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Building the merged mesh in the slave parametric space, moreover

allowing a easier triangularisation process, ensures smoothness of the

physical merged mesh that thus lives on the slave boundary. In Figure 3.16,

we give an example of merged mesh done with coarse slave and master

meshes. The slave mesh has 2 elements per direction while the master

mesh is constituted of a unique element.

In the following, let us discuss the common normal choice on some ex-

amples. We have chosen the master normal. What would have differed if

the slave one had been taken ? In Figure 3.17, the ray-tracing and projection

operation inversion is visible. In the first picture of Figure 3.18, we show

Figure 3.17: Master normal vs slave normal choice as transferred normal in
the segmentation process.

an example in which the slave normal choice is not the most efficient one

due to non-uniqueness of some projected points. While this issue does not

occur in the case the master normal is taken with this boundary configu-

ration, see the second picture of Figure 3.18. We note that in this configu-

ration choosing the master normal is equivalent to keep the slave normal

but inverting the master and slave subdomains, see the third picture of Fig-

ure 3.18. These later cases allow to point out the importance of a efficient

master-slave subdomain choice. Moreover the finesse of the meshes, the

shape of the boundaries enters in the choice.

In the fourth picture of Figure 3.18, two general boundaries are consid-

ered. Let us consider the case the common normal is the slave one. Thus,

in this case, the image of the master tessellation points should be projected

to the slave boundary as the slave normal is the transferred normal. The

uniqueness of this operation is not ensured. We note that in the case it is, it

results in a merged mesh built with the slave normal, normal that should be
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Figure 3.18: Projection and ray-tracing examples with slave normal choice.
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used later on as contact normal if a contact problem context is considered.

Otherwise, there is anything ensuring a well-definition of the merged mesh,

as anything ensures a finite projection point number. Even though this is-

sue does not appear in all the cases, we point out that it is not encountered

when the master normal is chosen.

3.4.2 Preliminary results

In this section, we present two preliminary example results. We note that

for both cases, the ray-tracing and projection operations are the identity.

Two-dimensional results We present hereafter numerical results for a one

dimensional interface for which the relation between the two mapping is

not known. The considered test is the infinite plate with a hole presented

in Chapter 2, Subsection 2.4.7 on the geometrical parametrization visible in

Figure 3.19. No triangularisation process is necessary due to the one dimen-
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Figure 3.19: A slightly different parametrization of the infinite plate with a
hole with 3 subdomains.

sional interface simplification. Error studies have been done in comparison

to the analytical solution, see Chapter 2, Subsection 2.4.7. In Figure 3.20,

the optimality of some mortar methods is visible for the V primal and L2

dual errors. This test allows to validate, in a simple way, first contents of

the proposed segmentation process.

Three-dimensional results Let us now consider a Poisson equation

−∆u = f in the three dimensional context solved on a domain Ω decom-

posed into two subdomains, presented in the top picture of Figure 3.16.

The internal load and the boundary conditions have been manufactured
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Figure 3.20: V primal (left) and L2 dual (right) error curves for several degree
pairings.

to have the analytical solution u(x, y, z) = exp (x) sin (y), see the right

picture of Figure 3.21. Dirichlet conditions are applied on the subdomain

boundaries which are not juxtaposed with their common interfaces to

avoid any cross point issues. The Dirichlet conditions are imposed weakly

by the L2-projection of the solution on the respective boundary trace

spaces. While on the remaining boundaries, homogeneous Neumann

conditions are imposed. We note that the geometries are for this test not

parametrized by NURBS parametrizations. They are instead analytically

parametrized in cylinder coordinates. It allows to build this mesh situation

case such that the boundary meshes are not conform at all, see Figure 3.16.

Moreover, the solution approximation space is thus a push-forward of

a spline space (thus the possibility to use linear splines). We led some

error studies compared to the analytical solution on a uniformly refined

mesh family, starting from a mesh containing 2× 2× 2 slave elements and

1× 1× 1 master element as refinement level 0, see Figure 3.16.

The results are optimal in the considered cases, see, e.g., in Table 3.2

some V primal orders of convergence. Thus more tests should be per-

formed also testing situations where the projection and ray-tracing oper-

ations are not trivial.
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Figure 3.21: Computed solution (left) with spline spaces of degree p = 2 and
refinement level 4 and the analytical solution (right).

P1− P1 P2− P2 P3− P3
level error value slope error value slope error value slope

0 1.3085e+00 | 5.0465e-01 | 8.1740e-02 |
1 5.5531e-01 1.24 4.3646e-02 3.53 7.4277e-02 0.14
2 1.0281e-01 2.43 2.9535e-02 0.56 7.1237e-03 3.38
3 2.5146e-02 2.03 2.5996e-03 3.51 4.0647e-04 4.13
4 6.1447e-03 2.03 3.0231e-04 3.10 2.0250e-05 4.33

Table 3.2: ||u− uh||V and its estimated order of convergence.

3.5 Conclusion

In this chapter, the impact of different approximations on the mortar meth-

ods has been studied numerically. The former one, the use of an approxi-

mate projection, here defined as a lumped L2-projection, leads to optimal

results in the case the projection is not applied to the trial functions.

The second one is a study on the possibility to approximate the mortar

integrals by efficient numerical quadrature rules. A precise evaluation of

the mortar integrals is generally of a high computational complexity since
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it requires the construction of a merged mesh. While it would be desir-

able to use a quadrature rule based on the slave mesh, numerical examples

show that it induces large deviations to the mortar method. Especially the

convergence rate of the Lagrange multiplier is reduced to at most 1/2, inde-

pendently of the spline degree. While the method improves by increasing

the number of quadrature points, the amount of points necessary to obtain

nearly optimal results is not predictable. To overcome these difficulties,

we have considered a non-symmetric saddle point problem based on both

master and slave integration rules, which was previously introduced in the

finite element context. Numerical examples demonstrate that for most cases

the reached accuracy is close to the optimal one.

The third one regards the construction of an isogeometric segmentation

method. Its assets rely on the following aspects:

• the use of a unique normal (the master one) to transfer points from

the master to the slave (a ray-tracing operation) and vice-versa (a pro-

jection operation).

• a master element-wise process which ensures a well-definition of the

projection points by avoiding their non-uniqueness that tends to oc-

cur in presence of surface flipping.

• the local triangularisation process led in the slave parametric space,

i.e., in a plane which is easier to do.

• the fact the merged mesh lives on the slave surface which allows to

maintain the spline smoothness of the surface on which either the glu-

ing is performed or the contact conditions are imposed.

Although, the well-definition of the merged mesh and thus the robustness

of the segmentation process is conditioned by master mesh and tessellation

point finesse assumptions.

These studies are of interest in the construction of variationally consis-

tent contact methods.
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4.1 Introduction

In this chapter, we propose isogeometric numerical methods for the simu-

lation of the contact between an elastic body and a rigid ground. In what
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follows, we refer to this problem as rigid-deformable contact. The pro-

posed methods are based on an augmented Lagrangian formulation and

the choices of Lagrange multipliers analysed in Chapter 2.

First of all, let us recall that the semi-discrete weak augmented La-

grangian formulation, see (1.11), relative to the considered contact problem,

see (1.5), is: find (uh, λh) ∈ VD,h ×Mh such that





a(uh, vh) +

∫

ΓC,S

< λh + ε (gN )h >− [vh] ds = f(vh), ∀vh in V0,h,
∫

ΓC,S

1

ε
< λh + ε (gN )h >− φh ds −

∫

ΓC,S

1

ε
λh φh ds = 0, ∀φh in Mh,

where the brackets< · >− and the discrete gap (gN )h are suitably defined in

what follows. In this chapter, in Section 4.2, we first discuss our definition

for these two latter entities (i.e., < · >− and (gN )h) that are mainly driven

by the results of the previous chapters. Then, in Sections 4.3 and 4.4, we

discuss some numerical aspects and show advantages and drawbacks of

our different choices on a series of numerical results.

4.2 Contact problem discretization

The discrete counterpart of the Macauley bracket (see (1.7)) consists in split-

ting ΓC,S into two complementary parts, namely the active region of contact

denoted ACT and the inactive region of contact denoted INA. The semi-

discrete augmented Lagrangian formulation, Equation (1.11), can then be

written as: find (uh, λh) ∈ VD,h ×Mh such that





a(uh, vh) +

∫

ACT
(λh + ε (gN )h) [vh] ds = f(vh), ∀vh in V0,h,∫

ACT

1

ε
(λh + ε (gN )h) φh ds −

∫

ΓC,S

1

ε
λh φh ds = 0, ∀φh in Mh,

which is equivalent to: find (uh, λh) ∈ VD,h ×Mh such that





a(uh, vh) +

∫

ACT
ε (gN )h [vh] ds +

∫

ACT
λh [vh] ds = f(vh), ∀vh in V0,h,∫

ACT
(gN )h φh ds −

∫

INA

1

ε
λh φh ds = 0, ∀φh in Mh.

(4.1)

In this section, we discuss multiplier space choices along with the defi-

nition of (gN )h.
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4.2.1 Discrete multiplier spaces

An augmented Lagrangian formulation is a mixed method, and thus the

discrete Lagrange multiplier space Mh defined on ΓC,S has to be selected

carefully to ensure the mixed method to be well posed, see, e.g., [13]. In the

proposed contact methods, the primal variable is a vector in Rdu while the

multiplier is taken as a scalar, i.e., in R.

In the rigid-deformable frictionless contact context, imposing the active

contact condition is similar to impose a displacement value only in the

direction of the normal of contact. Thus, as it is done by the use of a

Lagrange multiplier, the underlying inf-sup condition is close to the one

relative to the mortar context. In that spirit, in the following, we give

different multiplier space choices constructed in accordance with the

mortar results, see Chapter 2. All our choices are indeed spline spaces built

on the boundary mesh of the slave domain. There are enumerated hereafter.

The first choiceM0
h is a spline space of degree pS , i.e., of the same degree

of the slave geometry and displacement approximation spaces. Note that

in the presence of any cross point, a suitable modification of the dual space

has to be applied. It ensures not to have a dual space bigger than the normal

trace of the primal one which obviously would not fulfill an inf-sup stability

condition.

An alternative choice M2
h is a degree (pS − 2) spline space for which

the definition requires the trace space of FS to be a subset of C1(ΓC,S). Ac-

cording to the mortar results, one expects in some cases a method with a

reduced convergence order of 1/2.

More generally, any spline spaceM2k
h of degree (pS−2k) with k ∈ N, k >

1 could be chosen if we assume enough smoothness on the trace space of

FS . As already pointed out in the case of the mortar method, choosing k

larger than 1 would destroy the accuracy on the approximation.

A summary of these choice is given in Figure 4.1. We have numerically

validated that for contact problem these choices lead to optimal numerical

results, while a theoretical study of the optimality of the proposed methods

was not the scope of this work.
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For VS,h a push-forward of a NURBS space of degree pS and :

• Mh a push-forward of a spline space of degree pS ,

• Mh a push-forward of a spline space of degree pS − 2,

• and more generally, for a push-forward of a spline space of degree pS−2k (k ∈
N and k > 1),

one can expect quantitative and qualitative results with the proposed contact meth-
ods. In the sense that some pairings will bring optimal results while others will lead
to a slight lost in the convergence order.

Figure 4.1: Summary of the multiplier space choices.

As it is well-known that the convergence speed of the method is limited

by the low regularity of the contact problem solution, it is worthwhile up

to a certain limit to increase in approximation space degrees. Indeed for

the smoothest cases, we do not except a convergence order greater than
3

2
in V norm for the primal variable and H−

1
2 (ΓC,S) norm for the dual one,

see, e.g., [89]. Thus, the different degree pairing choices are all of interest as

they may operate within this accuracy for pS ≥ 2.

4.2.2 Concept of discrete gap

The variable of interest in an augmented Lagrangian formulation is (λ +

ε gN ), denoted (λh + ε (gN )h) in a discrete context.

The gap is function of the slave approximation space, the initial sub-

domain distance and the contact normal. Even in the special case the pri-

mal approximation space is a spline space, the gap may not be one due to

the initial subdomain distance and contact normal influences. In the sake

of generality, the variable gap has to be projected in a spline space to be

smoothly approximated. Indeed, it is natural to discretise it as an element of

the multiplier space. This discretization is obtained by a projection on that

space. One of the two projections presented in Chapter 3, i.e., the classical

L2-projection (Equation 3.1) and a lumped L2-projection (Equation 3.2) are

considered in what follows. Thus, from now on we use the notation (ΠgN )h

for the spline gap defined as the approximation of the gap in the multiplier

space where (Π·) is one of the two projections mentioned above.
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4.2.3 Discrete active region of contact

The discrete active region of contact can be determined in different ways

and also approximated on the mesh or not. In the following, we present

two different ways to define it, namely an element approach and a control

point approach. In what we call element approach we try to define it quite

precisely.

Element approach The element approach consists in defining ACT as

ΓACT
C,S , i.e., the region of ΓC,S on which the spline (λh + ε(ΠgN )h) is nega-

tive, respectively INA as ΓINA
C,S its complementary on ΓC,S .

First of all, let us consider an exact determination which consists in find-

ing the zero(s) of a spline. Once they have been found, splitting ΓC,S into

two exact parts that may be discontinuous: ΓACT
C,S and ΓINA

C,S , by introducing

the zero(s) in the boundary slave mesh. We note that these points are intro-

duced just for integration purpose and thus not in the mesh on which the

approximation spaces are defined. It ensures that none of them is changed.

All the integrations can be led on both exact areas thanks to underlying

quadrature rules defined on the new elements resulting from the splitting

of existing ones. The high smoothness of splines provide efficient algo-

rithms to find the zero(s), see, e.g., [92, 80].

A more naive and surely less expensive approach consists in finding

the elements in which the change(s) of sign occurs() and splitting the

elements in two sets: the active ones, i.e., those on which the spline

has a negative value, and the inactive ones, i.e., those on which it has a

positive value. Those which contain the change(s) of sign are considered

as active ones. It leads thus to an over-estimation of the active region of

contact but has the advantage to avoid any other quadrature rule definition.

A synthesis of these two element approach methods is given in the two-

dimensional case in Figure 4.2. We have numerically proved that the exact

determination of the zero(s) ensure the robustness of the proposed contact

methods. While, as expected, the second approach is hardly stable and thus

the iteration to find the contact region oscillates in several simple situations.
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Remark 18. In the case (λ+ ε(ΠgN )) is approximated with piecewise constants,

both element approaches presented above determine the active region in an exact

way.

We point out that in the rigid-deformable contact context all the func-

tions to integrate are defined on a unique mesh. Thus there is no issue to

integrate these functions. The only issue encountered in an element ap-

proach regards the definition of the two distinct areas the functions should

be integrated on, i.e., ACT and INA. ACT = ΓACT
C,S is either defined exactly

as a set of existing mesh elements and new ones, or defined in excess as a

set of existing mesh elements. INA = ΓINA
C,S is its complementary on ΓC,S .

Remark 19. We also refer to [67]. It is a work in the two-dimensional case which

focuses on a strategy of adaptive refinement to determine quite exactly in an ele-

ment approach spirit the active region of contact.

In the three-dimensional case, the exact determination approach is very

difficult to design due to the need to furthermore parametrize in an efficient

way the curve which is the zero of the considered spline.

Control point approach The control point approach consists in defining

the active region of contact as the support of active functions. A function

associated to a control point is determined active if its relative control point

value is negative. We note that this approach consists in a stronger impo-

sition of the sign condition than the previous one. More precisely, due the

convex-hull property of the splines, checking the conditions at the control

points guarantees a stronger condition enforcement on the spline.

Two kinds of control points are distinguished:

• CPACT
λ : the active ones, for which (λh + ε (ΠgN )h)i < 0, with i =

1, . . . , nMh

• CP INA
λ . : the inactive ones, the others.

All the integration are evaluated with the existing quadrature points, any

other definition is necessary. Each active function is integrated on its whole

support.
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Let us consider as example the spline (λh + ε(ΠgN )h)

Element approach 1 - a search of the exact active region
Given Oj an element of ΓC,S

• determine if a change of sign is occurring on Oj.

On each element where a change of sign had been detected

• search the zero of the polynomial within the element,

• place the correct Gauss formulae on both sides.

Carry the related integrations on ΓACT
C,S and ΓINA

C,S using the new quadrature points at
the transition elements.

In red, the new quadrature points introduced to lead exactly the integrations on
both areas.

Element approach 2 - a general over-estimation of ΓACT
C,S

Given Oj an element of ΓC,S

• evaluate (λh + ε (ΠgN )h) at its quadrature points,

• add the current element to the set of elements which constitute ΓACT
C,S if one of

these values is negative, else to ΓINA
C,S .

Carry the related integrations on ΓACT
C,S and ΓINA

C,S using the existing quadrature
points.

The error committed in this example by the over-estimation of ΓACT
C,S is visible in red.

Figure 4.2: Synthesis of the two considered element approaches in the two-
dimensional case.
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The augmented Lagrangian formulation, Equation (4.1), is written in a

control point approach as: find (uh, λh) ∈ VD,h ×Mh such that





a(uh, vh) +

∫

ΓC,S

ε (
∑

k∈CPACT
λ

(ΠgN )k B
λ
k ) [vh] ds +

∫

ΓC,S

(
∑

k∈CPACT
λ

λk B
λ
k ) [vh] ds

= f(vh) ∀vh in V0,h,∫

ΓC,S

(
∑

k∈CPACT
λ

(ΠgN )k B
λ
k )φh ds −

∫

ΓC,S

1

ε
(
∑

k∈CP INA
λ

λk B
λ
k ) φh ds = 0 ∀φh in Mh.

4.3 Resolution strategies

In this section, we give the numerical procedure to solve the contact

problem written in an augmented Lagrangian formulation as well as we

detail its matrix system counterparts.

The iterative algorithm is given in Figure 4.3.

Active set strategy on an augmented Lagrangian formulation

(i) Initialise ACT and INA
(ii) Compute[

K +Kε B
B∗ Bλ

] [
U
Λ

]
=

[
F + Fε
G

]

(iii) Check convergence, i.e., ACT and INA stable
(iv) Update ACT and INA and go to (ii) until convergence is
reached.

with U the displacement vector, Λ the multiplier vector,
K the stiffness matrix, F the primal right-hand side,
G the multiplier right-hand side,
Kε the stiffness matrix contact counterpart,
B∗ and B the mixed bilinear form matrices,
Bλ the multiplier mass matrix.

Figure 4.3: Active set strategy on an augmented Lagrangian formulation.

Below, in the element approach ACT stands for ΓACT
C,S , respectively INA

for ΓINA
C,S , while in a control point approach ACT stands for CPACT

λ , respec-

tively INA for CP INA
λ . The matrix system counterparts of the augmented

Lagrangian formulation, Equation (4.1), referred as formulation 1 are:
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• for the active contact terms

Kεij = ε
∑

k

∫
ΓC,S

(BS
j · nM ) Bλ

k ds
∫

ΓC,S
Bλ
k ds

∫

ACT
Bλ
k (BS

i · nM ) ds,

Fεi = −ε
∑

k

∫
ΓC,S

g Bλ
k ds

∫
ΓC,S

Bλ
k ds

∫

ACT
Bλ
k (BS

i · nM ) ds,

Bij =

∫

ACT
Bλ
j (BS

i · nM ) ds,

B∗ij =
∑

k

∫
ΓC,S

(BS
j · nM ) Bλ

k ds
∫

ΓC,S
Bλ
k ds

∫

ACT
Bλ
k B

λ
i ds,

Gi =
∑

k

∫
ΓC,S

g Bλ
k ds

∫
ΓC,S

Bλ
k ds

∫

ACT
Bλ
k B

λ
i ds,

• for the inactive contact terms

Bλij =

∫

INA

1

ε
Bλ
j Bλ

i ds.

The underlying matrix formulation is not symmetric with both ap-

proaches. In an element approach case, the non-symmetry property just

arises from the fact that B∗ is not the transposition of B. In a control

point approach case, the lack of symmetry also concerns the matrix Kε

and Bλ. Although, we note that the stiffness matrix contact counterparts

do not destroy the sparsity pattern of the matrix as its symmetry property

in the case a lumped L2-projection is used thanks to its definition. We

note that these two properties are not ensured at all with the classical

L2-projection. Indeed, in the general contact problem case, i.e., in the large

displacement-deformation context, the use of a full mass matrix can lead

to a tremendous computational cost increase. From now on, for compu-

tational reasons we use the gap projection as the lumped L2-projection

defined in Equation (3.2). Moreover, we have numerically observed that

thanks to the way this projection is inserted in the methods, it does not

affect their accuracy as it was similarly observed in the mortar context in

Chapter 3.

In the following, we discuss some modifications to the formulation to

possibly obtain a symmetric problem to solve.
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First, in that purpose, we can think of modifying the trial functions. In-

deed, it is possible to think to take into account the active trial functions for

both, displacement and multiplier approximation functions. In this way, we

consider the projected displacement trial functions instead of the displace-

ment trial functions. Although, it is already known from mortar method

results, see Chapter 3, that it leads to a severe lack of optimality due to the

generation of important variational crimes.

Secondly, it is possible to evaluate the active counterpart relative to the

mixed bilinear form with as trial function the multiplier ones (i.e., the B∗

terms) as its peer, i.e., the active counterpart relative to the mixed bilinear

form with as trial function the displacement ones (i.e., the B terms). It was

proved in Chapter 3 in the mortar context that it does not affect the opti-

mality of the method. This formulation is referred as formulation 2 in the

following. We give below only the details of the matrix terms varying from

the formulation 1, i.e., :

for the active contact terms

B∗ij =

∫

ACT
(BS

j · nM )Bλ
i ds = Bji,

Gi =

∫

ACT
g Bλ

i ds.

We note that in a control point approach case, it does not lead to a complete

symmetric system matrix. The lack of symmetry is coming from the trial

multiplier-multiplier function counterparts, i.e., Bλ.

Thirdly, starting from the formulation 2 and evaluating Bλ as

(

∫

ACT

1

ε
φh ds) leads to a complete symmetric problem. This formulation,

referred as formulation 3 in the following, has been proposed in [39]. This

latter modification corresponds indeed to impose the inactive contact con-

dition in a strong way as the spline basis functions are positive. We give

below only the details of the matrix terms varying from the formulation 1,

i.e., :

• for the active contact terms

B∗ij =

∫

ACT
(BS

j · nM )Bλ
i ds = Bji,

Gi =

∫

ACT
g Bλ

i ds,
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• for the inactive contact terms

Bλii =

∫

INA

1

ε
Bλ
i ds.

Remark 20. In the case the considered pairing is P2− P0, we note that the three

formulations are equivalent as for piecewise constants the considered lumped L2-

projection is exact. Although, even in this case, the two active region approaches

lead to a slight different solution, as the integrations are not exactly done on the

same region.

We highlight that under the small displacement-deformation assump-

tions, the use of a control point approach allows to compute the matrices

once. Then, at each step to assemble them suitably in the global matrix as

the integrals to approximate never change while getting the solution. On

the contrary, the use of an element approach requires to evaluate the inte-

grals at each resolution step.

4.4 Numerical results

In this section, we present some numerical study results. First, we consider

a low order contact problem on which we focus on some element approach

aspects. Secondly, we consider a contact test with the highest possible regu-

larity on which we moreover focus on some control point approach aspects.

A comparison with finite element results is done. Finally, the classical Hertz

problem in the two-dimensional case is considered. We note that in the dif-

ferent tests, we set the elastic material properties to E = 1 and ν = 0.3.

4.4.1 Contact between an elastic square and a rigid ground

We considered the contact problem between a square and a rigid plane,

see the top left picture of Figure 4.4. A homogeneous Dirichlet condition

is imposed on the top surface of the slave domain, i.e., this surface is

clamped. While a Neumann condition l =


0.05

−0.1


, i.e., a pressure is

applied on its left surface. This boundary condition is set such that only

a part of the potential contact area is active, see Figure 4.4. We precise

that the potential slave contact area is its bottom boundary, i.e., the one of
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Figure 4.4: Test of Subsection 4.4.1 - Top left: Contact between a square and
a rigid plane setting. Top right: the square mesh refinement level 1. Bottom:
displacement solution for the pairing P2−P2 refinement level 3 obtained with

the method F1EA1∗ (left: ux, right: uy).

equation y = 0. Thus the initial gap is here equal to zero.

This test has no analytical solution, although it is known that the reg-

ularity of the solution is about 1 in V primal norm and H−
1
2 dual norm.

This problem is solved using the element approaches introduced in Sec-

tion 4.2. More precisely, we consider the element approaches 1 and 2 in the

particular case we use no projection in the augmented Lagrangian contact

formulation. It is as considering the formulation 1 introduced in Section 4.2

with 1 as projection coefficient for all k, (k = 1, . . . , nMh
). These methods

are respectively referred as F1EA1∗ and F1EA2∗, please note the use of the

star due to the specific assumptions done. We strongly highlight that it

is possible and mathematically correct only considering same degree pair-

ings as the geometry approximation space is a spline space, the initial gap

equal to zero and the contact normal equal to one of the cartesian grid. This

formulation restriction allows us to measure the necessity of an exact zero
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search to integrate exactly in the two distinct areas in a context polluted by

any other approximation.

We led some error studies to compare these two methods on a uni-

formly refined mesh family, starting from a mesh containing 5× 5 elements

as refinement level 0. As reference solution, a numerical solution obtained

with the method F1EA1∗ is taken: it is done on a mesh which contains

320 × 320 elements and with geometry, displacement and multiplier

approximation spaces of degree 4.

In Figure 4.5, we give the V primal, L2 primal and L2 multiplier errors

for the same degree pairings for p = 1 to p = 4. As expected, the optimality

of the method F1EA1∗ has always been observed, see Figure 4.5, as well

as the fact it converges without any status oscillation by definition of the

method, see Table 4.1. In the cases F1EA2∗ converges in a unique way, the

method leads to optimal results see Figure 4.5, although the convergence

is not warranted by the method. Different element status oscillation cases

have been observed. In the second picture of Figure 4.5, it is visible that

for the refinement level 4 the method F1EA2∗ is oscillating between two

solutions. They are such that they differ of only one active element. One

solution is more accurate than the other one regarding the expecting nu-

merical method capability, as one is on the method convergence curve of

desired order. We note that even though more complex oscillation status

cases have not been observed for this test, they exist. Furthermore, we note

that the finest is the mesh the more occurrences of status oscillation have

been observed, see Table 4.1.

Finding efficient exact zero detection methods such as the F1EA1

methods is thus of high interest. Even though the high spline smoothness

is bringing efficient root tools, we point out the difficulty of the task.

Especially from the computational point of view, as these methods are

usually based on adaptive refinement strategies, such as octree one, see,

e.g., [67, 118].

Furthermore, for the element approach 2, we also consider the use of

different degree pairings for which the active region definition contains no

approximation, i.e., for a multiplier degree p = 0. It requires the use of a
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Figure 4.5: Test of Subsection 4.4.1 - From the top to the bottom: V primal, L2

primal and L2 multiplier error curves for same degree pairings obtained with
the methods F1EA1∗ and F1EA2∗ (small markers and dashed lines).
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P1− P1 P2− P2 P3− P3 P4− P4
ref. level EA1∗ EA2∗ EA1∗ EA2∗ EA1∗ EA2∗ EA1∗ EA2∗

2 6 7 7 7 6 7 7 7
3 8 8 7 8 7 9 7 8
4 8 9 10 9 7 11 9 7Σ

5 8 10 9 9 8 11 9 9
6 10 11 9 8Σ 10 11Σ 9 11

Table 4.1: Test of Subsection 4.4.1 - Iteration number for the rigid-deformable
contact methods F1EA1∗ and F1EA2∗ with same degree pairings. Note that Σ

stands for simple status oscillation occurrence, i.e., when the method hesitates
on the status of two consecutive elements.

projection in the formulation, i.e., to consider the formulation 1 as exactly

defined in Section 4.2. This method is denoted F1EA2. In Figure 4.6, we

plot the L2 primal and L2 dual error curves for the pairings P2 − P0 and

P4 − P0. The results are optimal and more robust. Moreover we observe

that taking a reduced dual degree is not necessary diminishing the accuracy

on the primal variable, as also observed in the mortar context in Chapter 2.
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Figure 4.6: Test of Subsection 4.4.1 - L2 primal (left) and L2 multiplier (right)
error curves for stable pairings with a multiplier degree p = 0 in comparison

to their respective same degree pairings obtained with the method F1EA2.

4.4.2 High regularity contact problem between an elastic rectan-

gle and a rigid ground

We considered the contact problem between a rectangle and a rigid plane,

see the top left picture of Figure 4.7. A Dirichlet condition is imposed on the

top surface of the slave domain. It is such that the horizontal component

is equal to zero while the vertical one is a spline of degree 2. See on the

top right picture of Figure 4.7 the repartition of this vertical component

along the slave top surface. We precise that the potential slave contact area
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is its bottom boundary, i.e., the one of equation y = 0. Thus the initial gap

is here equal to zero. This boundary condition setting is such that only a

part of the potential contact area is active, see Figure 4.8, and such that

the regularity of the solution is about
3

2
in V primal norm and H−

1
2 dual

norm, i.e., it is a contact test of high regularity. We note that this test has no

analytical solution.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.035
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0
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0.01

Figure 4.7: Test of Subsection 4.4.2 - Top: On the left picture, the contact test
setting. On the right picture, the vertical component of the applied Dirichlet

condition. Bottom: the mesh refinement level 0.

This problem is solved using both, the element and the control point

approaches introduced in Section 4.2. More precisely, for this test we

also consider the method F1EA1∗ being in a setting its use is possible.

Moreover, we consider the control point approach F1CP, i.e., the weak

contact formulation 1 with a control point approach to define the active

contact region. We led some error studies to compare these methods on a

uniformly refined mesh family, starting from a mesh containing 12 × 12

elements as refinement level 0 visible in the third picture of Figure 4.7. As

reference solution, a numerical solution obtained with the method F1EA1∗

is taken: it is done on a mesh which contains 384 × 384 elements and with

geometry, displacement and multiplier approximation spaces of degree 4.

The optimality and the robustness of the method F1EA1∗ have always

been observed, see, e.g., Figure 4.9. In this figure, we plot the V primal and
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Figure 4.8: Test of Subsection 4.4.2 - Displacement and stress solution repar-
tition for the pairing P2 − P0 refinement level 3 obtained with the method

F1CP. Top: uy (left) and σxx(right). Bottom: σxy (left) and σyy(right).

L2 dual error for the same degree pairings P2 − P2 and P3 − P3. Regard-

ing the method F1CP, the optimality is observed in the case it converges.

We remark that in the context of Figure 4.9, convergence has been always

reached.

Moreover checking that optimal convergence order can be reached even

in the highest contact regularity context with the considered methods, we

compare the results of high regularity spline basis to finite element ones.

We point out that the finite element basis used is not the classical Lagrange

polynomial one, but rather the basis obtained from degree elevation of

splines defined on a specific mesh. It is built such that the number of un-

knowns in the FE and IGA contexts are quite similar in order to compare

fairly the two method efficiencies. We note that for p = 1, it coincides with

the Lagrange basis. For a pairing of degree p, the mesh step on which the

FE space is defined by degree elevation of splines is equal to
h

p
, h being the
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Figure 4.9: Test of Subsection 4.4.2 - V primal (left) and L2 multiplier (right)
error curves for the pairings P2 − P2 (top) and P3 − P3 (bottom) obtained
with the methods F1EA1∗ for high regularity splines (squares) and F1CP for

high regularity splines (triangles) and finite element basis (circles).

mesh step on which the spline space is defined. We note that this later space

is the IGA one.
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Figure 4.10: Test of Subsection 4.4.2 - V primal (left) and L2 multiplier (right)
error curves for same degree pairings obtained with the method F1EA1∗ for
high regularity splines and finite element basis (small markers and dashed

lines).

We compare finite element method and isogeometric analysis with the

method F1EA1∗. In Figure 4.10, we give some error results for same degree

pairings for p = 1 to p = 4. Optimal results can be observed. We obtained
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as theoretically expected reduced slope values for the pairing P1 − P1 in

comparison to the other pairing results. Furthermore, it is visible that iso-

geometric analysis results are slightly more accurate than the finite element

ones. The comparison FEM-IGA is also done with the method F1CP. The

method is optimal in the cases it converges, see, e.g., Figure 4.9. Although,

we note that for control point approach methods, FEM has been observed

to be less robust than IGA.

4.4.3 Hertz problem in the two-dimensional case

Let us consider the classical Hertz problem in the two dimensional case, i.e.,

the frictionless contact of a disk with a rigid plane, see [63, 79]. The load,

boundary conditions and geometry setting are presented in the first picture

of Figure 4.11.

p(x) = 2FL
πa2

√
(a2 − x2) = p0

√
(1− x2

a2 )

P = FLR
2 p0 = 2FL

πa2 a =
√

4RFL
πE∗ E∗ = E

1−ν2

In the numerical test, we have taken: FL = 0.007 and R = 0.7.

Figure 4.11: Test of Subsection 4.4.3 - Two-dimensional case Hertz problem -
Setting, modelling setting and analytical solution.

The problem is completely symmetric, i.e., from the geometry, load and

boundary condition points of view. It allows to approach numerically it by

the study of the contact between one quarter of a disk and the rigid plane.

This quarter of disk is subjected to a Neumann condition, i.e., a pressure on

its top boundary, with a horizontal component equal to zero, and a vertical
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one negative and equal to the repartition of the load applied on the disk.

It is subjected to a horizontal homogeneous Dirichlet condition on its left

boundary to impose the geometrical symmetry conditions.

Figure 4.12: Test of Subsection 4.4.3 - Mesh and control net of the considered
geometry at refinement level 0.

The potential slave contact area is a part of its circular boundary. We

note it is not the all circular boundary due to the quarter disk geometrical

parametrization used. The initial gap is here not equal to zero. The solution

has the highest possible regularity, i.e., about
3

2
in V primal norm and H−

1
2

dual norm, and it is such that only a small part of the potential area of

contact is active.

This mapping leads to the presence of a geometrical singularity point

while refining, see it in red in the left picture of Figure 4.12. We recall

that it has been proved that isogeometric analysis is able to handle some

severe mesh distortion cases, see [77]. We led some error studies to

compare the efficiency of different methods on a uniformly refined mesh

family, starting from the mesh visible in Figure 4.12 as refinement level 0.

This mesh contains (8 + 4) × (8 + 4) elements. It has been chosen to set

more elements in the area foreseen as active one in order to save some de-

grees of freedom while refining due to the classical NURBS tensor structure.

On this problem, we test the element approach 2 and the control point

approach for the three formulations proposed in Section 4.2, i.e., we are

considering six different numerical methods. They are referred respectively

as F1EA2, F2EA2, F3EA2, F1CP, F2CP and F3CP. For the control point

approaches, we consider same as different degree pairings, while for the
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element approaches, we consider the pairings P2 − P0 and P4 − P0

for which the determination of the active region of contact contained no

approximation.

For the multiplier, the analytical solution is known, see [63, 79], while

for the displacement we need to choose a reference solution. It is typical

in an analytical solution lack case to set as reference solution a numerical

one obtained with high degree approximation spaces and on a fine mesh.

For this test, we have done two different error studies with as analytical

solutions:

• one obtained with the method F2CP on a mesh containing (256 +

128) × (256 + 128) elements and with geometry, displacement and

multiplier approximation spaces of degree 4,

• and one obtained with the method F1EA2 on a mesh containing

(256 + 128)× (256 + 128) elements, with geometry and displacement

approximation spaces of degree 4 and multiplier approximation space

of degree 0.

The reason of this double analytical choice will be discuss in the latter.

First, let us consider the multiplier variable. In the different error study

cases, i.e., with the analytical solution, but also with the two reference so-

lutions for same and different degree pairings, optimality is reached when

convergence occurs.

In Figures 4.13 and 4.14, some L2 multiplier error evolutions are given.

In Figure 4.14, we plot the L2 multiplier error curve for the pairing P2−P2

obtained with the method F1CP on the considered uniformly refined mesh

family and for others meshes in order to describe more precisely the error

evolution. The optimality of the method is visible as a stair error evolution.

This behaviour is typical to contact problem due to the discrete definition

of the active contact region. Indeed, anything is ensuring that for any

general refinements, the active region of contact is better caught. We note

that some status oscillation cases are observed. Two different solutions can

be obtained in these cases, one leads to a point on the proper order error

curve and one with a higher error value, see the peaks in Figure 4.14.
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Figure 4.13: Test of Subsection 4.4.3 - L2 multiplier error curves for the pairing
P4−P2 (left) and P2−P2 (right) obtained with the control point approaches

and computed in comparison to the analytical solution.
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Figure 4.14: Test of Subsection 4.4.3 - L2 multiplier error curves for the pairing
P2− P2 obtained with the method F1CP and computed in comparison to the

analytical solution.

Let us now consider the primal error evolution. In Figures 4.15 and 4.16,

we show some primal error results computed with the two reference solu-

tions mentioned above. We precise that these solutions have been chosen as

they are obtained at the finest considered refinement level. They are also a

good compromise between high primal approximation space order and low

multiplier error once computed by comparison with the analytical solution.
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In Figure 4.15, we give some results for the pairing P2−P0. It is visible

that for a fixed approach the three formulations lead to the same solution, as

expected. Generally, the results show that a control point approach always

leads to an optimal method in the case it converges, see the left pictures

of Figures 4.15 and 4.16. Regarding the element approaches, it is slightly

different. Indeed, they lead to an optimal approach in the case the error

is computed in comparison to the second analytical solution. While in the

case it is computed in comparison to the first analytical one, the error is

optimal up to a certain refinement level for which it is reaching a threshold

value, see the left pictures of Figures 4.15 and 4.16.
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Figure 4.15: Test of Subsection 4.4.3 - V and L2 primal error curves for the
pairing P2 − P0 obtained with the six considered methods and computed in

comparison to the first (left) and second (right) reference solution.

It means that the second analytical solution is more accurate on the

primal variable than the first one. We recall that both analytical solutions

are computed with a primal approximation space of degree 4 while the

dual approximation space degree is 4 for the first solution and 0 for the

second one. Thus the fact that the second analytical solution is more

accurate on the primal variable than the first one is either due to the

discrete active region definition (element or control point approaches) or to

the approximation done by the use of a lumped L2-projection.
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Figure 4.16: Test of Subsection 4.4.3 - V and L2 primal error curves for the
pairing P2−P2 obtained with the control point approaches and computed in

comparison to the first (left) and second (right) reference solution.

In Figure 4.18, we show qualitative multiplier solutions obtained with

both reference solutions in comparison to the analytical one. Moreover, in

Figure 4.17, we show the repartition of the primal and multiplier errors

obtained with the first reference solution by comparison to the second

one. The main error counterparts are, as expected, localised in the contact

transition active-inactive area.
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Figure 4.17: Test of Subsection 4.4.3 - V primal (left) and L2 dual (right) error
repartition between the two reference solutions.



4.5. Conclusion 117

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

x/a

λ
/
P

0

 

 

Analytical

P4−P4

0.85 0.9 0.95 1 1.05 1.1
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

x/a

λ
/
P

0

 

 

Analytical

P4−P4

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

x/a

λ
/
P

0

 

 

Analytical

P4−P0

0.85 0.9 0.95 1 1.05 1.1
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

x/a

λ
/
P

0

 

 

Analytical

P4−P0

Figure 4.18: Test of Subsection 4.4.3 - First reference (top) and second reference
(bottom) multiplier solution in comparison to the analytical one. The right

pictures are zoom of the left ones in the transition active-inactive area.

4.5 Conclusion

In this chapter, numerical methods have been proposed for rigid-

deformable contact. Even though it may appear as a simple contact prob-

lem case, as the approximation functions are defined on a unique mesh,

different issues arise.

The proposed methods are mixed methods based on an augmented La-

grangian formulation. Thus a multiplier space has to be defined. Thanks

to a relative similarity with the mortar context, same parity degree pair-

ings have been used. And we have shown, they lead to optimal numerical

methods.

The use of different degree pairings but also in a general context the

gap definition itself require the use of a projection to project the gap in the

multiplier space. We have shown that the use of a lumped L2-projection

has several advantages and do not affect the method optimality.

The most sensitive aspect to define is the discrete active region. The con-

cept of element and control point approaches have been introduced. The
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element approaches, in the ideal case, are suffering from a high numerical

cost while in the approximate case, from a lack of robustness. The control

point approaches are less suffering from this lack.
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5.1 Introduction

In this chapter, we propose isogeometric numerical methods for the sim-

ulation of the contact between two deformable bodies. In what follows,
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we refer to this problem as deformable-deformable contact. The proposed

methods are variationally consistent and based on the mortar methods de-

fined in Chapters 2 and 3. Usually these kinds of methods are suffering

from the pricey need of a segmentation process to manage their underlying

integration issue. Those introduced in this chapter are designed to alleviate

this process.

Leveraging by the high regularity of splines and the results presented

in Chapters 2 and 3, we propose a Lagrange multiplier formulation solved

via an active set strategy. We note that the methods could be cautiously

extended to augmented Lagrangian formulations.

Let us recall that the semi-discrete weak Lagrange multiplier formula-

tion, see (1.10), relative to the considered contact problem, see (1.5), is: find

(uh, λh) ∈ VD,h ×M−h such that





a(uh, vh) + b(vh, λh) = f(vh), ∀vh ∈ V0,h,

b(uh, λh − φh) ≤ −g(λh − φh), ∀φh ∈M−h .

The outline of the chapter is the following. First, in Section 5.2, we com-

plete the discrete definition of our methods. Then in Section 5.3, we detail

the numerical strategies used to set the contact constraints. Finally, in Sec-

tion 5.4, we illustrate the numerical properties of our methods.

5.2 Contact problem discretization

In this section, we set the remaining counterparts of the semi-discrete La-

grange multiplier formulation introduced in Equation (1.10).

5.2.1 Discrete multiplier spaces

The discrete Lagrange multiplier space Mh defined on ΓC,S has to be

selected carefully to ensure the mixed method to be well posed, see,

e.g., [13]. The deformable-deformable unilateral frictionless contact prob-

lem can be seen as a directional gluing problem between slave and master

subdomains on the active region of contact. Thus some similarities exist

with the mortar methods introduced in Chapters 2 and 3. In a mortar

context, all the unknown components are glued, while in the frictionless

contact context the gluing concerns only the direction of the normal of
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contact. In the proposed methods, the primal variable is a vector in Rdu

while the multiplier is a scalar, i.e., in R.

The different multiplier spaces are similar to those defined in Chapter 4,

Section 4.2. We refer to this section for more details and herein just recall a

synthesis about them in Figure 5.1.

For VS,h a push-forward of a NURBS space of degree pS and :

• Mh a push-forward of a spline space of degree pS ,

• Mh a push-forward of a spline space of degree pS − 2,

• and more generally, for a push-forward of a spline space of degree pS−2k (k ∈
N and k > 1),

one can expect quantitative and qualitative results with the proposed contact meth-
ods. In the sense that some pairings will bring optimal results while others will lead
to a slight lost in the convergence order.

Figure 5.1: Summary of the multiplier space choices.

5.2.2 Discrete active region of contact

It remains to define M−h , i.e., to give a discrete definition to the constraint

dual cone which is related to the definition of the active/inactive discrete

contact area. For this purpose, let us introduce the three different spaces:

M−h,E = {φh ∈Mh, φh ≤ 0},
M−h,W = {φh ∈Mh,

∫

ΓC,S

φh Bj ds ≤ 0, ∀j = 1, ..., nMh
},

M−h,P = {φh =
∑

k

αk Bk, αk ≤ 0, ∀k = 1, ..., nMh
},

referred respectively as the exact check, a weak check and a control point

check of the constraints. The first choice requires a zero spline detection

algorithm, and leads to define the active region as an area delimited by the

zero(s) of a spline. It is similar to the element approach methods proposed

in Chapter 4. While the two other choices consist in control value checks,

and lead to define the active region as the support of the relative functions.

In both cases, the number of coefficients to check is equal to the multiplier

space dimension. They can thus be considered as a control point approach

method as proposed in Chapter 4. The relative position of the three space
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choices compared to the continuous dual cone is visible in Figure 5.2. In

the presented methods, for numerical convenience reasons we consider the

third choice, i.e., from now on the discrete dual cone is M−h,P .

Figure 5.2: Relative positions of the introduced discrete dual cones in compar-
ison to the continuous one.

5.3 Numerical strategies to set the contact constraints

In this section, we present the details of the active set strategy considered to

solve our discrete deformable-deformable contact problem. We refer, e.g.,

to [57, 59] for other active set strategy applications.

5.3.1 Active set resolution strategy

In the proposed contact methods, the discrete dual cone involves a value

check of each multiplier control variable. In an active set resolution

strategy, one should define sets of active/inactive control variables in a

unique space, here taken as the multiplier space. In a Lagrange multiplier

formulation, the variables of interest are the multiplier λ and the gap gN

which involve three different approximation spaces. In order to determine

the status of each multiplier control point, the gap should be projected in

the multiplier space. This is done by the use of a lumped L2-projection Π̃,

defined in Equation (3.2). This projection is known to induce a consistency

error, thus we should manipulate it cautiously (see Chapter 3). In the

way the projection is herein introduced in the methods, it turns out that

this consistency error (which is in principle of order 1) does not affect the

accuracy of our methods. We note that it was similarly observed for the

methods defined in Chapters 3 and 4.
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Once having the multiplier and gap approximated in the multiplier

space, we define a status for each multiplier control point. Precisely, a con-

trol point is active either if its multiplier value is negative, i.e., there is a

compression in that point, or if its gap value is negative, i.e., there is inter-

penetration in that point. Otherwise it is inactive. We recall for a sake of

completion the set of all possible status cases in Figure 5.3. We note that

due to the way the constraints are imposed by the numerical strategies, the

cases (d), (e), (g) and (h) do not appear in the resolution process.

λj < 0, λj > 0, λj = 0,

(Π̃gN )j = 0 Actif (a) (Π̃gN )j = 0 Inactif (b) (Π̃gN )j = 0 Inactif (c)

(Π̃gN )j > 0 Actif (d) (Π̃gN )j > 0 Inactif (e) (Π̃gN )j > 0 Inactif (f)
(Π̃gN )j < 0 Actif (g) (Π̃gN )j < 0 Actif (h) (Π̃gN )j < 0 Actif (i)

Figure 5.3: List of all the 9 possible control point status in a Lagrange multi-
plier formulation.

The active region of contact denoted ACT is defined as the support

of the active multiplier control variables. We note that the set of active

multiplier control variables is denoted CPACT
λ while the set of inactive

ones CP INA
λ . The discrete formulation of the considered contact prob-

lem, see (1.10), solved in an active set strategy is then written as: find

(uh, λh) ∈ VD,h ×M−h,P such that





a(uh, vh) +

∫

ACT
λh [vh] ds = f(vh), ∀vh in V0,h,

∫

ACT
φh [uh] ds = −

∫

ACT
φh g ds, ∀φh in M−h,P .

(5.1)

The constraints are checked on the multiplier control values λj (j =

1, . . . , nMh
) and the discrete gap control values (Π̃gN )j (j = 1, . . . , nMh

).

In Chapter 3, it has been shown that imposing weakly the L2-projection

of the gap equal to zero is equivalent to impose weakly the lumped L2-

projection of the gap equal to zero. So, once can check the constraints using

the lumped L2-projection of the gap while imposing weakly the gap equal

to zero.
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Active set strategy

(i) Initialise CPACT
λ and CP INA

λ

(ii) Compute [
K B(·,CPACT

λ )

B∗
(CPACT

λ , ·) 0(CPACT
λ , CPACT

λ )

] [
U

Λ(CPACT
λ )

]
=

[
F

G(CPACT
λ )

]

(iii) Check convergence, i.e.,: CPACT
λ and CP INA

λ stable
(iv) Update CPACT

λ and CP INA
λ and go to (ii) until convergence is reached

with U the displacement vector, Λ the multiplier vector,
K the stiffness matrix, F the primal right hand side,
G the multiplier right hand side,
B and B∗ the matrices associated to the mixed bilinear form.

B and B∗ are split into a slave BS , resp. B∗S , and a master BM , resp. B∗M , counterparts

as B =

[
BS

BM

]
, resp. B∗ =

[
B∗S

B∗M

]
, with

BSij =

∫

ACT
Bλj (xS)nM (xM ) · BS

i (xS) ds,

B∗S
ij =

∫

ACT
Bλi (xS)nM (xM ) · BS

j (xS) ds,

BMij =−
∫

ACT
Bλj (xS)nM (xM ) · BM

i (xM ) ds,

B∗M
ij =−

∫

ACT
Bλi (xS)nM (xM ) · BM

j (xM ) ds.

Figure 5.4: Details of the active set strategy algorithm.

In Figure 5.4, we give the active set strategy implemented to solve the

problem (5.1) and its matrix formulation. As it is visible, a distinction

between B and B∗ is done as B∗ is not always BT . We highlight that under

the small displacement-deformation assumptions, the use of a control

point approach allows to compute the matrices once. Then, at each step

to assemble in the global matrix only the necessary blocks as the integrals

to approximate never change while getting the solution. In the proposed

methods, the symmetry of the global matrix is depending on the integral

evaluation method.

5.3.2 Integral evaluation strategy

As for mortar methods, an issue arises from the mixed bilinear form

integral evaluations due to the fact one of them contains a product of

functions which are defined on different meshes. The straightforward

way to evaluate this integral consists in the use of a quadrature rule based

on a merged mesh. However, as it has already been commented, the

construction of this auxiliary mesh is from a computational point of view
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complex, see, e.g., [86, 95, 96, 53, 42]. And we highlight that for general

contact problems, this auxiliary mesh should be built at each geometry

update. To alleviate it, it has been seen very appealing to use a high

order quadrature rule based on an existing mesh. From the finite element

literature, see, e.g., [23, 81] as well as the isogeometric mortar results, see

Chapter 3, a convenient integration approach is retained. The proposed

contact methods are based on this later one.

In the following, we introduce with more details our considered

integration approach and we will compare it with an approach referred as

slave integration approach, see, e.g., [48, 108, 37]. We recall that for a slave

point xS , we define its projected point(s) xM on the master, see Chapter 1

and the Appendix. Similarly, considering a master point xM , we associate

it to a slave point we denote x̃S . The way it is obtained is discussed later

on. Let us denote a quadrature rule based on the boundary mesh of the

slave domain as
∑

S
and respectively

∑
M

a quadrature rule based on

the boundary mesh of the master domain. We note that both methods

introduce an error in the discrete solution as they do not consist in exact

integration approaches.

The slave integration approach consists in an evalua-

tion of all the integrals with the slave integration rule, i.e,∫

ACT
Bλ
j (xS) nM (xM ) · BS

i (xS) ds =
∑

S

ACT
Bλ
j (xS) nM (xM ) · BS

i (xS),

∫

ACT
Bλ
j (xS) nM (xM ) · BM

i (xM ) ds =
∑

S

ACT
Bλ
j (xS) nM (xM ) · BM

i (xM ),

∫

ACT
Bλ
i (xS) nM (xM ) · BS

j (xS) ds =
∑

S

ACT
Bλ
i (xS) nM (xM ) · BS

j (xS),

∫

ACT
Bλ
i (xS) nM (xM ) · BM

j (xM ) ds =
∑

S

ACT
Bλ
i (xS) nM (xM ) · BM

j (xM ),

which leads to a symmetric global matrix.

While the mixed integration approach consists in an evaluation of

each encountered integral with the quadrature rule able to catch the

reduce line of smoothness of the trial functions. It ensures at least a

proper approximation of these later functions on which the properties

of the variational formulation is based. The integrals are evaluated as:
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∫

ACT
Bλ
j (xS) nM (xM ) · BS

i (xS) ds =
∑

S

ACT
Bλ
j (xS) nM (xM ) · BS

i (xS),

∫

ACT
Bλ
j (xS) nM (xM ) · BM

i (xM ) ds =
∑

M

ACT
Bλ
j (x̃S) nM (xM ) · BM

i (xM ),

∫

ACT
Bλ
i (xS) nM (xM ) · BS

j (xS) ds =
∑

S

ACT
Bλ
i (xS) nM (xM ) · BS

j (xS),

∫

ACT
Bλ
i (xS) nM (xM ) · BM

j (xM ) ds =
∑

S

ACT
Bλ
i (xS) nM (xM ) · BM

j (xM ),

which leads to a non-symmetric global matrix. The saddle point problem

related to this method is not anymore a symmetric one and it corresponds

to a Petrov-Galerkin approach in the primal formulation. From the theo-

retical point of view, even the well posedness of this problem is an open

question.

As already observed in the mortar context in Chapter 3, methods

involving the mixed integration approach remain optimal while lack of

optimality is observed for those involving the slave integration one.

The need of the master quadrature rule in the mixed integration

approach requires that given a master point we associate it to a slave point.

In order to maintain a unique normal of contact, i.e., the master normal,

this point is not projected on the slave domain but it is subjecting to a

ray-tracing to the slave domain, see Figure 5.5 and the Appendix. I.e.,

taking a master point it is moved to the slave boundary along the direction

of its master normal. Our ray-tracing problem has a unique solution for

each master point in the case it exists thanks to the smoothness of splines.

Figure 5.5: Ray-tracing of a master point on the slave.
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In the small displacement-deformation context, we assume that both

mappings are quite similar in the neighbourhood of the active contact area.

It is warranting a good definition of the projection and ray-tracing prob-

lems for each slave point, resp. master point, in the crucial parts of the po-

tential area of contact. Although the high smoothness of splines helps a lot,

we note that in the general cases, one will face to cases of non-uniqueness

of projected point (taking a slave point), as to cases of non-existence of

projected point (taking a slave point) or ray-traced point (taking a master

point). Theses issues are not covered by this work. We highlight that in

the general context, initial shape assumptions on the geometry as regular-

ity on the mapping may not be enough to avoid them as the geometries are

changing at each resolution step.

5.4 Numerical results

In this section, we discuss numerical results obtained with methods involv-

ing both integration approaches. We precise that in the examples, we use a

Gaussian quadrature rule. The quadrature point number taken is the one

we would have used with a quadrature rule defined on the merged mesh

to integrate same degree pairings, and thus a little higher than necessary to

integrate different degree pairings. We start to study a contact test on which

we check the transmission of a constant pressure. Then, we consider a high

regularity test setting with full and partial contact. Finally, we consider a

more general test with a curved boundary.

5.4.1 A patch test: transmission of a constant pressure

As contact patch test, we considered the classical problem of the transmis-

sion of a constant pressure introduced in [103] and used in the same setting

as in [44]. We focus on the contact between two squares in 2D, see the first

picture of Figure 5.6. The upper subdomain is chosen as the slave, while

the other one as the master. Both subdomains have the same material prop-

erties with E = 1 and ν = 0.3.

A vertical homogeneous Dirichlet condition is applied on the bottom

surface of the master body. A horizontal homogeneous Dirichlet condition

is applied on the left surface of the master and slave bodies. A Neumann

condition, i.e, a pressure is applied on the top surface of the slave body.
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This latter is such that the horizontal component is equal to zero while the

vertical component is a negative constant equal to −0.00125, see the first

picture of Figure 5.6. The potential slave contact area is its bottom bound-

ary, i.e., the one of equation y = 0 while the potential master contact area

is its top boundary, i.e., the one of equation y = 0. Thus the initial gap is

here equal to zero. These boundary conditions are such that all the potential

area of contact is active, and we expect a constant stress state as analytical

solution.

The problem is solved using the methods previously introduced with ei-

ther the slave integration or the mixed integration approaches on different

mesh configurations. Conforming and non-conforming meshes are consid-

ered, and we note that in the case the meshes are conforming both integra-

tion approaches are equivalent. In the non-conforming case, the meshes are

chosen such that they are sharing no line at any refinement step and such

that they have the same number of elements, see, e.g., the right picture in

Figure 5.6. We highlight that for deformable-deformable contact problems

a good description of the solution in both subdomains is of interest, which

justifies the use of quite similar slave and master mesh sizes.

Figure 5.6: Test of Subsection 5.4.1 - Patch test setting (left). Conforming (mid-
dle) and non-conforming (right) mesh configurations at refinement level 1.

In Figures 5.7 and 5.8, we show the repartition of the stress σyy for

two different mesh cases. On the active region of contact, σyy corresponds

to the contact normal stress. The results show that the slave integration

approach, as it is already known, is not passing the patch test, see [47].
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Figure 5.7: Test of Subsection 5.4.1 - Repartition of σyy for non-conforming
meshes with 4 × 4 elements (refinement level 0) for each subdomain and the
geometry, displacement and multiplier approximation spaces are of degree 2.
On the left, obtained with the slave integration approach while on the right

with the mixed integration approach.

Refining and increasing the number of quadrature points to compensate

the approximate quadrature rule allow to improve the approximation of

the solution, although some spurious oscillations still remain in the stress

repartition, see Figures 5.7 and 5.8. On the contrary, the proposed methods

with the mixed integration approach are passing the patch test to the

machine precision and this also for coarse mesh cases.

Moreover we have led an error study to measure precisely the devia-

tion induced by the approximate quadrature rule in each approach. This

error study has been done on a family of meshes uniformly refined start-

ing from a initial configuration, see the refinement level 1 in Figure 5.6 for

the non-conforming (right picture) and conforming (middle picture) mesh

cases. As reference solution, a numerical solution obtained with fine con-

forming meshes is taken: each mesh contains 255 × 64 elements and the

geometry, displacement and multiplier approximation spaces are of degree

4. Note that the multiplier error is computed compared to the analytical
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Figure 5.8: Test of Subsection 5.4.1 - Repartition of σyy for non-conforming
meshes with 64×64 elements (refinement level 4) for each subdomain and the
geometry, displacement and multiplier approximation spaces are of degree 2.
On the left, obtained with the slave integration approach while on the right

with the mixed integration approach.

solution.

In Figure 5.9, we plot some V primal and L2 multiplier errors for the

pairings P3 − P3 and P3 − P1. As it is clearly visible, we have observed

that the proposed methods with the mixed integration approach are able

to catch even for coarse meshes the patch test solution to the machine pre-

cision, while the methods with the slave integration approach are not. Al-

though, we precise that the V primal error relative to the slave integration

approach has the optimal order expected from the theory due to the low

regularity of the contact problem, while we note that the L2 multiplier er-

ror has a even lower order. It emphasises that the multiplier is more affected

than the primal variable by the integral approximation done with the slave

integration approach, as already seen in the mortar context, see Chapter 3.
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Figure 5.9: Test of Subsection 5.4.1 - V primal (top) and L2 dual (bottom) er-
ror curves for the pairings P3− P3 (left) and P3− P1 (right). Obtained with
the slave integration approach (circles), the mixed integration approach (tri-
angles) and an exact integration approach, i.e., defined on conforming meshes

(squares).

5.4.2 Simple contact problem: full versus partial active contact

area

We considered two different settings of a contact problem with the highest

possible regularity, i.e., about
3

2
in V primal norm and in H−

1
2 dual norm,

see, e.g., [89]. The first one has been tailored to be a full contact problem,

i.e., to have for active region of contact all the potential one, while the

second one only a part. Two rectangles with same material properties may

enter in contact with E = 1 and ν = 0.3, see the first picture of Figure 5.10.

The upper subdomain is chosen as the slave, the other one as the master.

A homogeneous Dirichlet condition is applied on the bottom surface of

the master domain, i.e., this surface is clamped. A Dirichlet condition is

applied on the top surface of the slave domain. This latter is such that

the horizontal component is equal to zero while the vertical component

is negative. More precisely, it is a B-Spline function of degree p = 2

with maximum value at the point (x = 0, y = 0). On the second line of
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Figure 5.10 in the left picture, it is plotted for the first test and in the right

for the second one. The potential slave contact area is its bottom boundary,

i.e., the one of equation y = 0 while the potential master contact area is

its top boundary, i.e., the one of equation y = 0. Thus the initial gap is

here equal to zero. The problems are solved using the methods introduced

above with either the slave integration or the mixed integration approach

on different mesh configurations. We led error studies to understand the

deviation induced by the approximate quadrature rules.
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−0.005

0

Figure 5.10: Test of Subsection 5.4.2 - Test setting (top). Vertical component
of the Dirichlet condition applied on the top slave surface for the full contact

(left) and partial one (right).

Full contact Regarding the full contact test, we have done two different

error studies. They are based on two mesh family cases referred as mesh

cases 1 and 2, visible in Figure 5.11. In the mesh case 1, the slave and master

meshes have the same number of elements. While in the mesh case 2, the

master mesh is finer than the slave mesh. As reference solution, a numerical

solution obtained with fine conforming meshes is taken: it contains 255×32

(mesh case 1) and 255× 64 (mesh case 2) elements for each domain and the

geometry, displacement and multiplier approximation spaces are of degree

4.
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Figure 5.11: Test of Subsection 5.4.2 - Conforming (top) and non-conforming
(bottom) mesh configurations at refinement level 2. Left: mesh case 1. Right:

mesh case 2.

For this test, no impact on the primal variable is observed in V and L2

norms with both integration approaches while some are observed on the

multiplier. In Figure 5.12, we plot the L2 multiplier error for same degree

pairings for p = 1 to p = 3 and in Figure 5.13 for the different degree pair-

ings P2 − P0 and P3 − P1. In the case same degree pairings are used, the

multiplier is not affected by the approximate quadrature rules when the

mixed integration approach is involved while it is when the slave approach

is involved, see Figure 5.12. We note that increasing the spline space de-

gree allows to observe this disturbance at a finer refinement level. For the

different degree pairing, on the considered refinement levels, no impact on

the multiplier is observed with both integration approaches. We note that

even in the second mesh case for which more reduced lines of smoothness

are missed by the slave integration approach.

Partial contact Regarding the partial contact, as reference solution, a nu-

merical solution obtained with fine conforming meshes is taken: it contains

511 × 128 elements for each subdomain and the geometry, displacement
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Figure 5.12: Test of Subsection 5.4.2 - Full contact - L2 dual error curves. Top to
bottom: different pairing results: P1−P1, P2−P2, P3−P3. Left: mesh case
1. Right: mesh case 2. Obtained with the slave integration approach (circles),
the mixed integration approach (triangles) and an exact integration approach,

i.e., defined on conforming meshes (squares).

and multiplier approximation spaces are of degree 4. The refinement level

2 is visible in the left picture of Figure 5.11.

For this test also, no deviation from the exact integration case is

observed in V and L2 norms with both integration approaches while some

are observed on the multiplier. In Figure 5.14, we give the V primal and

L2 multiplier errors for the pairings P1 − P1 and P2 − P0. It is clearly

visible that the primal variable is not perturbed by both of the approximate

integration rules, leading to methods of order 1 in V primal norm for the

P1− P1 pairing and 1.5 for the P2− P0 pairing. Regarding the multiplier,
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Figure 5.13: Test of Subsection 5.4.2 - Full contact - L2 dual error curves for the
pairing P2 − P0 (top) and P3 − P1 (bottom). Left: mesh case 1. Right: mesh
case 2. Obtained with the slave integration approach (circles), the mixed in-
tegration approach (triangles) and an exact integration approach, i.e., defined

on conforming meshes (squares).

some differences are observed. While the mixed integration approach

leads to optimal results, the slave integration approach not always, see

Figure 5.14.

We note that for this second test, as the active region of contact is more

limited than in the first test, the impact of an approximate integration ap-

proach on the solution is less measurable on the mesh step range we con-

sider.

Moreover some steps are visible in the evolution of the multiplier er-

rors, typical to contact problem error evolution. We note that it could be

due to the fact the reference is a computed solution and thus contained

some approximations, especially in a key part, i.e., the active region of con-

tact. It allows us to point out a drawback of the methods relative to the

use of splines. It regards the active region of contact definition, defined as

the support of all the active functions. A function is determined active ac-

cording to the sign check of the projected gap and multiplier values. Even

though the control point values are still not equal to zero, the multiplier
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Figure 5.14: Test of Subsection 5.4.2 - Partial contact - V primal (top) and L2

multiplier (bottom) error curves for the pairings P1 − P1 (left) and P2 − P0
(right). Obtained with the slave integration approach (circles), the mixed in-
tegration approach (triangles) and an exact integration approach, i.e., defined

on conforming meshes (squares).

and the gap, being approximated by spline spaces could be. Thus, there is

no insurance that the algorithm stops for the highest quality contact solu-

tion approximation. Unfortunately there is no possibility of improving it

without destroying the necessary concordance between the check and the

imposition of the constraints related to the discrete dual cone definition.

5.4.3 A more general contact problem

As more general test, we consider the contact between two elastic bodies

with one which has a circular boundary as it is visible in Figure 5.15.

The two meshes do not match, see the right picture of Figure 5.15, as in

a general contact problem. We note that we consider meshes which are

more refined close to the potential area of contact to improve the accuracy

on the effective region of contact. Indeed, we try to limit the add of some

unnecessary degrees of freedom while refining due to the tensor product

structure of classical NURBS. The upper subdomain is chosen as the slave,

while the other one as the master. Both subdomains have the same material
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properties with E = 1 and ν = 0.3. A homogeneous Dirichlet condition

is applied on the bottom surface of the master body, i.e., this surface is

clamped. A Dirichlet condition, i.e., a displacement is imposed on the top

surface of the slave body. This latter is such that the horizontal component

is equal to zero while the vertical component is negative (constant value

equal to−0.05). The potential slave contact area is its bottom boundary, i.e.,

the circular one. The potential master contact area is its top boundary, i.e.,

the one of equation y = 0. The initial gap is here not equal to zero. We note

that the boundary conditions are such that only a part of the potential area

of contact is active, see Figure 5.15 and a solution in Figure 5.16, although

we do not have the analytical solution.

Figure 5.15: Test of Subsection 5.4.3 - Problem setting (left) and mesh configu-
ration at refinement level 1 (right).

The problem is solved using the presented methods with both inte-

gration approaches on different mesh configurations. We led an error

study. As reference solution, a numerical solution obtained with a mixed

integration approach with fine meshes is taken: the mesh contains 384× 64

elements for each subdomain and the geometry, displacement and mul-

tiplier approximation spaces are of degree 4. We point out that for this

test, the reference solution could not be obtained within a reasonable

computational cost for conforming meshes.

In Figure 5.17, we plot the V and L2 primal and L2 multiplier error

curves for the pairings P3 − P3 and P3 − P1. As it is visible, the V pri-

mal error evolution remains of optimal order with the methods involving

the mixed integration approach while some perturbations start to be visible
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Figure 5.16: Test of Subsection 5.4.3 - Top: vertical displacement (the right
picture is a zoom of the left one). Bottom: two stress repartitions (left: σxy ,

right: σyy).

on fine mesh cases with the slave integration approach. Regarding the L2

primal error, it is of optimal order with the methods using the mixed inte-

gration approach while it is not the case at all for those using the slave inte-

gration approach. For this test, a serious lost of optimality arrives also for

coarse meshes. Regarding the dual error, with both integration approaches

the results are optimal up to a certain refinement level. Indeed, for the slave

integration, after a certain level, it is not anymore optimal. We highlight

that thus as not usually observed, for this test, the primal variable is first

affected by the quadrature approximation done with the slave integration

approach, although this disturbance is caught later in V primal norm than

in L2.



5.5. Conclusion 139

P3− P3 P3− P1

10
3

10
4

10
5

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

||
u
−

u
h
||
V

primal dof number

 

 

Mix. int. app.

Sla. int. app.

O(h
0.5

),O(h
1
),O(h

1.5
)

10
3

10
4

10
5

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

||
u
−

u
h
||
V

primal dof number

 

 

Mix. int. app.

Sla. int. app.

O(h
0.5

),O(h
1
),O(h

1.5
)

10
3

10
4

10
5

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

||
u
−

u
h
||
L

2

primal dof number

 

 

Mix. int. app.

Sla. int. app.

O(h
1.5

),O(h
2
),O(h

2.5
)

10
3

10
4

10
5

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

||
u
−

u
h
||
L

2

primal dof number

 

 

Mix. int. app.

Sla. int. app.

O(h
1.5

),O(h
2
),O(h

2.5
)

10
3

10
4

10
5

10
−5

10
−4

10
−3

||
λ
−

λ
h
||
L

2
(Γ

C
,S
)

primal dof number

 

 

Mix. int. app.

Sla. int. app.

O(h
0.75

), O(h
1
),O(h

1.25
)

10
3

10
4

10
5

10
−5

10
−4

10
−3

||
λ
−

λ
h
||
L

2
(Γ

C
,S
)

primal dof number

 

 

Mix. int. app.

Sla. int. app.

O(h
0.75

), O(h
1
),O(h

1.25
)

Figure 5.17: Test of Subsection 5.4.3 - V primal (top), L2 primal (middle) and
L2 multiplier (bottom) error curves for the pairings P3−P3 (left) and P3−P1
(right) obtained with the slave integration approach (circles) and the mixed

integration approach (triangles).

5.5 Conclusion

In this chapter, isogeometric methods were introduced to solve a linear fric-

tionless deformable-deformable contact problem in a Lagrange multiplier

formulation. The discrete problem is solved via an active set strategy with

a status check of multiplier and gap control values. We note that it requires

a projection of the gap in the multiplier space. The use of a lumped L2-

projection has shown optimal numerical results.

The methods are referred as control point approaches as the active re-

gion of contact is defined as the support of the active multiplier functions.

They are also referred as mortar-like approaches as all the constraints are
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imposed weakly by the use of a Lagrange multiplier.

Multiplier spaces of different degrees have been discussed. The possi-

bility to take different degree pairings allows a good compromise between

a good displacement approximation space in each subdomain and the high-

est worthwhile order which can be chosen to approximate a contact prob-

lem due to its regularity limitation.

These mortar-like methods have the advantage to be less expensive than

the ones which built a third mesh to lead the integral evaluation thanks to

a mixed integration approach based on existing quadrature rules.

Numerical results obtained with these methods have shown a machine

precision fulfilment of a constant pressure transmission as their optimality

on different tests. We compared this integration approach with the slave in-

tegration one. In this later case, the impact of the approximate integration is

visible on the solution (displacement and multiplier). This study has good

perspectives such as a completion by theoretical studies and an extension

to the nonlinear context.
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Conclusions and perspectives

In this work, mixed isogeometric methods have been studied in order to de-

sign variationally consistent methods for interface problems such as mor-

tar and contact problems. The originality of this work relies on two main

aspects. First, the possibility to use different degree pairings to solve effi-

ciently mortar and contact problems has been proved numerically. In the

mortar context, we have also developed a formal theory. Secondly, even

though the evaluation of the mixed terms requires, in principle, the defi-

nition of a merged mesh, an alternative integration approach that bypasses

the construction of this mesh has been proposed and analysed in both cases.

Let us now discuss the possible perspectives to this work, some being

already ongoing ones. In the mortar context, the future work may be di-

rected to the merged mesh construction for any slave and master boundary

shapes in order to complete the validation of the presented process. This

work is the next step of the ongoing work led with A. Buffa and M. Mar-

tinelli.

In the contact context, we mention the extension to more complete con-

tact problems, i.e., in large deformations for which the contact boundaries

are updated during the resolution process, e.g., in a Newton iteration loop.

We refer to the ongoing work of A. Buffa and M. Fabre. We also mention

the extension to friction problems and also self-contact ones. Furthermore,

once the segmentation process would be completely effective in the mor-

tar context, mortar-like contact methods will be designed on it. We already

note that without a segmentation process as stable tools to find the spline

root(s) no element approach can be considered.

To finish, we just do the following comment: method optimality has a

cost even though its lack is not always observed, it is necessary to be aware

of it.
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Appendix - Point-wise ray-tracing

and projection algorithms

In this appendix, we briefly give the contents of some point-wise tools used

in the proposed methods. We refer to [92] for more details, and note that

each tool involves the resolution of a non-linear problem. To do so, we

considered a Newton-Raphson approach but point out that others can also

be used. We present hereafter the projection operation applied to a slave

point, the point inversion operation applied to either a master or a slave

point, and the ray-tracing operation applied to a master point.

Projection method Let us consider a slave point xS , finding its projected

point(s) xM on the master corresponds to find the point(s) at the minimal

distance to it on the master, i.e., solved the following minimisation distance

problem:

min
xM∈ΓC,M

d(xS ,xM ).

This problem can be expressed by the following orthogonality relation:

xSxM (ζ) · tΓM (ζ) = 0,

i.e., the vector defined by the slave point and its projected point is collinear

with the master normal defined in that point, and thus orthogonal to the

tangent one(s). In the two-dimensional case, it is written:

fP (ζ) = 0,

with fP (ζ) = (xM (ζ) − xS) · tΓM (ζ) = (FM (ζ) − xS) · F′M (ζ). This non-

linear problem is solved for each slave point. It results in master parametric

coordinates ζ which ensure the proper orthogonality condition.
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As mentioned previously, Newton-Raphson algorithm is used to solve

it, see its details for the two-dimensional case in the box below. We note

that according to the initialisation of the Newton-Raphson either no solu-

tion or one solution is found, in this later case with a quadratic speed of

convergence. We emphasise as it is well-known, that this algorithm is re-

ally sensible to its initialisation.

Newton-Raphson strategy

1. Initialisation of ζ0

2. At iteration i, compute

∆ζi =
fP (ζi)

f
′
P (ζi)

=
(FM (ζi)− xS) · F′M (ζi)

F
′′
M (ζi) · (FM (ζi)− xS) + F

′
M (ζi) · F

′
M (ζi)

3. Update the solution ζi+1 as ζi+1 = ζi −∆ζi

4. Check convergence with one of the two following relations:

• point coincidence ‖(FM (ζi)− xS)‖ ≤ ε1

• zero cosine
|(FM (ζi)− xS) · F′M (ζi)|
‖(FM (ζi)− xS)‖‖F′M (ζi)‖

≤ ε2

with ε1 and ε2 two convergence parameters.

5. Go to 2. until convergence is reached, incrementing the iteration index
i.

Newton-Raphson strategy written for the two-dimensional point projection
problem.

In the three-dimensional case, i.e., for two-dimensional interface case, it

results analogously for each point in a non-linear matrix system.

Point inversion method Let us consider a point x, either slave or master.

Finding the point ζ in the slave parametric space, resp. master parametric

space, it is the image by the slave mapping FS , resp. master mapping FM ,

can be done by using the projection algorithm described above. In this

case the point x already belongs to the domain it is projected to. Thus its

relative parametric coordinates are obtained by an achievement of a point

coincidence relation in the resolution process.

Ray-tracing method Let us consider a master point xM , finding its ray-

traced point x̃S on the slave corresponds to find the point where the master
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normal intersects the slave starting from this master point. This problem

can be expressed by the following orthogonality relation:

x̃S(ζ)xM · tΓM = 0,

i.e., the vector defined by the master point and its ray-traced point is

collinear with the master normal defined in that point, and orthogonal to

the tangent one(s), which can be written:

fR(ζ) = 0,

with fR(ζ) = (xM − x̃S(ζ)) · tΓM = −(xM − FS(ζ)) · F′M in the two-

dimensional case. This latter problem is the non-linear problem that is

solved for each master point. It results in slave parametric coordinates ζ

which ensure the proper orthogonality condition.

In the case this non-linear problem is solved with Newton-Raphson al-

gorithm, the specific computation of ∆ζi is:

∆ζi =
fR(ζi)

f
′
R(ζi)

=
−(xM − FS(ζ)) · F′M

F
′
S(ζi) · F

′
M

,

and the convergence check relations are:

• point coincidence ‖(xM − FS(ζ))‖ ≤ ε1,

• zero cosine
|(xM − FS(ζ)) · F′M |
‖(xM − FS(ζ))‖‖F′M‖

≤ ε2.

The three-dimensional case is also analogously treated with a non-linear

matrix system for each point.

Remark 21. We note that in the case Newton-Raphson algorithm does not con-

verge, refining the boundary domain on which a point is either projected or ray-

traced may improve the algorithm behaviour as it is initialised to the knot which

has the closest image to the point on the domain. This refinement procedure is

obviously done only in the determination of the projected, resp. ray-traced, point

purpose and thus is not affecting the approximation space. Classical improvement

strategies to ensure a convergence of the Newton-Raphson algorithm can also be

used.
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