DIGEP Department of Management and Production Engineering

Magneto-mechanical Energy Harvester for wireless sensors in Tyre, Shoes and other components

Elvio Bonisoli

Aim: supply energy to remote wireless sensors inside tyre, shoes or other items

- Presentation of the Cyber Tyre project
- Requirements, source characteristics and boundary constraints
- Description of the harvesting device dynamics
- Optimization aspects
- Performance index and comparison
- Other applications: shoes and mouse devices
- Conclusions

E

TYR

Supply energy to remote wireless Dynamics Sensors inside tyre Why? No time-life constraint Batteries are not enough ... "Green" meaning ! How? Use tyre kinematic

Cyber yre Cyber yre Cyber yre Cyber yre Cyber yre

Pavia, 5th February 2013

Pavia, 5th February 2013

Cyber Tyre:

- Temperature, pressure and grip evaluation on each tyre
- Integrated vehicle dynamic control (ABS, ESC, ...)

Inside each node

- Sensors (temperature, pressure, 3-axial accelerometer)
- Electronic circuits
- UWB Antenna + PAN on vehicle
- Energy Harvester (mechanical-electro-magnetic)
- Harvester Interface (active control)

- Very long historical connection to the water wheel, windmills and waste heat
- Ironically, before batteries (Volta, 1799) and the dynamo (Faraday, 1831), energy scavenging or energy harvesting was the only way to get any useful power !
- Today, great interest in the community for powering ubiquitously deployed sensor networks and mobile electronics
- All depends on the application (source characteristics, power density requirements, ...) No one-size-fits-all !

Energy Harvester typology

- Mean power and power density, obtained through scavengers, are usually small (µW, mW, W)
- Source of power, excitation characteristics and harvesting technologies
- Energy scavenging principles:
 - Radio waves
 - Vibrations
 - Electromagnetic
 - Electrostatics
 - Piezoelectric
 - Thermoelectric
 - Photovoltaic
 - Biological

Some examples ...

Solar panels

PZT generators in shoes

flashlight

Mechanical watches

Piezoelectric pavement

Electrostatic generator in shoes

Power density

Environmental Energy Source	Transduction Principle	Power Density*	Volume/Area to get 1mW
solar energy <mark>de</mark>	photovoltaic cells /	15 W/cm ² (directly enl.) 150 mW/cm ² (cloudy day)	0.06 W/cm ²
	pend heavily on the ambient excitation W/cm ²		
electromagneti	and harvesting technologies		
	coupling	scavenging	
thermal gradients	seebeck effect	15 mW/cm² @ 10 K	66.6 mW/cm ²
(mechanical vibrations	electromagnetic	(10 mW/cm ³)	100 mW/cm ³
	electrostatic	50 mW/cm ²	20 mW/cm ²
	piezoelectric	250 mW/cm ³	4 mW/cm ³
pressure gradients	electrostatic	1 mW/cm ²	1000 mW/cm ²

* "A study of low level vibrations as a power source for wireless sensor node" S. Roundy, P. Wright, J. Rabaey, Computer communications, Elsevier 2002 (Berkeley)

Characteristics and operational requirements:

- Small dimensions: about 10x10x10 mm
- High power density
- Wake-up velocity 20-30 km/h
- Velocity range up to 300 km/h
- Voltage > 1.3 V
- Lowest mean power 2.5 mW

Nonlinear electromagnetic device (resonant and adaptive)

Characteristics and operational requirements:

- Small dimensions: about 10x10x10 mm
- High power density
- Wake-up velocity 20-30 km/h
- Velocity range up to 300 km/h
- Voltage > 1.3 V
- Lowest mean power 2.5 mW

Nonlinear electromagnetic device (resonant and adaptive)

How it works:

- A floating magnet slides into the guide
- Around the guide are wound two coils
- Preload obtained through magnets
- Use of rare-earth permanent magnets (high power density)
- Electric-magnetic coupling with imposed dynamic

Source characteristics:

- Variations in the radial acceleration impose dynamic to a floating permanent magnet
- One-wheel-turn gives one pulse of energy

Dynamic equilibrium of the floating magnet:

$$F^{bump} = -k (z - z_{\lim}) - c \dot{z} \text{ if } z > +z_{\lim} \lor F^{bump} < 0$$

$$\Rightarrow \text{Rubbery bumpers} = 0 \qquad \text{if } -z_{\lim} \leq z \leq +z_{\lim}$$

$$= -k (z + z_{\lim}) - c \dot{z} \text{ if } z < -z_{\lim} \lor F^{bump} > 0$$

Adhesion and friction

$$F^{fric} = -f(\dot{z})\operatorname{sign}(\dot{z}) \quad \text{if } x = \pm x_{\lim} , y = \pm y_{\lim}$$
$$= 0 \quad \text{if } -x_{\lim} < x < +x_{\lim} \lor -y_{\lim} < y < +y_{\lim}$$

> Dynamic equilibrium of the floating magnet:

$$m \ddot{x} = F_{c,x}$$

$$m \ddot{y} = F_{c,y}$$

$$m \ddot{z} = F_{c,z} \not + F_{em} \not + F_{fric} + F_{bump}$$

Electro-magnetic coupling

$$F_{em} = F_{em,k} + F_{em,c}$$

$$F_{em,k} = F_{em,k}(z)$$

$$F_{em,c} = e \frac{i}{\dot{z}} = -N \frac{d\phi}{dt} \frac{i}{\dot{z}} = -N \frac{d\phi}{dz} i$$

$$L \frac{di}{dt} + (R + R_l) i + \frac{1}{C_l} \int_0^t i \, d\tau = e$$

Comparison of dynamics

Velocity of 20 km/h \rightarrow not working ...

- Magneto-elastic preload confines magnet displacement to no dynamic
- Electric-magnetic coupling is close to be null

Velocity of 40 km/h \rightarrow full operative condition

- Wide amplitude resonant motion
- Electric-magnetic coupling is equivalent to a viscous damping effect

Velocity of 80 km/h \rightarrow full operative condition

- Magnet presents an impulsive dynamic
- Electric-magnetic coupling maintains a good power flow
- At higher speed the power reduces because the moving mass does not have the time to reach the upper bumper

Device behaviour

20 km/h

Prototypes

Prototypes

(a)

Prototypes

Test on shaker:

- Resonance detection and nonlinearity weight
- Tests with sinusoidal and road profiles

- Test with adapted load
 R_I = 2 x 210 Ω:
- road profile accelerations without radial component 60 km/h

Test on shaker:

- Resonance detection and nonlinearity weight
- Tests with sinusoidal and road profiles

- Test with adapted load
 R_I = 2 x 210 Ω:
- road profile accelerations without radial component 60 km/h

Device optimization

Goals:

- Verifying that the topology is optimal
- Improving the performance at low speed
- Optimization of components "weights"

Coils optimization

- Multiple coils configurations
- Two (or more) spacers between coils
- One or more floating magnets

Global optimization

- Full parametric model
- Volume constraints
- Gradient or genetic algorithms

Device efficiency

 Maximum available energy and power:

$$\Delta E_{\max} = L_{ext} = m \Delta a_r 2 s$$

$$P_{\max} = f \ m \ \Delta a_r \ 2 \ s = \frac{m \ s \ v^3}{\pi \ r^2}$$

 The system is more effective at low vehicle speed

Work in progress ...

Work in progress ...

From tyre to ... shoes

Time histories and frequency contents

From tyre to ... shoes

From tyre to ... shoes

Prototypes

Energy Harvester for power supplier of wireless sensors

- Power density and suitability of sources
- Pirelli Cyber Tyre project
- Magneto-mechanical Energy Harvester
- Nonlinear dynamics, optimization and results
- From tyre to shoes and other device applications

Acknowledgements / People involved

- Prof. Stefano TORNINCASA
- Ing. Elvio BONISOLI (elvio.bonisoli@polito.it)
- Ing. Marco BRINO (marco.brino@polito.it)
- Ing. Francesco DI MONACO
- > Ing. Gabriele MARCUCCIO

