PhD Program in Computational Mechanics and Advanced Materials XXVIII cycle

Shape-memory materials: constitutive modeling for advanced applications

Author: Elisa Boatti

Supervisor: Ferdinando Auricchio

19/01/2016

Outline

- Goals of my work
- Shape-memory alloys:
 - SMA preliminaries
 - Constitutive modeling
 - > Implicit and explicit algorithms for SMA constitutive model
 - UMAT / VUMAT semi-automatic generator
 - Gradient structures for SMA: full thermomechanical coupling
- Shape-memory polymers:
 - SMP preliminaries
 - New phenomenological constitutive model
- Conclusions and future developments

- Human needs are in continuous evolution → Medicine, safety, industry, comfort, domotic, …
- Science and technology are inceasingly pushed

Shape memory materials

- Shape-memory materials are a mean to promote advancements:
 - o response to external stimuli
 - o simpler designs and actuation mechanisms than conventional ones
 - o more compact
 - o more efficient
- Example applications in:
 - > aerospace and mechanics: morphing wings, actuators, valves, switches
 - > medicine: stents, catheters, surgical instruments
 - > civil and mechanical engineering: sensors, dampeners
 - > ... many others ...

Computer-based simulations

• Virtual simulations are very helpful, often even necessary, to develop new solutions and products

- A fundamental part of the numerical simulation is material constitutive modeling
- Robust and effective material models and algorithms need to be developed, to be used in complex simulations
- The research field is wide open regarding advanced materials behavior

Material modeling

- 1. Experimental data on material behavior
- 2. Development of mathematical model based on both experimental data and commonly accepted theories and assumptions
- 3. Calibration of the model parameters over the initial experimental data
- 4. Validation of the model with different and more complex experimental data: comparison of numerical vs experimental curves

Goal

- My work has been dealing with the <u>development and numerical</u> <u>testing of advanced constitutive models for shape-memory alloys</u> <u>and shape-memory polymers</u>
- The aim is to provide engineers and researchers with an effective tool to use within FEA simulations
- Simulation of real-life applications in biomedical and industrial fields: e.g. medical devices, actuators, dampeners, wave filters
- Comparison with experimental data

DICAr

Part 1 Shape memory alloys

SMA properties

 Peculiar materials presenting superelasticity and shape memory effect

SMA applications

- Applications in different fields
 - \circ Valves
 - o Actuators
 - o Switches
 - \circ Blinds

- Morphing structures
- o Stents and stent-grafts
- o Flexible surgical instruments
- o Catheter guides

o ...

SMA applications

DynaNa

In particular, in the biomedical field: •

SMA constitutive modeling

- Modeling routes: micro, micro-macro, macro
- Souza-Auricchio model is a robust and relatively simple 3D phenomenological model

Continuous formulation

Souza et al., *Eur. J. Mech A/Solids,* 1998 Auricchio and Petrini, *IJMNE*, 2004

SMA numerical algorithm: implicit

Initialize:

$$\begin{aligned}
\mathbf{k} &= 0\\
\mathbf{h}^{(0)} &= \left\{ e^{tr(0)}, \xi^{(0)} \right\} = \left\{ e^{tr}_{TR}, \xi_{TR} \right\} \\
\text{REPEAT} \\
\mathbf{s}^{(k)} &= 2G \left(e - e^{tr(k)} \right) \\
\mathbf{X}^{(k)} &= \mathbf{s}^{(k)} - f(\theta) \frac{e^{tr(k)}}{\|e^{tr(k)}\|} - he^{tr(k)} \\
\text{Solve system } \mathbf{Q}^{(k)} &= \left(e^{tr(k)} - e^{tr}_{n} - \xi^{(k)} \frac{\mathbf{X}^{(k)}}{\|\mathbf{X}^{(k)}\|} \right) = \mathbf{0} \\
\text{via Newton-Raphson procedure to find:} \\
\mathbf{h}^{(k+1)} &= \left\{ e^{tr(k+1)}, \xi^{(k+1)} \right\} = \mathbf{h}^{(k)} + \Delta \mathbf{h}^{(k)} = \mathbf{h}^{(k)} - \left[\nabla_{\mathbf{h}} \mathbf{Q}^{(k)} \right]^{-1} \mathbf{Q}^{(k)} \\
k &= k + 1 \\
\text{UNTIL } \|\Delta \mathbf{h}^{(k-1)}\| < tol_{NR} \\
\text{Resulting quantities:} \\
e^{tr}_{PT1} &= \xi^{(k)} \end{aligned}$$

Initialize: $\begin{aligned} k &= 0 \\ h^{(0)} &= \{e^{tr(0)}, \xi^{(0)}, \ell^{(0)}\} = \{e^{tr}_{TR}, \xi_{TR}, \ell_{TR}\} \end{aligned}$ REPEAT $s^{(k)} &= 2G \left(e - e^{tr(k)} \right) \\ X^{(k)} &= s^{(k)} - \left(f(\theta) + \ell^{(k)} \right) \frac{e^{tr(k)}}{\|e^{tr(k)}\|} - he^{tr(k)} \\ Solve system Q^{(k)} &= \left(e^{tr(k)} - e^{tr}_{n} - \xi^{(k)} \frac{X^{(k)}}{\|X^{(k)}\|} \\ \frac{\|X^{(k)}\| - R_{Y}}{\|e^{tr(k)}\| - \epsilon_{L}} \right) = 0 \\ via Newton-Raphson procedure to find:$ $<math display="block">h^{(k+1)} = \{e^{tr(k+1)}, \xi^{(k+1)}, \ell^{(k+1)}\} = h^{(k)} + \Delta h^{(k)} = h^{(k)} - \left[\nabla_{h} Q^{(k)} \right]^{-1} Q^{(k)} \\ k &= k + 1 \\ UNTIL \|\Delta h^{(k-1)}\| < tol_{NR} \\ Resulting quantities: \\ e^{tr}_{PT2} &= \xi^{(k)} \\ \xi_{PT2} &= \xi^{(k)} \\ \xi_{PT2} &= \ell^{(k)} \end{aligned}$

Explicit algorithm motivation

Why are explicit algorithms useful ??

- highly non-linear simulations
- fully-coupled analyses
- dynamic analyses
- >1.000.000 DoFs

... above all, when implicit fails !

 previously, there was no explicit algorithm implementation for Souza-Auricchio SMA model

SMA numerical algorithm: explicit

Discrete formulation

Explicit algorithm

Semi-automatic subroutine generator

Problem: how to implement algorithms in commercial FEA software?

- Abaqus user material subroutines can be used to customize the material behavior
- UMAT for Abaqus Standard solver, VUMAT for Abaqus Explicit solver

Solution:

• FORTRAN → relatively lower-level computer language

 AceGen → high-level intuitive and optimized language, very similar to Mathematica code

> Korelc, Theor. Comp. Science, 1997 Korelc, Eng. with Comp., 2002

Semi-automatic subroutine generator

- I developed a procedure for semi-automatic UMAT/VUMAT generation:
 - 1. Write AceGen code
 - 2. Perform optimized automatic translation of AceGen code into FORTRAN subroutine
 - 3. Embed FORTRAN subroutine in UMAT/VUMAT user subroutine
 - 4. Call UMAT/VUMAT in Abaqus analysis

Semi-automatic subroutine generator

Comparison implicit vs explicit

Results

Uniaxial tests:

- superelasticity (1)
- temperature cycling (2)
- shape memory (3)

Comparison implicit vs explicit

Comparison implicit vs explicit

Implicit fails!

(in collaboration with prof. Ulisse Stefanelli, University of Vienna)

Motivation:

- Full thermomechanical coupling: exo- and endothermic effects during transformations are taken into account
- New variational formulation based on the General Equations for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) formalism

$$\partial_{\dot{y}}\mathcal{K}(t,y;\dot{y}) - \partial \mathcal{S}(y) \ni \mathbf{0}$$

Full system:

$$\nabla \cdot \mathbb{C}(\boldsymbol{\varepsilon}(\boldsymbol{u}) - \boldsymbol{e}^{\mathrm{tr}}) + \boldsymbol{f} = \boldsymbol{0},$$

$$\left(\boldsymbol{c} - \boldsymbol{\theta}\boldsymbol{f}''(\boldsymbol{\theta}) | \boldsymbol{e}^{tr} | \right) \dot{\boldsymbol{\theta}} + \nabla \cdot \boldsymbol{q} = \boldsymbol{R} | \dot{\boldsymbol{e}}^{\mathrm{tr}} | + \boldsymbol{\theta}\boldsymbol{f}'(\boldsymbol{\theta}) | \boldsymbol{e}^{\mathrm{tr}} |^{\cdot},$$

$$\boldsymbol{R} \partial | \dot{\boldsymbol{e}}^{\mathrm{tr}} | + \boldsymbol{H} \boldsymbol{e}^{\mathrm{tr}} + \boldsymbol{f}(\boldsymbol{\theta}) \partial | \boldsymbol{e}^{\mathrm{tr}} | + \partial \boldsymbol{I}(\boldsymbol{e}^{\mathrm{tr}}) \ni 2\boldsymbol{G}(\boldsymbol{e}(\boldsymbol{u}) - \boldsymbol{e}^{\mathrm{tr}})$$

 Semi-implicit time-discretization proved unconditionally stable and convergent

Algorithm:

Starting data: $\{e_i, \theta_i^e\} \in \mathbb{R}^{3 \times 3}_{dev} \times \mathbb{R}_+$ and $\{e_{i-1}^{tr}, \theta_{i-1}\} \in \mathbb{R}^{3 \times 3}_{dev} \times \mathbb{R}_+$ Define $e_{i,0}^{\mathrm{tr}} = e_{i-1}^{\mathrm{tr}}$. while $k \geq 1$, $|\theta_{i,k} - \theta_{i,k-1}|/\theta_{i,k} \geq tol$, and $|e_{i,k}^{tr} - e_{i,k-1}^{tr}|/|e_{i,k}^{tr}| \geq tol$ do Solve the thermal subproblem given $\{\theta_i^{e}, \theta_{i-1}, e_{i-1}^{tr}\} \in \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R}_{dev}^{3 \times 3}$ and $e_{i,k-1}^{tr} \in \mathbb{R}_{dev}^{3 \times 3}$ find $\theta_{i,k} > 0$ solving $\gamma_{\eta}(\boldsymbol{y}_{i-1})\theta_{i} - \frac{\tau_{i}\lambda}{\theta_{i}} = -\frac{\tau_{i}\lambda}{\theta_{i}^{e}} + \gamma_{\eta}(\boldsymbol{y}_{i-1})\theta_{i-1}$ $+ R_{Y}|e_{i}^{\mathrm{tr}} - e_{i-1}^{\mathrm{tr}}| + \theta_{i}f'_{*}(\theta_{i})\partial|e_{i}^{\mathrm{tr}}|_{n}:(e_{i}^{\mathrm{tr}} - e_{i-1}^{\mathrm{tr}})$ Solve the mechanical subproblem given $\{e_i, \theta_{i,k}\} \in \mathbb{R}^{3 \times 3}_{\text{dev}} \times \mathbb{R}_+$ and $e_{i-1}^{\text{tr}} \in \mathbb{R}^{3 \times 3}_{\text{dev}}$ find $e_{i,k}^{\text{tr}} \in \mathbb{R}^{3 \times 3}_{\text{dev}}$ solving $R_Y \partial |\mathbf{e}_i^{\mathrm{tr}} - \mathbf{e}_{i-1}^{\mathrm{tr}}| + (H + 2G)\mathbf{e}_i^{\mathrm{tr}} + f(\theta_i)\partial |\mathbf{e}_i^{\mathrm{tr}}| \ni 2G\mathbf{e}_i$ end

Material parameters

E 45 000MPaYoung's modulus ν 0.3-Poisson's coefficient K 37 500MPaBulk modulus G 17 308MPaShear modulus R 110MPaCritical stress β 4.49MPa/KCoefficient of function f H 1000MPaHardening constant θ_{tr} 343KMartensite finish temperature ϵ_L 0.049-Saturation strain limit θ_0 300KInitial temperature θ^e 390KExternal temperature λ 2×10^3 (MPa K)/sHeat exchange coefficient ρ 31KParameter in the definition of tol 10^{-6} -Tolerance	Symbol	Value	Unit	Description
ν 0.3-Poisson's coefficientK37 500MPaBulk modulusG17 308MPaShear modulusR110MPaCritical stress β 4.49MPa/KCoefficient of function fH1000MPaHardening constant θ_{tr} 343KMartensite finish temperature ϵ_L 0.049-Saturation strain limit θ_0 300KInitial temperature ℓ^e 390KExternal temperature λ 2×10^3 (MPa K)/sHeat exchange coefficient ρ 31KParameter in the definition of tol 10^{-6} -Tolerance	E	45 000	MPa	Young's modulus
K37 500MPaBulk modulusG17 308MPaShear modulusR110MPaCritical stress β 4.49MPa/KCoefficient of function fH1000MPaHardening constant θ_{tr} 343KMartensite finish temperature ϵ_L 0.049-Saturation strain limit θ_0 300KInitial temperature θ^e 390KExternal temperature c 3.22MPa/KSpecific heat λ 2×10^3 (MPa K)/sHeat exchange coefficient ρ 31KParameter in the definition oftol 10^{-6} -Tolerance	V	0.3	-	Poisson's coefficient
G17 308MPaShear modulusR110MPaCritical stress β 4.49MPa/KCoefficient of function fH1000MPaHardening constant θ_{tr} 343KMartensite finish temperature ϵ_L 0.049-Saturation strain limit θ_0 300KInitial temperature θ^e 390KExternal temperature c 3.22MPa/KSpecific heat λ 2×10^3 (MPa K)/sHeat exchange coefficient ρ 31KParameter in the definition oftol 10^{-6} -Tolerance	K	37 500	MPa	Bulk modulus
R110MPaCritical stress β 4.49MPa/KCoefficient of function fH1000MPaHardening constant θ_{tr} 343KMartensite finish temperature ϵ_L 0.049-Saturation strain limit θ_0 300KInitial temperature θ^e 390KExternal temperature c 3.22MPa/KSpecific heat λ 2×10^3 (MPa K)/sHeat exchange coefficient ρ 31KParameter in the definition of tol 10^{-6} -Tolerance	G	17 308	MPa	Shear modulus
β4.49MPa/KCoefficient of function fH1000MPaHardening constant $θ_{tr}$ 343KMartensite finish temperature $ε_L$ 0.049-Saturation strain limit $θ_0$ 300KInitial temperature $θ^e$ 390KExternal temperature c 3.22MPa/KSpecific heat $λ$ 2×10^3 (MPa K)/sHeat exchange coefficient $ρ$ 31KParameter in the definition oftol 10^{-6} -Tolerance	R	110	MPa	Critical stress
H1000MPaHardening constant θ_{tr} 343KMartensite finish temperature ϵ_L 0.049-Saturation strain limit θ_0 300KInitial temperature θ^e 390KExternal temperature c 3.22MPa/KSpecific heat λ 2×10^3 (MPa K)/sHeat exchange coefficient ρ 31KParameter in the definition of tol 10^{-6} -Tolerance	β	4.49	MPa/K	Coefficient of function f
θ_{tr} 343KMartensite finish temperature ϵ_L 0.049-Saturation strain limit θ_0 300KInitial temperature θ^e 390KExternal temperature c 3.22MPa/KSpecific heat λ 2×10^3 (MPa K)/sHeat exchange coefficient ρ 31KParameter in the definition of tol 10^{-6} -Tolerance	Н	1000	MPa	Hardening constant
ϵ_L 0.049-Saturation strain limit θ_0 300KInitial temperature θ^e 390KExternal temperature c 3.22MPa/KSpecific heat λ 2×10^3 (MPa K)/sHeat exchange coefficient ρ 31KParameter in the definition of tol 10^{-6} -Tolerance	$\theta_{\rm tr}$	343	K	Martensite finish temperature
$θ_0$ 300KInitial temperature $θ^e$ 390KExternal temperature c 3.22MPa/KSpecific heat $λ$ 2×10^3 (MPa K)/sHeat exchange coefficient $ρ$ 31KParameter in the definition of tol 10^{-6} -Tolerance	€L	0.049	-	Saturation strain limit
θ^e 390KExternal temperaturec3.22MPa/KSpecific heat λ 2×10^3 (MPa K)/sHeat exchange coefficient ρ 31KParameter in the definition oftol 10^{-6} -Tolerance	θ_0	300	K	Initial temperature
c3.22MPa/KSpecific heat λ 2×10^3 (MPa K)/sHeat exchange coefficient ρ 31KParameter in the definition oftol 10^{-6} -Tolerance	θ^e	390	K	External temperature
λ 2×10^3 (MPa K)/sHeat exchange coefficientρ31KParameter in the definition oftol 10^{-6} -Tolerance	С	3.22	MPa/K	Specific heat
ρ 31 K Parameter in the definition of tol 10 ⁻⁶ – Tolerance	λ	2×10^{3}	(MPa K)/s	Heat exchange coefficient
tol 10^{-6} – Tolerance	ρ	31	K	Parameter in the definition of f
	tol	10^{-6}	-	Tolerance

3 tractions/compressions:

External temperature increase/decrease at constant strain:

Part 2 Shape memory polymers

SMP properties

- Ability to store a **temporary** shape and to recover their **original** shape upon an external stimulus
- Thermo-responsive SMP are the most common: physical or chemical switches activate/deactivate according to temperature
- Shape-fixing procedure + heating to trigger shape recovery

2) low-temperature shape fixing + recovery

SMP applications

- Applications in different fields: •
- Heat shrinkable tubes 0
- Toys and items Ο
- Soft grippers Ο
- **Smart fabrics** 0

- Cardiovascular stents 0
- Wound closure stitches 0
- Drug delivery systems Ο
- Damping systems 0

- Deployable and Ο morphing structures
- Food packaging Ο
- **Fasteners** 0

SMP filler

3D finite-strain model for SMP

• Modeling routes: standard thermo-viscoelastic models, or phenomenological models based on the concept of phase transition

New 3D finite-strain phenomenological model for SMP

- the frozen deformation gradient models the amount of deformation stored during the high-temperature shape fixing
- the glassy phase deformation gradient is divided into an elastic part and a plastic part; the plastic part represents the amount of deformation stored during the low-temperature shape fixing
- the permanent deformation gradient represents the irrecoverable deformation and therefore it simulates the incomplete shape recovery
- the deformation gradient of the rubbery phase is purely elastic

3D finite-strain model for SMP

 Modeling routes: standard thermo-viscoelastic models, or phenomenological models based on the concept of phase transition

New 3D finite-strain phenomenological model for SMP

3D finite-strain model for SMP

Input variables: θ **F** State variables: z^g **F**^{pg} **F**^f **F**^p

Evolution equations:

 $z^{g} = \begin{cases} 1 & \text{if } \theta \leq \theta_{t} - \Delta \theta \\ \frac{1}{1 + \exp\left[2w\left(\theta - \theta_{t}\right)\right]} & \text{if } \theta_{t} - \Delta \theta < \theta < \theta_{t} + \Delta \theta \\ 0 & \text{if } \theta > \theta_{t} + \Delta \theta \end{cases}$ $\mathbf{F}^{pg} = \begin{cases} & \text{if } \theta \leq \theta_t - \Delta \theta \\ \text{evolves according to assigned flow rule} & \text{OR} \\ & \text{if } \theta_t - \Delta \theta < \theta < \theta_t + \Delta \theta \\ 1 & \text{otherwise} \end{cases}$ otherwise $\mathbf{F}^{f} = \begin{cases} c \mathbf{F} - 1 \end{pmatrix} + 1 & \text{if } \theta > \theta_{t} + \Delta \theta \\ \text{constant} & \text{otherwise} \end{cases}$ $\mathbf{F}^{p} = \begin{cases} c^{p} \left(\mathbf{F}^{f} + \mathbf{F}^{pg} - 2 \cdot \mathbf{1} \right) + \mathbf{1} & \text{if } \{ \theta \leq \theta_{t} + \Delta \theta \text{ and } \|\mathbf{E}^{p}\|^{\cdot} \geq 0 \} \\ \text{constant} & \text{otherwise} \end{cases}$

Boatti E., Scalet G., Auricchio F., under review

SMP numerical test: uniaxial

SMP numerical test: uniaxial

Low temp. shape fixing

SMP numerical test: stent

(non-ideal)

SMP numerical test: phononic crystal

Tunable phononic crystals (in collaboration with prof. Katia Bertoldi, Harvard University)

• RVE and irreducible Brillouin zone in the reciprocal lattice

SMP numerical test: phononic crystal

- Dispersion diagrams obtained through the Bloch wave analysis
- The band gaps change with compression
- We have a tunable wave filter

Conclusions

- New modeling and algorithmic tools have been proposed for SMA and SMP
- A fast and effective semi-automatic procedure to create user material subroutine for ABAQUS has been presented
- The possibility to simulate real-life applications has been demonstrated

Related publications:

- Auricchio F., **Boatti E.**, Conti M. "SMA biomedical applications", Chapter 11 in *Shape memory alloy engineering: for aerospace, structural and other applications,* editors: A. Concilio, L. Lecce, publisher: Elsevier, 2014
- Auricchio F., **Boatti E.**, Conti M. "SMA cardiovascular applications and computer-based design", Chapter 12 in *Shape memory alloy engineering: for aerospace, structural and other applications*, editors: A. Concilio, L. Lecce, publisher: Elsevier, 2014
- Ferraro M., Auricchio F., **Boatti E.**, Scalet G., Conti M., Morganti S., Reali A. "An efficient finite element framework to assess flexibility performances of SMA self-expandable carotid artery stents", Journal of Functional Biomaterials, 2015
- Auricchio F., **Boatti E.**, Reali A., Stefanelli U. "Gradient structures for the thermomechanics of shape-memory materials", CMAME, 2015
- Scalet G., **Boatti E.**, Ferraro M., Mercuri V., Hartl D., Auricchio F. "Explicit finite element implementation of a shape memory alloy constitutive model and associated analyses", submitted
- **Boatti E.**, Scalet G., Auricchio F. "A three-dimensional finite-strain phenomenological model for shape-memory polymers: formulation, numerical simulations, and comparison with experimental data", under review

Future developments

- Develop the finite-strain version of the SMA fully-coupled thermomechanical model
- Extend the SMA fully-coupled thermomechanical model implementation to the space non-homogeneous case
- Test the explicit algorithm of SMA Souza-Auricchio model in dynamic conditions

. . .

Improve the phenomenological SMP consitutive model by adding viscoelastic effects

Thank you

