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Abstract

The aim of this thesis is the derivation of planar non-prismatic beam models by means of

a mixed variational principle. The beam under investigation is initially modelled as a 2D

body in the hypotheses of an isotropic material with a linear elastic behaviour and small

displacements.

First, referring to models already existing in literature, two formulations of the elastic

problem (Total Potential Energy and Hellinger-Reissner principles) and the classical beam

theories (Euler-Bernoulli and Timoshenko) are illustrated.

Then, starting from the Hellinger-Reissner functional and through the dimensional re-

duction method, six differential equations, governing the mechanical behaviour of a generic

tapered beam, are analytically achieved by means of the software Mathematica.

In order to find the solution of the aforementioned six differential equations, thus testing

the developed model, five kinds of cantilever beam, undergoing a concentrated load on the

free end, are considered and respectively characterized by a linear and a curvilinear taper,

not necessarily symmetric with respect to the longitudinal axis.

The comparison between the results obtained with this model and the ones provided

by the finite element analysis are almost perfectly coincident, showing a highly accurate

stress distribution along the cross-section.
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Sommario

Oggetto del lavoro di tesi é la derivazione di modelli di travi non prismatiche piane, par-

tendo dalla scrittura di un principio variazionale misto. La trave in esame viene modellata

come un corpo bidimensionale nelle ipotesi di: materiale isotropo, comportamento elastico

lineare e piccoli spostamenti.

In primo luogo, riferendosi ai modelli di trave esistenti, sono illustrate alcune possi-

bili formulazioni del problema elastico. L’attenzione é posta sui modelli classici (teorie

di Eulero-Bernoulli e di Timoshenko) e sui modelli relativi, rispettivamente, al principio

dell’Energia Potenziale Totale e al principio di Hellinger-Reissner.

Successivamente, partendo dal funzionale di Hellinger-Reissner e mediante l’utilizzo

del Dimensional Reduction Method, si giunge analiticamente, con l’ausilio del software

Mathematica, alla scrittura delle equazioni differenziali, che governano il comportamento

meccanico della trave genericamente rastremata.

Al fine di trovare la soluzione del sistema di equazioni differenziali e quindi di testare il

modello sviluppato, sono considerate travi a mensola, sottoposte ad un carico concentrato

nell’estremo libero e caratterizzate da una rastremazione lineare o curvilinea, non neces-

sariamente simmetriche rispetto all’asse longitudinale. Il confronto dei risultati ottenuti

dal modello proposto e da un’analisi agli elementi finiti mostra una corrispondenza tra le

due soluzioni e un’elevata accuratezza della distribuzione delle tensioni lungo la sezione

trasversale.
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Chapter 1

Introduction

1.1 Tapered beams

The study of the beam is one of the fundamental topics in the Theory of the Structures.

The most common definition of the beam considers it as a three-dimensional (3D) body

with two dimensions negligible in relation to its third dimension. This definition is too

extensive because, apart from its dimensions, there are many more characteristics that

identify a beam, such as the material, the shape and the structural behaviour. For the

purposes of this thesis, the geometrical classification plays a key role. It includes such

features as the beam being straight or curved or also prismatic or tapered. A prismatic

beam is a structural element with a constant cross-section along its predominant axis;

whereas a tapered beam is characterized by a variable cross-section. This work focuses on

tapered beams with a straight longitudinal axis, considering that there are different types

of taper, such as linear and curvilinear.

One of the ways of testing the efficiency of the beam is to develop a model. The

research conducted towards beam modelling is nowadays very much fertile, considering

the huge variability of properties describing a beam. The simplest models referring to a

beam with one dimension predominant in relation to the other two are the Euler-Bernoulli

and Timoshenko theories. The former is adopted for slender beams whose cross-section is

forced to be orthogonal and rigid with respect to the deformed axis. The latter is used

for less slender beams and its cross-section does not necessarily stay orthogonal in relation

to its deformed axis. Both of them, though, incur in some limitations, such as a loss

of accuracy for beams with a low ratio between the length and cross-section dimensions

and the difficulty to accurately describe the stress profiles because displacements only are

assumed as variables of the problem. It is evident that the more complex the shape of

1



1.1. Tapered beams 2

the beam, the more sophisticated its modelling must be. Hence the Euler-Bernoulli and

Timoshenko theories are not sufficiently suitable for the modelling of a tapered beam.

Therefore, a mixed model, more refined and advanced, is adopted in order to keep a high

degree of accuracy despite the larger number of variables.

Tapered beams represent an useful and reliable tool in civil engineering being able

to provide the maximum resistance with the least amount of materials. Furthermore,

they could improve the strength of a structure and lessen its weight characteristics with

architectural and aesthetic benefits. These outstanding properties make tapered beams

fundamental in optimizing the structural performance of major engineering works, such

as steel roofs and bridges. The latter can achieve large spans thanks to the presence of a

reduced cross-section in the areas where a minor resistance is requested. As a result, the

weight of the whole structure decreases, with a consequential reduction of the loads.

An example of tapered beam is shown in Figure 1.1(a). The London Bridge comprises

three spans of prestressed-concrete box girders, a total of 283 m long. The site of the present

London Bridge is the same place where the Romans built the first bridge in London.

This bridge is a continuous curvilinear tapered beams supported in correspondence of

each column. The maximum height of the cross-section is where the bending moment and

the shear stress are higher. On the other hand, since the stresses are not too high in the

middle of each span, a reduced cross-section is adopted in that region.

It is evident how the taper leads to a variability of the cross-section, implying a change

of weight along the beam axis. Despite the structural convenience of the taper, it must

be considered that additional costs are involved in the production of a tapered beam as

opposed to the manufacture of a prismatic one. It is therefore necessary to compare the

savings coming from the purchase of a lesser amount of material with the increase in cost

due to the taper. The economic impact of this topic is palpable and thus object of further

investigation, nevertheless it is clearly not inherent to this thesis.

Going back to tapered beams, it is important to remind their uses in many other fields

apart from structural engineering, such as in aviation. The taper of the wings of a plane

allows the aerodynamic force to induce minor bending moments on them, resulting in a

reduction of the weight of the whole body (see Figure 1.1(b)).

In mechanical engineering, the leaf spring can be considered an example of taper. Leaf

springs are widely used in suspension systems of railway carriages and automobiles. They

are normally seen as laminated leaf springs (see Figure 1.1(c)) and their main characteristic

is a uniform strength. It is possible to model a leaf spring as a cantilever beam (beam only

anchored at one end) with a specific geometry and a variable cross-section along the axis

in order to guarantee the property of uniform strength.
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(a) London Bridge (b) Plane

(c) Leaf spring (d) Spruce

Figure 1.1: Some applications of taper

Another example of taper could be found in nature. During their evolution, the trees

avail themselves of some anatomical and structural tricks in order to achieve an appropriate

height, such as a reduction of the cross-section. Spruces provide a great example of taper,

considering that their cross-section can vary from five metres to the size of a finger reaching

an average height of sixty metres (see Figure 1.1(d)).

1.2 Literature review

This section presents a summary of some previously conducted studies concerning different

modelling approaches of beams.

Focusing on linearly tapered beams, symmetric with respect to their longitudinal axis,

London
Plane
Leaf
Spruce
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their modelling takes advantage of their simple geometry. Even though the cross-section

area depends on the beam-axis coordinate, the position of the cross-section barycentre

(the point where a resulting axial force can be applied without inducing any bending

moment) and of the shear-centre (the point where a shear force can be applied without

inducing any torsion) does not depend on their beam-axis coordinate. A further important

advantage of the symmetry is that there is a decoupling between the axial and bending

behaviours and between the shear and torsional behaviours. This kind of beam has a more

complex geometry than a prismatic beam, nevertheless, being symmetric with respect to

its longitudinal axis, and thus easier to model, it is object of many studies.

The simplest approach for a tapered beam modelling consists in modifying the coef-

ficients of the Euler-Bernoulli and Timoshenko beam model equations in order to take

the variation of the cross-section geometrical properties into account. Unfortunately, it

is well-known, since the sixties, that this approach is only satisfactory for beams with

negligible variations of cross-section size (see Boley (1963)). The procedure on how the

equations derived for prismatic beams can be used with sufficient accuracy for bars of

variable cross-sections, provided that the variation is not too extreme, is also shown in

Timoshenko (1976). The authors analyse two interesting examples about a cantilever

beam with uniform strength by considering that the section modulus varies along the

beam in the same proportion as the bending moment. These results are intriguing because

they may be used to compute the approximate stresses and deflections in a leaf spring.

Banerjee and Williams (1986) illustrate another application of this simple approach. The

authors derive the exact static stiffness matrix for a range of tapered beam-columns, by

means the Euler-Bernoulli theory. The authors consider the cross-section area, the second

moment of area and the torsional rigidity as functions of the beam-axis coordinate. Then

they assume that the cross-sections are such that warping and coupling between bending

and torsion are non-existent and negligible. Therefore the paper presents three subsec-

tions: axial, torsional and flexural behaviours and each subsection gives a contribution to

the stiffness matrix. They show, for several standard end conditions, that the buckling load

increases by using a tapered column instead of a prismatic column of the same mass. Unfor-

tunately, this approach is satisfactory for beams with negligible variations of cross-section

size only. A previous study (Banerjee and Williams, 1985) derives the exact dynamic stiff-

ness matrix but without including the axial force. Another paper about tapered beams

based on the traditional Euler-Bernoulli beam theory is (Arturo Tena Colunga, 1996). This

paper presents a method to define two-dimensional and three-dimensional elastic-stiffness

matrices for non-prismatic elements, including shear deformations and the shape of the

cross-section.
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(Hodges, Ho, and Yu, 2008) and (Hodges, Rajagopal, Ho, and Yu, 2011) greatly influ-

enced the study on tapered beams. They consider a more complex approach than the

classical beam theory with the aim of obtaining accurate results on stress, strain and dis-

placement fields. The object of the study is a linearly tapered beam with a symmetric

cross-section in relation to its longitudinal axis. The hypotheses are an isotropic, ho-

mogeneous and linearly elastic material and small displacements. The method used to

solve this problem is the Variational Asymptotic Method (VAM), which was developed

by Berdichevsky (Berdichevskii, 1979). Hodges, Ho, and Yu (2008) use VAM to perform

cross sectional beam analysis using the principle of minimum total potential energy. The

model is based on considering the parameter δ = a/l and the slope of the lateral surface

τ , where a is the maximum height of the cross-section and l is the wavelength of deforma-

tion along the beam axis. The VAM gives an approximate solution of the strain energy

without considering the terms with an order higher than δ2. The relations obtained from

the VAM are compared to the exact elasticity solutions increasing the values of τ and δ

till the point at which the VAM solution deviates from the exact elasticity solutions, thus

determining the range of applicability of the VAM solution. The limitation is that the

authors do not provide information about the generalization of their model, for example

to non-symmetric beams. The importance of this work is that the authors investigate the

effect of lateral-surface slope associated to the taper. They notice that, imposing the equi-

librium on the upper and lower boundary of the beam, the unique parameter necessary

to define the boundary equilibrium is the slope τ . The main reason is that the outward

unit vector, of the upper and lower boundary, has a non-zero component along the beam

longitudinal axis. Therefore it is not correct to consider a variation of cross-section area

and a variation of the second moment of area only but it is vital to consider the slope

too. There are a lot of recent works based on this non accurate methodology, for example

(Abdel-Jaber et al., 2008) (Rosa et al., 2010).

Extending the discussion to beams without any symmetry, it is important to highlight

that the barycentre and shear centre vary along the beam axis. In other words, an axial

load produces a bending moment and a shear load produces a torque moment. To overcome

this problem many authors introduce coupling terms in the formulation (Li and Li, 2002)

in order to describe, as accurately as possible, the response of a tapered beam subject to

an external load. In (Li and Li, 2002) an equilibrium differential equation is established

for tapered beams. This equation simultaneously considers the effects of a constant axial

force and shear deformation because a Timoshenko-Euler beam element is been used with

appropriate additional terms.

An important contribution for this thesis can be found in the paper Auricchio et al.
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(2010), because it shows an application of the dimensional reduction method (Kantorovich

and Krylov,1964) and of a mixed formulation to beam models (for more details see Para-

graph 2.3). Auricchio et al. (2010) study two-dimensional multi-layered beams, with a

constant cross-section along the predominant axis and their goal is to obtain an accurate

stress distribution along the cross-section. The hypotheses are limited to small displace-

ments and an isotropic and linearly elastic material.

1.3 Aim of this thesis

The aim of this thesis is to derive models of both symmetric and non-symmetric tapered

beams, highly accurate in stress description and free of the limitations encountered by

previous studies. In fact, the model will consider the variation of the cross-section by

introducing its area and second moment of area as functions of its position along the beam

axis. Furthermore, the equilibrium on the upper and lower boundaries of the body will be

imposed, emphasising the dependence on their slope. Another important aspect is that the

model will also work for non negligible variations of the cross-section and that the coupling

between the bending and the axial behaviour will naturally appear.

In Chapter 2 the elasticity theory is shortly illustrated in order to present the adopted

notations and variables. After that the concept of variational principle is introduced,

focusing on the Total Potential Energy (TPE) functional and the Hellinger-Reissner (HR)

functional. By means of this discussion, an appropriate variational principle is chosen

as a starting point for the model derivation. In Chapter 3 the attention is focused on

the two classical beam theories: Euler-Bernoulli and Timoshenko, and on their integral

forms. Chapter 4 describes the derivation of the analytical model under investigation

and its application on a prismatic beam, two linearly tapered beams and two curvilinearly

tapered beams. For each case a system of six ordinary differential equations in displacement

and stress variables is analytically derived, then a system of three ordinary differential

equations, in displacement variables only, is recovered from the former. Finally, in Chapter

5 the mentioned systems are solved, referring to appropriate boundary conditions. At this

point, an important question should be answered: "How good are the results?". This

answer requires the estimation of the solution accuracy, which is possible through the

comparison with the Finite Element Method (FEM) and the well-known theories by Euler-

Bernoulli and Timoshenko.



Chapter 2

Variational methods in elasticity

The object of the study is the planar body Ω made of a linear elastic material:

Ω ⊂ R
2 closed and bounded (2.1)

Ω is defined as a two-dimensional (2D) body. In engineering, this is equivalent to imposing

the plane stress state hypotheses to a three-dimensional (3D) body or stating that the

body width is negligible.

The boundary of the domain ∂Ω is divided in ∂Ωt and ∂Ωs. They are the externally

loaded and displacement constrained boundaries, respectively. The vector used to indicate

the external load is t, also the vector used to indicate the body load is f .

The elastic body (Figure 2.1) is assumed homogeneous and continuously distributed

over its volume. To simplify the discussion it will also be assumed that the body is isotropic,

it means that the elastic properties are the same in all directions.

2.1 Elasticity theory

An elastic body, in a predetermined natural state and in absence of applied forces, can

deform under the action of external forces, returning to its initial state once the forces

are removed, without being affected by the process of loading and unloading. This phe-

nomenon is therefore reversible, meaning that the strain energy is completely released by

the unloading.

When the body Ω is subject to external forces, each point changes its initial position.

Therefore, in view of describing the problem, it is necessary to introduce the coordinate

7
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y

xO

Ω

∂Ω

Figure 2.1: 2D elastic body

system xOy (where x and y are the two orthogonal reference axes) (Figure 2.1). A measure

of deformation, representing the displacement between two points in the body relative to a

reference length, is the strain. In this dissertation, only such small deformations as occur in

engineering structures are considered. The small displacements of points of the body Ω can

be resolved into components of the displacement field s, u(x, y) and v(x, y), respectively

parallel to the coordinate axes x and y.

s =

(

u(x, y)

v(x, y)

)

(2.2)

A given small element of the body Ω, undergoing a deformation, shows a consequent

increase in length in the x and y directions. The unit elongation in the x direction is

represented by εxx, the unit elongation in the y direction by εyy and lastly the distortion

of the angle between x and y by εxy. Therefore, the strain components (εxx, εyy and εxy)

completely define the entire state of deformation in the neighborhood of a certain point of

the domain and they can be arranged in the well-known strain symmetric tensor ε:

ε =

(

εxx εxy

εxy εyy

)

(2.3)
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From the above discussion, it is easy to spell out the relations between the displacement

field and the strain components.

εxx =
∂u(x, y)

∂x
(2.4a)

εyy =
∂v(x, y)

∂y
(2.4b)

εxy =
1

2

(

∂u(x, y)

∂y
+

∂v(x, y)

∂x

)

(2.4c)

Equation (2.4) presents the compatibility equations for the 2D given problem and it can

also be written as:

ε = ∇ss (2.5)

Where ∇s represents the symmetric gradient operator.

Under the action of external forces, even internal forces are produced between the parts

of the body. The magnitudes of such forces are usually defined by their intensity, i.e., by the

amount of force per unit area of the surface on which they act. In discussing internal forces,

the aforementioned intensity is called stress (Timoshenko and Goodier, 1951). Considering

a square neighborhood of a certain point P in a 2D body, three stress components (σxx,

σyy and σxy) are sufficient in order to describe the stresses acting on its sides. In fact, by

a simple consideration of the equilibrium of the element, the number of components for

shear stress can be reduced to one.

σxy = σyx (2.6)

In continuum mechanics, the Cauchy stress tensor σ, or simply called the stress tensor, is

used to completely define the state of stress at a point inside a material in the deformed

configuration.

σ =

(

σxx σxy

σxy σyy

)

(2.7)

Once the tensors σ and ε have been defined, it is possible to introduce the relation be-

tween the stress components and the strain components. As commonly known, considering

two bodies with the same geometry but made of different materials, the strains, generated

by an applied force, are not the same. As a consequence, it is important to introduce the

constitutive equations and, in the hypothesis of an isotropic linear elastic material, they
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result as follows:

σxx =
E

1− ν2
(εxx + νεyy) (2.8a)

σyy =
E

1− ν2
(νεxx + εyy) (2.8b)

σxy =
E

2(1 + ν)
εxy (2.8c)

Where E and ν are the two well-known elastic constants: Young’s modulus and Poisson’s

ratio. Equation (2.8) can also be written in a matrix form:

σ = C : ε (2.9)

Where C represents the fourth order linear elastic tensor, whose full verbalization follows

below:

E

1− ν2











1 ν 0

ν 1 0

0 0
1− ν

2











(2.10)

Since the tensor C is invertible, it is possible to calculate the inverse tensor D:

D =
1

E







1 −ν 0

−ν 1 0

0 0 2(1 + ν)






(2.11)

By doing this, another way of writing the constitutive equations can be obtained:

ε = D : σ (2.12)

Lastly, in the matter of introducing the equilibrium of the body Ω, a square neighbor-

hood of a certain point P is considered. Therefore, its translational equilibrium for the

horizontal components and its translational equilibrium for the vertical components can

be written as follows:

∂σxx

∂x
+

∂σyx

∂y
+ fx = 0 (2.13a)
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∂σxy

∂x
+

∂σyy

∂y
+ fy = 0 (2.13b)

The equilibrium equations, illustrated in (2.13), can also be expressed in matrix form:

∇ ·σ + f = 0 (2.14)

Where the symbol ∇ represents the gradient operator.

Once the elastic problem is formulated, the solution of a given problem must satisfy

the compatibility equations (2.4), the constitutive equations (2.8) and the equilibrium

equations (2.13). The solving process of a 2D linear elastic body, subject to external

forces, then, consists of deriving the three components of the stress tensor σ, the three

components of the strain tensor ε and the two components of the displacement vector s

for each point of its domain.

2.2 Variational principles

The equations related to an elastic problem, subject to given conditions, may be frequently

intractable. In such event, the variational principles can provide a means of obtaining an

approximation to the desired solution. This section will cover the description of the main

variational principles in elasticity, considering the hypotheses and the 2D body illustrated

in the previous paragraph.

It is possible to classify the variational principles in "one-field" principles and mixed

principles. The basic variational principle in structural mechanics is the principle of Total

Potential Energy (TPE). It can be called "one-field" principle (Kardestuncer et al., 1987)

because the displacements are the only solution variables. Sometimes, the mixed principles

could also be used in mechanics problems, since they present some advantages with respect

to the "one-field" principle. An example of a mixed principle is the Hellinger-Reissner

(HR) principle and it can be called "two-field" principle because the displacements and

the stresses are the solution variables. The HR principle is very useful because it solves

directly for the stresses, which are the primary variables of interest.

The main steps to be followed in order to describe the classical variational procedure,

for finding the desired solution, are listed below (Reddy, 2006):

• To cast a given differential equation in variational form

• To determine the approximate solution using a variational method, such as the Ritz
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method, the Galerkin method, or other methods

There are two possible ways related to the first step. The first one provides that the

variational form is achieved from the differential form, the second one that the variational

form is recovered from a variational principle suitable to describe the given problem. The

variational form thus obtained represents the weak form or the integral form used for the

study of the problem. For example, considering the TPE principle, its weak formulation is

equivalent to the minimization of its functional. The term "functional" is used to describe a

function, defined by integral, whose arguments are functions themselves. Loosely speaking,

a functional is a "function of functions" (Reddy, 2006).

Once the variational form is derived, the solution can be calculated by using different

analysis methods, according to the previously listed second step.

The adopted methods are easily classified into analytical methods and numerical ones.

An analytical procedure allows to obtain an exact solution by using exact methods, or to

determine an approximate solution by referring, for example, to the Ritz method and the

Galerkin method. On the other hand, the numerical methods are divided into numerical

solution of the differential equations (numerical integration and finite differences) and FEM

(RAO, 2011).

In the next paragraphs the following variational principles are presented: the TPE

functional (par. 2.2.1) and the HR functional (par. 2.2.2), considering for each of them

different possible stationarity conditions.

2.2.1 Total Potential Energy functional

The TPE functional is referred to the TPE principle and it is one of the most common

principles in solid mechanics.

The integral form of the TPE can be expressed as follows:

JTPE (s) =
1

2

∫

Ω

(∇ss : C : ∇ss) dΩ−
∫

Ω

(s ·f ) dΩ−
∫

∂Ωt

(s · t) dS (2.15)

Minimizing the functional in (2.15), the correspondent weak form or, in other words, the

variational form is achieved:

δJs
TPE =

∫

Ω

(∇s (δs) : C : ∇ss) dΩ−
∫

Ω

(δs ·f) dΩ−
∫

∂Ωt

(δs · t) dS = 0 (2.16)

The procedure followed to find the minimum of a functional is also called stationarity.
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The weak problem consists of finding s such that, for all admissible variations of s (δs),

Equation (2.16) is satisfied. The operator "δ" is called variational symbol (Reddy, 2006).

If δ is applied to a variable, in this case to s, it means that the variation δs of the variable s

is an admissible change in the variable s at a fixed value of x and y. According to Equation

(2.16), the vector s must belong to H1 (Ω). More precisely, both s and ∇ss are square

integrable on Ω. Its variation δs must belong to H1 (Ω) too.

When the TPE principle is applied to an elastic body, it gives the equilibrium equations

in terms of the displacements because the constitutive and compatibility relations are

assumed to replace the stresses in terms of the displacements (Reddy, 2002). Moreover,

it has been found that the displacements are the only solution variables and they must

satisfy suitable displacement boundary conditions. Once the displacements are calculated,

the other variables of interest such as strains and stresses can be directly obtained.

2.2.2 Hellinger-Reissner functional

The HR functional is associated to a saddle point problem and it represents an example

of mixed formulation.

Generally, the objective in mixed formulations is to relax the conditions to be satisfied

by the solution variables, and enlarge the solution variables which may simultaneously

include displacements, strains and stresses (Bathe, 1982).

In the case of HR functional, the displacement field and the stress field are unknown,

meaning that an accurate selection of displacement functions, but mainly of stress func-

tions, are required. This aspect sometimes causes difficulties, but other times can give

great advantages to the formulation. The HR functional can be expressed as follows:

JHR (s,σ) =

∫

Ω

(σ : ∇ss) dΩ−
1

2

∫

Ω

(σ : D : σ) dΩ−
∫

Ω

(s ·f) dΩ−
∫

∂Ωt

(s · t) dS

(2.17)

Invoking the stationarity of the HR functional (2.17), that corresponds to a saddle point

problem, the following expression is obtained:

δJgg
HR =

∫

Ω

(∇sδs : σ) dΩ+

∫

Ω

(δσ : ∇ss) dΩ−
∫

Ω

(δs : D : σ) dΩ

−
∫

Ω

(δs ·f ) dΩ−
∫

∂Ωt

(δs · t) dS = 0
(2.18)

The related weak problem consists of finding s and σ such that for all δs and for all δσ

the weak form (2.18) is satisfied. The vector s belongs to H1 (Ω) and the symmetric stress
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tensor σ belongs to L2 (Ω). The variation δs must belong to H1 (Ω) too. It is important

to remark that the kinematic boundary condition represents an essential condition, while

the equilibrium turns out to be a natural boundary condition of the problem. Equation

(2.18) is called HR grad-grad stationarity by Auricchio et al. (2010) because two gradient

operators appear in the formulation.

Integrating by parts the first and the second terms of (2.18), it results as follows:

∫

Ω

(∇sδs : σ) dΩ =

∫

∂Ω

(δs ·σ ·n) dS −
∫

Ω

(δs ·∇ ·σ) dΩ (2.19a)
∫

Ω

(δσ : ∇ss) dΩ =

∫

∂Ω

(δσ ·n · s) dS −
∫

Ω

(∇ · δσ · s) dΩ (2.19b)

Where n indicates the outward unit vector on the border ∂Ω (Figure 2.1). By substituting

(2.19) in (2.18) the weak problem becomes: find the vector s and the symmetric stress

tensor σ such that for all δs and for all δσ:

δJdd
HR = −

∫

Ω

(δs ·∇ ·σ) dΩ−
∫

Ω

(∇ · δσ · s) dΩ−
∫

Ω

(δs : D : σ) dΩ

−
∫

Ω

(δs ·f) dΩ−
∫

∂Ωs

(δσ ·n · s̄) dS = 0
(2.20)

From Equation (2.20), it can be noticed that less conditions on the displacement field

are required; therefore the vector s must belong at least to the space L2 (Ω) and it is

no longer necessary that ∇sδs be square integrable on Ω. On the other hand, σ must

belong to H (div,Ω) so a heavier condition on the stress field must be imposed, where

H (div,Ω) is the space of square integrable symmetric matrix fields with square integrable

divergence (Arnold and Falk, 1988). In this case, the kinematic boundary condition is

a natural boundary condition, on the other hand the equilibrium becomes an essential

condition of the problem. Equation (2.20) is here called div-div stationarity according to

(Auricchio et al., 2010) because two divergence operators appear in it.

The difference between the HR grad-grad formulation and the HR div-div formulation

is that in the first one the derivatives are applied to the displacement field, whereas in the

second one they are applied to the stress field.

2.3 Dimensional reduction method

The dimensional reduction method occupies an intermediate position between the exact

solution of the problem and the methods of Ritz and Galerkin. In the Ritz method the
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problem of the minimum of a double integral is reduced to the problem of the minimum

of a function of several variables. This is accomplished by choosing the form of the solu-

tion a priori and only afterwards selecting the best values of the constants figuring in it

(Kantorovich and Krylov, 1964).

The dimensional reduction method is a general mathematical procedure proposed by

Kantorovich and Krylov (1958), therefore it is sometimes associated with the name of

L.V. Kantorovich. This method uses the geometry of the domain to reduce the problem

dimension. For example, considering a 2D body, a problem characterized by a double

integral is reduced to a problem with a single integral. This method is capable of giving

a solution with a greater accuracy and only part of the expression giving the solution is

chosen a priori.

There are different approaches for solving a problem by means of the dimensional

reduction method. Here follows the procedure illustrated in (Auricchio et al., 2010), but

many other ways can be used to reduce the dimension of the problem, for example the

ones proposed by Vogelius and Babuska (1981a,b,c).

A generic variable of the problem is indicated with γ (x, y). The aim of the dimensional

reduction method is to approximate, as well as possible, the variable γ(x, y) in a linear

combination of other two variables: the first one is function of y only and the second one

is function of x only. By doing this, the dimension of the problem is reduced. Therefore

γ(x, y) is expressed as:

γ (x, y) = pγ(y)γ̄
T (x) (2.21)

Where pγ(y) is a set of arbitrary functions of y and γ̄T (x) (superscript T denotes trans-

position) is a set of arbitrary functions of x.

For instance, the variable γ(x, y) can be assumed to be a linear function with respect to

the variable y. Therefore pγ(y) is considered as a set of linearly functions of y and γ̄T (x)

as a set of arbitrary functions of x.

γ(x, y) = pγ(y)γ̄
T (x) pγ(y) = {1 y} γ̄T (x) = {γ0(x) γ1(x)} (2.22)

From Equation (2.22), the decoupling between x and variable y is evident.

2.4 Finite element method

The FEM consists of converting a problem with an infinite number of degrees of freedom to

one with a finite number, in order to simplify the solution process (Weaver and Johnston,
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1986). Referring to the variational formulations, previously discussed in Paragraph (2.2),

the FEM can be seen as a piecewise application of a variational method. Therefore it makes

use of the variational principles to formulate the discrete equations for a sub domain, called

element.

A standard FEM is organized into the following steps, according to Kardestuncer et al.

(1987). The first step consists of defining the problem and its domain, in which the

first source of approximation appears. The second source of approximation concerns the

discretization of the domain, which represents one of the basic concepts of the FEM.

The discretization consists of choosing a certain number of discrete points of a body

and focusing on them only. This is equivalent to describe a structure by a finite number

of points. One way to discretize a structure is to divide it into an equivalent system

of structures or small units, such that their assembly corresponds to the real structure.

By doing this, a mesh for a large number of subdivisions is generated. Since it is not

possible to manually analyse a lot of data, the electronic processor is used, also because

the method can be programmed in a relatively straightforward way. Most commercial

softwares are based on the FEM and it is one of the most used methods in engineering.

The development of the method essentially coincided with the development of computers,

although its mathematical foundations can be traced back to years ago (Courant et al.,

1943).

The third step of the standard FEM is the formulation of the problem. Very often

a physical problem is formulated either by a system of differential equations or by an

integral equation (a functional) subject to stationarity requirement (minimum or saddle), as

previously discussed (Paragraph 2.2). The first formulation is referred to as the operational

form of the problem, the second formulation is referred to as the variational form of the

same problem.

After the local coordinate system has been chosen, it is necessary to construct ap-

proximate functions for each element. At this stage, the modelling of the problem has

been completed. After that, by substituting the approximate functions in the problem

formulation, the element matrices and the equations are obtained.

The assembly of element equations is another important step. It is done according to

the local coordinate system of the elements and, after this, the transformation into the

global system follows. The assembly is made through the nodes at the interfaces, which

are common to the adjacent elements.

The last step of the FEM is the introduction of boundary conditions and the solution

of the final system of equations.
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2.5 Conclusions on variational methods

In this section a general overview of the problem to be analysed has been described.

The considered 2D body is made of a linear elastic isotropic material and its study is

based on the hypothesis of small displacements. Then two different possible variational

formulations have been described, noticing that the TPE principle is a "one-field" principle

and the HR principle is a "two-field" principle because the stress field is also considered as

a independent variable of the problem.

The main advantage in using a mixed formulation, in particular the HR formulation,

is that it gives the possibility to accurately describe the stress profiles, even if simple

assumptions on the displacement and stress fields are considered(as it will be clearly noticed

in the next chapters). Another reason to prefer a mixed method is that the variable of

most interest and one of the fundamental unknown to be computed is the stress. For

a "one-field" formulation, instead, this variable is not a fundamental unknown and it is

obtained a posteriori, which means a loss in accuracy.

The variational formulation is the starting equation of a variational method, it is then

important to choose the principle in such way that ensures a correct study of the problem.



Chapter 3

Classical beam theories

3.1 Geometry definition

The term "beam" is referred to a 3D body with two dimensions negligible with respect

to the third dimension. Considering the cross-section in the plane yz and applying a

translation along the direction of x, the beam will be generated. This way, it is possible to

define its longitudinal axis as the locus of the cross-section barycentres. The axes x, y and

z (see Figure 3.1) are the local axes of the beam and, in the case under investigation, they

are coincident with the global axes. In Figure 3.1, it can clearly be noticed that x is the

coordinate of the beam longitudinal axis and, obviously, it is the predominant dimension

of the body.

y

O x

y

z

Figure 3.1: 3D beam and adopted coordinate system

In the next sections the main assumptions of the two classical beam theories, Euler-

Bernoulli and Timoshenko, will be illustrated. Then, for each of them, the differential forms

and the integral forms, used as an alternative starting point to solve the same problem,

will be derived.

18
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3.2 Euler-Bernoulli beam theory

3.2.1 Assumptions

Several beam theories have been developed, each characterized by a different level of accu-

racy. The classical and simplest beam theory is the Euler-Bernoulli beam theory. One of its

fundamental assumptions is that the cross-section of the beam is rigid in its own plane; in

other words, no deformations occur in the plane of the cross-section (Bauchau and Craig,

2009). An additional assumption is that the cross-section remains plane and normal to the

deformed axis of the beam, it means that there are no shear flows.

y

O x

θ(x)

s

Figure 3.2: Kinematics of Euler-Bernoulli beam theory

As a consequence of these three assumptions, the two functions that govern the kine-

matics of the beam are the axial displacement u(x) and the deflection v(x). The rotation

θ(x) depends on v(x) and it is given by the following expression (Figure 3.2):

θ(x) = −tan−1v′(x) (3.1)

Equation (3.1) can also be written as follows because the hypothesis of small displacement

is considered:

θ(x) = −v′(x) (3.2)

Where θ(x) represent the rotation of the cross-section in the plane xy and it is positive if

clockwise with respect to the undeformed configuration. Moreover, Equation (3.2) dictates

that the shear flows in the beam are equal to zero.

At this point, suitable hypotheses on the displacement field are assumed, according to
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the mentioned assumptions:

u(x, y) = u(x) + yθ(x) (3.3a)

v(x, y) = v(x) (3.3b)

Where u(x, y) and v(x, y) are the two components of the displacement vector s, defined in

Equation (2.2).

Two ways to formulate the Euler-Bernoulli beam are illustrated. The first one is the

Euler-Bernoulli equation (differential form) and the second one is the principle of virtual

work (integral form). The Euler-Bernoulli equation describes the relationship between the

beam deflection and the applied load, the principle of virtual work, instead, is an alternative

writing of the beam equilibrium.

3.2.2 Differential form

The Euler-Bernoulli equation is widely used in engineering practice and it arises from a

combination of these equations: force resultant, equilibrium, compatibility and constitutive

equations. The procedure used to derive the Euler-Bernoulli equation is here illustrated.

When the beam is subject to a generic external force, characterized by a component

in the direction of x and a component in the direction of y, the following stresses are

generated:

• axial force N

• bending moment M , acting in the plane xy

• shear force V , acting in the direction of y

Referring to the symmetric stress tensor, defined in Equation (2.7), and assuming the

component σyy equal to zero, the three stresses, N , M and V , can easily be calculated for

a chosen cross-section. Their expressions are hereby written as force resultants of σxx and

σxy, where A is the area of the cross-section:

N =

∫

A

σxxdA M = −
∫

A

yσxxdA V =

∫

A

σxydA (3.4)

The translational equilibrium in the direction of x, in the direction of y and the rotational

equilibrium follow below, noticing that p indicates the distributed load in the direction of
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x and q is the distributed load in the direction of y:

dN

dx
+ p = 0

dV

dx
− q = 0

dM

dx
− V = 0 (3.5)

After that, according to the assumptions of the Euler-Bernoulli beam theory, the com-

patibility equations and the constitutive equations can be written as follows (see the com-

patibility equations and the constitutive equations in (2.4) and (2.8):

εxx = u′(x) + yθ′(x) εyy = 0 εxy = 0 (3.6)

σxx = Eεxx σyy = 0 σxy = 0 (3.7)

Where εxx, εyy and εxy are the components of the strain symmetric tensor ε, defined in

(2.3).

Once all equations have been derived, by suitably collecting them, it is possible to

achieve the well-known Euler-Bernoulli equation and the equation that governs the exten-

sional behaviour of the beam.

EIvIV (x) + q = 0 (3.8)

EAu′′(x) + p = 0 (3.9)

Where E represents Young’s modulus, I the second moment of area, v(x) the deflection

and vIV (x) the fourth derivative of v(x) with respect to x.

As an example, a 2D cantilever beam with a point load P at its free end is considered.

The distributed loads q and p are equal to zero and the following boundary conditions are

imposed:
v(0) = 0 v′′(L) = 0

v′(0) = 0 v′′′(L) = −P/(EI)

u(0) = 0 u(L) = 0

(3.10)

Solving Equation (3.8) and Equation (3.9) in the conditions (3.10), the following results

are obtained:

v(x) → 3LPx2 − Px3

6EI
(3.11)

u(x) → 0 (3.12)
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From this result it is possible to recover the stresses N , M and V , in each cross-section of

the beam.

As it is possible to notice, there is a basic inconsistency in the Euler-Bernoulli beam

theory. In particular, it is impossible to define the shear force V as resultant of the shear

stress component σxy, because this component is zero by assumption. Furthermore, since

one of the Euler-Bernoulli assumptions is that, during the deformation, the shear flows are

zero, this theory is used to study thin beams in which bending behaviour is predominant

compared to shear behaviour and the latter can be considered negligible.

3.2.3 Integral form

The principle of virtual work can be chosen as an integral form to solve a beam in Euler-

Bernoulli assumptions, as shown in Chapter 5.

Considering a force system that must satisfy the equilibrium equations and a displacement-

deformation system that must verify the compatibility equations, the principle of virtual

work states that the virtual work of the applied forces is zero for all virtual displacements of

the system from the static equilibrium. Then, in order to guarantee the static equilibrium,

it is necessary that the applied forces and the constraint forces on the beam equilibrium

be such that the body does not move.

The main steps, followed in order to pass from the differential form (3.8) to the integral

form (the principle of virtual work), are here illustrated. Assuming p equal to zero, only

the bending contribution will be considered to derive the integral form. First of all it is

necessary to multiply the differential form (3.8) by any function w (weight function) and

integrate over the longitudinal axis ℓ.

∫

ℓ

[

w
(

EIvIV (x)− q
)]

dx = 0 (3.13)

After that, integrating twice by parts, the principle of virtual work arises:

∫

ℓ

[w′′EIv′′(x)] dx =

∫

ℓ

[wq] dx− [wEIv′′′(x)]∂ℓ + [w′EIv′′(x)]∂ℓ (3.14)

It can be noticed that the first member of Equation (3.14) represents the internal work,

the second member, instead, represents the external work.

Equation (3.14) represents the principle of virtual work for a beam in the hypotheses of

Euler-Bernoulli. It will be used in Chapter 5 to evaluate the deflection of some cantilever

beams in their free end, in particular prismatic and non-prismatic beams.
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3.3 Timoshenko beam theory

3.3.1 Assumptions

When considering the Timoshenko theory, the main hypothesis is that the cross-sections

remain plane but not necessarily normal to the centreline of the beam. Then the cross-

section of the beam is rigid in its own plane; in other words, no deformations occur in the

plane of the cross-section. The variation of the angle between the cross-section and the

normal to the deformed axis represents the shear flow γ (Figure 3.3) and it is assumed

positive if the cross-section rotates clockwise with respect to the normal of the deformed

axis. In the hypothesis of small displacements it results as follows:

γ = θ(x) + v′(x) (3.15)

It can be noticed that the Euler-Bernoulli model is obtained from the Timoshenko model

by imposing the shear flow equal to zero.

y

O x

θ(x)

s v
′(x)

Figure 3.3: Kinematics of Timoshenko beam theory

Two ways to formulate the Timoshenko beam can be adopted, as shown for the Euler-

Bernoulli beam. The first one is the differential form, in which both the shear contribution

and the bending contribution to the deflection are considered, the second one, instead, is

the integral form, such as the principle of virtual work, as shown in Chapter 5.

At this point, in order to introduce the differential form, suitable hypotheses on the

displacement field are assumed:

u(x, y) = u(x) + yθ(x) (3.16a)
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v(x, y) = v(x) (3.16b)

Where u(x, y) and v(x, y) are the two components of the displacement vector s, defined in

Equation (2.2), u(x) and v(x) are the axial displacement and the deflection of the beam,

lastly θ(x) represents the rotation of the cross-section in the plane xy and it is assumed

positive, if clockwise with respect to its undeformed configuration.

The Timoshenko theory is widely used in engineering practice, in particular for cases

with a non-negligible shear contribution to the deflection.

3.3.2 Differential form

The differential form of the Timoshenko theory arises from a combination of the following

equations: force resultant, equilibrium, compatibility and constitutive equations.

According to the assumptions of the Timoshenko theory, the compatibility and the

constitutive equations can be written as follows (see the compatibility equations and the

constitutive equations in (2.4) and (2.8)):

εxx = u′(x) + yθ′(x) εyy = 0 εxy =
1

2
(θ(x) + v′(x)) (3.17)

σxx = Eεxx σyy = 0 σxy =
E

2(1 + ν)
εxy (3.18)

Considering the force resultant equations (3.4) and the equilibrium equations (3.5),

suitably collected with (3.17) and (3.18), it is possible to achieve the differential form of

the Timoshenko beam theory.

EAs

2(1 + ν)
(θ(x) + v′(x))− EIθ′′(x) = 0 (3.19a)

EAs

2(1 + ν)
(θ′(x) + v′′(x)) = −q (3.19b)

EAu′′(x) = −p (3.19c)

Where As is equal to kA, the constant k is the shear factor and A is the area of the

cross-section. Focusing on the system (3.19), the third equation governs the extensional

behaviour of the beam and it is perfectly analogous to Equation (3.9) obtained for the

Euler-Bernoulli beam theory.
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The assumptions of the Timoshenko beam theory imply that the distribution of the

shear stress must be constant along the cross-section. In order to overcome this limitation,

the shear factor k must be introduced and, since the cross-section is rectangular, it can be

assumed equal to 5/6 according to Jourawsky theory.

The Jourawsky theory is an approximate theory valid for relatively thin and prismatic

beams and it is used to evaluate the distribution of the shear stress along the beam cross-

section. Its main hypotheses are that the distribution of the shear stress is considered

parabolic and the values on the upper and lower borders of the cross-section are equal to

zero.

3.3.3 Integral form

The main steps, followed in order to pass from the differential form (3.19) to the integral

form (the principle of virtual work) are here illustrated. Assuming p equal to zero, the

bending and the shear will be the only contributions to be considered in order to derive

the principle of virtual work. First of all it is necessary to multiply Equation (3.19a) by

any function r (weight function) and integrate over the longitudinal axis ℓ.

∫

ℓ

r

[

EAs

2(1 + ν)
(θ(x) + v′(x))

]

dx−
∫

ℓ

rEIθ′′(x)dx = 0 (3.20)

After that, integrating once by parts the second integral, the following expression is derived:

∫

ℓ

r

[

EAs

2(1 + ν)
(θ(x) + v′(x))

]

dx+

∫

ℓ

r′EIθ′(x)dx− [rEIθ′(x)]∂ℓ = 0 (3.21)

By following the same procedure and considering the function t as weight function, Equa-

tion (3.19b) becomes:

∫

ℓ

t

[

EAs

2(1 + ν)
(θ′(x) + v′′(x))

]

dx+

∫

ℓ

tqdx = 0 (3.22)

Then, integrating once by parts the first integral, the following expression is obtained:

−
∫

ℓ

t′

[

EAs

2(1 + ν)
(θ(x) + v′(x))

]

dx+

∫

ℓ

tqdx+

[

EAs

2(1 + ν)
t (θ(x) + v′(x))

]

∂ℓ

= 0 (3.23)

The principle of virtual work for a beam in the hypotheses of Timoshenko arises from
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summing (3.21) with (3.23):

∫

ℓ

(r − t′)

[

EAs

2(1 + ν)
(θ(x) + v′(x))

]

dx+

∫

ℓ

r′EIθ′(x)dx = −
∫

ℓ

tqdx+

+ [rEIθ′(x)]∂ℓ −
[

EAs

2(1 + ν)
t (θ(x) + v′(x))

]

∂ℓ

(3.24)

It can be noticed that the first member of Equation (3.24) represents the internal work,

the second term, instead, represents the external work.

The principle of virtual work, written in the Timoshenko hypotheses, will be used in

Chapter 5 to evaluate the deflection of some cantilever beams in their free end.

3.4 Conclusion on classical beam theories

The Euler-Bernoulli and Timoshenko beam theories are two simplifications of the linear

theory of elasticity and they provide a means of calculating the deflection characteristics

of beams. The difference between these two theories is that the Timoshenko beam theory

considers the shear flow and it is applicable for thick beams too. The Euler-Bernoulli beam

theory, instead, takes account of the bending behaviour only, therefore it is applicable for

thin beams where the shear behaviour is negligible.

These well-known theories were mentioned because they will be used in Chapter 5 to

evaluate the deflection in the right end of some non-prismatic cantilever beams. The results,

obtained with the Euler-Bernoulli and Timoshenko beam theories, will be compared to the

results obtained by using the analytical variational method (Chapter 4) and the FEM (by

means the software Abaqus).



Chapter 4

Non-prismatic beams: new analytical

analysis

In this chapter, prismatic and non-prismatic beam models are analytically derived by the

dimensional reduction method based on the HR principle. The five cases analysed are: a

prismatic beam, two linearly tapered beams, symmetric and non symmetric with respect

to the longitudinal axis, and lastly two curvilinearly tapered beams, in symmetric and

non-symmetric configurations. The HR principle is preferred to the TPE principle, both

of them illustrated in Chapter 2, because HR principle also introduces stresses as variables

of the problem. The stresses are the variables of much interest and, by using a mixed

approach, they can be directly evaluated and considered separately.

Starting from the HR principle, a system of six ordinary differential equations (ODEs)

is derived because six unknown variables are considered in the formulation: three displace-

ment and three stress variables. After that, by means of the static condensation procedure,

the system of three ODEs is obtained, in which the only variables are the displacements.

The method used in order to solve the double integral of the HR principle is the dimen-

sional reduction method, illustrated in Chapter 2. This method is here adopted for the

great advantage in reducing the dimension of the problem.

The adopted programming software is Wolfram Mathematica version 7. Mathematica

is a very large system and it contains thousands of functions for performing various tasks

in science, mathematics, engineering, and many other disciplines. The following manuals

have been consulted for the implementation: Wellin (2013), Abell and Braselton (2008)

and Hazrat (2010).

27
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4.1 Geometry definition

The object of the study is a planar beam Ω with a generic non-prismatic shape and de-

scribed as a 2D body as shown in Figure 4.1. This is equivalent to imposing the plane stress

state hypotheses to a 3D body or to stating that the body width is negligible. Moreover,

the following hypotheses are considered: small displacements and a linear elastic isotropic

material.

O

y

x

hu(x)

hl(x)

A(L)

A(0)

c(x)

Ω

x̄

t(x̄)

Figure 4.1: Generic non-prismatic beam

The domain of the problem is here defined:

Ω ⊂ R
2 : (x, y) | x ∈ ℓ and y ∈ A(x) (4.1)

Where ℓ is the beam longitudinal axis and A(x) is the area of the cross-section. In particular

they are expressed as follows, indicating with L the beam length and with hu(x) and hl(x)

the upper and lower limits of the domain:

ℓ = {x ∈ R|x ∈ [0, L]} , A(x) = {y ∈ R|y ∈ [hl(x), hu(x)]} (4.2)

Obviously, the longitudinal axis ℓ is the predominant dimension of the body, as usually

assumed by the beam definition . The right and the left limits of the domain Ω are indicated

with A(0) and A(L) as shown in Figure 4.1, therefore the border ∂Ω can be expressed as

A(0) ∪ A(L) ∪ hu(x) ∪ hl(x). Furthermore ∂Ω is divided into the following parts: ∂Ωt

and ∂Ωs according to whether the loaded and displacement constrained boundaries are

considered.

With regards to the definition of the two limits, hu(x) and hl(x), two magnitudes are
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introduced. The first one is the centreline equation c(x) and the second one is the thickness

equation t(x) of the beam (Figure 4.1). Therefore the functions hu(x) and hl(x) can be

written as:

hu(x) = c(x) +
t(x)

2
(4.3a)

hl(x) = c(x)−
t(x)

2
(4.3b)

The centreline c(x) represents the locus of the cross-section barycentres; the thickness t(x),

instead, is the beam height that is assumed as a positive definite function. In the case of

prismatic beams and beams that are symmetric with respect to the longitudinal axis, c(x)

is a constant function and it is coincident with the x axis. In the other cases, instead, c(x)

is function of x and it results not coincident with x axis. Afterwards a specific expression

of c(x) and t(x) is given to study each case.

4.2 Hypotheses on displacement and stress fields

In order to use the dimensional reduction method (see Paragraph 2.3), the beam model is

studied according to specific hypotheses on displacement and stress fields. The following

independent variable fields are considered: σ and s, where σ is the symmetric stress tensor,

defined in Equation (2.7), and s is the displacement vector, defined in Equation (2.2).

To get started, a linear function (with respect to y) to describe the horizontal displace-

ments u(x, y) and a constant function to describe the vertical displacement v(x, y) are

assumed:

u(x, y) = u(x) + ỹ
t(x)

2
θ(x) (4.4a)

v(x, y) = v(x) (4.4b)

in which u(x), θ(x) and v(x) are the displacement independent variables and ỹ is a function

of y and it varies as follows: ỹ = 1 on the upper boundary, ỹ = 0 on the centreline and

ỹ = −1 on the lower boundary. Therefore it is possible to assume ỹ equal to:

ỹ = (−c(x) + y)
2

t(x)
(4.5)
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Substituting Equation (4.5) in (4.4a), it can be noticed that the variable θ(x) is a rotation.

In the matter of the stress field, in order to guarantee the boundary equilibrium, con-

sidering zero traction on both boundary regions, it results as follows:

σ ·n|hu∪hl
= 0 (4.6)

Where the vector n represents the outward unit vector respectively evaluated on the upper

and lower limits:

n|hu
=

1
√

1 + h′

u(x)
2

(−h′

u(x)

1

)

n|hl
=

1
√

1 + h′

l(x)
2

(

h′

l(x)

−1

)

(4.7)

The array σ|hu∪hl
, instead, is the stress tensor, separately evaluated on the two borders

hu(x) and hl(x). Considering the equilibrium (4.6), the horizontal stress, σxx, manages to

describe all stresses on the considered boundaries by itself, as shown hereunder:

(

σxx σxy

σxy σyy

)

·

(

nx

ny

) ∣

∣

∣

∣

∣

hu∪hl

=

(

0

0

)

→







σxy

∣

∣

hu∪hl

= − (nx/ny) σxx

∣

∣

hu∪hl

σyy

∣

∣

hu∪hl

= (nx/ny)
2 σxx

∣

∣

hu∪hl

(4.8)

More precisely, σxy

∣

∣

hu

and σyy

∣

∣

hu

are expressed as follows for the upper boundary:

σxy

∣

∣

hu

= h′

u(x) σxx

∣

∣

hu

(4.9a)

σyy

∣

∣

hu

= h′

u(x)
2 σxx

∣

∣

hu

(4.9b)

and for the lower boundary:

σxy

∣

∣

hl

= h′

l(x) σxx

∣

∣

hl

(4.10a)

σyy

∣

∣

hl

= h′

l(x)
2 σxx

∣

∣

hl

(4.10b)

Where h′

u(x) and h′

l(x) represent the derivative of hu(x) and hl(x) with respect to x. It

is now possible to assume the following hypotheses on the stress field: a linear function

to describe the horizontal stress σxx along the beam cross-section; a linear easing function

which interpolates the previously evaluated values of the vertical stress σyy (4.9b)(4.10b);

and a quadratic function to describe the shear stress σxy as a linear easing function of

the two boundary values (4.9a)(4.10a) added to a quadratic function. Therefore, the
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components of the stress tensor are expressed as follows:

σxx = σx0(x) + ỹσx1(x) (4.11a)

σyy = (σyy

∣

∣

hu

− σyy

∣

∣

hl

)
y − hl(x)

hu(x)− hl(x)
+ σyy

∣

∣

hl

(4.11b)

σxy = (σxy

∣

∣

hu

− σxy

∣

∣

hl

)
y − hl(x)

hu(x)− hl(x)
+ σxy

∣

∣

hl

+ b̃ τ(x) (4.11c)

By substituting Equation (4.9) and Equation (4.10) in (4.11), the components of the stress

tensor can be written as:

σxx = σx0(x) + ỹσx1(x) (4.12a)

σyy =
[

h′

u(x)
2 (σx0(x) + σx1(x))− h′

l(x)
2 (σx0(x)− σx1(x))

] y − hl(x)

hu(x)− hl(x)
+

+ h′

l(x)
2 (σx0(x)− σx1(x)) (4.12b)

σxy = [h′

u(x) (σx0(x) + σx1(x))− h′

l(x) (σx0(x)− σx1(x))]
y − hl(x)

hu(x)− hl(x)
+

+ h′

l(x) (σx0(x)− σx1(x)) + b̃ τ(x) (4.12c)

in which σx0(x), σx1(x) and τ(x) are the stress independent variables; ỹ and b̃, instead,

are function of y and they vary as follows: ỹ = 1 on the upper boundary, ỹ = 0 on the

centreline and ỹ = −1 on the lower boundary, according to Equation (4.5); b̃ = −1 on the

centreline of the beam and b̃ = 0 on the upper and lower limits. Here is the expression of

b̃:

b̃ = (−c(x) + y)2
4

t(x)2
− 1 (4.13)

Also the variations of σ and s (δσ and δs respectively) must be introduced in order to

solve the HR functional. Therefore the following variational variables are defined δu(x),

δθ(x), δv(x), δσx0(x), δσx1(x), δτ(x) and the components of δs follow below:

δu(x, y) = δu(x) + ỹ
t(x)

2
δθ(x) (4.14a)

δv(x, y) = δv(x) (4.14b)
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The components of δσ, instead, are expressed as:

δσxx = δσx0(x) + ỹδσx1(x) (4.15a)

δσyy =
[

h′

u(x)
2 (δσx0(x) + δσx1(x))− h′

l(x)
2 (δσx0(x)− δσx1(x))

] y − hl(x)

hu(x)− hl(x)
+

+ h′

l(x)
2 (δσx0(x)− δσx1(x)) (4.15b)

δσxy = [h′

u(x) (δσx0(x) + δσx1(x))− h′

l(x) (δσx0(x)− δσx1(x))]
y − hl(x)

hu(x)− hl(x)
+

+ h′

l(x) (δσx0(x)− δσx1(x)) + b̃ δτ(x) (4.15c)

The above equations are achieved by substituting into Equations (4.4) and Equation (4.12)

the variables u(x), θ(x), v(x), σx0(x), σx1(x), τ(x) with their variations δu(x), δθ(x), δv(x),

δσx0(x), δσx1(x), δτ(x).

This way, simple assumptions on the displacement and stress fields are introduced in

order to study a homogeneous planar beam with a generic shape in the hypotheses of small

displacements and a linear elastic isotropic material. Moreover, they meet the requirements

imposed by the dimensional reduction method; the components of the displacement vector,

u(x, y) and v(x, y), and the component of the symmetric stress tensor, σxx, σyy and σxy, in

fact, are function of x and y but they are expressed as a product and sum of variables (u(x),

v(x), θ(x), σx0(x), σx1(x) and τ(x)) function of x only and functions (ỹ and b̃) depending

on y only. In other words there is a clear decoupling of x and y.

4.3 Formulation of the problem

The aim of this study is to determine unknown functions, displacement and stress indepen-

dent variables, which satisfy a system of differential equations in the given domain (4.1)

and some boundary conditions on the border.

In this work, the starting equation to be considered in order to obtain the system of

differential equations is a variational principle (see Paragraph 2.2). In Chapter 2, two

variational principles are introduced, the TPE principle and the HR principle. In order to

achieve accurate stress distribution along the cross-section by assuming simple hypotheses

on the displacement and stress fields, the use of a mixed variational method (such as the

HR) is preferred to a "one-field" variational method (such as the TPE). The rightness

of this choice is emphasised in Paragraph 4.6 by means of the comparison between the
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two systems of differential equations, obtained for a prismatic beam by using the TPE

formulation (see Equation 2.16) and by using the HR div-div formulation (see Equation

2.20).

As a consequence, the problem under investigation (Figure 4.1) can be expressed in

terms of the HR div-div formulation, which represents the saddle point of the HR func-

tional.

δJdd
HR = −

∫

Ω

(δs ·∇ ·σ) dΩ−
∫

Ω

(∇ · δσ · s) dΩ−
∫

Ω

(δs : D : σ) dΩ

−
∫

Ω

(δs ·f) dΩ−
∫

∂Ωs

(δσ ·n · s̄) dS = 0
(4.16)

In any variational formulation, but specifically in this one, the classification of boundary

conditions into natural and essential ones is naturally facilitated. In fact it results that

s|∂Ωs
= s̄ is the natural condition and the boundary equilibrium σ ·n|∂Ωt

= t is the

essential condition, where t represents an external load distribution. Moreover, in this

work, the distributed load f is assumed equal to zero.

It is important to highlight that the adopted formulation considers both displacements

and stresses as the solution variables, therefore it is possible to proceed in two different

ways: either by achieving a system of six differential equations and solving them with six

displacement and stress boundary conditions, or by obtaining, through the static conden-

sation method, a system of three differential equations in displacement variables only and

recovering, after solving the reduced ODEs, other variables of interest, such as stresses.

4.4 Mixed equations

In this section, by using the HR variational formulation (4.16), a system of six ODEs is

derived for the beam shown in Figure 4.1 .

Once suitable hypotheses on the displacement and stress fields are assumed (see Para-

graph 4.2), it is possible to write, in Mathematica, the full expressions of the stress tensor

components (4.12), of the displacement vector components (4.4) and of their respective

variations (4.14) and (4.15).

Since the hypotheses on the displacement and stress fields meet the requirements im-

posed by the dimensional reduction method, the integral over Ω (4.16), properly written

in Mathematica, is reduced into an integral over ℓ. Its expression is reported in Appendix

A, Equation (A.1), in which it is possible to notice that the first derivatives of δσx0(x),

δσx1(x), δτ(x) appear. Therefore, by means of the software mathematica, it is necessary



4.4. Mixed equations 34

to create a function able to integrate once by parts Integrating by parts all terms with

δσ′

x0(x), all terms with δσ′

x1(x) and all terms with δτ ′(x), the resulting expressions are

inserted into the integral (A.1) in the place of all terms containing the first derivative.

Now, considering the resulting integral, by separately collecting the variational vari-

ables, it is possible to obtain six first-order differential equations function of six indepen-

dent variables u(x), θ(x), v(x), σx0(x), σx1(x), τ(x) (in order to easily read the equations,

(x) is omitted after each variable):

t {5Eθ + 8(1 + ν)τ − 5[2(1 + ν)c′σx0 + (1 + ν)t′σx1 − Ev′]} = 0 (4.17a)

t {σx0[48 + 48(c′)4 + (8− 16ν)(t′)2 + 3(t′)4 + 8(c′)2(12 + 5(t′)2)]+

− 16[4(1 + ν)c′τ − c′t′(4 + 4(c′)2 + (t′)2)σx1 + 3E(u′ + c′v′)]} = 0 (4.17b)

t {−σx1[16 + 16(c′)4 + 8(3 + 2ν)(t′)2 + (t′)4 + 8(c′)2(4 + 7(t′)2)]+

+ 8[3Et′θ + 4(1 + ν)t′τ − 8c′t′σx0 − 8(c′)3t′σx0 − 2c′(t′)3σx0+

+ 3Et′v′ + Etθ′]} = 0 (4.17c)

t′σx0 + tσ′

x0 = 0 (4.17d)

t(4τ − t′σx1 + tσ′

x1) = 0 (4.17e)

4(t′τ + tτ ′) = 3 [t(2 c′σ′

x0 + t′σ′

x1) + 2σx0(c
′t′ + tc′′) + σx1((t

′)2 + t t′′)] (4.17f)

It can be noticed that the first three equations (4.17a, 4.17b and 4.17c) are the compat-

ibility equations for the studied beam model. It is proven by the presence of the first

derivatives of each displacement independent variable and by the coupling between the

strain tensor components ε, which are here expressed in terms of stress tensor components

σ, and the displacement vector components s. The last three equations, instead, represent

the equilibrium of a 2D beam and more precisely Equation (4.17d) is the translational

equilibrium for the horizontal components, Equation (4.17e) is the rotational equilibrium

and Equation (4.17f) is the translational equilibrium for the vertical components.

It is important to obtain the system of six mixed equations (4.17) because, by choosing

a suitable geometry and appropriate boundary conditions, the six unknown variables u(x),

θ(x), v(x), σx0(x), σx1(x), τ(x) can be calculated.
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4.5 Displacement equations

The HR formulation (4.16) considers both displacements and stresses as the solution vari-

ables. Despite this, it is possible to achieve, through the static condensation method, a

system of three differential equations in displacement variables only.

The static condensation method is a practical procedure of accomplishing the reduction

of the dimension of the problem. It is necessary to identify the variables to be condensed

and express them in terms of the remaining variables. The relationship between these two

sets of variables is found by establishing the static relation between them, hence the name

static condensation method (Paz and Leigh, 2004). This relationship provides the means

to reduce the dimension of the problem. For example, in the Finite Element Method, the

static condensation method is used to reduce the dimension of the stiffness matrix, or, in

this study, to obtain three ODEs in displacement variables.

In the case under investigation, a system of three differential equations can be processed

by expressing, through Equation (4.17a), (4.17b) and (4.17c), the stress variables, σx0(x),

σx1(x) and τ(x), in function of the displacement variables, u(x), v(x) and θ(x), and then by

substituting the resulting expressions in Equation (4.17d) (4.17e) (4.17f). The second-order

differential equations are not obtained for a generically tapered beam, but are computed

for each case to be analysed.

4.6 Prismatic beam

y

O x2H

L

Figure 4.2: Prismatic beam

The object of the study is a planar beam which presents no taper; therefore the lower
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and upper boundaries of the domain result parallel to the beam longitudinal axis (Figure

4.2). In this case, the centreline c(x) and the thickness t(x) of the beam are expressed as

follows:

c(x) = 0 (4.18a)

t(x) = 2H (4.18b)

Whereas the outward unit vectors on the upper hu(x) and lower hl(x) limits can be ex-

pressed as follows:

n|hu
=

(

0

1

)

n|hl
=

(

0

−1

)

(4.19)

Also, it is important to restate that L ≫ 2H , so the beam longitudinal axis ℓ is the

predominant dimension of the body.

This case represents the simplest one and, as a consequence, it is studied using two

formulations: first of all TPE formulation and lastly the HR formulation.

4.6.1 Total Potential Energy

Starting from the TPE formulation and considering its functional, expressed with Equation

(2.15), it is possible to notice that the problem is distinguished by three independent

variables u(x), θ(x) and v(x).

Substituting the hypotheses on the displacement field (4.4) in (2.15) and using the

well-known stationary procedure the weak form is obtained:

δJTPE =
1

6(ν2 − 1)

∫ L

0

3EH [−2u′(x)δu′(x) + (1 + ν) (θ(x) + v′(x)) (δθ(x) + δv′(x))]dx

−
1

6(ν2 − 1)

∫ L

0

2EH3δθ′(x)θ′(x)dx

(4.20)

Where the variables δu(x), δv(x) and δθ(x) represent the variations of u(x), v(x) and θ(x),

and δu′(x), δv′(x) and δθ′(x) are their respective first derivatives. From Equation (4.20) it

can clearly be noticed that the double integral over Ω is reduced to a single integral over ℓ.

Therefore it represents an application of the dimensional reduction method, made possible

by the geometry of the problem and suitable assumptions on the displacement field.

Considering the weak form (4.20), it is now necessary to opportunely collect the first

derivatives of the variational terms and integrate them once by parts. then, after substi-

tuting the resulting terms in (4.20), the following differential equations are obtained for



4.6. Prismatic beam 37

each variational variable:

3EH

ν + 1
(θ(x) + v′(x)) +

2EH3

(ν2 − 1)
θ′′(x) = 0 (4.21a)

EHu′′(x)

(ν2 − 1)
= 0 (4.21b)

EH(θ′(x) + v′′(x))

ν + 1
= 0 (4.21c)

Where the first equation is obtained collecting the variation δθ(x), the second equation

collecting the variation δu(x) and the third one collecting the variation δv(x). From these

equations, by imposing the boundary conditions, the kinematic solution of the problem

can be obtain.

It is important to notice that Equation (4.21) presents the same structure of the Tim-

oshenko equations (see Paragraph 3.3.2, Equation (3.19)) due to the fact that the Timo-

shenko kinematics is taken into consideration in the model under investigation. The only

difference is that in (4.21) the shear factor, which is equal to 5/6 for a prismatic beam

with a rectangular section, does not appear. This issue arises from the use of a "one-

field" formulation with a too simple hypotheses on the displacements. Hence, considering

beams with a more complex geometry, such as tapered beams, and the simple kinematics

of Timoshenko, the TPE functional is not able to provide a high accuracy on the stress

profiles.

4.6.2 Hellinger-Reissner

In this section it proceeds in a similar way, but using the HR formulation. The displacement

field and the stress field are considered, for a total number of six independent variables

u(x), θ(x), v(x), σx0(x), σx1(x), τ(x).

Since the system of six ODEs is calculated for the generic case (see Figure 4.1), in order

to achieve the differential equations for the prismatic beam (see Figure 4.2) it is sufficient

to replace the expressions of c(x) and t(x), reported in Equation (4.18), in the system of

six ODEs, calculated for the generic case (4.17). By doing this, the following differential
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equations can be obtained:

H

E
[5Eθ(x) + 8 (1 + ν) τ(x) + 5Ev′(x)] = 0 Hσ′

x0(x) = 0

H

(

−
σx0(x)

E
+ u′(x)

)

= 0 H [2τ(x) +Hσ′

x1(x)] = 0

H

(

−
σx1(x)

E
+Hθ′(x)

)

= 0 Hτ ′(x) = 0

(4.22)

They are first-order differential equations; where u(x), θ(x), v(x), σx0(x), σx1(x), τ(x) are

the unknown functions to be found. Then, extracting from the first three equations the

three stress variables σx0(x), σx1(x) and τ(x) in function of the three displacement variables

u(x), θ(x) and v(x), the following expressions are obtained:

σx0(x) = Eu′(x) σx1(x) = EHθ′(x) τ(x) = −
5E(θ(x) + v′(x)

8(1 + ν)
(4.23)

and substituting them in the last three equations of (4.22), it is possible to recover the

differential equations in displacement variables only:

5

6
EH

θ(x) + v′(x)

1 + ν
−

2

3
EH3θ′′(x) = 0 (4.24a)

5

6
EH

θ′(x) + v′′(x)

1 + ν
= 0 (4.24b)

2EHu′′(x) = 0 (4.24c)

The equations written above (4.24) are the Timoshenko equations related to the pris-

matic beam shown in Figure 4.1. Contrary to Equation (4.21), the shear factor 5/6 (see

Paragraph 3.3.2) naturally appears. Therefore, by using the HR functional (which is a

mixed formulation) it is possible to achieve a great accuracy on the stress profiles even if

a simple kinematics is assumed. This aspect is very important for the study of tapered

beams because the calculation of the shear factor is naturally taken into account by the

formulation.
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4.7 Linearly tapered symmetric beam

y

O x4H

L

2H

Figure 4.3: Linearly tapered symmetric beam

In the case of a beam with a linear taper and symmetric with respect to its longitudinal

axis (Figure4.3), the following expressions of the centreline c(x) and of the thickness t(x)

are assumed:

c(x) = 0 (4.25a)

t(x) = −
2H

L
x+ 4H (4.25b)

It is also important to define the outward unit vectors on the upper and lower limits:

n|hu
=

1
√

1 + (H/L)2

(

H/L

1

)

n|hl
=

1
√

1 + (H/L)2

(

H/L

−1

)

(4.26)

As previously done for the study of a prismatic beam by means of the HR formulation,

considering the system of differential equations calculated for the generic beam model

(4.17), it is possible to obtain six first-order equations (in order to easily read the equations,

(x) is omitted after each variable):

H(2L− x)[5ELθ + 8L(1 + ν)τ + 5(2H(1 + ν)σx1 + Lv′)]

EL
= 0 (4.27a)

H(4L− 2x)

EL

[(

48 +
48H4

L4
+

4H2(8− 16ν)

L2

)

σx0 − 48Eu′

]

= 0 (4.27b)
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H(4L− 2x)

EL

{

−
16[H4 + L4 + 2H2L2(3 + 2ν)]σx1

L4
−

16H

L

[

3Eθ+

4(1 + ν)τ + E(3v′ + (−2L+ x)θ′)
]}

= 0 (4.27c)

H [σx0 + (−2L+ x)σ′

x0]

L
= 0 (4.27d)

H(2L− x)

L

[

2Lτ +H(σx1 + (2L− x)σ′

x1)
]

= 0 (4.27e)

H

L

[

− 2Lτ − 3Hσx1 + (2L− x)(2Lτ ′ + 3Hσ′

x1)
]

= 0 (4.27f)

from which the displacement and stress unknown variables u(x), θ(x), v(x), σx0(x), σx1(x),

τ(x) can be evaluated for a given problem.

In order to obtain a system of three differential equations in displacement variables

only, it is necessary to extract from the first three equations of (4.27) the three stress

variables, σx0(x), σx1(x) and τ(x), in function of the three displacement variables, u(x),

θ(x) and v(x):

σx0(x) =
3EL4u′(x)

3H4 + 3L4 + 2H2L2(1− 2ν)
(4.28a)

σx1(x) =
EHL3(−θ(x)− v′(x) + 4Lθ′(x)− 2xθ′(x))

2(H4 + L4 −H2L2(−1 + ν))
(4.28b)

τ(x) = −
5E[(H4 + L4 − 2H2L2ν)θ(x) + (H4 + L4 − 2H2L2ν)v′(x)

8[H4(1 + ν) + L4(1 + ν)−H2L2(−1 + ν2)]
+

+
2H2L2(2L− x)(1 + ν)θ′(x)]

8[H4(1 + ν) + L4(1 + ν)−H2L2(−1 + ν2)]
(4.28c)

Then they are substituted in the last three equations of (4.27) and, this way, the following

second-order differential equations are calculated:

EH(2L− x)[(5H45L4 + 2H2L2(1− 4ν))(θ − v′)− 2H2L2(2L− x)(1 + ν)

L(H4 + L4 −H2L2(−1 + ν))(1 + ν)
+

+
(−6θ′ − v′′ − 2(−2L+ x)θ′′)]

L(H4 + L4 −H2L2(−1 + ν))(1 + ν)
= 0 (4.29a)
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EH{[5H45L4 + 2H2L2(3− 2ν)](θ + v′)− (2L− x)[5(H2 + L2)θ′ + (5H4

L[(H4 + L4)(1 + ν)−H2L2(−1 + ν2)]
+

+
5L4 + 2H2L2(3− 2ν))v′′ − 2H2L2(2L− x)(1 + ν)θ′′]}

L[(H4 + L4)(1 + ν)−H2L2(−1 + ν2)]
= 0 (4.29b)

EHL(−u′ + (2L− x)u′′)

3H4 + 3L4 + 2H2L2(1− 2ν)
= 0 (4.29c)

Since the linearly tapered symmetric beam is characterized by a more complex geometry

than the prismatic one, comparing Equation (4.24) to Equation (4.29), it is possible to

notice the presence of additional terms. In Equation (4.29a), v′′(x) and θ(x) appear;

Equation (4.29b) is enhanced by the presence of θ(x), v′(x) and θ′′(x); lastly Equation

(4.29c) presents the additional term u′(x). Moreover, the complexity of the coefficients

emphasises that the shear factor of a tapered beam has a different and more complicated

expression compared to a prismatic one, as expected.

The numerical solution for the six ODEs (4.27) and for the three ODEs (4.29) follow

in Chapter 5, considering a cantilever beam with a concentrated load in the free edge.

4.8 Linearly tapered non-symmetric beam

In this section, the beam to be examined is no more symmetric with respects to its longi-

tudinal axis, therefore the upper limit of the domain is not assumed to be tapered, whereas

the lower limit, is distinguished by a linear taper (Figure 4.4).

y

O x

4H

L

2H

Figure 4.4: Linearly tapered non-symmetric beam
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The following expressions of c(x) and of t(x) are assumed:

c(x) =
H

L
x−H (4.30a)

t(x) = −
2H

L
x+ 4H (4.30b)

Furthermore The outward unit vectors on the upper and lower limits can be expressed as

follows:

n|hu
=

(

0

1

)

n|hl
=

1
√

1 + (2H/L)2

(

2H/L

−1

)

(4.31)

Once the geometry of the problem is defined, the following six differential equations are

found, substituting c(x) and t(x) in the system 4.17 (in order to easily read the equations,

(x) is omitted after each variable):

H(2L− x)

EL

[

5ELθ + 8L(1 + ν)τ + 5(−2H(1 + ν)σx0 + 2H(1 + ν)σx1+

+ ELv′)
]

= 0 (4.32a)

H(2L− x)

EL

{

4HL3(1 + ν)τ − [16H4 + 3L4 − 4H2L2(−2 + ν)]σx0+

+ 16H4σx1 + 8H2L2σx1 + 3EL4u′ + 3EHL3v′
}

= 0 (4.32b)

H(2L− x)

EL

[

− 3EHL3θ − 4HL3(1 + ν)τ + 16H4σx0 + 8H2L2σx1+

− 16H4σx1 − 8H2L2σx1 − L4σx1 − 4H2L2νσx1 − 3EHL3v′ + 2EHL4θ′+

−EHL3xθ′
]

= 0 (4.32c)

H [σx0 + (−2L+ x)σ′

x0]

L
= 0 (4.32d)

H(2L− x)[2Lτ +H(σx1 + (2L− x)σ′

x1)]

L
= 0 (4.32e)

8H [τ + (−2L+ x)τ ′]

L
= −

12H2[−σx0 + σx1 + (2L− x)(σ′

x0 − σ′

x1)]

L2
(4.32f)

Equation (4.32) presents more terms and coefficients than Equation (4.27) and (4.22).
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It is evident that the more complex the geometry of the beam, the more sophisticated the

equations to study its behaviour need to be. Moreover, in Equation (4.32f) the presence

of the terms σx0(x) and σ′

x0(x) demonstrates that the model naturally takes the coupling

between the axial and bending behaviours into account. As a result, additional terms for

coupling must not be inserted in the formulation. On the other hand, the terms σx0(x) and

σ′

x0(x) are not required in the case of a symmetric beam, as in Equation (4.29c), because

of the decoupling between the axial and bending behaviours.

As done for the other two cases, in order to obtain a system of three differential equa-

tions in displacement variables only, it is necessary to extract from the first three equations

of (4.32) the three stress variables, σx0(x), σx1(x) and τ(x), in function of the three displace-

ment variables, u(x), θ(x) and v(x). Since the expressions of σx0(x), σx1(x) and τ(x) thus

obtained are too long, their verbalization is omitted. The system of the three second-order

differential equations is also omitted for the same reason.

The numerical solution for the six ODEs (mixed ODEs) (4.32) and for the three ODEs

(displacement ODEs) follow in Chapter 5, considering a cantilever beam with a concen-

trated load in the free edge.

4.9 Curvilinearly tapered symmetric beam

In this section, the beam to be examined is symmetric with respect to its longitudinal axis

but no more linearly tapered. An example of a beam with a variable cross-section and

curvilinearly tapered is the cantilever beam with uniform strength, as known in literature.

The geometry of this beam is such that the section modulus varies along the beam in

the same proportion as the bending moment (Timoshenko, 1976) and it is favourable as

regards the amount of material used, because each cross-section has only the area necessary

to satisfy the conditions of strength.

The geometry to be chosen in order to consider a beam with uniform strength is taken

from Timoshenko (1976) and, more precisely, the height of the beam varies following a

parabolic law (Figure 4.5). The only change with respect to the geometry presented by

Timoshenko (1976), is that the cross-section area, at x = L, is not equal to zero but

sufficiently small to be considered negligible. The proposed method does not work in the

case of vanishing sections for two reasons. The first one is that the cross-section area must

be sufficient to transmit the shear force, the second one that an area equal to zero implies

a non definition of the stresses. Equation (4.8) clearly shows that the values of σxy

∣

∣

hu∪hl

and σyy

∣

∣

hu∪hl

depend on the slope of the upper and lower limits. Hence, if the outward
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Figure 4.5: Curvilinearly tapered symmetric beam: beam with uniform strength

unit vector, at x = L, has only the component along the x axis, the ratio nx/ny approaches

infinity.

In the case shown in Figure 4.9, the centreline c(x) and this thickness t(x) are expressed

as follows:

c(x) = 0 (4.33a)

t(x) = 4

√

√

√

√H2

(

1−
100x

101L

)

(4.33b)

Furthermore, as previously done, after substituting c(x) and t(x) in the system of differ-

ential equations calculated for the generic beam model (4.17), six first-order differential

equations are obtained for this specific case, whose full verbalization is reported in Ap-

pendix A, Equation (A.2). Due to the complexity of the six differential equations, the

verbalization of the system of the three differential equations, recovered through the static

condensation method, is omitted.

Different from Equation (4.32f), there is no σx0(x) and σ′

x0(x) in the last equation of

(A.2), as expected due to the symmetry with respect to the longitudinal axis. Moreover,

Equation (A.2) presents more sophisticated coefficients and terms in relation to the previous

cases due to the very complex geometry of the beam shown in Figure 4.9.

The displacement and stress unknown variables u(x), θ(x), v(x), σx0(x), σx1(x), τ(x)

can be evaluated for a given problem of the beam shown in Figure 4.6, by using the system

of six ODEs (A.2) and the numerical solution follows in Chapter 5.
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4.10 Curvilinearly tapered non-symmetric beam

The beam to be examined is no more symmetric with respect to the longitudinal axis.

Precisely, the upper limit of the domain is assumed to be constant, whereas the lower

limit, is distinguished by a quadratic function (Figure 4.6).

xO

L

2H

4H

y

Figure 4.6: Curvilinearly tapered non-symmetric beam

The following expressions of c(x) and of t(x) are assumed:

c(x) = −
H(L− x)2

L2
(4.34a)

t(x) =
2H(2L2 − 2Lx+ x2)

L2
(4.34b)

The outward unit vectors on the upper and lower limits can be expressed as follows:

n|hu
=

(

0

1

)

n|hl
=

1
√

1 + (−4Hx/L2 + 4H/L)2

(

(4H/L2)(L− x)

−1

)

(4.35)

Furthermore, as previously done, after substituting c(x) and t(x) in the system of dif-

ferential equations calculated for the generic beam model (4.17), six first-order differential

equations are obtained for this specific case, whose full verbalization is reported in Ap-

pendix A, Equation (A.3). Focusing on the last equation of (A.3), it is important to notice

the presence of σx0(x) and σ′

x0(x). Hence, the coupling between the axial and bending

behaviours is rightly considered in the proposed model. Moreover, the excessive length of

the terms and coefficients in Equation (A.3) depends on the adopted complex geometry.
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Despite the complexity of the six differential equations, the system of three differential

equations is also found. Therefore the three stress variables σx0(x), σx1(x) and τ(x), in

function of the three displacement variables u(x), θ(x) and v(x), are extracted from the

first three compatibility equations of the system (A.3); then, these expressions, omitted

due to their excessive length, are substituted in the last three equilibrium equations and

the system of the three displacement ODEs is obtained, whose verbalization is here omitted

because is too complex.

The numerical solution for the six ODEs (mixed ODEs) and for the three ODEs (dis-

placement ODEs) follow in Chapter 5.

4.11 Conclusions on non-prismatic beam models

In this chapter, an analytical model of tapered beams is proposed. Starting from the

formulation of HR, considering simple assumptions on the displacement and stress fields

in the criteria of the dimensional reduction method, it is possible to calculate a system of

six mixed differential equations. After that, a system of three differential equations, in the

displacement variables only, is recovered through the static condensation method.

Considering the case of a prismatic beam, the three differential equations obtained from

the TPE functional do not contain the shear factor. On the other hand, by using the HR

functional, the shear factor naturally appears and the three differential equations are the

same as the Timoshenko equations. This aspect is very important for the study of tapered

beams because it means that the calculation of the shear factor is taken into account by

the model even if a more complex geometry than the prismatic one is considered.

Comparing the systems of differential equations obtained for each case, it is evident

that the more complex the geometry of the beam, the more sophisticated the equations to

study its behaviour need to be. Moreover, the presence of the terms σx0(x) and σ′

x0(x), in

the last equation of the mixed differential equations obtained for the two non-symmetric

beams, demonstrates that the model naturally takes the coupling between the axial and

bending behaviour into account. The same terms, σx0(x) and σ′

x0(x), are not present in the

cases of tapered symmetric beams, due to the decoupling between these two behaviours.

It may be concluded that despite the length and the complexity of the differential

equations, especially referring to the cases of non-symmetric beams, these equations are

achieved with a reasonable computational time and by means of computers usually available

in engineering practice. The validity of this model is made more explicit in the next

chapter, through the comparison between the results obtained in Mathematica and the
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results achieved with the finite element analysis and with the classical beam theories of

Euler-Bernoulli and Timoshenko.



Chapter 5

Numerical results

In order to test the developed analytical model (see Chapter 4), several examples about a

cantilever beam with a concentrated load in the free edge are carried out in the following.

More precisely, five cases are considered: one prismatic beam, two linearly tapered beams

and two curvilinearly tapered beams according to the geometry introduced in Chapter 4.

The results, arising from the analytical model, are compared to the results achieved by

means of the Euler-Bernoulli and Timoshenko beam theories and the results obtained by

the finite element analysis using the software Abaqus

First of all, starting from the developed analytical model, the solution of the differential

equations is found with the Mathematica commands DSolve or NDSolve. The command

DSolve finds symbolic solutions to differential equations and it can particularly handle

the following types of equations: ordinary differential equations, as in the studied case,

partial differential equations and differential-algebric equations. The Mathematica function

NDSolve, on the other hand, is a general numerical differential equation solver and it is

used, in this section, to solve tapered cantilever beams. Tapered beams, in fact, are

characterized by a more complex geometry with respect to the prismatic beams, therefore

Mathematica is not able to give an analytical solution with the command DSolve.

For each cantilever beam the deflection at the free edge and the maximum value of the

shear stress at half length of the beam is calculated. Then, in order to test the results

obtained with the developed model, the deflection is also evaluated by using the principle

of virtual work (see Paragraph 3.2.3 and Paragraph 3.3.3) and the shear stress is also

found with the Jourawsky theory (see Paragraph 3.3.2). Lastly a finite element analysis

is conducted by means of the software Abaqus. Abaqus is particularly used to model

prismatic and non-prismatic 2D beams and make a comparison with the results obtained

in Mathematica.

48
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5.1 Problem definition

The object of this chapter is a cantilever beam. More precisely, a cantilever is a beam

which is only anchored at one end and carries the load to the fixed support. The beam

under investigation is subject to a concentrated load P = −100[kN] on the free end, where

the minus sign indicates that the force is directing downwards with respect to the y axis.

Moreover the following two values of Young’s modulus E and Poisson’s ratio ν are assumed:

E = 10 · 107 kN/m2

ν = 0.3
(5.1)

In order to solve the system of six ODEs, obtained for each case in Chapter 4, it is

necessary to impose the following boundary conditions, where h represents the height of

the beam at x = L:
θ(0) = 0 σx0(L) = 0

v(0) = 0 σx1(L) = 0

u(0) = 0 τ(L) = −(3P )/(2h)

(5.2)

Since the six mixed ODEs are first-order differential equations (see Equation (4.17)), six

boundary conditions are sufficient to find the solution of the problem and, more precisely,

three conditions on the displacement field and three conditions on the stress field. In the

left edge of the beam there is a fixed support, therefore the components of the displacement

vector, u(x, y) and v(x, y), must be equal to zero. This condition is guaranteed when the

three displacement variables, θ(x) u(x) and v(x), are equal to zero at x = 0. The unknown

variables are both displacement and stresses, thus the other three conditions are referred

to the stress variables at the free end of the beam. The concentrated load P at x = L

imposes that the bending moment is zero at the free end. As a consequence the two

variables, σx0(x) and σx1(x), are equal to zero at x = L. The variable τ(x), instead, must

be different from zero at the free end because the shear force is constant and equal to

P along the whole beam longitudinal axis. Its expression, reported in Equation (5.2), is

referred to the shear distribution along the cross-section proposed by the Jourawsky theory

(see Paragraph 3.3.2).

Considering now the set of three ODEs evaluated for each analysed beam in Chapter
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4, the following boundary conditions are used in order to find the solution of the problem:

θ(0) = 0 u(L) = 0

v(0) = 0 θ′(L) = 0

u(0) = 0 (θ(L) + v′(L)) = (6 P ) / (5 GA(L))

(5.3)

In this case, the three displacements ODEs are second-order differential equations in dis-

placement variables only, therefore six boundary conditions are necessary to solve the

problem. The fixed support imposes that the displacements are zero at x = 0, as shown

before; the concentrated load P at the free end imposes that the bending moment linearly

varies along the beam axis and it is zero at the free end, also the shear force is constant.

In the next sections the solutions of the problem are illustrated for each analysed beam.

First the system of six ODEs (mixed equations), then the system of three ODEs (displace-

ment equations) are respectively solved considering the boundary conditions reported in

Equation (5.2) and in Equation (5.3).

5.2 Prismatic beam

y

O x2H

L

P

Figure 5.1: Cantilever prismatic beam

The following geometry dimensions are assumed in order to evaluate the numerical
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result for the beam shown in Figure 5.1:

H = 0.5 m

L = 10 m

A(L) = 1 m2

(5.4)

Where the beam cross-section is supposed rectangular with a base equal to 1 m.

5.2.1 Mathematica results

The prismatic beam, shown in Figure 5.1, is characterized by a simple geometry. Therefore

the system of ODEs, both mixed and displacement ones, can be solved either with the

command DSolve or with the command NDSolve . It is preferred to illustrate the analytical

solution rather than the numerical one, even if both of them have been calculated, because

the analytical solution does not consider any approximation.

Analytical solution for the mixed ODEs

Considering the system of six ODEs (see Equation (4.22)) and the boundary conditions

previously introduced (5.2), it is possible to solve the problem about the cantilever pris-

matic beam that is fixed on the left edge and subject to the concentrated load P on the

right edge (Figure 5.1) by using the command DSolve:

v(x) =
24H2Px+ 15LPx2 − 5Px3 + 24H2Pxν

20EH3
σx0(x) = 0

θ(x) = −3 (2LPx− Px2)

4EH3
σx1(x) = −3(LP − Px)

2H2

u(x) = 0 τ(x) = − 3P

4H

(5.5)

Where 24H2x(ν + 1) is the shear contribution to the deflection v(x). In order to evaluate

a numerical result, it is necessary to substitute the values of Young’s modulus E and

Poisson’s ratio ν (5.1) and the geometry dimensions (5.4) in (5.5). Therefore, at x = L,

the following value of deflection is calculated:

v(L) = −4.031 · 10−3 m (5.6)
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Another value of interest to be calculated in order to make a comparison with the other

results is the maximum value of the shear stress at half length of the beam. For the case

under investigation it results equal to:

max(σxy|x=L/2) = −1.500 · 102 kN/m2 (5.7)

More precisely, max(σxy|x=L/2) provides the maximum of its argument at a value of y

within the cross-section height. In this case, the maximum of σxy|x=L/2 is at y equal to

0. Then, Equation (5.7) is achieved by estimating τ(L/2), σx0(L/2) and σx1(L/2) from

Equation (5.5) and, lastly, by substituting τ(L/2), σx0(L/2) and σx1(L/2) in Equation

(4.12c).

Analytical solution for the displacement ODEs

Considering the system of the three ODEs (see Equation 4.24) and the boundary conditions

(5.3), the problem under investigation (Figure 5.1) can be solved by means of the command

DSolve:

v(x) =
24H2Px+ 15LPx2 − 5Px3 + 24H2Pxν

20EH3

θ(x) = −3 (2LPx− Px2)

4EH3

u(x) = 0

(5.8)

After that, in order to evaluate a numerical result, it is necessary to consider the mechanical

properties (5.1) and the geometry reported in (5.4). Therefore, with x = L, the deflection

is calculated:

v(L) = −4.031 · 10−3 m (5.9)

It can be noticed that the obtained result is the same as the one achieved for the six ODEs

(see Equation (5.6)). In fact, the expressions of the deflection v(x), arising from the six

ODEs and the three ODEs, are equal.

Now, in order to calculate the maximum value of shear stress σxy at x = L/2, it

is necessary to find the values of v′(L/2), θ(L/2) and θ′(L/2), through (5.8), and then

substitute them in Equation (4.23). Once τ(L/2), σx0(L/2) and σx1(L/2) are evaluated,

the shear stress can be recovered by Equation (4.12c). Considering the geometry of the
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current case, Equation (4.12c) becomes:

σxy =
(4y4 − 4H4) τ(x)

4H4

(5.10)

Therefore, substituting the values of τ(L/2) in (5.10) and considering y = 0, the following

value of the shear stress at x = L/2 is obtained:

max(σxy|x=L/2) = −1.500 · 102 kN/m2 (5.11)

5.2.2 Classical theory results

The classical beam theories are used in this section in order to evaluate the deflection at

the free edge of the beam shown in Figure 5.1. In particular the principle of virtual work is

considered, because it represents one of the possible integral forms to be used for studying

a beam in Euler-Bernoulli hypotheses or Timoshenko hypotheses. Another value of interest

is the maximum shear stress and it is computed at half length of the beam by means of

the Jourawsky theory.

Euler-Bernoulli solution

Considering the Euler-Bernoulli hypotheses and the prismatic cantilever beam that is sub-

ject to a concentrated load P on the free edge, the principle of virtual work can be written

as follows:

v(x) =

∫ L

0

[

(L− x)
P (L− x)

EI

]

dx (5.12)

Where I represents the second moment of area, which results constant along the beam

longitudinal axis for the current case (Figure 5.1). Considering the full expression of I

and the cross-section base equal to 1 m, Equation (5.12) can be written as follows below,

according to the expression of t(x) (4.18b):

v(x) =

∫ L

0

[

(L− x)
12P (L− x)

E(2H)3

]

dx (5.13)

It can also be noticed that the first member of Equation (5.12) is the external work, whereas

the second term is the internal work. After solving the integral (5.12), the deflection v(x)
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is found:

v(x) =
PL3

2EH3
(5.14)

Then considering the mechanical properties (5.1) and the geometry (5.4), it is possible to

achieve the numerical result of the deflection at x = L.

v(L) = −4.000 · 10−3 m (5.15)

Timoshenko solution

Considering the Timoshenko hypotheses and the prismatic cantilever beam that is subject

to a concentrated load P on the free edge, the principle of virtual work can be written as

follows:

v(x) =

∫ L

0

[

(L− x)
P (L− x)

EI

]

dx+

∫ L

0

[

P

(5/6)GA(x)

]

dx (5.16)

Where I represents the second moment of area, A(x) is the cross-section area and G

represents the shear modulus. Considering the full expression of I and A(x) and assuming

the cross-section base equal to 1 m, Equation (5.16) can be written as follows below,

according to the expression of t(x) (4.18b):

v(x) =

∫ L

0

[

(L− x)
12P (L− x)

E(2H)3

]

dx+

∫ L

0

[

P

(5/6)G2H

]

dx (5.17)

It can also be noticed that the first member of Equation (5.16) is the external work, whereas

the second term is the internal work. After solving the integral (5.16), the deflection v(x)

is found:

v(x) =
PL3

2EH3
+

3PL

5GH
(5.18)

Then considering the mechanical properties (5.1) and the geometry (5.4), it is possible to

achieve the numerical result of the deflection at x = L.

v(L) = −4.031 · 10−3 m (5.19)

Jourawsky solution

The well-known Jourawsky formula is used to find an approximate solution of the shear

stress distribution along the cross-section. Considering the prismatic beam, shown in
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Figure 5.1, the Jourawsky formula is written as follows:

σxy =
12P (1/2)(H − y)(H + y)

(2H)3
(5.20)

Since the value to be evaluated is the maximum shear stress along the cross-section, in

order to calculate max(σxy|x=L/2), y is assumed equal to zero, then the mechanical property

values (5.1) and the geometry (5.4) are substituted in (5.20). By doing this, the maximum

shear stress at half length of the beam is obtained:

max(σxy|x=L/2) = −1.500 · 102 kN/m2 (5.21)

5.2.3 FEM results

The finite element analysis is performed by using the software Abaqus. Focusing on the

modelling and the main steps connected to it, first of all it is necessary to define the

geometry of the beam. Therefore, choosing a "2D deformable planar space", the four

points capable alone of describing the prismatic beam (see Figure 5.1), are inserted. Then,

connecting them by two horizontal lines and two vertical lines, the beam is generated.

The second step concerns the definition of the mechanical properties, which must be

assigned to the generated 2D body. Since the linear elasticity hypotheses are considered,

the values of Young’s modulus E and Poisson’s ratio ν (see Equation 5.1) are sufficient to

describe the mechanical behaviour of the beam. It is also important to define a section

which contains information about the properties of the created part and depends on the

type of region in question. For example, if the region is a deformable wire, shell, or 2D body,

a section must be assigned to that region that provides information about the cross-section

geometry. Likewise, a rigid region requires a section that describes its mass properties.

In this analysis the chosen "Section Category" is "Homogeneous Solid" and defines the

properties of the 2D created body.

Once the geometry and the mechanical properties are defined, the boundary conditions

must be enforced. A fixed support is considered at the left edge of the beam, therefore the

displacements in the directions of the beam axes are imposed equal to zero along the left

border. Also, a concentrated load P is applied at the right edge and it is modelled as a

"Surface Traction" load in order to avoid a high stress concentration in the applying point.

Lastly, an appropriate quadrangular mesh must be generated according to the dimen-

sion of the beam. In the case under investigation, since the beam height is equal to 1 m, the

"Approximate global size" is chosen equal to 0.05 m on a total of twenty elements in the
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beam thickness. The rightness of this choice is mainly proven by an accurate convergence

analysis, performed by using different values of the "Approximate global size" which are

smaller and smaller.

The model is now ready to be analysed by creating a "job". After that, when the

analysis is completed, it is possible to read the results. First of all, it is interesting to find

U, U2

−4.024e−03
−3.689e−03
−3.354e−03
−3.018e−03
−2.683e−03
−2.347e−03
−2.012e−03
−1.677e−03
−1.341e−03
−1.006e−03
−6.706e−04
−3.352e−04
+1.647e−07

Step: Step−1
Increment      1: Step Time =    1.000
Primary Var: U, U2
Deformed Var: U   Deformation Scale Factor: +2.485e+02

ODB: Job−1.odb    Abaqus/Standard 6.11−1    Wed Apr 16 08:30:41 ora legale Europa occidentale 2014

X

Y

Z

Figure 5.2: Results of "U2" obtained by using the software Abaqus for the can-
tilever prismatic beam with a concentrated load on the right edge

(Avg: 75%)
S, S12

−2.050e+03
−1.854e+03
−1.659e+03
−1.463e+03
−1.267e+03
−1.072e+03
−8.760e+02
−6.803e+02
−4.847e+02
−2.890e+02
−9.334e+01
+1.023e+02
+2.980e+02

Step: Step−1
Increment      1: Step Time =    1.000
Primary Var: S, S12
Deformed Var: U   Deformation Scale Factor: +2.485e+02

ODB: Job−1.odb    Abaqus/Standard 6.11−1    Wed Apr 16 08:30:41 ora legale Europa occidentale 2014

X

Y

Z

Figure 5.3: Results of "S12" obtained by using the software Abaqus for the can-
tilever prismatic beam with a concentrated load on the right edge
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the deflection v(x) on the right edge. Therefore, choosing "U" and "U2" from the model

tree, it is possible to read the variation of the deflection along the beam longitudinal axis

by the Figure 5.2.

By doing this, it is possible to read the deflection at the right end:

v(L) = −4.024 · 10−3 m (5.22)

The same procedure is followed to evaluate the maximum shear stress at half length of

the beam. Therefore, choosing "S" and "S12" from the model tree, Figure 5.3, which shows

how the shear stress varies along the beam longitudinal axis, is obtained. In order to find

the value of interest a "path" is created along the said cross-section. The resulting shear

distribution is symmetric with respect to the beam axis and parabolic. The maximum is

in correspondence of half cross-section and it results equal to:

max(σxy|x=L/2) = −1.503 · 102 kN/m2 (5.23)

5.2.4 Comparison of the results

Figure 5.4 plots how the deflection v(x) varies along the beam axis, considering the solution

obtained by the developed analytical model (AN), the finite element method (FE) and the

two classical beam theories of Euler-Bernoulli (EB) and Timoshenko (T). The four curves

are almost coincident, showing a high degree of matching among the adopted methods.

Moreover, in Table 5.1 the Timoshenko solution is larger than the Euler-Bernoulli one, as

expected because of the shear contribution in the former method. Since the Timoshenko

kinematics is considered in the developed model, the analytical solution is equal to the

Timoshenko one for this specific case.

Figure 5.5 compares the shear stress distributions at half length of the beam, respec-

tively calculated with the Jourawsky formula (J), the analytical model (AN) and the finite

element analysis (FE). Also for the stresses a matching among the considered solutions

arises and the analytical solution is coincident with the Jourawsky solution (see Table 5.1).
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Figure 5.4: Deflection results for the prismatic beam. The abscissa x and the
ordinate v(x) represent the beam axis and the deflection. The adopted unit of
measurement, for both axes, is m. The labels FE, EB, T and AN indicate the
finite element, the Euler- Bernoulli, the Timoshenko and the analytical solution,
respectively.
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Figure 5.5: Shear stress results for the prismatic beam. The abscissa y indicates
the axis along the beam thickness, using m as unit of measurement and the
ordinate σxy|x=L/2 indicates the shear stress at x = L/2, using kN/m2 as unit of
measurement. The labels FE, J and AN represent the finite element, the Jourawsky
and the analytical solution, respectively.
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Table 5.1: List of the deflection results at x = L and of the maximum shear stress
results at x = L/2. ev and eσ are the percentage errors with respect to the finite
element solution.

PRISMATIC BEAM

MODELS v(x)[m] max(σxy|x=L/2)[kN/m
2] ev[%] eσ[%]

EULER-BERNOULLI −4.000 · 10−3 − 6.048 · 10−1 −
TIMOSHENKO −4.031 · 10−3 − 1.705 · 10−1 −
JOURAWSKY − −1.500 · 102 − 2.109 · 10−1

ANALYTICAL −4.031 · 10−3 −1.500 · 102 1.702 · 10−1 2.109 · 10−1

FE (reference solution) −4.024 · 10−3 −1.503 · 102 0 0

5.3 Linearly tapered symmetric beam

The following geometry dimensions are assumed in order to evaluate the numerical solution

of the problem shown in Figure 5.6:

H = 0.25 m

L = 10 m

A(L) = 0.5 m2

(5.24)

Where the beam cross-section is assumed rectangular with a base equal to 1 m.

y

O x4H

L

P

2H

Figure 5.6: Cantilever linearly tapered symmetric beam
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5.3.1 Mathematica results

The analysed beam presents a more complex geometry than the previous prismatic beam.

Therefore, by using the command DSolve, it is not possible to obtain the analytical solution

of the mixed ODEs and of the displacement ODEs. However, it is possible to proceed

numerically with the command NDSolve.

Numerical solution for the mixed ODEs

Considering the system of the six ODEs (see Equation 4.27) and the boundary conditions

(5.2) previously introduced, the problem shown in Figure 5.6 is numerically solved for the

variables θ(x), u(x), v(x), σxo(x), σx1(x) and τ(x) by using the command NDsolve. The

values of the mechanical properties and the geometry dimensions to be used are indicated

in Equation (5.1) and (5.24), respectively. Focusing on the deflection v(x), this can be

estimated at the right edge of the beam:

v(L) = −6.577 · 10−3 m (5.25)

Another value of interest to be computed, in order to make a comparison with the other

results, is the maximum value of the shear stress at half length of the beam. Considering

the geometry of the current case (Figure 5.6), the shear stress σxy, reported in Equation

(4.12c), becomes:

σxy =
1

H2L(−2L+ x)2

{

L
[

−H2(−2L+ x)2 + L2y2
]

τ(x)+

−H2(2L− x)
[

Lyσx0(x) +H(2L− x)σx1(x)
]}

(5.26)

It is important to notice that the expression of shear stress σxy, in (5.26), is function of

x and y. As a consequence, it is necessary to solve max(σxy|x=L/2) with respect to y. In

this case, since the beam is symmetric with respect to the beam axis and according to

the hypotheses on the displacement and stress field, the maximum of the shear stress is at

y = 0. Therefore, substituting the values of τ(L/2), σx0(L/2) and σx1(L/2), numerically

found by using the command NDSolve, in Equation (5.26), the following maximum value

of the shear stress at x = L/2 is obtained:

max(σxy|x=L/2) = −1.333 · 102 kN/m2 (5.27)
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Numerical solution for the displacement ODEs

Considering the system of the three ODEs (see Equation 4.29) and the boundary conditions

(5.3) previously introduced, the problem shown in Figure 5.6 is numerically solved for

the variables θ(x), u(x) and v(x) and their derivatives, by using the command NDsolve.

Therefore, at x = L, the deflection v(x) results equal to:

v(L) = −6.581 · 10−3 m (5.28)

Now, in order to calculate the maximum shear stress, at x = L/2, it is necessary to

substitute the values of v′(L/2), θ(L/2) and θ′(L/2), numerically obtained by the command

NDSolve, in (4.28) and, this way, find the values of τ(L/2), σx0(L/2) and σx1(L/2). Once

τ(L/2), σx0(L/2) and σx1(L/2) are known, the maximum value of shear stress at half length

of the beam can be recovered through Equation (5.26) and considering y equal to 0, as

previously discussed:

σxy|x=L/2 = −1.323 · 102 kN/m2 (5.29)

5.3.2 Classical theory results

The classical beam theories are used in this section in order to evaluate the deflection

at the free edge of the beam shown in Figure 5.6. In particular, the principle of virtual

work is considered, because it represents one of the possible integral forms to be used for

studying a beam in Euler-Bernoulli hypotheses or Timoshenko hypotheses. Another value

of interest is the maximum shear stress and it is computed at half length of the beam by

means of the Jourawsky theory.

Euler-Bernoulli solution

Considering the Euler-Bernoulli hypotheses and the prismatic cantilever beam that is sub-

ject to a concentrated load P on the free edge, the principle of virtual work can be written

as follows:

v(x) =

∫ L

0

[

(L− x)
P (L− x)

EI

]

dx (5.30)

Where I represents the second moment of area, which varies along the beam longitudinal

axis for the current case (Figure 5.6). Considering the full expression of I and the cross-

section base equal to 1 m, Equation (5.30) can be written as follows below according to
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the expression of t(x) (4.25b):

v(x) =

∫ L

0

[

(L− x)
12P (L− x)

E(−(2Hx)/(L) + 4H)3

]

dx (5.31)

It can also be noticed that the first member of Equation (5.30) is the external work, whereas

the second term is the internal work. After solving the integral (5.30), the deflection v(x)

is found:

v(x) =
3PL3(−5 + Log(256))

16EH3
(5.32)

Then considering the mechanical properties (5.1) and the geometry (5.24), it is possible to

achieve the numerical result of the deflection at x = L.

v(L) = −6.542 · 10−3 m (5.33)

Timoshenko solution

Considering the Timoshenko hypotheses and the prismatic cantilever beam that is subject

to a concentrated load P on the free edge, the principle of virtual work can be written as

follows:

v(x) =

∫ L

0

[

(L− x)
P (L− x)

EI

]

dx+

∫ L

0

[

P

(5/6)GA(x)

]

dx (5.34)

Where I represents the second moment of area, A(x) is the cross-section area and G

represents the shear modulus. Considering the full expression of I and A(x) and assuming

the cross-section base equal to 1 m, Equation (5.34) can be written as follows below,

according to the expression of t(x) (4.25b):

v(x) =

∫ L

0

[

(L− x)
12P (L− x)

E(−(2Hx)/(L) + 4H)3

]

dx+

∫ L

0

[

P

(5/6)G(−(2Hx)/(L) + 4H)

]

dx

(5.35)

It can also be noticed that the first member of Equation (5.34) is the external work, whereas

the second term, is the internal work. After solving the integral (5.34), the deflection v(x)

is found:

v(x) =
3PL3(−5 + Log(256))

16EH3
+

3PLLog(2)

5GH
(5.36)
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Then, considering the mechanical properties (5.1) and the geometry (5.24), it is possible

to achieve the numerical result of the deflection at x = L.

v(L) = −6.585 · 10−3 m (5.37)

Jourawsky solution

The well-known Jourawsky formula is used to find an approximate solution of the shear

stress. Considering the tapered beam, shown in Figure 5.6, the Jourawsky formula is

written as follows:

σxy =
12P (1/2)((−(Hx)/(L) + 2H)− y)((−(Hx)/(L) + 2H) + y)

(−(2Hx)/(L) + 4H)3
(5.38)

Since the value to be evaluated is the maximum shear stress along the cross-section, in

order to calculate max(σxy|x=L/2), y is assumed equal to zero, then the mechanical property

values (5.1) and the geometry (5.24) are substituted in Equation (5.38). By doing this, the

maximum shear stress at half length of the beam is obtained:

max(σxy|x=L/2) = −2.000 · 102 kN/m2 (5.39)

5.3.3 FEM results

The finite element analysis is performed by using the software Abaqus. Focusing on the

modelling, the same procedure illustrated for the prismatic beam (for more details see

Paragraph 5.2.3) is followed. First of all it is necessary to define the geometry of the beam,

noticing that four points only are capable alone of describing the linearly tapered beam

(see Figure 5.6). Then, connecting them by two oblique lines and two vertical lines, the

beam is generated. After that, it is important to define the mechanical properties (see the

two values introduced in (5.1)), and to enforce the boundary conditions, emphasizing that

on the left end there is a fixed support and on the right end a concentrated load. Lastly,

an appropriate quadrangular mesh must be generated according to the dimension of the

beam. In the case under investigation, since the maximum beam height is equal to 1 m,

the "Approximate global size" is chosen equal to 0.05 m. The rightness of this choice is

mainly proven by an accurate convergence analysis, performed by using different values of

the "Approximate global size" which are smaller and smaller.

The model is now ready to be analysed. The deflection on the right edge is the first

value of interest. Therefore, choosing "U" and "U2" from the model tree, the variation of
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the deflection along the beam longitudinal axis is shown (Figure 5.7).
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Step: Step−1
Increment      1: Step Time =    1.000
Primary Var: U, U2
Deformed Var: U   Deformation Scale Factor: +1.522e+02

ODB: Job−1.odb    Abaqus/Standard 6.11−1    Wed Apr 16 08:26:49 ora legale Europa occidentale 2014
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Figure 5.7: Results of "U2" obtained by using the software Abaqus for the can-
tilever linearly tapered symmetric beam with a concentrated load on the free edge

(Avg: 75%)
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Figure 5.8: Results of "S12" obtained by using the software Abaqus for the can-
tilever linearly tapered symmetric beam with a concentrated load at the free edge

By doing this, it is possible to read the deflection at the right end:

v(L) = −6.570 · 10−3 m (5.40)
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The same procedure is followed to evaluate the maximum shear stress at half length of

the beam. Therefore, choosing "S" and "S12" from the model tree, Figure 5.8 is obtained

which shows how the shear stress varies along the beam longitudinal axis. In order to find

the value of interest, a "path" is created along the said cross-section. The resulting shear

distribution is symmetric with respect to the beam axis and parabolic. The maximum is

in correspondence of half cross-section and it results equal to:

max(σxy|x=L/2) = −1.334 · 102 kN/m2 (5.41)

5.3.4 Comparison of the results

Figure 5.9 plots how the deflection v(x) varies along the beam axis, considering the solution

obtained by the developed analytical model (AN), the finite element method (FE) and the

two classical beam theories of Euler-Bernoulli (EB) and Timoshenko (T). The four curves

are almost coincident, showing a high degree of matching among the adopted methods.

Also, in Table 5.2 the analytical result is very similar to the Timoshenko solution, but not

coincident. The main reason is that the developed model computes and naturally considers

the correct shear factor (as previously discussed in Chapter 4). On the other hand, in the

expression of the principle of virtual work, used to evaluate the deflection, the shear factor

is always equal to 5/6 even if a tapered beam is investigated. This aspect represents a

great advantage of the analytical model.

Figure 5.10 illustrates the shear stress profile at half length of the beam for each method.

For the beam under investigation there is a clear mismatch between the Jourawsky solution

(J) and the other two solutions (FE and AN). The Jourawsky theory is based on simple

assumptions, certainly not suitable to calculate the shear stresses on tapered beams. When

the beam is tapered, in fact, the stress values on the upper and lower cross-section borders

are different from zero even if zero traction is considered on both of them (as Figure 5.10

shows for AN and FE solutions). The Jourawsky solution, instead, imposes that the shear

stress be zero on the cross-section limits.

Figure 5.11 focuses on the analytical and the finite element solutions. It is possible to

notice that the shear stress distribution, provided by the developed model, is almost con-

stant and represents an average of the numerical distribution. Nevertheless, the mismatch

between the two solutions is acceptable because the numerical solution is very similar to

the analytical one.
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Table 5.2: List of the deflection results at x = L and of the maximum shear stress
results at x = L/2. ev and eσ are the percentage errors with respect to the finite
element solution.

LINEARLY TAPERED SYMMETRIC BEAM

MODELS v(x)[m] max(σxy|x=L/2)[kN/m
2] ev[%] eσ[%]

EULER-BERNOULLI −6.542 · 10−3 − 4.295 · 10−1 −
TIMOSHENKO −6.585 · 10−3 − 2.288 · 10−1 −
JOURAWSKY − −2.000 · 102 − 4.993 · 101

ANALYTICAL −6.577 · 10−3 −1.333 · 102 1.012 · 10−1 4.648 · 10−2

FE (reference solution) −6.570 · 10−3 −1.334 · 102 0 0
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Figure 5.9: Deflection results for the linearly tapered symmetric beam. The ab-
scissa x and the ordinate v(x) represent the beam axis and the deflection. The
adopted unit of measurement, for both axes, is m. The labels FE, EB, T and AN
indicate the finite element, the Euler- Bernoulli, the Timoshenko and the analytical
solution, respectively.
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Figure 5.10: Shear stress results for the linearly tapered symmetric beam. The
abscissa y indicates the axis along the beam thickness, using m as unit of mea-
surement and the ordinate σxy|x=L/2 indicates the shear stress at x = L/2, using
kN/m2 as unit of measurement. The labels FE, J and AN represent the finite
element, the Jourawsky and the analytical solution, respectively.

æ

æ
æ

æ

æ

æ
æ æ æ

æ

æ

æ
æ

æ

æ

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
-133.60

-133.55

-133.50

-133.45

-133.40

-133.35

-133.30

-133.25

y

Σ
xy

x=
L
�2

AN

FE

Figure 5.11: Shear stress results for the linearly tapered symmetric beam. The
abscissa y indicates the axis along the beam thickness, using m as unit of mea-
surement and the ordinate σxy|x=L/2 indicates the shear stress at x = L/2, using
kN/m2 as unit of measurement. The labels FE and AN represent the finite element
and the analytical solution, respectively.
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5.4 Linearly tapered non-symmetric beam

The following geometry dimensions are assumed in order to evaluate the numerical solution

of the problem shown in Figure (Figure 5.12):

H = 0.25 m

L = 10 m

A(L) = 0.5 m2

(5.42)

Where the beam cross-section is assumed rectangular with a base equal to 1 m.

y

O x

4H

L

2H

P

Figure 5.12: Cantilever linearly tapered non-symmetric beam

5.4.1 Mathematica results

The analysed beam presents a complex geometry with respect to the prismatic beam.

Therefore, by using the command DSolve, it is not possible to obtain the analytical solution

of the mixed ODEs and of the displacement ODEs. However, it is possible to proceed

numerically with the command NDSolve.

Numerical solution for the mixed ODEs

Considering the system of the six ODEs (4.32) and the boundary conditions (5.2) previously

introduced, the problem shown in Figure 5.12 is numerically solved for the variables θ(x),

u(x), v(x), σxo(x), σx1(x) and τ(x) by using the command NDsolve. The values of the

mechanical properties and the geometry dimensions to be used are indicated in equation
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(5.1) and (5.42), respectively. Focusing on the deflection v(x), this can be estimated at the

right edge of the beam:

v(L) = −6.586 · 10−3 m (5.43)

Another value of interest to be computed in order to make a comparison with the other

results is the maximum value of the shear stress at half length of the beam. It is important

to notice that the expression of shear stress σxy (see Equation 4.12c) is function of x and

y. As a consequence, it is necessary to solve max(σxy|x=L/2) with respect to y. By doing

this, the maximum of the shear stress within the considered cross-section, is registered at

the lower border. Therefore, substituting the values of τ(L/2), σx0(L/2) and σx1(L/2),

numerically found by using the command NDSolve, and the expressions of c(x) and t(x)

(see Equation 4.30a and 4.30b) in Equation (4.12c), the following maximum value of the

shear stress at x = L/2 is obtained:

max(σxy|x=L/2) = −2.667 · 102 kN/m2 (5.44)

Numerical solution for the displacement ODEs

Considering the system of the three ODEs, whose full verbalization has been omitted

in Chapter 4 due to the excessive length, and the boundary conditions (5.3) previously

introduced, the problem shown in Figure 5.12 is numerically solved for the variables θ(x),

u(x) and v(x) and their derivatives, by using the command NDsolve. Therefore, at x = L,

the deflection v(x) results equal to:

v(L) = −6.591 · 10−3 m (5.45)

Now, in order to calculate the maximum shear stress, at x = L/2, it is necessary to

substitute the values of v′(L/2), θ(L/2) and θ′(L/2), numerically obtained by the command

NDSolve, in the expression of τ(x), σx0(x) and σx1(x) obtained by using the static conden-

sation method, but omitted in Chapter 4 due to their length. Once τ(L/2), σx0(L/2) and

σx1(L/2) are known, the maximum value of shear stress at half length of the beam can

be recovered through Equation (4.12c) and considering y equal to −0.5 m, as previously

discussed:

max(σxy|x=L/2) = −2.668 · 102 kN/m2 (5.46)
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5.4.2 Classical theory results

The classical beam theories are used in this section in order to evaluate the deflection

at the free edge of the beam shown in Figure 5.12. In particular the principle of virtual

work is considered, because it represents one of the possible integral forms to be used for

studying a beam in Euler-Bernoulli hypotheses or Timoshenko hypotheses. Another value

of interest is the maximum shear stress and it is computed at half length of the beam by

means of the Jourawsky theory.

Euler-Bernoulli solution

Considering the Euler-Bernoulli hypotheses and the prismatic cantilever beam that is sub-

ject to a concentrated load P on the free edge, the principle of virtual work can be written

as follows:

v(x) =

∫ L

0

[

(L− x)
P (L− x)

EI

]

dx (5.47)

Where I represents the second moment of area which varies along the beam longitudinal

axis for the current case (Figure 5.12). Considering the full expression of I and the cross-

section base equal to 1 m, Equation (5.47) can be written as follows below, according to

the expression of t(x) (4.25b):

v(x) =

∫ L

0

[

(L− x)
12P (L− x)

E(−(2Hx)/(L) + 4H)3

]

dx (5.48)

It can also be noticed that the first member of Equation (5.47) is the external work, whereas

the second term is the internal work. After solving the integral (5.47), the deflection v(x)

is found:

v(x) =
3PL3(−5 + Log(256))

16EH3
(5.49)

Then, considering the mechanical properties (5.1) and the geometry (5.42), it is possible

to achieve the numerical result of the deflection at x = L.

v(L) = −6.542 · 10−3 m (5.50)

Timoshenko solution

Considering the Timoshenko hypotheses and the prismatic cantilever beam that is subject

to a concentrated load P on the free edge, the principle of virtual work can be written as
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follows:

v(x) =

∫ L

0

[

(L− x)
P (L− x)

EI

]

dx+

∫ L

0

[

P

(5/6)GA(x)

]

dx (5.51)

Where I represents the second moment of area, A(x) is the cross-section area and G

represents the shear modulus. Considering the full expression of I and A(x) and assuming

the cross-section base equal to 1 m, Equation (5.51) can be written as follows below,

according to the expression of t(x) (4.30b):

v(x) =

∫ L

0

[

(L− x)
12P (L− x)

E(−(2Hx)/(L) + 4H)3

]

dx+

∫ L

0

[

P

(5/6)G(−(2Hx)/(L) + 4H)

]

dx

(5.52)

It can also be noticed that the first member of Equation (5.51) is the external work, whereas

the second term is the internal work. After solving the integral (5.51), the deflection v(x)

is found:

v(x) =
3PL3(−5 + Log(256))

16EH3
+

3PLLog(2)

5GH
(5.53)

Then, considering the mechanical properties (5.1) and the geometry (5.42), it is possible

to achieve the numerical result of the deflection at x = L.

v(L) = −6.585 · 10−3 m (5.54)

Jourawsky solution

The well-known Jourawsky formula is used to find an approximate solution of the shear

stress. Considering the tapered beam, shown in Figure 5.12, the Jourawsky formula is

written as follows:

σxy =
12P (1/2)((−(Hx)/(L) + 2H)− y)((−(Hx)/(L) + 2H) + y)

(−(2Hx)/(L) + 4H)3
(5.55)

Since the value to be evaluate is the maximum shear stress within the cross-section height,

y is assumed equal to 0, then the mechanical property values (5.1) and the geometry (5.42)

are substituted in (5.55). By doing this, the maximum shear stress at half length of the

beam is obtained:

max(σxy|x=L/2) = −2.000 · 102 kN/m2 (5.56)

In this section it can be noticed that the same result, obtained for a linearly tapered

symmetric beam, arises. This aspect represents a well-known limitation of Jourawsky
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theory. In fact, for the case under investigation, the maximum of the shear stress within

the considered cross-section is at y = −0.5 m and not at y = 0. Therefore this theory

is not able to approximate the shear stress distribution for a non-symmetric beam and,

in other words, to distinguish the shear stress result between a symmetric beam and a

non-symmetric one.

5.4.3 FEM results

The finite element analysis is performed by using the software Abaqus. Focusing on the

modelling, the same procedure illustrated for the prismatic beam (for more details see

Paragraph 5.2.3) is followed. First of all it is necessary to define the geometry of the

beam, noticing that four points only are capable alone of describing the linearly tapered

beam (see Figure 5.12). Then, connecting them by one horizontal line, one oblique line

and two vertical lines, the beam is generated. After that, it is important to define the

mechanical properties (see the two values introduced in (5.1)), and to enforce the boundary

conditions, emphasizing that on the left end there is a fixed support and on the right end a

concentrated load. Lastly, an appropriate quadrangular mesh must be generated according

to the dimension of the beam. In the case under investigation, since the maximum beam

height is equal to 1 m, the "Approximate global size" is chosen equal to 0.05 m. The

rightness of this choice is mainly proven by an accurate convergence analysis, performed

by using different values of the "Approximate global size" which are smaller and smaller.

The model is now ready to be analysed. The deflection on the right edge is the first

value of interest. Therefore, choosing "U" and "U2" from the model tree, the variation of

the deflection along the beam longitudinal axis is shown (Figure 5.13).

By doing this, it is possible to read the deflection at the right end:

v(L) = −6.578 · 10−3 m (5.57)

The same procedure is followed to evaluate the maximum shear stress at half length of

the beam. Therefore, choosing "S" and "S12" from the model tree, Figure 5.14 is obtained

which shows how the shear stress varies along the beam longitudinal axis. In order to

find the value of interest, a "path" is created along the said cross-section. The resulting

shear distribution is non-symmetric with respect to the beam axis. The maximum is in
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Figure 5.13: Results of "U2" obtained by using the software Abaqus for the can-
tilever linearly tapered non-symmetric beam with a concentrated load on the right
edge
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Figure 5.14: Results of "S12" obtained by using the software Abaqus for the can-
tilever linearly tapered non-symmetric beam with a concentrated load on the right
edge
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correspondence of the lower border and it results equal to:

max(σxy|x=L/2) = −2.668 · 102 kN/m2 (5.58)

5.4.4 Comparison of the results

Figure 5.15 shows how the deflection v(x) varies along the beam axis. Even though the

four curves are almost coincident, the comparison among the deflection results in Table 5.2

and Table 5.3 clearly proves that the classical beam theories are unable to distinguish the

case of a tapered symmetric beam from the case of a tapered non-symmetric beam.

Figure 5.16 illustrates the shear stress profile at half length of the beam. A high degree

of matching between the analytical solution (AN) and finite element solution (FE) arises

from the comparison. On the other hand, there is a mismatch between the Jourawsky

solution (J) and the other two solutions (AN and FE). It is important to restate that the

Jourawsky theory is not suitable to calculate the shear stresses of beams with a variable

cross-section, and besides, non-symmetric with respect of their axis.

Table 5.3: List of the deflection results at x = L and of the maximum shear stress
results at x = L/2. ev and eσ are the percentage errors with respect to the finite
element solution.

LINEARLY TAPERED NON-SYMMETRIC BEAM

MODELS v(x)[m] max(σxy|x=L/2)[kN/m
2] ev[%] eσ[%]

EULER-BERNOULLI −6.542 · 10−3 − 5.512 · 10−1 −
TIMOSHENKO −6.585 · 10−3 − 1.063 · 10−1 −
JOURAWSKY − −2.000 · 102 − 2.503 · 101

ANALYTICAL −6.586 · 10−3 −2.667 · 102 1.157 · 10−1 2.661 · 10−2

FE (reference solution) −6.578 · 10−3 −2.668 · 102 0 0
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Figure 5.15: Deflection results for the linearly tapered non-symmetric beam. The
abscissa x and the ordinate v(x) represent the beam axis and the deflection. The
adopted unit of measurement, for both axes, is m. The labels FE, EB, T and AN
indicate the finite element, the Euler- Bernoulli, the Timoshenko and the analytical
solution, respectively.
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Figure 5.16: Shear stress results for the linearly tapered non-symmetric beam.
The abscissa y indicates the axis along the beam thickness, using m as unit of
measurement and the ordinate σxy|x=L/2 indicates the shear stress at x = L/2,
using kN/m2 as unit of measurement. The labels FE, J and AN represent the
finite element, the Jourawsky and the analytical solution, respectively.
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5.5 Curvilinearly tapered symmetric beam

The following geometry dimensions are assumed in order to evaluate the numerical solution

of the problem shown in Figure 5.17:

H = 0.25 m

L = 10 m

A(L) = 0.1 m2

(5.59)

Where the beam cross-section is assumed rectangular with a base equal to 1 m.

xO

L
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Figure 5.17: Cantilever curvilinearly tapered symmetric beam

5.5.1 Mathematica results

The analysed beam presents a very complex geometry with respect to the prismatic beam

and the linearly tapered beams. Moreover, as shown in Paragraph 4.9, the system of the

displacement ODEs is excessively long. As a consequence, the system of mixed ODEs only

can numerically be solved by the command NDSolve.

Numerical solution for the mixed ODEs

Considering the system of the six ODEs (see Appendix A and Equation A.3) and the

boundary conditions (5.2) previously introduced, the problem shown in Figure 5.17 is nu-

merically solved for the variables θ(x), u(x), v(x), σxo(x), σx1(x) and τ(x) by using the
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command NDsolve. The values of the mechanical properties and the geometry dimen-

sions to be used are indicated in Equation (5.1) and (5.59), respectively. Focusing on the

deflection v(x), this can be estimated at the right edge of the beam:

v(L) = −7.857 · 10−3 m (5.60)

Another value of interest to be computed in order to make a comparison with the other

results is the maximum value of the shear stress at half length of the beam. It is important

to notice that the expression of shear stress σxy (see Equation 4.12c) is function of x and

y. As a consequence, it is necessary to solve the maximum problem, max(σxy|x=L/2), with

respect to y. By doing this, the maximum value of the shear stress within the considered

cross-section is registered at y = 0. Therefore, substituting the values of τ(L/2), σx0(L/2)

and σx1(L/2), numerically found by using the command NDSolve, and the expressions of

c(x) and t(x) (see Equation 4.33a and 4.33b) in Equation (4.12c), the following maximum

value of the shear stress at x = L/2 is obtained:

max(σxy|x=L/2) = −1.076 · 102 kN/m2 (5.61)

5.5.2 Classical theory results

The classical beam theories are used in this section in order to evaluate the deflection

at the free edge of the beam shown in Figure 5.17. In particular the principle of virtual

work is considered, because it represents one of the possible integral forms to be used for

studying a beam in Euler-Bernoulli hypotheses or Timoshenko hypotheses. Another value

of interest is the maximum shear stress and it is computed at half length of the beam by

means of the Jourawsky theory.

Euler-Bernoulli solution

Considering the Euler-Bernoulli hypotheses and the prismatic cantilever beam that is sub-

ject to a concentrated load P on the free edge, the principle of virtual work can be written

as follows:

v(x) =

∫ L

0

[

(L− x)
P (L− x)

EI

]

dx (5.62)

Where I represents the second moment of area which varies along the beam longitudinal

axis for the current case (Figure 5.17). Considering the full expression of I and the cross-

section base equal to 1 m, Equation (5.62) can be written as follows below, according to
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the expression of t(x) (4.33b):

v(x) =

∫ L

0






(L− x)

12P (L− x)

E
(

4
√

H2 (1− (100x)/(101L))
)3






dx (5.63)

It can also be noticed that the first member of Equation (5.62) is the external work, whereas

the second term is the internal work. After solving the integral (5.62), the deflection v(x)

is found:

v(x) =
101(1199 +

√
101)PL3

1000000EH3
(5.64)

Then, cosidering the mechanical properties (5.1) and the geometry (5.59), it is possible to

achieve the numerical result of the deflection at x = L.

v(L) = −7.815 · 10−3 m (5.65)

Timoshenko solution

Considering the Timoshenko hypotheses and the prismatic cantilever beam that is subject

to a concentrated load P on the free edge, the principle of virtual work can be written as

follows:

v(x) =

∫ L

0

[

(L− x)
P (L− x)

EI

]

dx+

∫ L

0

[

P

(5/6)GA(x)

]

dx (5.66)

Where I represents the second moment of area, A(x) is the cross-section area and G

represents the shear modulus. Considering the full expression of I and A(x) and assuming

the cross-section base equal to 1 m, Equation (5.66) can be written as follows below,

according to the expression of t(x) (4.33b):

v(x) =

∫ L

0






(L− x)

12P (L− x)

E
(

4
√

H2 (1− (100x)/(101L))
)3






dx+

+

∫ L

0





P

(5/6)G
(

4
√

H2 (1− (100x)/(101L))
)



 dx

(5.67)

It can also be noticed that the first member of Equation (5.66) is the external work, whereas

the second term is the internal work. After solving the integral (5.66), the deflection v(x)
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is found:

v(x) =
101(1199 +

√
101)PL3

1000000EH3
+

3PL(−101 +
√
101)

500GH
(5.68)

Then, considering the mechanical properties (5.1) and the geometry (5.59), it is possible

to achieve the numerical result of the deflection at x = L.

v(L) = −7.872 · 10−3 m (5.69)

Jourawsky solution

The well-known Jourawsky formula is used to find an approximate solution of the shear

stress. Considering the tapered beam, shown in Figure 5.17, the Jourawsky formula is

written as follows:

σxy =
12P

[(

2
√

H2 (1− (100x)/(101L))
)

− y
] [(

2
√

H2 (1− (100x)/(101L))
)

+ y
]

2
(

4
√

H2 (1− (100x)/(101L))
)3

(5.70)

Since the value to be evaluate is the maximum shear stress within the cross-section height,

y is assumed equal to 0, then the mechanical property values (5.1) and the geometry (5.59)

are substituted in (5.70). By doing this, the maximum shear stress at half length of the

beam is obtained:

max(σxy|x=L/2) = −2.111 · 102 kN/m2 (5.71)

5.5.3 FEM results

The finite element analysis is performed by using the software Abaqus. Focusing on the

modelling, the same procedure illustrated for the prismatic beam (see Paragraph 5.2.3) is

followed. First of all it is necessary to define the geometry of the beam noticing that two

vertical lines and one spline are necessary to describe the curvilinearly tapered beam shown

in Figure 5.17. More in details, the spline is generated through fifteen points, considering

a beam length equal to 10.1 m. Then, by means the command "Auto-Trim", the spline is

cutted at x = 10 m and it is now possible to connect the upper and lower borders with two

vertical lines. The second step of the modelling concerns the definitions of the mechanical

properties (see the two values introduced in (5.1)), and the enforcement of the boundary

conditions, emphasizing that on the left end there is a fixed support and on the right end a

concentrated load. Lastly, an appropriate quadrangular mesh must be generated according

to the dimension of the beam. In the case under investigation, since the maximum beam
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height is equal to 1 m, the "Approximate global size" is chosen equal to 0.05 m. The

rightness of this choice is mainly proven by an accurate convergence analysis, performed

by using different values of the "Approximate global size" which are smaller and smaller.

The model is now ready to be analysed. The deflection on the right edge is the first
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+2.140e−07

Step: Step−1
Increment      1: Step Time =    1.000
Primary Var: U, U2
Deformed Var: U   Deformation Scale Factor: +1.267e+02

ODB: Job−1.odb    Abaqus/Standard 6.11−1    Wed Apr 16 08:36:41 ora legale Europa occidentale 2014
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Figure 5.18: Results of "U2" obtained by using the software Abaqus for the can-
tilever curvilinearly tapered symmetric beam with a concentrated load on the right
edge
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Figure 5.19: Results of "S12" obtained by using the software Abaqus for the can-
tilever curvilinearly tapered symmetric beam with a concentrated load on the right
edge
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value of interest. Therefore, choosing "U" and "U2" from the model tree, the variation of

the deflection along the beam longitudinal axis is shown (Figure 5.18). By doing this, it is

possible to read the deflection at the right end:

v(L) = −7.891 · 10−3 m (5.72)

The same procedure is followed to evaluate the maximum shear stress at half length

of the beam. Therefore, choosing "S" and "S12" from the model tree, Figure 5.19 is

obtained which shows how the shear stress varies along the beam longitudinal axis. In

order to find the value of interest, a "path" is created along the said cross-section. The

resulting shear distribution is symmetric with respect to the beam axis. The maximum is

in correspondence of half cross-section and it results equal to:

max(σxy|x=L/2) = −1.085 · 102 kN/m2 (5.73)

5.5.4 Comparison of the results

As shown in Figure 5.20, the four curves are almost coincident and the deflection results,

at the right end of the beam, are very similar (see Table 5.4). Therefore, the considered

methods in the matter of the deflection match. On the other hand, as expected, an evident

mismatch arises between the Jourawsky solution and the shear stress distributions provided

by the developed model and the finite element analysis (see Figure 5.21).

Table 5.4: List of the deflection results at x = L and of the maximum shear stress
results at x = L/2. ev and eσ are the percentage errors with respect to the finite
element solution.

CURVILINEARLY TAPERED SYMMETRIC BEAM

MODELS v(x)[m] max(σxy|x=L/2)[kN/m
2] ev[%] eσ[%]

EULER-BERNOULLI −7.815 · 10−3 − 9.631 · 10−1 −
TIMOSHENKO −7.872 · 10−3 − 2.407 · 10−1 −
JOURAWSKY − −2.111 · 102 − 9.440 · 101

ANALYTICAL −7.857 · 10−3 −1.076 · 102 4.309 · 10−1 8.605 · 10−1

FE (reference solution) −7.891 · 10−3 −1.085 · 102 0 0
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Figure 5.20: Deflection results for the curvilinearly tapered non-symmetric beam.
The abscissa x and the ordinate v(x) represent the beam axis and the deflection.
The adopted unit of measurement, for both axes, is m. The labels FE, EB, T
and AN indicate the finite element, the Euler- Bernoulli, the Timoshenko and the
analytical solution, respectively.
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Figure 5.21: Shear stress results for the curvilinearly tapered non-symmetric beam.
The abscissa y indicates the axis along the beam thickness, using m as unit of
measurement and the ordinate σxy|x=L/2 indicates the shear stress at x = L/2,
using kN/m2 as unit of measurement. The labels FE, J and AN represent the
finite element, the Jourawsky and the analytical solution, respectively.
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5.6 Curvilinearly tapered non-symmetric beam

The following geometry dimensions are assumed in order to evaluate the numerical solution

of the problem shown in Figure 5.22:

H = 0.25 m

L = 10 m

A(L) = 0.5 m2

(5.74)

Where the beam cross-section is assumed rectangular with a base equal to 1 m.

xO

L

2H

4H

y
P

Figure 5.22: Cantilever curvilinear tapered beam

5.6.1 Mathematica results

The analysed beam presents a complex geometry with respect to the prismatic beam.

Therefore, by using the command DSolve, it is not possible to obtain the analytical solution

of the mixed ODEs and of the displacement ODEs. However, it is possible to proceed

numerically with the command NDSolve.

Numerical solution for the mixed ODEs

Considering the system of the six ODEs (see appendix A and equation A.2) and the bound-

ary conditions (5.2) previously introduced, the problem shown in Figure 5.22 is numerically

solved for the variables θ(x), u(x), v(x), σxo(x), σx1(x) and τ(x) by using the command
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NDsolve. The values of the mechanical properties and the geometry dimensions to be used

are indicated in equation (5.1) and (5.74), respectively. Focusing on the deflection v(x),

this can be estimated at the right edge of the beam:

v(L) = −9.488 · 10−3 m (5.75)

Another value of interest to be computed in order to make a comparison with the

other results is the maximum value of the shear stress at half length of the beam. It is

important to notice that the expression of shear stress σxy (see equation 4.12c) is function of

x and y. As a consequence, it is necessary to solve the maximum problem max(σxy|x=L/2)

with respect to y. By doing this, the maximum value of the shear stress within the

considered cross-section is registered at the lower border. Therefore, substituting the values

of τ(L/2), σx0(L/2) and σx1(L/2), numerically found by using the command NDSolve, and

the expressions of c(x) and t(x) (see Equation 4.34a and 4.34b) in equation (4.12c), the

following maximum value of the shear stress at x = L/2 is obtained:

max(σxy|x=L/2) = −3.840 · 102 kN/m2 (5.76)

Numerical solution for the displacement ODEs

Considering the system of the three ODEs, whose full verbalization has been omitted

in Chapter 4 due to the excessive length, and the boundary conditions (5.3) previously

introduced, the problem shown in Figure 5.22 is numerically solved for the variables θ(x),

u(x) and v(x) and their derivatives, by using the command NDsolve. Therefore, at x = L,

the deflection v(x) results equal to:

v(L) = −9.497 · 10−3 m (5.77)

Now, in order to calculate the maximum shear stress, at x = L/2, it is necessary to

substitute the values of v′(L/2), θ(L/2) and θ′(L/2), numerically obtained by the command

NDSolve, in the expression of τ(x), σx0(x) and σx1(x) obtained by using the static conden-

sation method, but omitted in Chapter 4 due to their length. Once τ(L/2), σx0(L/2) and

σx1(L/2) are known, the maximum value of shear stress at half length of the beam can be

recovered through Equation (4.12c) and considering y equal to −0.375 m, as previously

discussed:

σxy|x=L/2 = −3.838 · 102 kN/m2 (5.78)
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5.6.2 Classical theory results

The classical beam theories are used in this section in order to evaluate the deflection

at the free edge of the beam shown in Figure 5.22. In particular the principle of virtual

work is considered, because it represents one of the possible integral forms to be used for

studying a beam in Euler-Bernoulli hypotheses or Timoshenko hypotheses. Another value

of interest is the maximum shear stress and it is computed at half length of the beam by

means of the Jourawsky theory.

Euler-Bernoulli solution

Considering the Euler-Bernoulli hypotheses and the prismatic cantilever beam that is sub-

ject to a concentrated load on the free edge P , the principle of virtual work can be written

as follows:

v(x) =

∫ L

0

[

(L− x)
P (L− x)

EI

]

dx (5.79)

Where I represents the second moment of area which varies along the beam longitudinal

axis for the current case (Figure 5.22). Considering the full expression of I and the cross-

section base equal to 1 m, the equation (5.79) can be written as follows below, according

to the expression of t(x) (4.34b):

v(x) =

∫ L

0

[

(L− x)
12P (L− x)

E (H + 2Hx2/L2 − 4Hx/L+ 3H)3

]

dx (5.80)

It can also be noticed that the first member of the equation (5.79) is the external work,

whereas the second term is the internal work. After solving the integral (5.79), the deflec-

tion v(x) is found:

v(x) =
3πPL3

64EH3
(5.81)

Then, considering the mechanical properties (5.1) and the geometry (5.74), it is possible

to achieve the numerical result of the deflection at x = L.

v(L) = −9.425 · 10−3 m (5.82)

Timoshenko solution

Considering the Timoshenko hypotheses and the prismatic cantilever beam that is subject

to a concentrated load on the free edge P , the principle of virtual work can be written as
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follows:

v(x) =

∫ L

0

[

(L− x)
P (L− x)

EI

]

dx+

∫ L

0

[

P

(5/6)GA(x)

]

dx (5.83)

Where I represents the second moment of area, A(x) is the cross-section area and G

represents the shear modulus. Considering the full expression of I and A(x) and assuming

the cross-section base equal to 1 m, the equation (5.83) can be written as follows below,

according to the expression of t(x) (4.34b):

v(x) =

∫ L

0

[

(L− x)
12P (L− x)

E (H + 2Hx2/L2 − 4Hx/L+ 3H)3

]

dx+

+

∫ L

0

[

P

(5/6)G (H + 2Hx2/L2 − 4Hx/L+ 3H)

]

dx

(5.84)

It can also be noticed that the first member of the equation (5.83) is the external work,

whereas the second term is the internal work. After solving the integral (5.83), the deflec-

tion v(x) is found:

v(x) =
3πPL3

64EH3
+

3PLπ

20GH
(5.85)

Then, considering the mechanical properties (5.1) and the geometry (5.74), it is possible

to achieve the numerical result of the deflection at x = L.

v(L) = −9.474 · 10−3 m (5.86)

Jourawsky solution

The well-known Jourawsky formula is used to find an approximate solution of the shear

stress. Considering the tapered beam, shown in Figure 5.22, the Jourawsky formula is

written as follows:

σxy =
12P [(H + 2Hx2/L2 − 4Hx/L+ 3H) /2− y] [(H + 2Hx2/L2 − 4Hx/L+ 3H) /2 + y]

2 (H + 2Hx2/L2 − 4Hx/L+ 3H)3

(5.87)

Since the value to be evaluate is the maximum shear stress along the cross-section, y is

assumed equal to 0, then the mechanical property values (5.1) and the geometry (5.74) are

substituted in (5.87). By doing this, the maximum shear stress at half lenght of the beam

is obtained:

max(σxy|x=L/2) = −2.400 · 102 kN/m2 (5.88)
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In this section it can clearly be noticed a well-known limitation of Jourawsky theory. In

fact, for the case under investigation, the maximum of the shear stress along the considered

cross-section is at the lower border and not at half cross-section. Therefore, as expected,

this theory is not able to approximate the shear stress distribution for a non-symmetric

beam.

5.6.3 FEM results

The finite element analysis is performed by using the software Abaqus. Focusing on the

modelling, the same procedure illustrated for the prismatic beam (see Paragraph 5.2.3)

is followed. First of all it is necessary to define the geometry of the beam noticing that

two vertical lines, one horizontal line and one spline are necessary to describe the curvilin-

early tapered beam shown in Figure 5.22. The second step of the modelling concerns the

definitions of the mechanical properties (see the two values introduced in (5.1)), and the

enforcement of the boundary conditions, emphasizing that on the left end there is a fixed

support and on the right end a concentrated load. Lastly, an appropriate quadrangular

mesh must be generated according to the dimension of the beam. In the case under inves-

tigation, since the maximum beam height is equal to 1 m, the "Approximate global size"

is chosen equal to 0.05 m. The rightness of this choice is mainly proven by an accurate

convergence analysis, performed by using different values of the "Approximate global size"

which are smaller and smaller.

The model is now ready to be analysed. The deflection on the right edge is the first

value of interest. Therefore, choosing "U" and "U2" from the model tree, the variation of

the deflection along the beam longitudinal axis is shown (Figure 5.23).

By doing this, it is possible to read the deflection at the right end:

v(L) = −9.298 · 10−3 m (5.89)

The same procedure is followed to evaluate the maximum shear stress at half length of

the beam. Therefore, choosing "S" and "S12" from the model tree, Figure 5.24 is obtained

which shows how the shear stress varies along the beam longitudinal axis. In order to

find the value of interest, a "path" is created along the said cross-section. The resulting

shear distribution is non-symmetric with respect to the beam axis. The maximum is in
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Figure 5.23: Results of "U2" obtained by using the software Abaqus "U2" for the
cantilever curvilinearly tapered non-symmetric beam with a concentrated load on
the right edge
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Figure 5.24: Results of "S12" obtained by using the software Abaqus for the can-
tilever curvilinearly tapered non-symmetric beam with a concentrated load on the
right edge
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correspondence of the lower border and it results equal to:

max(σxy|x=L/2) = −3.850 · 102 kN/m2 (5.90)

5.6.4 Comparison of the results

As shown in Figure 5.25, the four curves are almost coincident. Moreover, in Table 5.5,

it is possible to notice that the deflection results, at the right end of the beam, are very

similar, especially the Timoshenko solution and the analytical result.

Figure 5.26 plots the shear stress profiles at half length of the beam. The shear stress

results provided by the analytical model and the finite element analysis match almost

perfectly. On the other hand, a mismatch arises between the latter and the Jourawsky

solution, as previously shown for the other cases.

Table 5.5: List of the deflection results at x = L and of the maximum shear stress
results at x = L/2. ev and eσ are the percentage errors with respect to the finite
element solution.

CURVILINEARLY TAPERED NON-SYMMETRIC BEAM

MODELS v(x)[m] max(σxy|x=L/2)[kN/m
2] ev[%] eσ [%]

EULER-BERNOULLI −9.425 · 10−3 − 1.359 · 100 −
TIMOSHENKO −9.474 · 10−3 − 1.886 · 100 −
JOURAWSKY − −2.400 · 102 − 3.766 · 101

ANALYTICAL −9.488 · 10−3 −3.840 · 102 2.038 · 100 2.556 · 10−1

FE (reference solution) −9.298 · 10−3 −3.850 · 102 0 0
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Figure 5.25: Deflection results for the curvilinearly tapered non-symmetric beam.
The abscissa x and the ordinate v(x) represent the beam axis and the deflection.
The adopted unit of measurement, for both axes, is m. The labels FE, EB, T
and AN indicate the finite element, the Euler- Bernoulli, the Timoshenko and the
analytical solution, respectively.
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Figure 5.26: Shear stress results for the curvilinearly tapered non-symmetric beam.
The abscissa y indicates the axis along the beam thickness, using m as unit of
measurement and the ordinate σxy|x=L/2 indicates the shear stress at x = L/2,
using kN/m2 as unit of measurement. The labels FE, J and AN represent the
finite element, the Jourawsky and the analytical solution, respectively.
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5.7 Conclusions on results

The developed analytical model provides results both in terms of deflections and stresses.

They are also very similar to the ones obtained with the finite element analysis.

As previously shown for each beam, even though the curves of the deflection are almost

coincident, the adopted classical beam models present two limitations with respect to the

model under investigation. The former is that they are unable to distinguish the case of

a symmetric beam from the case of a non-symmetric one. The latter is that the solution

evaluated by means of the Timoshenko theory does not consider the exact value of the

shear factor for the case of tapered beams. The developed model, instead, naturally takes

the correct value of shear factor into account (see Chapeter 4).

The validity of this work is made more explicit by the comparison of the shear stress

results. As expected, the Jourawsky theory is not suitable to evaluate the shear stress for

tapered beams. The main reason is that, in order to guarantee the equilibrium on the

upper and lower limits of the body, the shear stress must be different from zero on them.

Moreover, when the beam is non-symmetric with respect to the longitudinal axis, the shear

stress profile is non-symmetric too.

A further important observation about the prismatic beam is that the solution of the

mixed ODEs coincides with the solution of the displacement ODEs. On the other hand, for

the other analysed beams, there is a difference between the two solutions, albeit negligible.

As it is possible to notice in Equation (5.2) and (5.3), the boundary condition definition is

based on the simplified shear theory of Jourawsky. Nevertheless, the boundary conditions,

used in the developed model, have an acceptable accuracy, even if it is important to notice

that they are not exactly true for the study of a tapered beam.

In Figure 5.27 and 5.28, the errors with respect to the finite element solution are

plotted. Figure 5.27 shows that all errors, related to the developed model, are less than

2.5%, a percentage certainly acceptable in engineering practise. Furthermore, even though

the analytical model provides the worst result for the curvilinearly tapered non-symmetric

beam, the solution is not too different from the Timoshenko solution. The validity of the

model is made more explicit in Figure 5.28, where it is evident a high degree of matching

between the analytical results and the finite element solutions and a mismatch between

them and the Jourawsky results.
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Figure 5.27: Percentage error of the deflection results evaluated with respect to the
FE solution. The labels, FE, EB, T and AN, indicate the finite element, the Euler-
Bernoulli, the Timoshenko and the analytical solutions. The labels, PB, LTSB,
LTNSB, CTSB and CTNSB, indicate prismatic beam, linearly tapered symmetric
beam, linearly tapered non-symmetric beam, curvilinearly tapered symmetric beam
and curvilinearly tapered non-symmetric beam, respectively.
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Figure 5.28: Percentage error of the shear stress results evaluated with respect
to the FE solution. The labels, FE, J and AN, indicate the finite element, the
Jourawsky and the analytical solutions. The labels, PB, LTSB, LTNSB, CTSB
and CTNSB, indicate prismatic beam, linearly tapered symmetric beam, linearly
tapered non-symmetric beam, curvilinearly tapered symmetric beam and curvilin-
early tapered non-symmetric beam, respectively.



Chapter 6

Conclusions and further developments

The studies conducted in this thesis were particularly successful because they allowed the

modelling of beams with relatively complex geometries through simple kinematic assump-

tions, guaranteeing highly accurate results nonetheless.

The beam has been modelled as a 2D body made of a linear elastic isotropic mate-

rial. This is equivalent to imposing the plane stress state hypotheses to a 3D body or to

considering that the beam width is negligible.

The Total Potential Energy principle and the Hellinger-Reissner principle have been

introduced in order to formulate this elastic problem. In the first one, the displacement

field only is considered as variable of the problem. In the second one, also the stress

field is assumed as fundamental variable. The main advantage of using the Hellinger-

Reissner formulation is the possibility to accurately describe the stress profiles, even if a

simple kinematics and simple assumptions on the stresses are considered. In this work, the

hypotheses on the displacement and stress fields have been properly chosen in a way that

they would meet the criteria of the dimensional reduction method.

Starting from the Hellinger-Reissner functional, a system of mixed differential equa-

tions, in both stress and displacement variables, has been analytically derived for a generic

non-prismatic planar beam by using the software Mathematica. Then, by properly in-

troducing five examples of prismatic and non-prismatic beams, the system of differential

equations in displacement variables only has been recovered for each of them.

The simplest analysed case is a prismatic beam. It has been studied with the Total

Potential Energy and the Hellinger-Reissner approaches in order to emphasize that a mixed

method provides a better accuracy to the model. In the differential equations obtained

by Hellinger-Reissner formulation, the shear factor has naturally appeared. On the other

hand, the Total Potential Energy formulation has provided a solution devoid of this factor.
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This aspect is very important for the study of tapered beams, because it means that the

calculation of the shear factor is naturally considered in the developed model.

The other analysed cases concern linearly and curvilinearly tapered beams, in both

symmetric and a non-symmetric configurations. The comparison of the differential equa-

tions obtained for each case has shown that the more complex the geometry of the beam,

the more sophisticated the equations to study its behaviour need to be. Then, important

additional terms have naturally appeared in the differential equations of non-symmetric

beams, proving that the developed model takes the coupling between the axial and bending

behaviours into account.

After that, imposing suitable boundary conditions, the solution of the differential equa-

tions has been calculated with reasonable computational time and by means of computers

usually available in engineering practise. The validity of the developed model has been

clearly noticed by comparing its results to the results obtained with the finite element

analysis and with the classical beam theories. The model has provided results, both in

terms of deflections and stresses, very similar to the finite element solution with a relative

difference less than 2%.

It may be concluded that The developed model is capable of giving a accurate stress

profiles even if a simple kinematics and simple assumptions on the stress field have been

considered. The developed model can be used as base for further studies such as on non-

homogeneous tapered beams, 3D tapered beams and beams characterized by more diverse

constitutive laws.
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Mathematica equations

A.1 Hellinger-Reissner integral form used in Paragraph 4.3
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A.2 Six ODEs for the curvilinearly tapered symmetric beam used in Paragraph 4.9
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A.3 Six ODEs for the curvilinearly tapered non-symmetric beam used in Paragraph
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