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Abstract

This thesis illustrates an application of the so-called dimensional reduction modelling approach,

used to obtain some, linear, elastic beam-models starting from the 3D linear elastic problem. The

approximated solutions of the beam-models are obtained trough a finite element discretisation

procedure. The goal of the whole procedure is to obtain a beam model and the corresponding

finite element that satisfy efficiently the increasing engineering requests, in particular an accurate

description of stresses.

The dimensional reduction results as the outcome of the following procedure: (i) weak formula-

tion of the linear elastic problem, (ii) introduction a cross-section approximation, (iii) application

the Fubini-Tonelli theorem, (iv) integration within the cross section of the weak-formulation terms.

On the other hand, the mixed finite element results as the outcome of the following procedure: (i)

modification of the beam-model formulation in order to satisfy the axial compatibility (and without

violating equilibrium within the cross section), (ii) introduction of an axis piecewise-polynomial

approximation, (iii) integration along the beam axis.

The thesis considers different weak formulations as starting point of the dimension reduc-

tion, pointing out the advantages of the Hellinger-Reissner functional. In particular, the use of

the H (div,Ω) space results extremely useful in order to achieve an accurate stress description.

Unfortunately, its finite element approximation could be extremely complicated from the com-

putational point of view. On the other hand, step (i) of the finite element derivation allows to

obtain a displacement-based finite element and attempts to mitigate the H (div,Ω) computational

complexity.

The beam modelling and the finite-element discretisation procedures are applied to three sig-

nificant situations: (i) non-homogeneous 2D beam body, (ii) non-homogeneous 3D beam body,

(iii) 2D beam body with non-constant cross-section.

In all the considered cases, the resulting mixed beam models do not need correction factors, as

the most of beam models used in practice. Moreover, they take correctly into account also equa-

tion couplings that occur, as an example, considering non-constant cross-section beams without

symmetry. Finally, the beam model can predict the local effects of both boundary displacement

constraints and non homogeneous or concentrated boundary load distributions, usually not accu-

rately described by most of the standard beam models.

The beam finite elements inherit the capability to describe local effects of constraints and an

accurate description stress distribution inside the cross section. Several numerical tests show that:

(i) the finite element-solution converge to the analytical solution providing accurate description

of both displacement and stresses, (ii) the computational efforts produce significant benefits in

solution accuracy leading the proposed method to be convenient with respect to the standard ones

usually adopted in practice, (iii) the beam model shows the expected asymptotic behaviour, and

(iv) the beam model, and the corresponding finite element are able to model complex bodies, at

least in conditions of practical interest.
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Chapter 1

Introduction

This chapter delineates the context and the practical reasons that motivate the investigations

illustrated in this document. In particular, Section 1.1 introduces a brief discussion of the historical

evolution and the state of art of beam modelling, Section 1.2 define the goals of the job described

in the present document, and Section 1.3 provides a brief overview of the document.

1.1 General literature review

The continuum mechanic is one of the oldest research topic. In particular, as discussed in (Stein,

2012), scientists, mathematicians, and engineers contribute to the definition of principles, laws,

and models since the origin of the modern science.

In particular, as illustrated in (Allen, 2013), the mathematical modelling of beam- and plate-

bodies (i.e. prismatic bodies with one and two dimension predominant with respect to the others,

respectively) develops concurrently with the continuum mechanic. More rigorously, Allen (2013)

notices significant experience-based knowledges on beams and plates that leaded to build significant

structures since the centuries before Christ.

In the following, we briefly introduce some models and solutions that could be considered

milestones in beam modelling. Standard literature (e.g. see Timoshenko (1955) and Hjelmstad

(2005) provides their careful descriptions.

• The Euler Bernoulli (EB) beam model, proposed in eighteen century, assumes that the cross-

section dimensions are negligible with respect to the beam length. As a consequence, the

cross section is assumed to remain rigid and orthogonal to the beam axis, also in deformed

configuration. It follows that 4 cross-section rigid motion (i.e. (i) the axial displacement;

(ii-iii) the translations orthogonal to the beam axis; (iv) the rotation around the beam

axis) are necessary to describe the beam kinematic and 4 independent Ordinary Differential

Equation (ODE) impose the equilibrium between the internal resulting stresses (i.e. axial

compression, shears, bending moments, and torque) and the applied loads.

• The Saint Venant (SV) solution, proposed in nineteen century, is an analytical solution

of the three dimension (3D) Partial Differential Equation (PDE) governing the continuum

mechanics, obtained using suitable conditions deeply discussed in Section 4.1.

• The Timoshenko beam model, proposed in the early twentieth century, generalizes the EB

beam model, assuming that the cross section could rotate with respect to the beam axis. In

particular, the model improves the description of the shear bending behaviour.

Consistently, we cite also some models that could be considered milestones in plate modelling.
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2 1. Introduction

• The Kichhoff Love (KL) plate model, proposed in the late nineteen century, generalize the

EB assumptions to plate models.

• The Reissner Mindlin (RM) plate model, proposed in twentieth century, generalize the Tim-

oshenko assumptions to plate models.

All the so far mentioned milestones assume the material to be elastic, homogeneous and

isotropic. As a consequence, as highlighted also in EB beam model description, it is possible

to distinguish and model independently the different behaviours of the beam. In fact, in standard

model formulation, axial (membrane for plates), shear bending, and torque behaviours are gov-

erned by independent ODEs. Moreover, restricting our attention to the models, we notice that

all of them assume simplified kinematic and, as a consequence, need correction factors, also for

the simplest cases. Despite the limiting hypothesis on which are based, the milestone models are

widely used also today in engineering practice, due to their first design capabilities.

Since the beginning twentieth century new materials, as reinforced concrete, laminated struc-

tures, and fibre reinforced composites became more and more diffused in engineering practice.

Moreover, in the second half of the twentieth century, new design philosophies (as the limit-

states and the performance-based design) become more and more popular and, nowadays, they

are adopted as standard design-criterion by many countries (e.g. European Committee for Stan-

dardisation, EC0). Finally, new applications, as windmill blades and structures with complex

geometry, need effective models of slender, but non-prismatic bodies. All the so far introduced

trends lead the engineers to require more and more accurate analysis, leading the milestone models

to be inadequate with respect to the increasing engineering requests.

Hence, researchers have developed new approaches that can generally be classified as:

• high-order, displacement-based models, which introduce more sophisticated cross-

section kinematics,

• mixed or hybrid models, which introduce also stresses – and sometimes even strains – as

independent variables.

Just to give a few examples, an often cited model falling in the first category is the one proposed

by Reddy (1984) that introduces section warping in addition to Timoshenko displacements. As

discussed by Sheinman (2001), this model shows an inconsistency, since transverse displacement

generates a constant cross-section shear distribution, whereas axial displacements give a quadratic

one. A more complete kinematics is adopted in the model proposed by Lo et al. (1977a) where,

considering both section warping and striction, authors eliminate such an inconsistency. For a

general treatment of high-order, planar, kinematic beam models and discussion of their analytical

solutions the readers may refer to the work of Sheinman (2001). With respect to mixed models, a

very interesting approach is the one proposed by Alessandrini et al. (1999), where, starting from

3D elasticity, the authors illustrate a clear derivation of some plate models, studying also the

convergence of the models under consideration.

In addition, for the case of multilayer beams and plates, many further choice could be done

in modelling (e.g., see Carrera (2000) and Wanji and Zhen (2008)). As an example, layer-wise

models adopt piecewise layer-defined functions while global models use globally defined functions

to describe the field distribution on cross-section. For both items, intermediate choices are possible,

e.g. only some stress components could be selected as independent variables, or some fields are

described layer-wise, while the remaining ones are assumed as global functions.

As explained in (Hjelmstad and Taciroglu, 2003), the new design philosophies challenge the

classical beam-modelling approach, based on displacements, since they do not provide a sufficiently

accurate stress description, in particular in the case of inelastic materials. To insert non-linear
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behaviour into beam models and frame structures, as explained in (Saritas and Filippou, 2009),

practitioners usually follow two possible strategies listed in the following.

• Concentrated plasticity that uses non-dimensional non linear elements, such as rotational

springs, which position is fixed a-priori. The main limitation of this method consists in the

incapability of model, as an example, the compression-bending interaction.

• Distributed plasticity (e.g. Spacone et al., 1996) that uses a so called fibre model, i.e. a

model that assume the EB kinematic and a simplified non linear constitutive law applied to

portions of cross section called fibres. This strategy overcomes some limitations of concen-

trated plasticity but the simplified kinematic and constitutive laws often lead to non accurate

solutions.

In the attempt to treat more rigorously non-linear constitutive laws, researchers consider also

other approaches, like the force-based method in which primary variables are the stress resultants

(e.g. Hjelmstad and Taciroglu, 2002) and the already mentioned mixed methods (e.g. Hjelmstad

and Taciroglu, 2005). Hjelmstad and Taciroglu (2003) notice that some of the strategies proposed

in literature have not a consistent variational structure and, moreover, there is not a method that

is clearly superior to the other.

In the second half of the twentieth century, moreover, the availability of computational in-

struments leads to the diffusion of many numerical techniques useful to find an approximated

solution for the models so far introduced. The most successful method is clearly the Finite Ele-

ment Method (FEM) that was widely investigated from theoretical point of view and applied in

engineering practice. A literature review shows that the number of proposed beam and plate FE

implementations is nearly uncountable. This depends on the fact that many different choices are

possible and span from the functional formulation with the corresponding independent variables

to the order of field approximation. Moreover, we notice that beam and plate FE could suffer

from locking phenomena that consists in a spurious increase of the stiffness occurring with mesh

refinement.

As a general remark, we notice that the most of the proposed models in engineering practice

are effective for specific problems, whereas no general procedure are proposed in order to model

complex and general situations.

1.2 Goals

The goal of this thesis is to investigate a beam modelling approach and the correspondent FE such

that the obtained models could satisfy the following requirements.

• They could be used with a general 3D constitutive relation.

• They could consider non-homogeneous materials within the cross-section.

• They could consider non-constant cross-section.

• They do not need correction factors.

• They do not show static or kinematic inconsistency.

Moreover, we require that the beam FE satisfies the following requirements.

• It does not suffer any locking phenomena.

• It uses the same Degree Of Freedom (DOF) of standard FE, i.e. we have the possibility to

integrate the proposed FE in existing displacement based codes.
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The reasons that motivate the present research are purely engineering, nevertheless, the achieve-

ment of the so far introduced goals requires an adequate mathematical support.

As a consequence, an additional fundamental goal is to apply the mathematical knowledges

during derivation and validation such that the goodness of the model could be rigorously discussed.

1.3 Outline

The contents and the main results of each chapter are illustrated in the following.

Problem Formulation and Applied Procedures

Chapter 2 formulates rigorously the Boundary Value Problem (BVP) we are going to tackle.

In particular, we write the explicit PDE assuming a generic n−dimensional domain. We write

some weak problem formulations, discussing their applications in beam and plate modelling and

highlighting advantages and critical steps in their use.

Finally, Chapter 2 introduces the mathematical procedures and the associated notations we

use in order to derive the beam models. In particular, we introduce the dimensional reduction

method, providing also a short literature review, and the FEM. We highlight some similarities

between the two method and discuss the main advantages of the whole procedure.

2D Beam–model

Chapter 3 derives some 2D beam models and the corresponding FEs. In particular we derive 3

different beam models:

• a displacement based beam model,

• a displacement-accurate mixed beam model, developed starting from a functional formulation

that privileges the displacement description,

• a stress-accurate mixed beam model, developed starting from a functional formulation that

privileges the stress description; this functional is not diffused in engineering practice, despite

the advantages indicated by mathematicians.

We illustrate that the displacement based beam model is not capable to recover correctly the sim-

plest milestone beam models whereas the stress-accurate beam model has this capability. More-

over, we show that all the models, in case of multilayer beams, have the capability to describe

effectively boundary effects.

In derivation of the stress-accurate mixed beam model FE formulation we opportunely integrate

by parts some terms of the beam model weak formulation. As a consequence, the FE enforces the

displacement compatibility along the axis, whereas it continues to privilege the stress description

within the cross section. This choice allows to achieve the FE goals listed in Section 1.2. Moreover,

in the computational framework, the shape functions for the dimension reduction and for the FE

are easier to manipulate than the ones used for a standard 3D full discretisation, at least under

the simplifications considered in models development.

The numerical results highlight the accuracy of the proposed mixed model solution and its

convergence. In particular the chapter illustrate the capability of the beam model to take into ac-

count multilayer, non homogeneous cross-sections. Finally, the chapter provides some information

about the computational effectiveness of the proposed method, highlighting that the mixed beam

models could be competitive with respect to the high-order displacement based models.
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Most of the results illustrated in this chapter was already published in Auricchio et al. (2010)

and presented by the author during the European Conference in Computational Methods in Ap-

plied Sciences and Engineering (ECCOMAS) 2010 ab1 (2010).

3D Beam–model

Chapter 4 derives the 3D beam model and the corresponding FE. Due to the results discussed in

Chapter 3, this chapter focuses the attention on the stress-accurate mixed beam-model and the

corresponding FE. Also the 3D beam model has the capability to describe the boundary effects,

that increases refining the cross-section discretisation.

Numerical results illustrate the capabilities of the model to describe accurately also complex

situations as the anti-clastic bending. Moreover, we provide some informations about convergence

and numerical errors, highlighting the good behaviour of the solution with respect to the mesh

refinement.

Finally, we discuss some tests on the asymptotic behaviour, i.e. the behaviour of the solution

when the beam slenderness goes to infinity. The so far mentioned slenderness is defined as the

ratio between axis length and cross-section size, Numerical results show that the solution converge

to the EB beam solution, as expected and proved in literature. Unfortunately, the numerical tests

highlight also the worsening of the stiffness-matrix condition number for extremely slender beams.

The results illustrated in this chapter was already published in Auricchio et al. (2013) and

presented by the author during the ECCOMAS 2012 abl (2012).

Non–constant Cross–section Beam–model

Chapter 5 derives a 2D beam model with non-constant and homogeneous cross-section and the

corresponding FE. The domain definition does not fail in the general framework provided in

Chapter 2, as a consequence we need to introduce a specific problem formulation.

In order to develop the non-constant beam model and the corresponding FE, we modify op-

portunely the stress-accurate mixed beam model illustrated in Chapter 3. The literature review

indicates that the enforcement of boundary equilibrium is the critical aspect in non-constant beam

modelling. Fortunately, the considered beam modelling approach allows to tackle this aspect with-

out particular difficulties.

Numerical results show that the obtained beam model provide satisfactory description of the

body behaviour in a large class of examples. Moreover, numerical results show that the beam FE

results to be robust with respect to the domain geometry worsening, at least in the condition of

practical interest.
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Chapter 2

Problem Formulation and Applied

Procedures

In this chapter we provide the mathematical formulation of the continuum mechanics problem we

are going to consider. In order to be as general as possible, we consider a generic n−dimensional

domain. Obviously, for the practitioners, the cases of interest are n = 2 and n = 3 that lead to

2D and 3D problems, respectively. Chapters 3 and 5 consider the 2D problem as starting point,

whereas Chapter 4 treats the 3D problem.

Section 2.1 defines the PDE governing the linear elastic problem we are going to investigate

in the following. Section 2.2 introduces the definition of some Hilbert spaces that we use in next

sections. Sections 2.3, 2.4, 2.5, and 2.6 introduce different weak problem formulations, with some

emphasis on the Hellingher Reissner (HR) functional. Section 2.7 contains some observation on

the different problem formulations. Finally, Section 2.8 introduces the mathematical procedures

that will be used in next chapters.

2.1 Problem Strong Formulation

The object of our study is a n−dimensional beam body Ω, that behaves under the assumption of

linear elastic constitutive relation and small displacements. We highlight that the so far introduced

assumptions allow to consider a linear problem. Moreover, we do not introduce assumptions about

homogeneity and isotropy of the material that constitute the body. The latter assumption results

to be useful in order to solve some specific engineering problems that will be mentioned in the

following chapters.

We assume that the problem domain Ω ⊂ R
n can be expressed as follows:

Ω := l ×A (2.1)

where the beam longitudinal axis l and the cross-section A are orthogonal, closed, and

bounded sets defined as follows:

l :=
{
x ∈ R | x ∈

[
0, l
]}

A :=
{
yyy ∈ R

n−1
}

We denote the length of the longitudinal axis as l, and the radius of the smallest ball

that contains the cross-section as A. In engineering practice is usual to assume that l >> A

for reasons that will be explained in Chapter 4. Nevertheless we highlight that this hypothesis is

not necessary in the further development.
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Being ∂A the cross-section boundary, we define the lateral surface as L := l × ∂A.

Moreover we define the initial and final cross-sections as {A0, Al} :=
{
0, l
}
×A.

In order to give an example, Figure 2.1 represents a 3D domain with the relative Cartesian

coordinate system, the initial and the final cross sections A0 and Al respectively, and the lateral

surface L.

O x

y

z
l

A0
AlL

Figure 2.1: 3D beam geometry, Cartesian coordinate system, dimensions, and adopted notations.

O

y

z

∂A

DDD1

DDD2

Figure 2.2: Cross-section geometry, Cartesian coordinate system, dimensions, and adopted notations.

We denote the domain boundary as ∂Ω, so that ∂Ω := A0 ∪ Al ∪ L. For ∂Ω, we consider

the partition {∂Ωt; ∂Ωs}, where ∂Ωt and ∂Ωs are the externally loaded and the displacement

constrained boundaries, respectively.

The external load is defined as a sufficiently smooth surface force density ttt : ∂Ωt → R
n while

the body load is defined as a volume force density fff : Ω → R
n. Moreover, we specify a sufficiently

smooth boundary displacement function sss : ∂Ωs → R
n. The regularities of external load and

boundary displacement function will be specified in the following sections, consistently with the

specific variational problem formulation. We highlight also that the required regularity may change

with respect to the specific variational formulation we are considering.

As illustrated in Figure 2.2, referring to 3D beam body, we assume that the body could be

not homogeneous in the cross section. As a consequence, the fourth order linear elastic tensor

DDD depends on the cross-section coordinates, i.e. DDD : A → R
n×n×n×n. In particular, Figure

2.2 represents a cross-section in which the linear elastic tensor is constant piecewise defined.

Nevertheless, we can consider more general definitions, like a linear dependence on the cross-

section coordinate that allow to model complex materials, like those called graded materials.

Being R
n×n
s the space of symmetric, second-order tensors, we introduce the stress field σσσ :

Ω → R
n×n
s , the strain field εεε : Ω → R

n×n
s , and the displacement vector field sss : Ω → R

n.
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Thereby the strong formulation of the elastic problem corresponds to the following BVP:

εεε = ∇ssss in Ω (2.2a)

σσσ =DDD : εεε in Ω (2.2b)

∇ ·σσσ + fff = 000 in Ω (2.2c)

σσσ ·nnn = ttt on ∂Ωt (2.2d)

sss = sss on ∂Ωs (2.2e)

where ∇s is an operator that provides the symmetric part of the gradient, ∇ · represents the di-

vergence operator, and : represents the double dot product. Equation (2.2a) is the compatibility

relation, Equation (2.2b) is the material constitutive relation and Equation (2.2c) represents

the equilibrium condition. Equations (2.2d) and (2.2e) are respectively the boundary equilib-

rium and the boundary compatibility condition, where nnn is the outward unit vector, defined

on the boundary.

2.2 Hilbert spaces definition

In this section we define the Hilbert spaces that we use in problem weak formulations. Moreover,

for each space we discuss existing FE approximations.

For the generic variable γγγ : Ω → R
( · ) we define the following space:

L2 (Ω) :=
{
γγγ : Ω → R

( · ) :

∫

Ω

γγγ ·γγγ dΩ < ∞
}

(2.3)

where the operator · indicates a suitable scalar product.

For the displacement field we define the following space:

H1 (Ω) :=
{
sss : Ω → R

n : sss and (∇ssss) ∈ L2(Ω)
}

(2.4)

The FE discretization of this space are extremely numerous. The most of FE described in standard

engineering literature on the topic (e.g. Zienkiewicz and Taylor, 2000a) approximate this field.

For the stress field we define the following space:

H (div,Ω) :=
{
σσσ : Ω → R

n×n
s : σσσ and (∇ ·σσσ) ∈ L2(Ω)

}
(2.5)

The FE discretization of this space is indicated as a critical step in the literature. In fact, the first

two dimension (2D) stable FE H (div,Ω) discretisation that uses polynomial globally defined on

the elements was proposed in 2002 by Adams and Cockburn (2005). In the lowest order case, the

proposed FE uses 24 DOFs that are defined on vertices, edges, and inside each triangle. Before

these result the strategies adopted for the FE discretisation consist in weakly imposition of stress

tensor symmetry (e.g. Amara and Thomas, 1979; Arnold and Falk, 1988) or in the use of composite

elements (e.g. Johnson and Mercier, 1978).

A first 3D stable non-composite FE discretisation was proposed in 2005 by Adams and Cock-

burn (2005). A complete family of 3D FE was proposed and investigated in (Arnold et al., 2008)

where the authors notice that, in the lowest order case, a single FE has 162 DOF. In consequence

of the FE complexity, the authors notice the low practical interest of the proposed element.

2.3 Total Potential Energy approach

TPE is the functional most frequently used in continuum mechanics and in standard literature

(e.g. Hjelmstad, 2005). Several authors use it as a starting point to derive both first-order beam

models as well as the most popular corresponding FE formulations.
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The TPE functional can be expressed as follows:

JTPE (sss) =
1

2

∫

Ω

∇ssss :DDD : ∇ssss dΩ−

∫

Ω

sss ·fff dΩ−

∫

∂Ωt

sss · ttt dS (2.6)

Boundary conditions will be suitably imposed in what follows. The critical point of the functional

above corresponds to find the energy minimizer, which is unique and stable in the usual framework

of admissible displacement space.

Requiring stationarity of TPE (2.6), we obtain the following weak problem:

Find sss ∈ W s
s such that ∀ δsss ∈ W s:

δJs
TPE =

∫

Ω

∇s (δsss) :DDD : ∇ssss dΩ−

∫

Ω

δsss ·fff dΩ−

∫

∂Ωt

δsss · ttt dS = 0
(2.7)

where

W s
s :=

{
sss ∈ H1(Ω) : sss|∂Ωs

= sss
}

(2.8)

W s :=
{
δsss ∈ H1(Ω) : δsss|∂Ωs

= 000
}

(2.9)

We define Equation (2.7) as the TPE symmetric stationarity that is often used as a

basis for FE development, leading obviously to a symmetric stiffness matrix. We notice that

the boundary condition (2.2e) is imposed as essential condition in W s, whereas the boundary

equilibrium (2.2d) is a natural condition, weakly imposed trough the TPE symmetric stationarity

(2.7).

Wanji and Zhen (2008) give a review on multilayered, elastic, displacement-based (i.e., TPE

derived) plate FE. Increasing orders of field approximation are considered, from the simplest model

in which displacements are globally defined along the cross-section, to the most sophisticated ones

in which displacements are defined layer-wise. Wanji and Zhen also notice that almost all the

presented FE perform only for some specific problems (thick laminated plates, soft-core sandwich,

etc.), but they are not able to accurately describe the shear distribution along the thickness in the

general case.

An accurate evaluation of shear distribution is one of the aims of the work by Vinayak et al.

(1996a,b), in which the authors develop a multilayered planar beam FE starting from Equa-

tion (2.7), using the field approximation proposed by Lo et al. (1977a,b) and appropriately treating

the thickness heterogeneity. They propose two ways to evaluate the axial and transverse stresses:

the first one uses the compatibility and the constitutive relations (Equations (2.2a) and (2.2b)),

while the second one refines the shear and the out-of-plane stress distributions using the equilib-

rium relation (2.2c). The resulting numerical schemes are generally satisfactory, but the computed

solutions might exhibit instabilities near the boundary, and the stress distributions are not always

sufficiently accurate.

As a general remark (see Rohwer and Rolfes (1998) and Rohwer et al. (2005)), in TPE-based

models the critical step is the post processing stress evaluation that could compromise the effec-

tiveness of the method.

2.4 Hellinger-Reissner approach

The HR functional can be expressed as:

JHR(σσσ,sss) =

∫

Ω

σσσ : ∇ssss dΩ−
1

2

∫

Ω

σσσ :DDD−1 : σσσ dΩ−

∫

Ω

sss ·fff dΩ (2.10)
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How boundary conditions will be enforced depends on the specific variational formulation employed

to express the stationarity of the functional (cf. Subsections 2.4.1 and 2.4.2). We also wish to

remark that stationarity of this functional corresponds to a saddle point problem. Therefore, the

model derivation based on HR functional requires a particular care on the displacement and stress

field assumptions, otherwise the model risks to lead to a problem lacking well-posedness.

2.4.1 HR grad-grad stationarity

Requiring stationarity of HR functional (2.10), we obtain the following weak problem:

Find sss ∈ W gg
s and σσσ ∈ Sgg such that ∀ δsss ∈ W gg and ∀ δσσσ ∈ Sgg:

δJgg
HR =

∫

Ω

∇sδsss : σσσ dΩ+

∫

Ω

δσσσ : ∇ssss dΩ−

∫

Ω

δσσσ :DDD−1 : σσσ dΩ

−

∫

Ω

δsss ·fff dΩ−

∫

∂Ωt

δsss · ttt dS = 0

(2.11)

where

W gg
s :=

{
sss ∈ H1(Ω) : sss|∂Ωs

= sss
}

W gg :=
{
δsss ∈ H1(Ω) : δsss|∂Ωs

= 000
}

Sgg :=
{
σσσ ∈ L2(Ω)

}

We call Equation (2.11) HR grad-grad stationarity because two gradient operators appear in

the formulation. We remark that the kinematic boundary condition sss|∂Ωs
= sss is directly enforced

in the trial space W gg
s (essential boundary condition), while σσσ ·nnn|∂Ωt

= ttt turns out to be a natural

boundary condition.

Alessandrini et al. (1999) derived some homogeneous plate models starting from HR grad-

grad stationarity (2.11). They noticed that in many situations, models derived by HR grad-grad

stationarity (2.11) lead to model displacement fields which minimize the potential energy in the

class of the same kinematic assumptions. Therefore, in those cases HR grad-grad models are

equivalent to the corresponding models obtained by the TPE symmetric stationarity (2.7).

Many researchers have derived multilayered plate and beam FE using HR grad-grad station-

arity (2.11). The works by Spilker (1982), Feng and Hoa (1998), Icardi and Atzori (2004) and

Huang et al. (2002) are among the most significant examples, since the computed solutions are

generally satisfactory. The main drawback of these schemes, especially for the case of layer-wise

beams and plates, is the high number of degrees of freedom (DOFs) that leads to an heavy FE

formulation. Spilker (1982) alleviates this problem by assuming stress variables to be discontin-

uous along the plate extension so that they can be condensed at the element level reducing the

mixed local stiffness matrix to a displacement-like one.

2.4.2 HR div-div stationarity

Integrating by parts, the first and the second terms of Equation (2.11) become:

∫

Ω

∇sδsss : σσσdΩ =

∫

∂Ω

δsss ·σσσ ·nnn dS −

∫

Ω

δsss ·∇ ·σσσ dΩ

∫

Ω

δσσσ : ∇ssss dΩ =

∫

∂Ω

δσσσ ·nnn ·sssdS −

∫

Ω

∇ · δσσσ ·sssdΩ

(2.12)
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Hence, substituting Expression (2.12) in (2.11), the weak formulation becomes:

Find sss ∈ W dd and σσσ ∈ Sdd
t such that ∀ δsss ∈ W dd and ∀ δσσσ ∈ Sdd

δJdd
HR = −

∫

Ω

δsss ·∇ ·σσσ dΩ−

∫

Ω

∇ · δσσσ ·sss dΩ −

∫

Ω

δσσσ :DDD−1 : σσσ dΩ

−

∫

Ω

δsss ·fff dΩ +

∫

∂Ωs

δσσσ ·nnn ·sss dS = 0

(2.13)

where

W dd :=
{
sss ∈ L2(Ω)

}
(2.14)

Sdd
t :=

{
σσσ ∈ H(div,Ω) : σσσ ·nnn|∂Ωt

= ttt
}

(2.15)

Sdd :=
{
δσσσ ∈ H(div,Ω) : δσσσ ·nnn|∂Ωt

= 000
}

(2.16)

We define Equation (2.13) as HR div-div stationarity because two divergence operators appear

in it. We remark that sss|∂Ωs
= sss is now a natural boundary condition, while σσσ ·nnn|∂Ωt

= ttt becomes

an essential boundary condition, as it is directly incorporated in the space Sdd
t .

Considering the HR div-div stationarity approach (2.13), Alessandrini et al. have derived some

homogeneous plate models, more interesting than the ones stemming from the HR grad-grad sta-

tionarity (2.11). However, the same techniques developed in Alessandrini et al. cannot be directly

applied to general heterogeneous plates, because the resulting models may be divergent (cf. Au-

ricchio et al. (2004)).

We highlight that the boundary equilibrium σσσ ·nnn|∂Ωt
= ttt is an essential condition (i.e. it is

strongly imposed into the space definition and it must be exactly satisfied everywhere on the loaded

boundary ∂Ωt) whereas the boundary compatibility is a natural condition (i.e. it is naturally

satisfied by the functional stationarity and it is weakly imposed on the displacement constrained

boundary ∂Ωs).

The HR functional (2.10) is deeply investigated in mathematical literature, a classical refer-

ence is Brezzi and Fortin (1991) in which authors enunciate necessary conditions to ensure that

Problem (2.10) is well posed, moreover, for the same problem, they develop the FE approximation

providing error estimation and proving the convergence of both variables sss and σσσ.

The basic idea of well-posed condition is that, since in functional stationarity (2.10) we use virtual

displacements δsss to test stresses σσσ and vice-versa, the richness of both fields must be equilibrate

such that there is not uncontrolled variables.

As discussed in Auricchio et al. (2010), despite the interest of mathematicians, the applications of

the functional stationarity (2.10) are not so diffused: Auricchio et al. (2004), Batra et al. (2002),

and Batra and Vidoli (2002) are the few papers we found in engineering literature in which au-

thors use the HR functional (2.10) or some others, similar to (2.10) for the use of the divergence

operator. A possible cause could be the need to satisfy some non-trivial conditions on regular-

ity and dimension of both spaces W and S to ensure the problem is well-posed. Moreover, the

approximation of H (div,Ω) using FE technique is quite complex to manage from the numerical

point of view.

2.5 Hu–Washizu approach

The Hu Washizu (HW) functional may be expressed as follows:

JHW (σσσ,εεε,sss) =

∫

Ω

σσσ : (∇ssss− εεε) dΩ +
1

2

∫

Ω

εεε :DDD : εεε dΩ−

∫

Ω

sss ·fff dΩ (2.17)
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Again, how boundary conditions will be enforced depends on the specific variational formula-

tion employed to express the stationarity of the functional. We also remark that, here, also the

strain field is a primal variable. In the following variational formulations, we will not specify the

functional frameworks for the involved fields, since they are similar to the ones of the HR-based

corresponding variational formulations.

2.5.1 HW grad-grad stationarity

The critical point of Equation (2.17) can be expressed as:

δJgg
HW =

∫

Ω

∇sδsss : σσσ dΩ−

∫

Ω

δεεε : σσσ dΩ+

∫

Ω

δσσσ : (∇ssss− εεε) dΩ

+

∫

Ω

δεεε :DDD : εεε dΩ−

∫

Ω

δsss ·fff dΩ−

∫

∂Ωt

δsss · ttt dS = 0

(2.18)

where sss satisfies sss|∂Ωs
= sss, while σσσ ·nnn|∂Ωt

= ttt is a natural boundary condition. As in the discussion

of HR stationarities we call Equation (2.18) HW grad-grad stationarity because two gradient

operators appear in the formulation. An example of the use of HW grad-grad stationarity (2.18)

in multilayered plate modeling is presented by Auricchio and Sacco (1999).

2.5.2 HW div-div stationarity

A second HW stationarity formulation can be found introducing Equations (2.12) in Equation (2.18)

obtaining:

δJdd
HW = −

∫

Ω

δsss ·∇ ·σσσ dΩ−

∫

Ω

δεεε : σσσ dΩ−

∫

Ω

∇ · δσσσ ·sss dΩ−

∫

Ω

δσσσ : εεε dΩ

+

∫

Ω

δεεε :DDD : εεε dΩ−

∫

Ω

δsss ·fff dΩ +

∫

∂Ωs

(δσσσ ·nnn) ·sss dS = 0

(2.19)

where σσσ satisfies σσσ ·nnn = ttt on ∂Ωt, while sss|∂Ωs
= sssssssss is a natural boundary condition. We call

Equation (2.19) HW div-div stationarity because two divergence operators appear in the for-

mulation.

2.6 Other, Less Used Principles

An alternative problem formulation is to consider some stress components as dependent variables,

expressing them a-priori in terms of the displacements. Reissner Mixed Variational Theorem

approach, introduced by Reissner (1986), follows this approach: the out of plane stresses τxy and

σyy are considered as independent variables while the axial stress σxx is expressed as a function

of displacements; Carrera (2000, 2001), Carrera and Demasi (2002) and Demasi (2009a,b,c,d,e)

derived different plate FE applying this viewpoint, with different choice of basis function and

obtaining a reasonable accuracy in stress description.

Other alternatives exist, as an example (Pechstein and Schoberl, 2012) propose a functional

that consider displacements and stresses as independent variables but uses different spaces with

respect to the so far introduced HR formulations.

2.7 Conclusion on problem formulations

From the previous discussion (briefly summarized in Table 2.1 in terms of principles and equation

formats) it is possible to draw some concluding remarks, listed in the following.
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• All the considered weak problem formulations are symmetric.

• Every mixed weak formulation can be expressed in different formats: the grad-grad for-

mulations (2.11) and (2.18) , and the div-div formulations (2.13) and (2.19). The former

ones require to consider a-priori smooth displacement fields and less regular stress fields

(sss ∈ H1(Ω) and σσσ ∈ L2(Ω)), while the latter ones demand a-priori less regular displacement

fields and smooth stress fields (sss ∈ L2(Ω) and σσσ ∈ H(div,Ω)).

• The grad-grad weak problem formulations ((2.11) and (2.18)) look up the displacement

solution in the same spaces of TPE (2.7). As a consequence, under suitable hypothesis, the

solution of the three so far introduced problem weak problem formulation are equivalent.

• When selecting the approximation fields for the mixed FE design, the combination of the

regularity requirements and the well-posedness of the corresponding saddle point problems,

typically leads to:

– congruent models for the grad-grad formulations,

– self-equilibrated models for the div-div formulations.

Since we think that one of the major limitations of the elementary available beam models is

connected to the fact that equilibrium equations are not sufficiently enforced within the cross-

section, in the following we focus on HR formulations but with some emphasis on the div-div

form (2.13).

Principle

displacement-based TPE eq (2.7)

mixed HR grad-grad eq (2.11) div-div eq (2.13)

HW grad-grad eq (2.18) div-div eq (2.19)

Table 2.1: Obtained functional critical point classified in terms of functionals from which are derived and equation

formats.

2.8 Applied procedures

In this section we introduce and discuss the mathematical procedures that will be applied in the

following chapters in order to obtain the beam model and the corresponding FE.

2.8.1 Dimensional reduction

The dimensional reduction could be summarized in the following 3 step procedure.

• First step. A variational principle is selected for the elasticity problem (2.2). In particular,

the functional spaces for the involved fields has to be appropriately chosen.

• Second step. For each involved field, a set of cross-section shape functions is selected.

Typically, to develop a beam model, one chooses polynomial or piecewise polynomial shapes

within the cross-section, while no profile restrictions are imposed along the axial direction.

However, the approximation fields should fit the functional framework of the First step

above, at least if a conforming model is considered.

• Third step. Integration within the cross-section is performed. This way, the n−dimensional

variational problem is reduced to a 1D variational problem, which corresponds to a system

of ODEs equipped with boundary conditions (i.e. the beam model).
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2.8.1.1 Literature review

The so-far mentioned dimensional reduction method was proposed by Kantorovich and Krylov

(1958) and it is a general mathematical procedure that exploits the geometry of the domain to

reduce the problem dimension (in beam modelling from 3D PDEs to ODEs).

The method is widely used in continuum mechanic for the derivation of both plate and beam

models. With respect to plate models we would cite, among other examples, Vogelius and Babuska

(1981a,b); Alessandrini et al. (1999); Batra et al. (2002), and Batra and Vidoli (2002). Whereas

with respect to beam models we would cite Dong et al. (2001); Kosmatka et al. (2001); Lin et al.

(2001) who derive and discuss the homogeneous solution of a 3D semi-analytical solution for a

beam body.

We notice also that the 3 step procedure summarized at the beginning of this section sometime

is called partial discretization process (see e.g. Zienkiewicz and Taylor, 2000a) or semi-analytical

FE processes (see e.g. Zienkiewicz and Taylor, 2000b).

2.8.1.2 Cross-section approximation

From a rigorous mathematical point of view, the second step in the dimensional reduction consists

in the approximation of the generic field γ : Ω → R
( · ) as a linear combination of d cross-section

shape functions, stored in a vector rrrγ : A → R
( · )×d, weighted with arbitrary axial coefficient

functions γ̂γγ : l → R
d, i.e.

γ (x,yyy) ≈ rrrTγ (yyy) (x,yyy) γ̂γγ (x) (2.20)

where ( · )
T

indicates the transposition operation.

We emphasize that the cross-section shape functions rrrγ : A → R
( · )×d are a set of pre-assigned,

linearly-independent functions. As a consequence, the field γ : Ω → R
( · ) is uniquely determined

by the axial coefficient functions γ̂γγ : l → R
d that are indeed the unknowns of the beam model we

are developing.

2.8.2 FE derivation procedure

The FE derivation procedure could be summarized in the following 3 step procedure.

• First step. A variational principle is selected for the beam model. In particular, the

functional spaces for the involved fields has to be appropriately chosen.

• Second step. For each involved field, an axis approximation is selected. Typically, to

develop a beam FE, one chooses polynomial or piecewise polynomial shapes along the axis

direction. However, the approximation fields should fit the functional framework of the First

step above, at least if a conforming model is considered.

• Third step. Integration along the axis is performed. This way, the 1D variational problem is

reduced to an algebraic problem, which corresponds to a system of algebraic linear equations.

2.8.2.1 Axial approximation

From a rigorous mathematical point of view, the second step in the FE derivation procedure

consists in the approximation of the generic axial coefficient function γ̂ as a linear combination

of t axis shape functions, stored in a vector NNNγi : l → R
t, weighted with arbitrary numerical

coefficients γ̃γγi ∈ R
t, i.e.

γ̂γγ (x) ≈NNNγ (x) γ̃γγ (2.21)
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where

NNNγ =




NNNT
γ1 (x) 000 · · · 000

000 NNNT
γ2 (x) · · · 000

...
...

. . .
...

000 000 · · · NNNT
γd (x)


 ; γ̃γγ =





γ̃γγ1

γ̃γγ2
...

γ̃γγd





In the following, we drop the explicit dependence of NNNγ on x for notational simplicity.

2.8.3 Conclusion on applied procedure

As highlighted in Sections 2.8.1 and 2.8.2, from an abstract point of view, both the mathematical

procedures consist of the same three steps.

The whole procedure (dimensional reduction and FE derivation) could be seen as a full-

discretization procedure. From this point of view, the result of the steps so far described has

some similarities with the tensor product discretisation that exploits the domain structure (for

the problem under investigation see Equation (2.1)) and constructs a FE space ΣΩ as the tensor

product of approximations defined in each sub-region ΣΩ := Σl ⊗ ΣA. We notice that the tensor

product discretisation is sometime used also in plate modelling, as illustrated in (Pechstein and

Schoberl, 2012).

Nevertheless, distinguish the two steps leads the following advantages:

• the possibility to manage independently the cross-section and the axis approximations consid-

ering both the weak formulation with the associated spaces and the approximation accuracy,

• the capability to investigate and discuss the model properties.

Moreover, we highlight also that the two separate discretization procedures allow to make

careful and optimized choices with respect to the different domain-subsets. As a consequence,

we can consider extremely distorted meshes, with element sizes that could have different order of

magnitude with respect to the cross-section and the axis directions. This choice could represent a

problem looking at the whole discretisation procedure, on the other hand it represents the standard

in beam FE discretisation.



Chapter 3

2D Beam–model

In this chapter we are going to consider a 2D elastic problem, i.e. with respect to the notation

introduced in Chapter 2 we assume n = 2. As a consequence, the cross-section coordinates reduce

to the scalar value y. Figure 3.1 represents the domain, the adopted Cartesian coordinate system,

the initial and the final cross sections A0 and Al respectively, and the lateral surface L for the

case we are considering. With respect to the notations introduced in Section 2.8.1.2, we have that

γ (x, y), rrrγ (y) and γ̂γγ (x).

O x

y

A = h

l

A0 Al

L

L

Figure 3.1: 2D beam geometry, Cartesian coordinate system, dimensions, and adopted notations.

Section 3.1 specializes the notations introduced in Chapter 2 to the 2D case. Section 3.2 spec-

ifies the boundary conditions of the 2D problem. Sections 3.3 and 3.4 formulate the TPE and

the HR based beam models respectively, discuss the analytical solution of some beam model ex-

amples, formulate the corresponding FEs, and provide some numerical examples. Finally, Section

3.5 provides some information about the computational time and the numerical efficiency of the

proposed methods.

3.1 Profile approximation and notations

Adopting notation introduced in (2.20) and switching now to an engineering notation we set:

sss(x, y) =

{
su(x, y)

sv(x, y)

}
=

[
rrrTu (y) 000

000 rrrTv (y)

]{
ûuu(x)

v̂vv(x)

}
= RRRsŝss (3.1)

σσσ(x, y) =





σxx(x, y)

σyy(x, y)

τxy(x, y)



 =




rrrTσx
(y) 000 000

000 rrrTσy
(y) 000

000 000 rrrTτ (y)








σ̂σσx(x)

σ̂σσy(x)

τ̂ττ (x)



 = RRRσσ̂σσ (3.2)

17
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where, for RRRs and RRRσ (ŝss and σ̂σσ, respectively), we drop the explicit dependence on y (x, respec-

tively), for notational simplicity. Virtual fields are analogously defined as:

δsss = RRRsδŝss δσσσ = RRRσδσ̂σσ

We remark that, due to assumption (2.20), computation of partial derivatives is straightfor-

ward, since it holds:

∂

∂x
γ =

∂

∂x

(
rrrTγ γ̂γγ

)
= rrrTγ

d

dx
γ̂γγ = rrrTγ γ̂γγ

′ ∂

∂y
γ =

∂

∂y

(
rrrTγ γ̂γγ

)
=

d

dy
rrrTγ γ̂γγ = rrr′Tγ γ̂γγ

where we use a prime to indicate derivatives both along x and along y, because there is no risk of

confusion.

Coherently with the engineering notation just introduced, in Table 3.1 we re-define the differ-

ential operators and the outward unit vector product where

EEE1 =

[
1 0 0

0 0 1

]
EEE2 =

[
0 0 1

0 1 0

]

The products between partial derivatives and boolean matrices EEEi, i = 1, 2 must be intended as

scalar-matrix products, whereas differential operators are applied to stress approximations RRRσσ̂σσ.

In Chapter 2, with DDD−1 we denoted the fourth order elastic tensor while in this chapter, we

use the same notation to indicate the corresponding square matrix obtained following engineering

notation. Therefore, we have:

DDD−1 =
1

E




1 −ν 0

−ν 1 0

0 0 2 (1 + ν)




where E and ν indicate the Young’s modulus and the Poisson’s coefficient respectively.

Tensorial notation Engineering notation

∇ ·σσσ

(
d

dx
EEE1 +

d

dy
EEE2

)
RRRσσ̂σσ

∇Ssss

(
d

dx
EEET

1 +
d

dy
EEET

2

)
RRRsŝss

σσσ ·nnn (nxEEE1 + nyEEE2) RRRσσ̂σσ

Table 3.1: Tensorial and Engineering equivalent notations.

3.2 Problem formulation

In the following, we consider the special case of a beam for which it holds:

sss = 000 on A0 = ∂Ωs, (3.3)

ttt 6= 000 on Al (3.4)

ttt = 000 on S0 ∪ Sn (3.5)

Hence, ∂Ωt = Al ∪ S0 ∪ Sn; moreover, the beam is clamped on the left-hand side A0, and it is

subjected to a non-vanishing traction field on the right-hand side Al.
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Furthermore, we suppose that the external load ttt|Al
can be exactly represented using the

chosen profiles for σσσ ·nnn. Recalling (3.2), and noting that nnn|Al
= (1, 0)T , this means that there

exist suitable vectors t̂ttx and t̂tty such that

ttt =

{
RRRT

σx
t̂ttx

RRRT
τ t̂tty

}
(3.6)

Therefore, the boundary condition σσσ ·nnn|Al
= ttt may be written as (cf. (3.2))

{
σ̂σσx(l)

τ̂ττ(l)

}
=

{
t̂ttx

t̂tty

}
(3.7)

We also remark that all these assumptions can be modified to cover more general cases; nonethe-

less, this simple model is already adequate to illustrate the method capabilities. Moreover, we

notice that the assumption on external load (3.6) is necessary only for the development of mixed

beam model illustrated in Section 3.4.1.2.

3.3 Total Potential Energy based beam model

In this section, starting from the 2D problem weak formulation (2.7), we perform the dimensional

reduction which is based on the introduction of field cross-section approximations and on a cross-

section integration. For simplicity, in the model derivation, we switch to an engineering-oriented

notation.

3.3.1 Model formulation

In the following we assume that ∂Ωt = Al ∪ L, and the lateral surface is unloaded, i.e.: ttt|L = 000.

The unloaded lateral surface is an usual assumption in beam modelling. However, we notice that

the model derivation can be performed taking into account arbitrary load conditions as well.

Introducing the engineering notation and the approximations defined in Section 2.8.1.2, vari-

ational problem (2.7) becomes:

δJTPE =

∫

Ω

[
δŝssTRRRT

s

(
d

dx
EEE1 +

∂

∂y
EEE2

)]
DDD

[(
d

dx
EEET

1 +
∂

∂y
EEET

2

)
RRRsŝss

]
dΩ

−

∫

Ω

δŝssTRRRT
s fff dΩ−

∫

∂Ωt

δŝssTRRRT
s ttt dA = 0

(3.8)

Expanding products, introducing the derivative notation introduced in Table 3.1, and recalling

that ∂Ωs = A0, Equation (3.8) becomes:

δJTPE =

∫

Ω

(
δŝss′TRRRT

s EEE1DDDEEE1RRRsŝss
′ + δŝss′TRRRT

s EEE1DDDEEE2RRR
′
sŝss +

δŝssTRRR′T
s EEE2DDDEEE1RRRsŝss

′ + δŝssTRRR′T
s EEE2DDDEEE2RRR

′
sŝss− δŝssTRRRT

s fff
)
dΩ+

∫

Al

δŝssTRRRT
s tttdA = 0

(3.9)

Splitting the integral on the domain Ω into an integral along the axis l and an integral on the

cross section A, Equation (3.9) becomes:

δJTPE =

∫

l

(
δŝss′TAAATPEŝss′ + δŝss′TBBBTPE

s′s ŝss+ δŝssTBBBTPE
ss′ ŝss′ + δŝssTCCCTPEŝss− δŝssTFFF

)
dx+ δ ŝssT

∣∣∣
l
TTT = 0

(3.10)
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where

AAATPE :=

∫

A

RRRT
s EEE1DDDEEE1RRRsdA

BBBTPE
s′s =

(
BBBTPE

ss′
)T

:=

∫

A

RRRT
s EEE1DDDEEE2RRR

′
sdA

CCCTPE :=

∫

A

RRR′T
s EEE2DDDEEE2RRR

′
sdA

FFF :=

∫

A

RRRT
s fffdA; TTT :=

∫

Al

RRRT
s tttdA;

(3.11)

Equation (3.10) represents the weak formulation of the beam model: the integrals are defined

only along the beam axis, whereas the cross-section integrals become coefficient matrices.

To obtain the corresponding strong formulation, i.e. the associated ODE system, we need to

integrate by parts the third term of Equation (3.10):

∫

l

δŝss′TAAATPEŝss′dx = δŝssTAAATPEŝss′
∣∣∣
x=l

x=0
−

∫

l

δŝssTAAATPEŝss′′dx

∫

l

δŝss′TBBBTPE
s′s ŝssdx = δŝssTBBBTPE

s′s ŝss
∣∣∣
x=l

x=0
−

∫

l

δŝss′TBBBTPE
s′s ŝss′dx

(3.12)

Substituting Equation (3.12) in Equation (3.10) and recalling that δŝss (0) = 000, we obtain:

∫

l

δŝssT
(
−AAATPEŝss′′ +BBBTPEŝss′ +CCCTPEŝss−FFF

)
dx

− δŝssT
(
TTT + AAATPEŝss′

∣∣
l
+ BBBTPE

s′s ŝss
∣∣
l

)
= 0

(3.13)

where BBBTPE = −BBBTPE
s′s +BBBTPE

ss′ .

Since Equation (3.13) needs to be satisfied for all the possible virtual fields, we obtain the

following ODE, equipped with the essential boundary condition (3.3).





−AAATPEŝss′′ +BBBTPEŝss′ +CCCTPEŝss = FFF in l

+AAATPEŝss′ +BBBTPE
s′s ŝss = −TTT at x = l

ŝss = 000 at x = 0

(3.14)

3.3.2 Beam-model examples

In this section we give three examples of beam models. More precisely, considering a beam of

thickness A = h and starting from the TPE approach (Equation (3.14)), we derive:

1. a single layer beam model in which we use a first order displacement field; by means of

this example we will show that the approach under discussion is not able to reproduce the

classical models;

2. a single layer beam model in which we use an high order displacement field; by means of

this example we will show that, in order to reproduce the classical models, we need refined

displacement fields;

3. a multilayer beam model, in which we consider also higher order kinematic and stress fields;

by means of this example we will illustrate how the approach could produce a refined model

with a reasonable solution.
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3.3.2.1 Firts order, single layer beam

Considering a homogeneous beam, we assume a first-order kinematic (as in Timoshenko model) .

In other words we make the following hypotheses:

u = u0(x) + yu1(x) i.e. rrru =

{
1

y

}
ûuu =

{
u0

u1

}

v = v(x) i.e. rrrv = {1} v̂vv = {v}

The matrices AAATPE , BBBTPE , and CCCTPE defined in Equations (3.11) and entering into the beam

model (3.14), are explicitly given by:

AAATPE=




h
E

1− ν2
0 0

0
h3

12

E

1− ν2
0

0 0 h
E

2 (1 + ν)
h




BBBTPE=




0 0 0

0 0 −h
E

2 (1 + ν)

0 h
E

2 (1 + ν)
0




CCCTPE=




0 0 0

0 −h
E

2 (1 + ν)
0

0 0 0




(3.15)

The matrices defined in (3.15) lead the following ODE system:




h
E

1− ν2
u′′
0 = 0

h3

12

E

1− ν2
u′′
1 −

Eh

2(1 + ν)
(v′ + u1) = 0

Eh

2(1 + ν)
(v′′ + u′

1) = 0

+ suitable boundary conditions

(3.16)

Therefore, not surprisingly, we recover the classical Timoshenko equations, where, unfortunately,

the shear correction factor (5/6) does not appear.

3.3.2.2 High order, single layer beam

Considering a homogeneous beam, we assume an high-order kinematic (as the one considered in

(Lo et al., 1977a)). In other words we make the following hypotheses:

u = u0(x) + yu1(x) + y2u2(x) + y3u3(x) i.e. rrru =





1

y

y2

y3





ûuu =





u0

u1

u2

u3





v = v0(x) + yv1(x) + y2v2(x) i.e. rrrv =





1

y

y2



 v̂vv =





v0
v1
v2




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The matrices AAATPE , BBBTPE , and CCCTPE defined in Equations (3.11) and entering into the beam

model (3.14), are explicitly given by:

AAATPE=
E

1 + ν




h

1− ν
0

h3

12 (1− ν)
0 0 0 0

0
h3

12 (1− ν)
0

h5

80 (1− ν)
0 0 0

h3

12 (1− ν)
0

h5

80 (1− ν)
0 0 0 0

0
h5

80 (1− ν)
0

h7

448 (1− ν)
0 0 0

0 0 0 0
h

2
0

h3

24

0 0 0 0 0
h3

24
0

0 0 0 0
h3

24
0

h5

160




BBBTPE =
E

1 + ν





















































0 0 0 0 0
hν

1− ν
0

0 0 0 0 −
h

2
0 −

h3 (1− 5ν)

24 (1− ν)

0 0 0 0 0 −
h3 (1− 2ν)

12 (1− ν)
0

0 0 0 0 −
h3

8
0 −

h5 (3− 7ν)

320 (1− ν)

0
h

2
0

h3

8
0 0 0

hν

1− ν
0

h3 (1− 2ν)

12 (1− ν)
0 0 0 0

0
h3 (1− 5ν)

24 (1− ν)
0

h5 (3− 7ν)

160 (1− ν)
0 0 0





















































(3.17)

CCCTPE=
E

1 + ν




0 0 0 0 0 0 0

0 −
h

2
0

h3

8
0 0 0

0 0
h3

6
0 0 0 0

0
h3

8
0

9h5

160
0 0 0

0 0 0 0 0 0 0

0 0 0 0 0
h

(1− ν)
0

0 0 0 0 0 0
h3

3 (1− ν)




3.3.2.3 Multilayer beam

We now consider a beam composed by n layers. The geometric and material parameters for the

generic i-th layer are defined by the thickness hi, the Young’s modulus Ei and the Poisson ratio

νi, collected in the n-dimensional vectors hhh, EEE and ννν, respectively.

To design a multilayer beam model, we follow the two-step procedure described below.

1. In each layer, we choose suitable profiles for every field involved in the modeling. Of course,

given a generic field, the simplest choice, which is the one we use in this paper, is to use the

same profiles for every layer.

2. Across each interlayer, we impose the necessary continuity to ensure that the displacements

belong to H1(Ω).
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As a consequence, given a generic field γ, it is possible to define its profile vector rrrγ , which is

characterized by:

• The highest polynomial degree, with respect to y, used in a generic layer. This number is

denoted by deg (rrrγ) in what follows.

• The regularity across each interlayer: in the following, C−1 stands for no continuity require-

ment, C0 for standard continuity requirement.

We thus select the involved fields according to Table 3.2, where we also show the number of

layer and global DOFs.

deg (rrrγ) inter-layer continuity layer DOF global DOF

rrru 3 C0 4 3n+1

rrrv 2 C0 3 2n+1

Table 3.2: Polynomial degrees of the profiles vectors, continuity properties and number of DOFs for a multilayer

beam.

We now present an easy case to illustrate the model capabilities. More precisely, we consider a

homogeneous beam, but we treat it as if it were formed by three layers. Thus, the geometric and

material properties are described by:

hhh =





0.300

0.367

0.333



 [mm] EEE =





105

105

105



 [MPa] ννν =





0.25

0.25

0.25



 [−]

The term hi of the vector hhh defines the thickness of the i−th layer constituting the beam,

numbered from the bottom to the top; analogously the terms of vectors EEE and ννν define the

mechanical properties of the layers. We now give the solution of the generalized eigenvalue problem

det
(
λ2AAATPE + λBBBTPE +CCCTPE

)
= 0, which enters in the construction of the homogeneous solution

of (3.14).

λ =





∼ 0

±10.116

±12.064

±23.614

±27.443

±19.155± 2.959i

±13.602± 2.581i

±24.439± 5.185i

±7.536± 2.748i





[6]

[2]

[2]

[2]

[2]

[4]

[4]

[4]

[4]

where in square brackets we show the eigenvalue multiplicities, and we used the symbol ∼ 0 to

denote eigenvalues which vanish up to the machine precision.

It is possible to evaluate also the homogeneous solution but, given the problem complexity, it

is huge and we will not report it. Nevertheless it is possible to discuss its structure and made

some important remarks.

• The zero eigenvalues lead to polynomial terms analogous to the Timoshenko homogeneous

solution described in Section 3.4.3.1.

• The complex conjugate eigenvalues (a± ib) lead to functions like Cie
ax sin(bx+ Cj), which

describe local effects near the boundaries, as it happens in several other beam models (see

Ladeveze and Simmonds, 1998; Allix and Dupleix-Couderc, 2010; Dauge et al., 2002).
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3.3.3 Finite Element derivation

The goal of this section is to obtain a displacement-based beam FE formulation. Accordingly, we

introduce an approximation along the x direction, and perform an integration along the axis. The

procedure reduces the algebraic-differential equation system (3.10) to a pure algebraic equation

system.

3.3.3.1 FE formulation

In the following, we assume that the beam is clamped in A0, i.e. sss = 000.

The FE discretization of the model follows from the introduction of the axial shape function

approximation (2.21) into the beam-model weak formulation (3.10):

δJTPE =

∫

l

(
δs̃ss

T
NNN ′T

s AAATPENNN ′
ss̃ss+ δs̃ss

T
NNN ′T

s BBBTPE
s′s NNNss̃ss+ δs̃ss

T
NNNT

s BBB
TPE
ss′ NNN ′

ss̃ss+

δs̃ss
T
NNNT

sCCC
TPENNN ′

ss̃ss− δs̃ss
T
NNNT

s FFF
)
dx+ δs̃ss

T
NNNT

s

∣∣
l
TTT = 0

(3.18)

Collecting unknown coefficients in a vector and requiring (3.18) to be satisfied for all possible

virtual fields, we obtain the following algebraic equation system:

KKKTPEs̃ss = F̃FF (3.19)

where

KKKTPE :=

∫

l

(
NNN ′T

s AAATPENNN ′
s +NNN ′T

s BBBTPE
s′s NNNs +NNNT

s BBB
TPE
ss′ NNN ′

s +NNNT
s CCC

TPENNN ′
s

)
dx

F̃FF :=

∫

l

NNNT
s FFFdx+ NNNT

s

∣∣
x=l

TTT

(3.20)

We highlight that the weak formulation (3.18) is symmetric.

3.3.3.2 Axial shape functions definition

In Table 3.3 we introduce the shape-function properties that we use in numerical examples, to-

gether with the cross-section shape-function properties. We notice that choices illustrated in

Variable deg (rrrγ) y cont. deg (NNNγ) x cont.

u 1 C0 2 C0

v 2 C0 3 C0

Table 3.3: Degree and continuity of cross-section profile functions and axis shape functions for the TPE- based FE.

Table 3.3 are arbitrary.

3.4 HR-based beam models

In this section we develop some mixed beam models. Referring to the procedure described in

Chapter 2.8, we will start from the HR variational formulations of Section 2.4 (cf. First step),

we will define the approximated fields (cf. Second step), and perform the integration along the

thickness (cf. Third step). Moreover, to simplify the further discussions, we will switch to an

engineering notation.
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3.4.1 Model formulation

3.4.1.1 grad-grad approach

Using the notations introduced in Subsection 3.1 the HR grad-grad stationarity (2.11) becomes:

δJgg
HR =

∫

Ω

[(
d

dx
E1E1E1

T +
d

dy
E2E2E2

T

)
RRRsδŝss

]T
RRRσσ̂σσ dΩ+

∫

Ω

δσ̂σσTRRRT
σ

[(
d

dx
EEET

1 +
d

dy
EEET

2

)
RRRsŝss

]
dΩ

−

∫

Ω

δσ̂σσTRRRT
σDDD

−1RRRσσ̂σσ dΩ−

∫

Ω

δŝssTRRRT
s fff dΩ−

∫

∂Ωt

δŝssTRRRT
s ttt dy = 0

(3.21)

Expanding Equation (3.21) we obtain:

δJgg
HR =

∫

Ω

(
δŝss′TRRRT

sEEE1RRRσσ̂σσ + δŝssTRRR′T
s EEE2RRRσσ̂σσ

)
dΩ +

∫

Ω

(
δσ̂σσTRRRT

σEEE
T
1RRRsŝss

′ + δσ̂σσTRRRT
σEEE

T
2RRR

′
sŝss
)
dΩ

−

∫

Ω

(
δσ̂σσTRRRT

σDDD
−1RRRσσ̂σσ + δŝssTRRRT

s fff
)
dΩ−

∫

Al

δŝssTRRRT
s ttt dy = 0

(3.22)

By using Fubini-Tonelli theorem, Equation (3.22) can be written as:

δJgg
HR =

∫

l

(
δŝss′TGGGsσσ̂σσ + δŝssTHHHs′σσ̂σσ + δσ̂σσTGGGσsŝss

′ + δσ̂σσTHHHσs′ŝss− δσ̂σσTHHHσσσ̂σσ − δŝssTFFF
)
dx− δŝssTTTT

∣∣∣
x=l

= 0

(3.23)

where, in addition to the definitions provided in (3.11), we set:

GGGsσ =GGGT
σs =

∫

A

RRRT
sEEE1RRRσdy HHHs′σ =HHHT

σs′ =

∫

A

RRR′T
s EEE2RRRσdy

HHHσσ =

∫

A

RRRT
σDDD

−1RRRσdy

(3.24)

Equation (3.23) represents the weak form of the 1D beam model. To obtain the corresponding

boundary value problem, we integrate by parts the first term of (3.23):

∫

l

δŝss′TGGGsσσ̂σσdx = δŝssTGGGsσσ̂σσ
∣∣∣
x=l

x=0
−

∫

l

δŝssTGGGsσσ̂σσ
′dx (3.25)

Substituting Equation (3.25) in (3.23), recalling that δŝss = 000 on A0 and collecting variables in a

vector we obtain:

∫

l

[δŝss; δσ̂σσ]
T

(
GGG

{
ŝss′

σ̂σσ′

}
+HHHgg

{
ŝss

σ̂σσ

}
−

{
FFF

000

})
dx+ δŝssT(GGGsσσ̂σσ −TTT )|x=l = 0 (3.26)

in which

GGG =

[
000 −GGGsσ

GGGσs 000

]
HHHgg =

[
000 HHHs′σ

HHHσs′ −HHHσσ

]
(3.27)

Requiring to satisfy Equation (3.26) for all the possible variations, and imposing the essential

boundary condition ŝss we finally obtain:




GGG

{
ŝss′

σ̂σσ′

}
+HHHgg

{
ŝss

σ̂σσ

}
=

{
FFF

000

}
in l

GGGsσσ̂σσ = TTT at x = l

ŝss = 000 at x = 0

(3.28)
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We remark that boundary value problem (3.28) is not necessarily well-posed. This depends

on how the profile vectors have been chosen for all the involved fields. However, well-posedness

of (3.28) is guaranteed if the approximated fields are selected according with the approximation

theory of saddle-point problem (2.11) (see Alessandrini et al. (1999)).

3.4.1.2 div-div approach

Using the notation introduced in Section 3.1 in Equation (2.13), the HR div-div functional sta-

tionarity becomes:

δJdd
HR =−

∫

Ω

δŝssTRRRT
s

[(
d

dx
E1E1E1 +

d

dy
E2E2E2

)
RRRσσ̂σσ

]
dΩ−

∫

Ω

[(
d

dx
EEE1 +

d

dy
EEE2

)
RRRσδσ̂σσ

]T
RRRsŝss dΩ

−

∫

Ω

δσ̂σσTRRRT
σDDD

−1RRRσσ̂σσ dΩ−

∫

Ω

δŝssTRRRT
s fff dΩ = 0

(3.29)

Expanding Equation (3.29), the weak formulation becomes:

δJdd
HR =−

∫

Ω

(
δŝssTRRRT

sE1E1E1RRRσσ̂σσ
′ + δŝssTRRRT

s E2E2E2RRR
′
σσ̂σσ
)
dΩ−

∫

Ω

(
δσ̂σσ′TRRRT

σEEE
T
1RRRsŝss+ δσ̂σσTRRR′T

σ EEET
2RRRsŝss

)
dΩ

−

∫

Ω

(
δσ̂σσTRRRT

σDDD
−1RRRσσ̂σσ + δŝssTRRRT

s fff
)
dΩ = 0

(3.30)

By using Fubini-Tonelli theorem, Equation (3.30) becomes:

δJdd
HR =

∫

l

(
−δŝssTGGGsσσ̂σσ

′ − δŝssTHHHsσ′σ̂σσ − δσ̂σσ′TGGGσsŝss− δσ̂σσTHHHσ′sŝss− δσ̂σσTHHHσσσ̂σσ − δŝssTFFF
)
dx = 0

(3.31)

where

HHHσ′s =

∫

A

RRR′T
σ E2E2E2RRRs dy

while the other matrices are defined as (3.24).

Equation (3.31) represents the weak form of the 1D beam model. To obtain the corresponding

boundary value problem, we integrate by parts the third term of (3.31):

−

∫

l

δσ̂σσ′TGGGσsŝssdx = − δσ̂σσTGGGσsŝss
∣∣∣
x=l

x=0
+

∫

l

δσ̂σσTGGGσsŝss
′dx (3.32)

Substituting Equation (3.32) in Equation (3.31), recalling that GGGsσδσ̂σσ = 000 at x = l, and collecting

the unknowns in a vector we obtain:

∫

l

[δŝss; δσ̂σσ]
T

(
GGG

{
ŝss′

σ̂σσ′

}
+HHHdd

{
ŝss

σ̂σσ

}
−

{
FFF

000

})
dx+ δσ̂σσTGGGσsŝss

∣∣∣
x=0

= 0 (3.33)

where GGG is defined as in (3.27) and HHHdd is defined as:

HHHdd =

[
000 −HHHsσ′

−HHHσ′s −HHHσσ

]
(3.34)
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Requiring to satisfy Equation (3.33) for all the possible variations, and imposing the essential

boundary condition (3.7), we finally obtain:





GGG

{
ŝss′

σ̂σσ′

}
+HHHdd

{
ŝss

σ̂σσ

}
=

{
FFF

000

}
in l

σ̂σσx = t̂ttx at x = l

τ̂ττ = t̂ttτ at x = l

GGGσsŝss = 000 at x = 0

(3.35)

We remark that boundary value problem (3.35) is not necessarily well-posed. This depends

on how the profile vectors have been chosen for all the involved fields. However, well-posedness

of (3.35) is guaranteed if the approximated fields are selected according with the approximation

theory of saddle-point problem (2.13) (see Alessandrini et al. (1999)).

3.4.1.3 Conclusions on the derived beam models

From what we have developed in this section, we can make the following remarks.

• Starting from two different versions of the HR stationarity condition (i.e., grad-grad (2.11)

and div-div (2.13)) and introducing hypothesis (2.20), we obtain two different classes of one-

dimensional beam models. Both classes may be described by a boundary value problem of

the following type: 



GGG

{
ŝss′

σ̂σσ′

}
+HHH

{
ŝss

σ̂σσ

}
=

{
FFF

000

}

+ suitable boundary conditions

(3.36)

The difference between models based on the HR grad-grad formulation and the HR div-div

one stands in the HHH matrix. More precisely:

– HHH =HHHgg for the HR grad-grad formulation. In this case, derivatives are applied to the

displacement fields through the symmetric gradient operator and the resulting models

privilege the satisfaction of the compatibility relation (2.2a) rather than the equilibrium

equation (2.2c).

– HHH = HHHdd for the HR div-div formulation. In this case, derivatives are applied to the

stress fields through the divergence operator and the resulting models privilege the

satisfaction of the equilibrium equation rather than the compatibility one.

• Boundary value problem (3.35) can be explicitly written as:





−GGGsσσ̂σσ
′ −HHHsσ′σ̂σσ = 000

GGGσsŝss
′ −HHHσ′sŝss−HHHσσσ̂σσ = FFF

+ suitable boundary conditions

We can compute σ̂σσ from the second equation and substitute it in the first one, obtaining a

displacement-like formulation of the problem:
{
AAAŝss′′ +BBBŝss′ +CCCŝss = FFF

+ suitable boundary conditions
(3.37)

where

AAA = −GGGsσHHH
−1
σσGGGσs BBB = −GGGsσHHH

−1
σσHHHσ′s +HHHsσ′HHH−1

σσGGGσs CCC =HHHsσ′HHH−1
σσHHHσ′s

Analogous considerations apply to problem (3.28).
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3.4.2 Cross-section shape function definition

To design a multilayer beam model, we follow the two-step procedure described below.

1. In each layer, we choose suitable profiles for every field involved in the modeling. Of course,

given a generic field, the simplest choice, which is the one we use in this paper, is to use the

same profiles for every layer.

2. Across each interlayer, we impose the necessary continuity to ensure that the stresses belong

to H(div,Ω).

As a consequence, given a generic field γ, it is possible to define its profile vector rrrγ , which is

characterized by:

• The highest polynomial degree, with respect to y, used in a generic layer. This number is

denoted by deg (rrrγ) in what follows.

• The regularity across each interlayer: in the following, C−1 stands for no continuity require-

ment, C0 for standard continuity requirement.

Since a main aim of this paper is to develop a model with an accurate stress description, a

natural choice is to assume deg (rrrτ ) = 2, as in Jourawsky theory. To ensure well-posedness of the

resulting model, we thus select the involved fields according to Table 3.4, where we also show the

number of layer and global DOFs. Furthermore, we notice that we have to impose σy = τ = 0 at

the top and bottom of the beam.

deg (rrrγ) inter-layer continuity layer DOF global DOF

rrru 1 C−1 2 2n

rrrv 2 C−1 3 3n

rrrσx
1 C−1 2 2n

rrrσy
3 C0 4 3n-1

rrrτ 2 C0 3 2n-1

Table 3.4: Polynomial degrees of the profiles vectors, continuity properties and number of DOFs for a multilayer

beam.

Remark 3.4.1. More generally, to design a well-posed beam model one could choose

deg (rrrσx
) = deg (rrru) = deg (rrrτ )− 1

deg (rrrτ ) = deg (rrrv) = deg
(
rrrσy

)
− 1

(3.38)

together with the H(div) regularity for the stress field.

3.4.3 Beam-model examples

In this section we give two examples of beam models developed using the strategies of Sec-

tion 3.4.1.2. More precisely, starting from the HR div-div approach (Equation (3.35)), we derive:

1. a single layer beam model in which we use a first order displacement field; by means of this

example we will show that the approach under discussion is able to reproduce the classical

models;

2. a multilayer beam model, in which we consider also higher order kinematic and stress fields;

by means of this example we will illustrate how the approach could produce a refined model

with a reasonable solution.
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3.4.3.1 Single layer beam

Considering a homogeneous beam, we assume a first-order kinematic (as in Timoshenko model)

and the usual cross-section stress distributions (obtained from the Jourawsky theory). In other

words we make the following hypotheses:

u = u0(x) + yu1(x) i.e. rrru =

{
1

y

}
ûuu =

{
u0

u1

}

v = v(x) i.e. rrrv = {1} v̂vv = {v}

σxx = σx0(x) + yσx1(x) i.e. rrrσx
=

{
1

y

}
σ̂σσx =

{
σx0

σx1

}

σyy = 0 i.e. rrrσy
= {0} σ̂σσy = {0}

τ =
(
1− 4y2/h2

)
τ(x) i.e. rrrτ =

{
1− 4y2/h2

}
τ̂ττ = {τ}

The matrices GGG and HHHdd defined in (3.27) and (3.34), and entering into the beam model (3.35),

are explicitly given by:

GGG=




0 0 0 −h 0 0

0 0 0 0 −
h3

12
0

0 0 0 0 0 −
2

3
h

h 0 0 0 0 0

0
h3

12
0 0 0 0

0 0
2

3
h 0 0 0




; HHHdd=




0 0 0 0 0 0

0 0 0 0 0
2

3
h

0 0 0 0 0 0

0 0 0 −
h

E
0 0

0 0 0 0 −
h3

12

1

E
0

0
2

3
h 0 0 0 −

8

15
h
2 (1+ν)

E




(3.39)

Since problem (3.35) is governed by an ODE system with constant coefficients, the homogeneous

solution can be analytically computed. For example, choosing

h = 1 [mm] l = 10 [mm] E = 105 [MPa] ν = 0.25 [−]

the homogeneous solution is given by

u0 = 5.00 · 10−6C4x + C1

u1 = 4.00 · 10−6C6x
2 + 5.00 · 10−6C5x + C2

v = − ( 1.33 · 10−5C6x
3 + 5.00 · 10−6C5x

2 + 5.00 ·10−1C2x + C3 ) + 10−5C6x

σx0 = C4

σx1 = 4.00 C6x + C5

τ = C6

(3.40)

in which Ci are arbitrary constants. The six constants of (3.40) may be determined by imposing

the boundary conditions specified in (3.35). Indeed, for the beam model under consideration, the

boundary conditions in (3.35) lead to a set of six linearly independent equations, since the matrix

GGGσs (cf. (3.24) and (3.27)) is invertible.

We remark that the solution (3.40) is compatible with the one obtained by the Timoshenko

beam model. However, we underline that the stress distributions along the beam axis are obtained

directly from the model solution, and not by means of the displacement derivatives, as happens

in classical formulations.
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We also notice that, reducing the model to the displacement formulation (cf. (3.37)), we obtain

the following ODE system:





hEu′′
0 = 0

h3

12
Eu′′

1 −
5

6

Eh

2(1 + ν)
(v′ + u1) = 0

5

6

Eh

2(1 + ν)
(v′′ + u′

1) = 0

+ suitable boundary conditions

(3.41)

Therefore, not surprisingly, we again recover the classical Timoshenko equations, where, however,

the exact shear correction factor (5/6) automatically appears. The same result holds true in the

framework of variational plate modelling proposed by Alessandrini et al. (1999).

3.4.3.2 Multilayer beam

We now consider the multilayer beam model described in Section 3.3.2.3. Considering the div-div

beam model, the total number of cross-section variables is 34. We notice that the boundary value

problem (3.35) is uniquely solvable also in this case. However, we now have rank (GGG) = 22, which

means that problem (3.35) is actually a differential-algebraic boundary value problem. Thus, 22

variables are solutions of a differential problem, while the remaining 12 unknowns are algebraically

determined by the former ones. We also remark the the boundary conditions in (3.35) actually

lead to 22 independent constraints, since rank (GGGσs) = 11.

We now give the solution of the generalized eigenvalue problem det
(
λGGG+HHHdd

)
= 0, which

enters in the construction of the homogeneous solution of (3.35).

λ =





∼ 0

±11.430± 3.870i

±7.481± 2.585i

±4.023± 2.520i

±15.520± 6.021i





[6]

[4]

[4]

[4]

[4]

where in square brackets we show the eigenvalue multiplicities, and we used the symbol ∼ 0 to

denote eigenvalues which vanish up to the machine precision.

It is possible to evaluate also the homogeneous solution but, given the problem complexity, it

is huge and we will not report it. Nevertheless it is possible to discuss its structure and made

some important remarks.

• The zero eigenvalues lead to polynomial terms analogous to the Timoshenko homogeneous

solution described in Section 3.4.3.1.

• The complex conjugate eigenvalues (a± ib) lead to functions like Cie
ax sin(bx+ Cj), which

describe local effects near the boundaries, as it happens in several other beam models (see

Ladeveze and Simmonds, 1998; Allix and Dupleix-Couderc, 2010).

3.4.4 FE derivation

In this section we develop the FE corresponding to the multilayer beam model introduced in

Section 3.4.3.2. This is equivalent to introduce a dimension reduction also along the beam axis,

leading, therefore, to a purely algebraic system.
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3.4.4.1 Weak problem formulation

We now make explicit the weak formulation we will use as a starting point for the FE discretization.

To this end, we first recall the beam model variational formulation (3.31). Then, we integrate by

parts with respect to the x direction both the first and the third terms of Equation (3.31). We

thus obtain:

Find ŝss ∈ W̃ and σ̂σσ ∈ S̃ such that for every δŝss ∈ W̃ and for every δσ̂σσ ∈ S̃

δJHR =

∫

l

(
δŝss′

T
GGGsσσ̂σσ − δŝssTHHHsσ′σ̂σσ + δσ̂σσTGGGσsŝss

′ − δσ̂σσTHHHσ′sŝss− δσ̂σσTHHHσσσ̂σσ − δŝssTFFF
)
dx−δŝssTTTT

∣∣∣
x=l

= 0

(3.42)

where

W̃ :=
{
ŝss ∈ H1(l) : ŝss|x=0 = 000

}
; S̃ := L2(l)

We may notice that all the derivatives with respect to x are applied to displacement variables,

whereas derivatives with respect to y (incorporated into the HHH matrices) are applied to cross-

section stress vectors. The resulting variational formulation has the following features:

• The obtained weak formulation (3.42) is symmetric.

• y-derivatives applied to stresses and the essential conditions of Sdd
t (cf. Definition (2.15))

lead to a formulation which accurately solve the equilibrium equation in the y direction, i.e.

in the cross-section.

• x derivatives applied to displacements and the essential condition in W̃ lead to a formulation

which accurately solve the compatibility equation (2.2a) along the beam axis.

3.4.4.2 FE formulation

The FE discretization simply follows from the application of (2.21) into the variational formula-

tion (3.42). We get:

δJHR =

∫

l

(
δs̃ss

T
N ′N ′N ′T

s GGGsσNNNσσ̃σσ − δs̃ss
T
NNNT

s HHHsσ′NNNσσ̃σσ + δσ̃σσ
T
NNNT

σGGGσsN
′N ′N ′
ss̃ss

′
)
dx+

−

∫

l

(
δσ̃σσTNNNT

σHHHσ′sNNNss̃ss+ δσ̃σσTNNNT
σHHHσσNNNσσ̃σσ − δs̃ssTNNNT

s FFF
)
dx− δs̃ssTNNNT

s TTT
∣∣∣
x=l

= 0

(3.43)

Collecting unknown coefficients in a vector and requiring to satisfy Equation (3.43) for all the

possible virtual fields we obtain:

[
000 KKKsσ

KKKσs KKKσσ

]{
s̃ss

σ̃σσ

}
=

{
F̃FF

000

}
(3.44)

where the vector F̃FF is defined in Equation (3.20) and

KKKsσ =KKKT
σs =

∫

l

(
N ′N ′N ′T

s GGGsσNNNσ −NNNT
sHHHsσ′NNNσ

)
dx KKKσσ = −

∫

l

NNNT
σHHHσσNNNσ dx

3.4.4.3 Axis shape function definition

In what follows we will focus, for all the involved variables, on the finite element spaces shown

in Table 3.5, where we also recall the profile properties which has led to the multi-layered beam

model. For the polynomial degrees and continuity requirements, we here use the same notation

as in Section 3.4.3.2. Thus, for example, the field v is approximated by means of piecewise cubic

polynomials, continuous along the axial direction.
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deg (rrrγ) y continuity deg (NNNγ) x continuity

u 1 C−1 2 C0

v 2 C−1 3 C0

σx 1 C−1 1 C−1

σy 3 C0 3 C−1

τ 2 C0 2 C−1

Table 3.5: Degree and continuity properties of shape functions with respect to y and x directions.

We remark that this choice of the finite element shape functions assures the stability and

convergence of the resulting discrete scheme. We also notice that stresses are discontinuous across

elements along the x direction, so that it is possible to statically condensate them out at the

element level, reducing the dimension of the global stiffness matrix and improving efficiency.

3.4.5 Numerical Examples

3.4.5.1 Multilayer homogeneous beam

We now consider the same three layer homogeneous beam introduced in Section 3.3.2.3 (total

thickness h = 1mm). Together with the clamping condition in A0, we assume the beam to

be loaded by null body load fff = 000 and, along Al, by the quadratic shear stress distribution

ttt|Al
=
[
0 , 3/2

(
1− 4y2

)]T
[MPa].

3.4.5.1.1 Convergence In Table 3.6 we report the mean value of the transverse displacement

along Al, as obtained by employing the following different procedures, evaluated for a beam of

length l = 10mm:

1. the classical Euler-Bernoulli beam model;

2. the classical Timoshenko beam model;

3. the numerical model under investigation, in which the solution is computed using a mesh of

64 elements;

4. a 2D FE scheme of the structural analysis program ABAQUS, using a fine regular grid of

3500× 350 elements.

In Table 3.7 we report the mean value of the transverse displacement along Al, as obtained by

employing the procedures so far mentioned and the parameters specified in the following, evaluated

for a beam of length l = 30mm:

1. for the numerical model under investigation, we use a mesh of 128 elements;

2. fot the 2D FE scheme, we use a fine regular grid of 6000× 400 elements.

Due to the large number of elements used, we consider the FE solutions as the reference

solution, and we denote with vex their mean value along Al.

In Tables 3.6 and 3.7 we also report the following relative error quantity:

evrel :=
|v − vex|

|vex|
(3.45)

where v is the mean value along Al computed by the various procedures. We remark that evrel
gives an indication of the model accuracy, even though it is not the usual error measure in terms

of the natural norms.
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Beam theory v (10)
[
mm · 10−2

]
evrel

[
· 10−3

]

Euler-Bernoulli 4.000 000 6.192

Timoshenko 4.030 000 1.261

Three-layered mixed FE 4.026 460 0.382

2D solution 4.024 924 -

Table 3.6: Transverse displacements and relative errors of the free-edge of a cantilever (l = 10 and h = 1) obtained

by different beam theories.

Beam theory v (30) [mm] evrel
[
· 10−4

]

Euler-Bernoulli 1.080 000 4.257

Timoshenko 1.080 900 4.072

Three-layered mixed FE 1.080 578 1.092

2D solution 1.080 460 -

Table 3.7: Transverse displacements and relative errors of the free-edge of a cantilever (l = 30 and h = 1) obtained

by different beam theories.

Table 3.6 shows the superior performance of the three-layered mixed FE with respect to the

other considered 1D models. Table 3.7 confirms the results illustrated in Table 3.6, neverseless

we notice that the relative errors decrease of 1 order of magnitude. It can be shown that the 2D

beam solution converges to the EB solution (see Ciarlet (1997), for instance) increasing the beam

slenderness. The numerical results illustrated in Tables 3.6 and 3.7 agree with the theoretical

results and indicate the asymptotic consistency of the proposed beam model.

In Figure 3.2 we study the convergence of our numerical model. More precisely, we plot the

relative quantity defined in Equation (3.45), evaluated considering i layers of thickness hi = 1/i

(i = 1, 3, 5, 7), l = 10, and different mesh sizes δ in the x direction. Figure 3.2(a) illustrates the

convergence of the FE solution with respect to the 2D problem solution. Looking at Figure 3.2(a)

we notice that:

• using even a few elements the quantity evrel is under 1%;

• the error evrel decreases as the number of layers increases;

• using highly-refined mesh, the relative error evrel increases, even if it apparently converges to

a constant close to 10−3. This behaviour can be explained by recalling that a modeling error

does necessarily arise. Indeed, the solution of the 2D elastic problem and the one of the

multi-layered beam mixed model do differ from each others, for a fixed length and thickness

of the beam.

In Figure 3.2(b) we consider another relative quantity, namely e∗rel. Such a quantity is similar

that defined in (3.45), but here the reference solution is the one obtained by the FE analysis of

the multi-layered model using the most refined mesh. The aim of this investigation is to provide

informations about the convergence of the FE solution with respect to the one dimension (1D)

model solution. We notice that:

• the sequences of errors e∗rel are monotonically convergent to zero;

• fixing the number of layers, the log-log plots of errors suggest a convergence rate of the order

of α, with α ≈ 1.

Finally, in Figure 3.2(c) we plot the relative error evrel versus the number of layers (results ob-

tained using a mesh of 32 elements). The aim of this investigation is to provide some informations
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about the effects of 1D model refinement on FE solution accuracy. It is evident that the relative

error decreases incrementing the number of layers even if the succession is not linear.

3.4.5.1.2 Boundary effects As already noticed in Section 3.3.2.3, the model under investi-

gation is capable to capture some local effect near the clamped boundary; we here present some

results focused on that issue. Even though this study is far from being exhaustive, it gives an

indication of the model potentials. In what follows the computations are performed using a mesh

of 64 elements. Preliminary numerical tests highlight that the local effects extinguish in an axis

region of length similar to the cross-section thickness. As a consequence, to highlight the boundary

effects we consider a beam analogous to the one introduced at the beginning of Section 3.4.5.1 in

which we set l = 2.5mm. The results are reported in Figures 3.3, 3.4 and 3.5.

0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x [mm]

u 
[m

m
  x

 1
0 −

4 ]

 

 

u
1

u
2

u
3

u
4

u
5

u
6

u
4
, u

5

u
2
, u

3

(a) Axial displacement coefficient functions ui(x).

0 0.5 1 1.5 2 2.5

−6

−4

−2

0

x [mm]

v 
[m

m
  x

 1
0 −

4 ]

 

 

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

v
9

v
3
, v

4
, v

6
, v

7

v
2
, v

5
, v

8

v
1
, v

9

(b) Transverse displacement coefficient functions vi(x).

Figure 3.3: Axial and transverse displacement coefficient functions of a three-layer, homogeneous cantilever, clamped

in x = 0, loaded at x = 2.5 by a quadratic shear distribution and modelled by means of 64 elements.
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Figure 3.4: Axial stress coefficient functions sxi(x) of a three layer, homogeneous cantilever, clamped in x = 0,

loaded at x = 2.5 by a quadratic shear distribution and modelled with 64 elements.

We can appreciate the following.

• Far from the boundary, it is possible to recognize the classical beam solution (constant

shear stress τ(x), linear axial stress σx(x), quadratic horizontal displacement u(x) and cubic
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(a) Transversal stress coefficient functions syi(x).
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Figure 3.5: Transversal stress coefficient functions and shear coefficient functions of a three layer, homogeneous

cantilever, clamped in x = 0, loaded at x = 2.5 by a quadratic shear distribution and modelled by means of 64

elements.

transverse displacement v(x)).

• As expected, the boundary effects decay as a dumped harmonic functions.

• The local effects decay very rapidly, so that only the first oscillation is significant. This

result is consistent with the other models capable to capture this kind of boundary effects.

• The section striction, described by the displacement quadratic terms v2, v5 and v8, is negli-

gible, as assumed in first-order theories.

As specified in Table 3.5, in the numerical model under discussion we do not a-priori impose

displacement continuity across layers. In Figure 3.6 we plot the jump of the displacement filed

across the inter-layer surfaces S1 and S2. Figure 3.6(b) highlights that the transverse displacement
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Figure 3.6: Relative axial and transverse displacements (i.e. compatibility errors) evaluated on interlayer surfaces

S1 : y = −1/5 and S2 : y = 1/6.

jump rapidly decay far from the clamped boundary. On the other hand, from Figure 3.6(a) we
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see that, far from the clamped boundary, the axial displacement jump |u(x)+ − u(x)−| tends to

a value different from zero (of the order of 10−7mm). However, we notice that the displacement

field is much greater, since it is of the order of 10−4mm.

3.4.5.2 Multilayer non-homogeneous symmetric section

We consider a cantilever composed by three layers (total thickness h = 1mm), clamped in A0, for

which l = 5mm and ttt|Al
=
[
0 , 3/2

(
1− 4y2

)]T
[MPa]; geometry and mechanical properties are

specified in the following vectors:

hhh =





0.25

0.50

0.25



 [mm] EEE =





1 · 105

1 · 103

1 · 105



 [MPa] ννν =





0.25

0.25

0.25



 [−]

We evaluate the solution of the 1D model assuming a mesh size δ = 0.15625mm (32 elements)

and the 2D solution using ABAQUS software and considering a mesh of 200×1000 square elements.

For both the models we evaluate the stress distributions at different sections: x = 2.5, x = 0.5

and x = 0.125, as reported in Figures 3.7, 3.8 and 3.9 respectively.
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Figure 3.7: Cross-section stress-distributions evaluated at x = 2.5, far from the clamped boundary. 1D and 2D

solutions for the symmetric section.
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Figure 3.8: Cross-section stress-distributions evaluated at x = 0.5, close to the clamped boundary. 1D and 2D

solutions for the symmetric section.

The capability of the numerical model to reproduce a very accurate stress distribution, far

from the clamped boundary, is clearly seen from Figures 3.7. A similar feature is also maintained

close the clamped boundary (see Figures 3.8 and 3.9), even though some error progressively arises

as we approach x = 0. In particular, the axial stress σx and the shear stress τ are very accurately

described, whereas the σy approximation exhibit a worse performance (maybe also because some

kind of instability arises, cf. Figure 3.5(a)).

3.4.5.3 Multilayer non-homogeneous non-symmetric section

We consider a cantilever composed by four layers, clamped in A0, and for which l = 5mm. The

applied traction is: ttt|Al
=
[
0 , 3/2

(
1− 4y2

)]T
[MPa].The geometric and mechanical properties of

the section are:

hhh =





0.25

0.25

0.25

0.25





[mm] EEE =





1 · 105

1 · 103

1 · 105

1 · 103





[MPa] ννν =





0.25

0.25

0.25

0.25





[−]
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Figure 3.9: Cross-section stress-distributions evaluated at x = 0.125, very close to the clamped boundary. 1D and

2D solutions for the symmetric section.

We evaluate the 1D and 2D solutions using the same meshes as for the symmetric case of

Section 3.4.5.2. The computed stress distributions at x = 2.5 is reported in Figures 3.10.

As in the symmetric case, there is no significant difference between the 1D and the 2D cross-

section stress distributions. We only notice a small deviation (below 1%) in the plot of the σy.
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Figure 3.10: Cross-section stress-distributions evaluated at x = 2.5, 1D and 2D solutions for the un-symmetric

section.
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3.5 Comparison of computational time

In this section we discuss and compare rigorously the numerical performance of the so far intro-

duced beam FE. In particular we consider:

• TPE based beam FE introduced in Section 3.3.1 together with the kinematic specified in

Table 3.2, denoted in the following as TPEcq,

• TPE based beam FE introduced in Section 3.3.1 together with a kinematic that uses cross-

section shape functions defined as continuous piecewise polynomial with degrees specified in

Table 3.4, denoted in the following as TPElq,

• HR based beam FE introduced in Section 3.4.3.2, denoted in the following as HR.

In order to discuss the numerical performance of the proposed method, we consider an homo-

geneous beam identical to the one introduced in Section 3.4.5.1, modelled as if it is formed of 5

equal layers. Moreover, along the beam axis, we consider a regular mesh of equal elements.

In order evaluate correctly the computation time, we implement the so far introduced models

using the same program (MAPLE) and sequences of operations as similar as possible.

The global computational time tcomp take into account the time necessary to assemble the

global matrix and solve the global linear system whereas pre-processing and post-processing are

not considered.

We highlight that the axis shape functions are the same for all the considered models whereas

only the cross-section shape functions change between the considered FE. Moreover we specify

that, in all the considered FE, we condense out at element level all DOFs which support is a single

element. As a consequence in all the considered FE we compute only the nodal displacements.

The displacement error evrel is evaluated as in Equation (3.45) whereas the shear error eτrel is

defined as follows:

eτrel :=
|τ (5, 0)− τref (5, 0)|

|τref (5, 0)|
(3.46)

where τref (5, 0) = 3/2, that corresponds to the value obtained from the analytical solution (see

Timoshenko and Goodier, 1951).

Figures 3.11(a) and 3.11(b) plot respectively the displacement error evrel and the shear error

eτrel as functions of the computational time tcomp. In both figures, data refer to regular meshes of

1, 2, 4, 8, 16, 32, 64, 128 elements that correspond to an increasing computational time.

In Figure 3.11(a) we highlight that the curve relative to the three models display similar

behaviours. Using few elements, TPElq is most performing FE whereas, using refined meshes, the

HR is the most performing FE.

In Figure 3.11(b), TPElq has a bad behaviour since the increase of mesh refinement produce an

increment of the computational time tcomp but negligible decrease of the shear error eτrel. On the

other hand, HR and TPEcq evidence significant decreases of error estimation. In particular, HR

shows the best performance with respect to shear error evaluation. Similar results are obtained

also considering different numbers of layers, nevertheless we do not report them.

As a final remark, we can state that the HR FE seems to be the numerical model with the

best benefit-cost ratio, al least considering as unique cost the computational time and as a benefit

the decrease of error.
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Figure 3.11: Displacement and shear errors versus the computational time, results evaluated for a 5 layer homoge-

neous beam.



Chapter 4

3D Beam–model

In this chapter we are going to consider a 3D elastic problem, i.e. with respect to the notation

introduced in Chapter 2 we assume n = 3. As a consequence, the cross-section coordinates are

defined as yyy = [y, z]T . Figure 4.1 represents the domain, the adopted Cartesian coordinate system,

the initial and the final cross sections A0 and Al respectively, and the lateral surface L for the

case we are considering.

O x

y

z
l

A0
AlL

Figure 4.1: 3D beam geometry, Cartesian coordinate system, dimensions, and adopted notations.

Section 4.1 provides a brief literature review on existing 3D solution. Section 4.2 formulates the

3D, HR based beam model and discusses the analytical solution of some beam model examples.

Section 4.3 formulates the corresponding FE and, finally, Section 4.4 provides some numerical

examples.

4.1 Literature review: existing 3D solutions

4.1.1 Saint–Venant solution

In the nineteen century, Saint-Venant (SV) proposed a completely different approach to beam

modelling, i.e. he provided the solution of the continuum mechanic problem for a beam body

assuming that: (i) the body is homogeneous and isotropic; (ii) no distributed-loads are applied;

(iii) loads and displacement constraints are applied far from the region where the solution is

evaluated; (iv) stress components orthogonal to the beam axis are negligible. Unfortunately, SV

solution is not explicit because it depends on some unknown warping functions, governed by

auxiliary Partial Differential Equations (PDEs) defined on the cross section. Readers may refer

to (Timoshenko and Goodier, 1951) for more details.

Warping functions are deeply investigated not only in order to determine the SV solution,

but also because they are useful in the evaluation of stiffness correction factors. As an example,

43
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Gruttmann et al. (1999) discuss the physical meaning of the warping functions and propose a

numerical approach to solve the auxiliary PDEs, comparing some numerical results with available

analytical solutions. More recently, Lacarbonara and Paolone (2007) propose and compare differ-

ent strategies to compute the warping functions, highlighting advantages and critical steps of each

strategy. In general, the numerical computation of warping functions could be quite expensive.

However, it must be done only once, after the section geometry definition. As a consequence, the

procedure is usually adopted in frame-structure analysis.

4.1.2 Saint–Venant solution enhancements

In practical applications, many of the hypotheses that allow to obtain the SV solution could be too

restrictive. An attempt to overcome the SV hypotheses was proposed by Ladeveze and Simmonds

(1998) that derive an analytical beam model and the relative solution maintaining only hypothesis

(iv) (stress components orthogonal to the beam axis are negligible). In addition to the SV solution,

the resulting beam model can take into account also local effects like stress concentrations that

occur in proximity of displacement constrained boundary.

A more general attempt to overcome the SV hypotheses was proposed by Dong et al. (2001);

Kosmatka et al. (2001) and Lin et al. (2001) that apply the dimensional reduction method to

the continuum mechanic PDEs problem in order to obtain a semi-analytical SV-like solution. The

authors assume displacement as independent variable and the Total Potential Energy functional

as starting point in derivation whereas no restrictive hypotheses on materials, stress description,

and loads are considered. Some ODEs govern the resulting semi-analytical solution that describes

effectively also local effects. Moreover, no correction factors are required.

4.2 Model derivation

In this section, starting from the 3D problem weak formulation (2.13), we perform the dimensional

reduction which is based on the introduction of field cross-section approximations and on a cross-

section integration. For simplicity, in the model derivation, we switch to an engineering-oriented

notation.

4.2.1 Cross-section approximation and notations

Adopting Position (2.20) and switching to an engineering notation we set:

sss :=





su
sv
sw



 ≈




rrrTu 000 000

000 rrrTv 000

000 000 rrrTw







ûuu

v̂vv

ŵww



 = RRRsŝss (4.1)

σσσ :=





σxx

σyy

σzz

τxy
τxz
τyz





≈




rrrTσx
000 000 000 000 000

000 rrrTσy
000 000 000 000

000 000 rrrTσz
000 000 000

000 000 000 rrrTτxy
000 000

000 000 000 000 rrrTτxz
000

000 000 000 000 000 rrrTτyz








σ̂σσx

σ̂σσy

σ̂σσz

τ̂ττxy
τ̂ττxz
τ̂ττyz





= RRRσσ̂σσ (4.2)

In the same way we define the virtual field approximations:

δsss := RRRsδŝss; δσσσ := RRRσδσ̂σσ
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According to the engineering notations just introduced, we re-define the differential operator

and the normal unit vector product as follows:

Tensor notation Engineering notation

∇ ·σσσ ≡

(
∂

∂x
EEE1 +

∂

∂y
EEE2 +

∂

∂z
EEE3

)
RRRσσ̂σσ (4.3)

σσσ ·nnn ≡ (nxEEE1 + nyEEE2 + nzEEE3) RRRσσ̂σσ (4.4)

where products between partial derivatives and boolean matrices EEEi, i = 1, 2, 3 must be intended

as scalar-matrix products, whereas differential operators are applied to stress approximationsRRRσσ̂σσ.

The boolean matrices EEEi, i = 1, 2, 3, are defined as follows:

EEE1 :=




1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


 ; EEE2 :=




0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 0 1


 ; EEE3 :=




0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0




(4.5)

In Chapter 2, we denoted with DDD−1 the fourth order, linear, elastic, isotropic tensor, while from

now on, with a small abuse, we use the same notation to indicate the corresponding square matrix

obtained following the engineering notation. Therefore, we have:

DDD−1 :=
1

E




1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2 (1 + ν) 0 0

0 0 0 0 2 (1 + ν) 0

0 0 0 0 0 2 (1 + ν)




(4.6)

Due to assumption (2.20), computation of partial derivatives is straightforward:

∂

∂x
γ = rrrTγ

d

dx
γ̂γγ = rrrTγ γ̂γγ

′;
∂

∂y
γ =

∂

∂y
rrrTγ γ̂γγ = rrrTγ ,y γ̂γγ;

∂

∂z
γ =

∂

∂z
rrrTγ γ̂γγ = rrrTγ ,z γ̂γγ (4.7)

where the prime means the derivative along x, ( · ) ,y and ( · ) ,z mean derivatives along y and z,

respectively.

4.2.2 Model formulation

In the following we assume that ∂Ωs = A0, ∂Ωt = Al ∪L, and the lateral surface is unloaded, i.e.:

ttt|L = 000. The unloaded lateral surface is an usual assumption in beam modelling. However, we

notice that the model derivation can be performed taking into account arbitrary load conditions

as well.

In order to strongly satisfy the boundary equilibrium, according to the definition of Sdd
t ,

see (2.15), we assume that the external traction ttt|Al
can be exactly represented using the profiles

RRRσ. This means that there exist suitable vectors t̂ttx, t̂tty, and t̂ttz such that:

ttt|Al
=





rrrTσx
t̂ttx

rrrTτxy
t̂tty

rrrTτxz
t̂ttz





(4.8)

Since nnn|Al
= (1, 0, 0)

T
, Definition (4.4) becomes σσσ ·nnn|Al

= EEE1RRRσσ̂σσ
(
l
)

and the essential boundary



46 4. 3D Beam–model

condition σσσ ·nnn|Al
= ttt|Al

can be expressed as follows:





σ̂σσx

(
l
)

τ̂ττxy
(
l
)

τ̂ττxz
(
l
)



 =





t̂ttx
t̂tty
t̂ttz



 (4.9)

Introducing the engineering notation and the approximations defined in section 4.2.1, varia-

tional problem (2.13) becomes:

δJHR = −

∫

Ω

δŝssTRRRT
s

[(
d

dx
EEE1 +

∂

∂y
EEE2 +

∂

∂z
EEE3

)
RRRσσ̂σσ

]
dΩ

−

∫

Ω

[(
d

dx
EEE1 +

∂

∂y
EEE2 +

∂

∂z
EEE3

)
RRRσδσ̂σσ

]T
RRRsŝss dΩ

−

∫

Ω

δσ̂σσTRRRT
σDDD

−1RRRσσ̂σσdΩ−

∫

Ω

δŝssTRRRT
s fff dΩ

+

∫

∂Ωs

[(nxEEE1 + nyEEE2 + nzEEE3)RRRσδσ̂σσ]
T
sss dA = 0

(4.10)

Expanding products, introducing the derivative notation (4.7), and recalling that ∂Ωs = A0,

Equation (4.10) becomes:

δJHR = −

∫

Ω

(δŝssTRRRT
s EEE1RRRσσ̂σσ

′ + δŝssTRRRT
sEEE2RRRσ,y σ̂σσ + δŝssTRRRT

s EEE3RRRσ,z σ̂σσ

+δσ̂σσ′TRRRT
σEEE

T
1RRRsŝss+ δσ̂σσTRRRT

σ ,yEEE
T
2RRRsŝss+ δσ̂σσTRRRT

σ ,zEEE
T
3RRRsŝss

+ δσ̂σσTRRRT
σDDD

−1RRRσσ̂σσ + δŝssTRRRT
s fff
)
dΩ

−

∫

A0

δσ̂σσTRRRT
σEEE

T
1 sss dA = 0

(4.11)

Splitting the integral on the domain Ω into an integral along the axis l and an integral on the

cross section A, Equation (4.11) becomes:

δJHR = −

∫

l

( δŝssTGGGsσσ̂σσ
′ + δŝssTHHHsσσ̂σσ + δσ̂σσ′TGGGσsŝss+ δσ̂σσTHHHσsŝss+ δσ̂σσTHHHσσσ̂σσ + δŝssTFFF ) dx− δσ̂σσTSSS = 0

(4.12)

where

HHHsσ :=HHHT
σs =

∫

A

(
RRRT

s EEE2RRRσ,y +RRR
T
s EEE3RRRσ,z

)
dA; HHHσσ :=

∫

A

RRRT
σDDD

−1RRRσdA

GGGsσ =GGGT
σs :=

∫

A

RRRT
s EEE1RRRσdA; FFF :=

∫

A

RRRT
s fffdA; SSS =

∫

A0

RRRT
σEEE1sssdA

Equation (4.12) represents the weak formulation of the beam model: the integrals are defined only

along the beam axis, whereas the cross-section integrals become coefficient matrices.

To obtain the corresponding strong formulation, i.e. the associated ODE system, we need to

integrate by parts the third term of Equation (4.12):

−

∫

l

δσ̂σσ′TGGGσsŝssdx = − δσ̂σσTGGGσsŝss
∣∣∣
x=l

x=0
+

∫

l

δσ̂σσTGGGσsŝss
′dx (4.13)

Substituting Equation (4.13) in Equation (4.12), recalling that δσ̂σσ
(
l
)
= 000, and collecting the

unknowns in a vector, we obtain:
∫

l

[
δŝssT ; δσ̂σσT

](
GGG

{
ŝss′

σ̂σσ′

}
+HHH

{
ŝss

σ̂σσ

}
−

{
FFF

000

})
dx− δσ̂σσT (SSS −GGGσsŝss

)
= 0 (4.14)



4.2. Model derivation 47

where

GGG :=

[
000 −GGGsσ

GGGσs 000

]
; HHH :=

[
000 −HHHsσ

−HHHσs −HHHσσ

]
(4.15)

Since Equation (4.14) needs to be satisfied for all the possible virtual fields, we obtain the following

ODE, equipped with the essential boundary condition (4.9).





GGG

{
ŝss′

σ̂σσ′

}
+HHH

{
ŝss

σ̂σσ

}
=

{
FFF

000

}
in l

GGGσsŝss = SSS at x = 0

σ̂σσx = t̂ttx at x = l

τ̂ττxy = t̂tty at x = l

τ̂ττxz = t̂ttz at x = l

(4.16)

We notice that, since HHH contains only y and z derivatives, it governs a generalized plane strain

problem defined in the cross section. Furthermore, looking at the definition ofGGG (see (4.15)–(4.13))

and at the definition of the boolean matrix EEE1 (see (4.5)), we observe that all the coefficients

multiplying σ̂σσ′
y, σ̂σσ

′
z, and τ̂ττ ′yz vanish. As a consequence, we conclude that the beam model (4.16)

is an algebraic-differential problem where at least σ̂σσy, σ̂σσz, and τ̂ττyz are determined through purely

algebraic equations.

4.2.3 Cross-section shape functions definition

Due to the domain definition (2.1) we can represent the stress tensor as follows:

σσσ :=

[
σl τττ lA
τττAl σσσA

]
(4.17)

where

σl := σxx; τττ lA = τττTAl := [τxy; τxz] ; σσσA :=

[
σyy τyz
τzy σzz

]

Accordingly, we represent the divergence operator as follows:

∇ :=





∂

∂x
∇A



 where ∇A :=





∂

∂y
∂

∂z





(4.18)

We first recall that the space definition (2.15) requires in particular σσσ ∈ H (div,Ω). Therefore,

we must choose σσσ such that (∇ ·σσσ) ∈ L2 (Ω), i.e.:

∇ ·σσσ =





∂

∂x
σl +∇A ·τττ lA

∂

∂x
τττAl +∇A ·σσσA





∈ L2 (Ω) (4.19)

Sufficient conditions that guarantee the satisfaction of (4.19) are the following:

∂

∂x
σl ∈ L2 (Ω) ; ∇A ·τττ lA ∈ L2 (Ω) ;

∂

∂x
τττAl ∈ L2 (Ω) ; ∇A ·σσσA ∈ L2 (Ω) (4.20)

In addition to Conditions (4.20), as suggested by Alessandrini et al. (1999), to ensure that the

model is well-posed, one possible choice is to require the following condition:

∇ ·Sdd = W dd (4.21)
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Given a generic cross-section geometry, it is not trivial to define cross-section shape functions

that satisfy conditions (4.20) and (4.21). As a consequence, we start focusing on the simplest case,

i.e. a beam with a rectangular cross-section:

A =

{
(y; z) ∈ R

2 : y ∈

[
−
h

2
,
h

2

]
and z ∈

[
−
b

2
,
b

2

]}

where h is the beam thickness and b is the beam depth. Due to the simplicity of the considered

geometry, the cross-section shape functions can be defined as the tensor products of two profile

function vectors pppγ (y) and qqqγ (z):

pppγ : h → R
g; qqqγ : b → R

k; rrrTγ := vec
(
pppγ (y)qqq

T
γ (z)

)
(4.22)

where vec ( · ) is the linear operator that re-arranges a tensor into a row vector. Obviously the g

components of pppγ and the k components of qqqγ are sets of linearly independent functions.

Due to the introduction of profile function definition (4.22), we can express Condition (4.21)

as follows (cf. also (4.1) and (4.2)).

Given ŝss, there exists σ̂σσ such that:

vec
(
pppσx

qqqTσx

)
σ̂σσ′
x + vec

(
ppp′τxy

qqqTτxy

)
τ̂ττxy + vec

(
pppτxz

qqq′Tτxz

)
τ̂ττxz = vec

(
pppuqqq

T
u

)
ûuu (4.23)

vec
(
pppτxy

qqqTτxy

)
τ̂ττ ′xy + vec

(
ppp′σy

qqqTσy

)
σ̂σσy + vec

(
pppτyzqqq

′T
τyz

)
τ̂ττyz = vec

(
pppvqqq

T
v

)
v̂vv (4.24)

vec
(
pppτxz

qqqTτxz

)
τ̂ττ ′xz + vec

(
ppp′τyzqqq

T
τyz

)
τ̂ττyz + vec

(
pppσz

qqq′Tσz

)
σ̂σσz = vec

(
pppwqqq

T
w

)
ŵww, (4.25)

and viceversa.

We consider complete polynomials as profile functions and we denote with deg( · ) their max-

imum degree. As a consequence, to satisfy Equations (4.23), (4.24), and (4.25) we enforce the

following “natural” conditions:

deg (pppσx
) = deg

(
pppτxy

)
− 1 = deg (pppτxz

) = deg (pppu)

deg
(
pppτxy

)
= deg

(
pppσy

)
− 1 = deg

(
pppτyz

)
= deg (pppv)

deg (pppτxz
) = deg

(
pppτyz

)
− 1 = deg (pppσz

) = deg (pppw)

deg (qqqσx
) = deg

(
qqqτxy

)
= deg (qqqτxz

)− 1 = deg (qqqu)

deg
(
qqqτxy

)
= deg

(
qqqσy

)
= deg

(
qqqτyz

)
− 1 = deg (qqqv)

deg (qqqτxz
) = deg

(
qqqτyz

)
= deg (qqqσz

)− 1 = deg (qqqw)

(4.26)

Table 4.1 displays the degree of profile functions pppγ and qqqγ , assuming deg
(
pppτxy

)
= deg (qqqτxz

) = 2

and imposing Equation (4.26).

As illustrated in Figure 4.2, we can define non-elementary cross-sections assembling elementary

rectangular blocks that we call fibers and we suppose to be homogeneous. We construct the non

elementary cross-section shape functions rrrγ considering the profile functions so far defined on each

fiber, requiring the profile-function continuities specified in Table 4.1, and imposing the essential

boundary condition σσσ ·nnn|∂A = 000. We specify that profile-function continuities are fixed in order

to satisfy Condition (4.20).

4.2.4 Beam-model examples

In this sub-section we evaluate and discuss the solution of the beam model (4.16) for the homo-

geneous beam with square cross section depicted in Figure 4.3. We assume that the properties
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O z

y

h

b

h1

h2

hj

hn

b1 b2 bi bm

fiber

Figure 4.2: Non-elementary cross-section geometry definition, dimensions, and adopted notations.

o z

y

b

h

(a) one-fiber discretization

o z

y

b

b1 b2

h

(b) two-fiber discretization

(b1 = b2 = 0.5mm)

Figure 4.3: Homogeneous, square cross-section: dimensions and adopted discretization (h = b = 1mm, E =

105MPa, and ν = 0.25).
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Variable deg (pppγ) y cont. deg (qqqγ) z cont.

u 1 C−1 1 C−1

v 2 C−1 1 C−1

w 1 C−1 2 C−1

σx 1 C−1 1 C−1

σy 3 C0 1 C−1

σz 1 C−1 3 C0

τxy 2 C0 1 C−1

τxz 1 C−1 2 C0

τyz 2 C0 2 C0

Table 4.1: Degree and continuity of cross-section profile functions (C−1 means discontinuous function).

of the material are E = 105MPa and ν = 0.25 and, with respect to the notation introduced in

Figure 4.2, the cross-section dimensions are h = b = 1mm. We model the physical problem using 2

cross-section discretization: the one-fiber cross-section discretization, depicted in Sub-figure

4.3(a), and the two-fiber cross-section discretization, depicted in Sub-figure 4.3(b); the aim

of these modelling choices is to appreciate the effect of different discretization refinement.

In the following, the matrices GGG and HHH are evaluated trough symbolic-calculus functions,

whereas the further results are obtained using numerical-calculus functions, both implemented in

MAPLE software.

4.2.4.1 One-fiber cross-section

After imposition of the lateral free-traction boundary condition, the one-fiber cross-section beam

has 33 unknowns. In the following we will not report the definition of matrices GGG and HHH, due to

their weight, nevertheless we could highlight the following statements.

Since rank (GGG) = 16, in the considered example we can distinguish between 16 unknowns that

are solutions of a differential problem, and the remaining 17 that are algebraically determined by

linear combination of the differential problem solutions. As already observed at the end of Sub-

section 4.2.2, the 9 σ̂σσy, σ̂σσz, and τ̂ττyz axial coefficient functions are among the ones algebraically

determined. Moreover, looking at Equation (4.16) for the considered example, the boundary

conditions are 16, since rank (GGGσs) = 8 and the boundary equilibrium consists of 8 conditions.

Therefore, the number of boundary conditions and the number of essential first order differential

equations in (4.16) perfectly match.

As already explained in Auricchio et al. (2010), to construct the homogeneous solution of ODEs

(4.16), we need the solution of the generalized eigenvalue problem:

det (λGGG +HHH) = 0 (4.27)

where λ is the eigenvalue. For the case under investigation we obtain:

λλλ =

{
∼ 0

±3.3652± 1.1509i

}
[12]

[4]

where the numbers in square brackets are the eigenvalue multiplicities (considering all the possible

combination of sign of real and imaginary parts) and the notation ∼ 0 means that the eigenvalues

vanish up to the machine precision.
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4.2.4.2 Two-fiber cross-section

After imposition of the lateral free-traction boundary condition, the two-fiber cross-section beam

has 71 independent unknowns. Moreover, rank (GGG) = 36. Hence, 36 unknowns are solution of a

differential problem, whereas the remaining 35 are algebraically determined by linear combination

of the differential problem solutions. Looking at Equation (4.16) for the considered example, the

boundary conditions are 36, since rank (GGGσs) = 18 and the boundary equilibrium consists of 18

conditions. Therefore, the number of boundary conditions and the number of essential first order

differential equations in (4.16) perfectly match for this case, too.

In the two-fiber beam, the solution of the generalized eigenvalue problem (4.27) is:

λλλ =





∼ 0

±11.786

±10.116

±10.022

±8.2174

±8.1037

±4.5891± 1.2945i

±5.6931± 0.4331i

±4.9317

±3.3520± 1.1591i





[12]

[2]

[2]

[2]

[2]

[2]

[4]

[4]

[2]

[4]

and it is going to be discussed in the next Sub-section.

4.2.4.3 Conclusions on beam models

We computed the solutions of the homogeneous problem associated to (4.16) for the beam models

so far introduced, but we do not report them since their expressions are too long. However, the

following remarks about the solution structure apply.

• Zero eigenvalues lead to polynomial terms, that correspond to the polynomial terms that

appear also in the Saint-Venant solution. In particular, the 12 zero eigenvalues correspond

to the 6 rigid body translations and to the 6 uniform deformations: extension, torque, two

bendings, and two shears (associated with bendings).

• Non-zero, complex conjugate or real eigenvalues (generally represented as ±a ± ib) lead to

harmonic dumped functions like Cie
±ax sin (bx+ Cj), that describe local effects near the

boundaries, as it happens in other beam models, like Ladeveze and Simmonds (1998) and

Allix and Dupleix-Couderc (2010).

Similar conclusions was also reported in Lin et al. (2001) where, moreover, the authors specify

that the real part of the eigenvalue defines the inverse decay length of the corresponding boundary

effect. As a consequence, the smallest eigenvalue real-part provides an estimation of the length of

the axis region where boundary effects are not negligible.

From the comparison between the one- and two-fiber cross-section beam models, it is possible

to draw some additional observations.

• The number of eigenvalues corresponds exactly to the rank of GGG matrix i.e. to the number

of differential equations governing the problem.

• The number of null eigenvalues does not change. As a consequence, we may conclude that

the polynomial terms in the solution are independent from the number of considered fibers.
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• Instead, the number of non-zero eigenvalues increases with the fiber number. As a conse-

quence, we may conclude that a finer discretization improves at least the accuracy of the

description of local effects.

• The decay lengths of the two models are not so different (the smallest real part of eigenvalues

are 3.3652 and 3.3520 for one- and two- fiber cross-sections, respectively). As a consequence,

we may conclude that also the simplest model is effective in the evaluation of this parameter.

• In both models, the inverse of decay length ensures that the magnitude of dumped functions

is reduced of more than the 96% of its initial value, in a length of 1mm.

The independence of the polynomial solution with respect to the number of fibers suggests the

idea that the modelling far from the extremal cross sections could be done by means of few

global degrees of freedom, as in EB beam model. However, this idea will be the topic of future

investigations.

4.3 FE derivation

The goal of this section is to obtain a displacement-based beam FE formulation. Accordingly,

we introduce an approximation along the x direction, modify the beam-model weak formulation

(4.12), and perform an integration along the axis. The procedure reduces the algebraic-differential

equation system (4.16) to a pure algebraic equation system.

4.3.1 Weak problem formulation

In the following, we assume that the beam is clamped in A0, i.e. sss = 000. Starting from beam-model

weak formulation (4.12), we integrate by parts with respect to the x direction both the first and

the third terms obtaining the following, alternative beam-model weak formulation:

Find ŝss ∈ W̃ and σ̂σσ ∈ S̃ such that ∀ δŝss ∈ W̃ and ∀ δσ̂σσ ∈ S̃

δJHR =

∫

l

( δŝss′TGGGsσσ̂σσ − δŝssTHHHsσσ̂σσ + δσ̂σσTGGGσsŝss
′ − δσ̂σσTHHHσsŝss− δσ̂σσTHHHσσσ̂σσ − δŝssTFFF ) dx− δŝssTTTT = 0

(4.28)

where TTT :=
∫
Al

RRRT
s tttdA, W̃ :=

{
ŝss ∈ H1(l) : ŝss|x=0 = 000

}
, and S̃ := L2(l). We recall that:

L2 (l) :=

{
σ̂σσ :

∫

l

σ̂σσT σ̂σσdx < ∞

}
; H1 (l) :=

{
ŝss : ŝss, ŝss′ ∈ L2 (l)

}

4.3.2 FE formulation

The FE discretization of the model follows from the introduction of the axial shape function

approximation (2.21) into the beam-model weak formulation (4.28):

δJHR =

∫

l

(
δs̃ss

T
NNN ′T

s GGGsσNNNσσ̃σσ − δs̃ss
T
NNNT

sHHHsσNNNσσ̃σσ + δσ̃σσ
T
NNNT

σGGGσsNNN
′
ss̃ss− δσ̃σσ

T
NNNT

σHHHσsNNNss̃ss

− δσ̃σσ
T
NNNT

σHHHσσNNNσσ̃σσ − δs̃ss
T
NNNT

s FFF
)
dx− δs̃ss

T
NNNT

s TTT = 0

(4.29)

Collecting unknown coefficients in a vector and requiring (4.29) to be satisfied for all possible

virtual fields, we obtain the following algebraic equation system:

[
000 KKKsσ

KKKσs KKKσσ

]{
s̃ss

σ̃σσ

}
=

{
T̃TT

000

}
(4.30)
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where

KKKsσ =KKKT
σs :=

∫

l

(
NNN ′T

s GGGsσNNNσ −NNNT
sHHHsσNNNσ

)
dx

KKKσσ := −

∫

l

NNNT
σHHHσσNNNσdx; T̃TT :=

∫

l

NNNT
s FFFdx+ NNNT

s

∣∣
x=l

TTT

We highlight the following remarks.

• Since ŝss ∈ W̃ , the continuity of displacements along the beam axis is satisfied a priori,

whereas axial equilibrium is weakly imposed through Equation (4.28).

• The weak formulation (4.28) is symmetric.

4.3.3 Axial shape functions definition

In this sub-section we specify how to choose the FE approximation spaces. We first notice that,

since sss ∈ H1 (l), we need to impose axial continuity on displacements. Instead, since σσσ ∈ L2 (l)

stress components can be axial-discontinuous, and in general it is convenient that they are so.

Furthermore, to properly balance the discrete spaces, it seems reasonable to choose W̃ and S̃

satisfying: ∀σ̂σσ ∈ S̃ there exists ŝss ∈ W̃ such that

d

dx
ŝss = EEE1σ̂σσ; ŝss = EEE2σ̂σσ; ŝss = EEE3σ̂σσ, (4.31)

and viceversa.

Accordingly, we require the following conditions on the axial shape functions:

deg (NNNu) = deg (NNNσx
) + 1 = deg

(
NNN τxy

)
= deg (NNN τxz

)

deg (NNNv) = deg
(
NNN τxy

)
+ 1 = deg

(
NNNσy

)
= deg

(
NNNτyz

)

deg (NNNw) = deg (NNN τxz
) + 1 = deg

(
NNN τyz

)
= deg (NNNσz

)

(4.32)

Assuming deg (NNNv) = 3 and imposing Equations (4.32), we determine the degree of axis shape

functions NNNγ , summarized in Table 4.2 together with properties of profile vectors.

Variable deg (pppγ) y cont. deg (qqqγ) z cont. deg (NNNγ) x cont.

u 1 C−1 1 C−1 2 C0

v 2 C−1 1 C−1 3 C0

w 1 C−1 2 C−1 3 C0

σx 1 C−1 1 C−1 1 C−1

σy 3 C0 1 C−1 3 C−1

σz 1 C−1 3 C0 3 C−1

τxy 2 C0 1 C−1 2 C−1

τxz 1 C−1 2 C0 2 C−1

τyz 2 C0 2 C0 3 C−1

Table 4.2: Degree and continuity of cross-section profile functions and axis shape functions (C−1 means discontin-

uous function)

Looking at the properties of the axial shape functions summarized in Table 4.2, we notice that

all stress components are discontinuous along the beam axis. Moreover, the matrixHHHσσ (see (4.13)

and (4.6)) is invertible. Therefore, it is possible to statically condense the stress variables out

at the element level. This leads to a displacement-based-like formulation of the problem, thus

significantly reducing the dimension of the global stiffness matrix and improving the FE algorithm

efficiency.



54 4. 3D Beam–model

4.4 Numerical examples

The goal of this section is to illustrate the capability of the beam model and FE introduced so

far. Accordingly, we consider the problems listed below.

1. Homogeneous square cross-section beam, depicted in Figure 4.4.

2. Homogeneous, rectangular, and slim cross-section beam, depicted in Figure 4.10.

3. Non-homogeneous square cross-section beam, depicted in Figure 4.13.

4. Homogeneous L-shape cross-section beam, depicted in Figure 4.15.

We introduce the relative error definition for a generic variable γ:

eγrel :=

∣∣γ − γref
∣∣

|γref |
(4.33)

where γref is the reference solution, to be specified for each problem under investigation.

FE solutions considered in this section are evaluated through numerical-calculus functions

implemented in MATLAB software, unless specified.

4.4.1 Homogeneous square cross-section beam

We consider the homogeneous beam with a square cross-section depicted in Figure 4.4 and we

discuss the following aspects.

1. Displacement error and convergence of displacement solution.

2. Stress error.

3. Asymptotic behaviour.

z

y

Oh

b

h1=
h
δ

h2=
h
δ

· · ·

hδ =
h
δ

b1=
b
δ

b2=
b
δ

· · · bδ =
b
δ

Figure 4.4: Homogeneous cross section: geometry and mesh definition (in the considered example h = b = 1mm, δ

variable, E = 105MPa, and ν = 0.25).

We recall that, in FE derivation, the beam is assumed to be clamped at the initial cross-section

(∂Ωs = A0; sss = 000); moreover, we set l = 10mm, vanishing volume load (fff = 000), and a distributed

shear load applied to the final cross section Al (ttt|Al
= [0,−1, 0]

T
MPa). In Figure 4.4, we define
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the parameter δ that defines both the cross-section and the axial discretizations where the length

of the kth axis FE is defined as lk := l/ (10 · δ).

In the following, the acronym MB FE (Mixed Beam Finite Element) denotes the beam model

FE discretization of Equation (4.30).

4.4.1.1 Displacement error

We consider the y-oriented displacement component sv (see Definition (4.1)) and we evaluate its

mean value v
(
l
)

on the final cross section Al:

v
(
l
)
:=

∫
Al

rrrTv v̂vv|x=l dydz∫
Al

dydz
(4.34)

In order discuss the displacement solution of the MB FE, we compare the solutions of the

models listed in the following.

• The analytical solution of Euler-Bernoulli beam,

• The analytical solution of Timoshenko beam,

• The numerical solution of the MB FE evaluated considering two cases:

– 1 fiber cross-section (i.e. δ = 1),

– 25 fiber cross-section (i.e. δ = 5).

• 3D numerical solutions obtained using the software ABAQUS and with 3D trilinear bricks.

The following uniform meshes are employed.

– A uniform mesh of 5× 5× 50 elements.

– A uniform mesh of 10× 10× 100 elements.

– A fine and uniform mesh of 50× 50× 500 elements. This overkilled solution is used as

the reference solution srefv .

In Table 4.3 we report the vertical-displacement mean-value v
(
l
)

for the considered beam

models and their relative errors. We notice that all the models, even the two simplest ones (i.e.,

Beam model v (10) mm ev rel

Euler-Bernoulli -4.000000 · 10−2 3.222 · 10−3

Timoshenko -4.030000 · 10−2 4.254 · 10−3

MB FE 1 fiber (δ = 1) -4.022380 · 10−2 2.355 · 10−3

MB FE 25 fiber (δ = 5) -4.012917 · 10−2 0.003 · 10−3

3D solution (mesh 5× 5× 50) -4.175198 · 10−2 40.437 · 10−3

3D solution (mesh 10× 10× 100) -4.051178 · 10−2 9.531 ·10−3

3D solution (vref ) -4.012929 · 10−2 -

Table 4.3: Mean value of final cross-section displacement v (10) and the corresponding relative error for a cantilever

(l = 10mm, b = h = 1mm) evaluated using different beam models.

the Euler-Bernoulli and the Timoshenko models) give a relative error below 5‰. Furthermore,

as expected, MB FE 25 fiber model provides the best solution, with a relative error close to

10−6, negligible in most practical applications. In addition, despite the coarse discretization in

the modelling procedure, the MB FE 1 fiber relative error is of the order of 2‰, better than both

Euler-Bernulli and Timoshenko beams. We also notice that we need ∼ 4 · 106 DOFs to compute
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the displacements of the 3D overkilled solution, whereas we need ∼ 2 · 104 DOFs (plus ∼ 1.5 · 103

DOFs condensed at element level) to compute both displacements and stresses of the MB FE 25

fiber solution. In addition, the 3D solution obtained using the mesh 5×5×50 (resp.: 10×10×100),

leads to ∼ 5.5 · 103 (resp.: ∼ 3.6 · 104) DOFs.

In Figure 4.5 we plot the relative error ev rel as function of the element size 1/δ. It is worth
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Figure 4.5: Relative error ev rel plotted as function of the element size 1/δ.

observing the monotonic behaviour and the high speed convergence.

4.4.1.2 Stress error

We focus our attention to the shear components τxy and τxz since they have non-trivial distribu-

tions. In the following, the numerical results refer to the 25 fiber discretization.

Figures 4.6(a) and 4.6(b) report the shear axial coefficient functions τ̂ττxy and τ̂ττxz respectively.

We remark that they show dumped oscillations near the initial and final cross sections, while they

are approximately constant otherwise. We notice that this numerical behaviour is consistent with

the ODEs homogeneous solutions discussed in Section 4.2.4.

Moreover, the oscillations rapidly decay in an axial region whose length is of the order of

magnitude of the cross-section edge, in accordance with the solution provided by the Saint-Venant

principle.

Figures 4.7(a) and 4.7(b) report the cross-section distribution of shear components τxy (5, y, z)

and τxz (5, y, z) respectively. We consider the cross section at x = 5mm in order to exclude

boundary effects. It is worth noticing that the cross-section shear component τxy has a parabolic

distribution along y. Moreover, τxy is not constant along z, and the shear component τxz displays

a non vanishing distribution in the cross section. These latter results provide a shear stress

evaluation which is better than the one given by the simplified Jourawsky theory (e.g. Hjelmstad

(2005)), usually adopted in connection with classical beam models.

Figures 4.7(c) and 4.7(d) report the cross-section error distributions
∣∣τxy (5, y, z)− τrefxy (5, y, z)

∣∣
and∣∣τxz (5, y, z)− τrefxz (5, y, z)

∣∣, where τrefxy (5, y, z) and τrefxz (5, y, z) are reference solutions obtained

using the results detailed in Timoshenko and Goodier (1951)[Chap. 12]. It is interesting to note

that the numerical solution appears to be generally accurate. However, the error is higher close

to the cross section edges.
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Figure 4.6: Shear axial coefficient functions τ̂ττxy(x) and τ̂ττxz(x) for the case of homogeneous and square cross section.
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Figure 4.7: Shear cross-section distributions (4.7(a) and 4.7(b)) and cross-section error distributions (4.7(c) and

4.7(d)) for the case of homogeneous and square cross section.



58 4. 3D Beam–model

4.4.1.3 Asymptotic analysis

In this sub-section, we investigate the beam model behaviour as the cross-section size tends to

zero. It can be shown that the 3D beam solution converges to the EB solution, after a suitable

scaling of the loads (see Ciarlet (1997), for instance). In this section we numerically verify that,

decreasing the cross-section size, the MB FE solution converges to the EB solution, thus ensuring

the asymptotic consistency of the proposed beam model.

We consider a beam with length and boundary conditions introduced in Section 4.4.1, and

using a single square fiber to discretize the cross section. We use uniform meshes along the beam

axis, and different decreasing values of the cross section size h. We implement the MB FE using

numerical functions available in MAPLE software. In particular, we exploit the capability of the

software to use an arbitrary number of digits during numerical calculation. Since we are interested

in the asymptotic behaviour, the EB beam solution vref
(
l
)

is assumed as reference solution.

In Figure 4.8 we plot the relative error ev rel evaluated at different ratios h/l, for different axial

meshes (4 and 50 elements, respectively), and for different machine precisions (16 and 30 digits,

respectively). We notice that bad solutions are computed when using 16 digits and for very small
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Figure 4.8: Relative asymptotic error.

ratios h/l, independently of the number of elements. However, satisfactory results are obtained for

slendernesses of practical engineering interest. On the contrary, raising to 30 digits, the computed

solutions display the correct behaviour. We remark that the plateau regions for 4el(30dig) and

50el(30dig) in Figure 4.8 correspond to the error due to the axial discretization, which dominates

the total error in the asymptotic regime (h/l << 1).

In Figure 4.9 we show the relative error of the single fiber MB FE, considering different ratios

h/l and varying the number of elements in the axial direction. The plot confirms the convergence

of the solution, independently of the ratio h/l when 30 digits are employed. As already noticed, a

degeneracy in the convergence behaviour is experienced for very small h/l and 16 digit precision.

4.4.1.4 Computational costs

In this subsection we give some information about the computational performance of the proposed

method, comparing the numerical costs with the costs of a 3D displacement based analysis of the

homogeneous square cross-section beam.

The time elapsed to compute the solutions is not a fair criterion due to the use of different

softwares and machines. Instead, in Table 4.4 we provide some information that may be used to

compare the different approaches. We notice that, in all the considered cases, the global stiffness
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Figure 4.9: Relative error ev rel plotted as function of the number of elements for different ratios h/l

Model ev rel # DOFs # entries 6= 0 band-width # flops

MB FE 1 fiber (δ = 1) 2.355 · 10−3 1.60 · 102 7.17 · 103 3.30 · 101 8.71 · 104

MB FE 25 fiber (δ = 5) 0.003 · 10−3 2.00 · 104 2.37 · 107 1.60 · 103 2.57 · 1010

3D sol. (5× 5× 50) 40.437 · 10−3 5.40 · 103 4.37 · 105 4.33 · 102 5.05 · 108

3D sol. (10× 10× 100) 9.531 ·10−3 3.63 · 104 2.94 · 106 1.45 · 103 3.83 · 1010

3D sol. (50× 50× 500) - 3.90 · 106 3.16 · 108 3.12 · 104 1.90 · 1015

Table 4.4: Final cross-section displacement relative error, number of DOFs used in the analysis (# DOFs), number

of global stiffness-matrix entries different from zero (# entries 6= 0), band width of the global stiffness matrix

(band-width), and estimation of the number of flops necessary to factorize the global stiffness matrix (# flops) for

a cantilever (l = 10mm, b = h = 1mm) evaluated using different beam models.

matrices governing the problem will be symmetric, sparse, and with a band structure.

The displacement relative error ev rel is the same as reported in Table 4.3 and it provides

information about the solution accuracy. The estimation of the number of DOFs (# DOFs)

corresponds to the size of the global stiffness matrix. In particular, for the 1- and 5- fiber models, #

DOFs does not take into account the number of variables condensed out at the element level, since

negligible with respect to number of global DOFs (e.g. in the 5 fibre model ∼ 1.5 · 103 DOFs are

condensed on each element). The number of non-vanishing entries in the global stiffness matrices

(# entries 6= 0) is strictly related to the memory usage during computation. The fourth column of

Table 4.4 reports an estimation of the band width. The fifth column reports an estimation of the

number of flops necessary to LU-factorize the global stiffness matrix (# flops), under the following

assumptions: (i) # DOFs ≫ band-width and (ii) the computational cost of both the assembling

procedure and the post-processing are negligible. As a consequence, # flops is evaluated through

the following equation (see Quarteroni et al., 2007):

# flops =
# DOFs · (band-width)

2

2
(4.35)

We highlight that the MB FE 25 fiber and the 3D solution (mesh 10 × 10 × 100) require

comaprable # flops. Nevertheless, the former model provides a solution with a relative error that

is 3 order of magnitude smaller than the latter. The obtained results, even if non exhaustive, lead

us to conclude that the proposed method has interesting numerical performances with respect to

the standard 3D analysis.
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4.4.1.5 Conclusions on the beam model and the corresponding FE scheme

Looking at all the analyses performed in this section, we may remark what follows.

• As illustrated in Subsection 4.4.1.1, the MB and the corresponding FE scheme can capture

the real displacement better than the most popular beam models (EB and Timoshenko

models).

• As illustrated in Subsection 4.4.1.2, the proposed beam model has a significant accuracy in

the stress description.

• As illustrated in Subsection 4.4.1.3, the asymptotic behaviour, for reasonable ratios h/l, is

correct. Nevertheless, we note that the MB FE scheme may exhibits troubles for extremely

small ratios h/l.

As a consequence, we conclude that the proposed approach is a competitive alternative to other

popular beam models.

4.4.2 Rectangular slim cross-section

In this section, nevertheless, we consider only the bending of a beam with the slim cross-section

represented in Figure 4.10 . The beam analytical solution is available in literature (see Timoshenko

and Goodier, 1951).
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y
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3a3a3a3a aa a/2

2a/3
2a/3

2a/3

Figure 4.10: Slim cross section: geometry and mesh definition.

The beam geometrical dimensions are h = 0.2mm, b = 3mm, and l = 20mm whereas a =

0.1mm. The beam is clamped in the initial cross section A0 (i.e., sss = 000, as already specified in

Section 4.2.2) and loaded in the final cross section Al by a distributed shear load (i.e., fff = 000

and ttt = {0,−1, 0}
T
MPa). The material parameters are: E = 105MPa and ν = 0.25. Finally,

the axis discretization is done through a regular mesh of 10 elements whereas the cross-section

discretization is done through 48 non regular rectangular fibres, as illustrated in Figure 4.10.

Figure 4.11 plots the deformed cross-section at x = 10mm (to highlight deformations, displace-

ments are amplified of a factor 10).

It is interesting to notice the following statements.

• Discontinuities between fibres in transversal displacement fields sv and sw are evident. They

are the consequence of the assumption of Table 4.1 where the displacement cross-section

shape functions are assumed to be discontinuous between fibres.

• The deformed section is concave, whereas the deformed beam axis is convex. This phe-

nomenon is known in literature as anticlastic bending and it becomes more and more signif-

icant for higher values of the ratio b/h. It is worth noting that this phenomena is usually

ignored in structural design and analysis. Nevertheless, in practical applications, it can be

of interest for the induced deformations (see Reference Kushnir et al. (1993)) but also for

the induced stress. We notice also that the most of the beam models adopted in engineering

practice are not able to catch it.
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Figure 4.11: Transversal cross-section displacements (amplification factor 10) evaluated at x = 10mm

Figures 4.12(a) and 4.12(c) plot the cross-section shear distributions τxy (10, y, z) and τxz (10, y, z)

respectively.

Since the cross-section, as well as the boundary load ttt and the assigned boundary displacement

sss are symmetric respect to both the y− and z− axis, it is not surprising to obtain symmetric stress

distributions. In particular, τxy has an even distribution respect to both the cross-section axis,

i.e. τxy (10, y, z) = τxy (10,−y, z) = τxy (10, y,−z), whereas τxz has an odd distribution respect

to both the cross-section axis, i.e. τxz (10, y, z) = −τxz (10,−y, z) = −τxz (10, y,−z). For this

reason, Figures 4.12 plot distributions only for y, z > 0 in a dimensionless coordinate system.
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Figure 4.12: Shear components evaluated at x = 10mm for the case of homogeneous, slim cross-section: cross-section

distributions 4.12(a) and 4.12(c), cross-section relative error distributions 4.12(b) and 4.12(d) (results plotted for

y, z > 0).

The reference distributions τrefxy (10, y, z) and τrefxz (10, y, z) are the analytical solutions of the
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problem we are discussing. The analytical expression of the solution is illustrated in Reference

Timoshenko and Goodier (1951)[Chap. 12]. Specifically, shear distributions τrefxy (10, y, z) and

τrefxz (10, y, z) are expressed as Fourier series. In order to have a numerical evaluation of the

solution, we truncate the series at a term negligible with respect to the machine precision.

Due to the cross-section’s geometry with high ratio b/h, the shear component τxz becomes of

the same order of magnitude of the other component τxy. Reference Timoshenko and Goodier

(1951) notice that the ratio max(y,z)∈A

(∣∣τrefxy

∣∣) /max(y,z)∈A

(∣∣τrefxz

∣∣) ≈ 1 for the considered b/h

ratio. From numerical results we obtain that max(y,z)∈A (|τxy|) /max(y,z)∈A (|τxz|) = 1.03, in

agreement with the analytical solution.

The relative errors erelxy and erelxz are defined in Equation (4.36) and Figures 4.12(b) and 4.12(d)

plot their distribution within the cross-section.

erelxy =

∣∣τxy (10, y, z)− τrefxy (10, y, z)
∣∣

max(y,z)∈A

(∣∣∣τrefxy (10, y, z)
∣∣∣
) ; erelxz =

∣∣τxz (10, y, z)− τrefxz (10, y, z)
∣∣

max(y,z)∈A

(∣∣∣τrefxz (10, y, z)
∣∣∣
) (4.36)

We notice that the error is always less than the 5%, and high relative error values occur close to

the cross-section edges. On the contrary, the magnitude of the relative error is lower than the 1%

on the rest of the cross-section. According our results, we can argue that the numerical solution

is reasonably accurate, despite the relatively coarse cross-section fibre discretisation.

4.4.3 Non homogeneous cross-section beam (soft core beam)

In this subsection we consider a beam with the non-homogeneous square cross-section depicted in

Figure 4.13, and modeled through 25 equal fibers.
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Figure 4.13: Non-homogeneous cross section: geometry and mesh definition (in the considered example h = b =

1mm, a = 0.2mm, E1 = 105MPa, E2 = 103MPa, and ν = 0.25).

We assume the boundary conditions of the example in Section 4.4.1. Furthermore, we set

l = 20mm, E1 = 105MPa, E2 = 103MPa, and ν = 0.25 everywhere in the cross section. Along the

beam axis we use a non-uniform 8 element meshes, whose nodal coordinates are collected in the

following vector: [0; 1; 2; 3; 10; 17; 18; 19; 20]. We plot the stress distribution in the cross section

x = 10mm. The numerical results are reported in Figure 4.14.

Consistently with the Saint-Venant principle, the stress components σyy, σzz and τyz are

negligible. Moreover, due to the large ratio between the two Young’s moduli, stress distributions

within the core appear always extremely regular and flat.
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Figure 4.14: Stress distributions evaluated at x = 10mm for the non homogeneous case.
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In this example the non uniform distribution of shear component τxy along z−direction is less

evident than in the case of homogeneous beam. The ratio between the maximum values of the

shears τxy and τxz , is close to 10, which confirms, once again, that τxz should not be neglected.

In order to validate the results, we compute a 3D numerical solution using the ABAQUS software

and a homogeneous mesh of 40 brick elements. In Table 4.5 we report the minimum and the

MB FE ABAQUS

min max min max

σx −7.54 ·101 7.54 ·101 −7.55 ·101 7.55 ·101

σy −5.73 ·10−2 5.73 ·10−2 −2.57 ·10−1 2.57 ·10−1

σz −1.22 ·10−1 1.22 ·10−1 −3.36 ·10−1 3.39 ·10−1

τxy −1.23 ·100 0.00 ·100 −1.23 ·100 −8.01 ·10−2

τxz −1.25 ·10−1 1.25 ·10−1 −9.62 ·10−2 9.62 ·10−1

τyz −7.27 ·10−3 7.27 ·10−3 −1.02 ·10−1 1.02 ·10−1

Table 4.5: Minimum and maximum value of stress components distributions evaluated on the cross-section x =

10mm for the non-homogeneous case, evaluated with different methods.

maximum values of the cross-section stress distribution evaluated on the cross-section x = 10mm.

From the comparison of the two methods it is possible to appreciate the substantial agreement

of the results. We notice that the high value of the σy, σz, and τyz in ABAQUS min and max

evaluation depends on some localized instabilities that occur in numerical evaluation of stress.

4.4.4 L-shape cross-section beam

We consider the cross-section geometry and fiber distribution reported in Figure 4.15.

z

y

b

h

(b − h)

c

c

aaaa

a

a

a

a

2c

Figure 4.15: L-shape cross section: geometry and mesh definition (in the considered example b = 1mm, h = 0.5mm,

a = c = 0.125mm, E = 105MPa, and ν = 0.25).

We assume the beam length, the axial mesh, and the displacement constraint of the example

in Section 4.4.3, while the material parameters are set as E = 105MPa and ν = 0.25. We load the

beam with a torsion moment equal to 1Nmm in Al, imposed through a couple of opposite unit

forces [0, 0, 1]N and [0, 0,−1]N applied in vertices (20,−0.5;−0.5) and (20, 0; 0.5) respectively.

The stress distributions at x = 10mm are reported in Figure 4.16.

It is interesting to observe that, as expected, the magnitude of σx, σy , σz and τyz is negligible

with respect to the magnitude of the shear components τxy and τxz. Moreover, considering the
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Figure 4.16: Stress distributions evaluated at x = 10mm for the L-shape cross section.
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cross-section symmetry highlighted in Figure 4.15, the τxy distribution is anti-symmetric respect to

the τxy distribution. Finally, a small stress concentration of σx, σy , σz and τyz can be appreciated

close to the section vertices where concentrated forces are applied.

In order to validate the results, we compute a 3D numerical solution using the ABAQUS

software and a homogeneous mesh of 40 brick elements. In Table 4.6 we report the minimum

MB FE ABAQUS

min max min max

σx −3.61 ·10−3 1.74 ·10−3 −1.65 ·10−9 1.20 · 10−9

σy −2.68 ·10−2 5.78 ·10−2 −1.51 ·10−11 1.41 ·10−11

σz −7.50 ·10−3 7.19 ·10−3 −2.12 ·10−11 1.49 ·10−11

τxy −9.54 ·100 1.56 ·101 −9.55 ·100 1.66 · 101

τxz −1.56 ·101 9.54 ·100 −1.66 ·101 9.55 · 100

τyz −2.47 ·10−3 7.29 ·10−3 −1.24 ·10−11 8.12 ·10−12

Table 4.6: Minimum and maximum value of stress components distributions evaluated on the cross-section x =

10mm for the L-shape case, evaluated with different methods.

and the maximum values of the cross-section stress distribution evaluated on the cross-section

x = 10mm. From the comparison of the two method results it is possible to appreciate the

substantial agreement of the results. We notice a small difference between the maximum values of

τxy and τxz that occurs in the reflex angle of the cross-section where stress concentration occurs.



Chapter 5

Non–constant Cross–section

Beam–model

In this chapter we are going to consider a 2D elastic problem, i.e. with respect to the notation

introduced in Chapter 2, we assume n = 2. Nevertheless, differently from the Chapter 3, we

are going to consider a non rectangular domain, i.e. a 2D beam with non-constant cross-section.

Figure 3.1 represents the domain, the adopted Cartesian coordinate system, the initial and the

final cross sections A0 and Al respectively, and the lateral surface L := hl ∪ hu for the case we

are considering. The problem we are going to investigate presents some peculiarities with respect

to the formulation intrduced in Chapter 2. As a consequence we will introduce a specific problem

formulation.

O x

y

l

A (0)

A
(

l
)

hu (x)

hl (x)

Figure 5.1: 2D beam geometry, coordinate system, dimensions and adopted notations.

Section 5.1 provides a brief literature review on existing non- constant beam models and an

overview on the specific problem we are going to discuss in this chapter. Section 5.2 introduces

a specialized problem formulation. Section 5.3 formulates the non-constant beam model. Section

5.4 formulates the corresponding FE and, finally, Section 5.5 provides some numerical examples.

5.1 Engineering motivations

Practitioners extensively use beams with non-constant cross-section since they allow to op-

timize the beam behaviour with respect to peculiar problems. As an example, non-constant

cross-section beams allow to obtain the maximum resistance to the loads using the minimum

amount of material. Laminated wood structures, cranes, and arc-shaped beams are applications

67
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in which displacements and stresses induced by statical loads are the main problems to investigate.

Windmill turbine and propeller blades are more complex applications of non-constant cross-section

beams since centrifugal force induced by rotation and vibrations represent additional aspects to

investigate.

Anyhow, the accuracy of non-constant cross-section beam models is a particularly crucial aspect

for engineers, in order to perform an effective design. Unfortunately, non-constant cross-section

beam models rarely satisfy the requests of practitioners who therefore must choose between the

use of heavy approximations or the use of more expensive models, like 3D solids Finite Element

(FE) models.

A simple class of non-constant cross-section beams are the so-called tapered beams in which

the cross-section dimension varies linearly with respect to the axis coordinate. Since the twentieth

century, researchers have been proposing both analytical and numerical tapered-beam models that

are currently available in literature.

The simplest tapered-beam models simply modify the coefficients of the Euler-Bernoulli (EB)

or Timoshenko beam models in order to take into account the variation with respect to the axial

coordinate of the cross-section geometrical properties (area and inertia). Significant examples

of these models are presented in (Banerjee and Williams, 1985) and (Banerjee and Williams,

1986) whereas, among the others, we cite (Vinod et al., 2007) as an example of numerical model

application. Unfortunately, it is well-known since the 60ies (see (Boley, 1963)) that this approach

is not adequate in a large class of applications, as recently illustrated in (Hodges et al., 2010).

In fact, the error in displacement and stress evaluations increases with the taper slope, quickly

overcoming the 10%. In particular, Hodges et al. (2010) isolate the error source in the violation

of boundary equilibrium on the lateral surface during the beam model formulation.

Moreover, in beams without axis symmetry, the relative position of cross-section barycentre and

load application-point varies along the beam axis and an axial load produces a bending moment.

In the same context, also the relative position between shear centre and load application-point

varies along the beam axis and a shear load produces a torque moment. On the other hand, the

EB and the Timoshenko beams model independently the axial-compression, the shear-bending,

and the torque problems. As a consequence, the simplest tapered-beam models are not adequate

for non symmetric beams due to the absence of coupling terms between axial, transverse and

rotation equilibrium equations. In order to overcome this problem, Li and Li (2002) consider in

their model the coupling of axial-compression and shear-bending problems whereas Kitipornchai

and Trahair (1975) investigate the coupling of shear bending and torque problems in the case of

mono-symmetric cross-sections. Obviously, as highlighted in (Hodges et al., 2010), this modelling

choices could open new problems related to the evaluation of the coupling terms that could be not

trivial, in particular for complex cross-section geometries.

Restricting our attention to 2D bodies, Hodges et al. (2008) develop a displacement-based 2D

tapered beam-model. The authors use the variational-asymptotic method for derivation and they

consider the slope of taper as beam parameter, used to enforce the lateral surface equilibrium.

Starting from this model, Hodges et al. (2010) provide formulae to recover stresses and strains

and illustrate the model capability that appear to be extremely accurate. Unfortunately, the

authors do not consider in their models the coupling terms and do not provide information about

generalization of their model, for example to non-symmetric or generic non-constant cross-section

beams.
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5.2 Problem formulation

With respect to the definitions provided in Chapter 2, we modify the definition of the cross-section

as follows:

A (x) := {y ∈ [hl (x) , hu (x)]} (5.1)

where hl and hu : l → R are the cross-section lower- and upper- limits, respectively. In cross-

section definition (5.1) we highlight the dependence of the cross-section on the axial coordinate

x. We assume that the lower- and upper- limits are sufficiently smooth functions, defined so

that hl (x) < hu (x) ∀x ∈ l and
∣∣ d
dxhl (x)

∣∣ ,
∣∣ d
dxhu (x)

∣∣ < ∞. As usual in beam modelling, l ≫

A (x) ∀x ∈ l, where A (x) is the cross-section height, defined as A (x) := hu (x)− hl (x).

We define the problem domain as:

Ω := l ×A (x) (5.2)

Figure 5.1 represents the domain Ω, the adopted Cartesian coordinate system, the lower and

upper limits y = hl (x) and y = hu (x), and the initial and final cross-sections A (0) and A
(
l
)
,

respectively. The lateral surface is defined as L := hl ∪ hu.

In the following, we assume that the lower- and upper- limits belong to the loaded boundary,

i.e. hu (x) , hl (x) ⊂ ∂Ωt. Moreover, as usual in beam modelling, we assume that the lower- and

upper- limits are unloaded, i.e. ttt|hl∪hu
= 000.

To enforce the boundary equilibrium we need to known the outward unit vectors on the lower-

and upper- limits that result as follows:

nnn|hl
(x) =

1
√
1 + (h′

l (x))
2

{
h′
l (x)

−1

}

nnn|hu
(x) =

1
√
1 + (h′

u (x))
2

{
−h′

u (x)

1

} (5.3)

where ( · )
′

means the derivative with respect to the independent variable x. As a consequence,

the boundary equilibrium on lateral surface σσσ ·nnn|hl∪hu
= 000 could be expressed as follows:

[
σx τ

τ σy

]{
nx

ny

}
=

{
0

0

}
⇒

{
σxnx + τny = 0

τnx + σyny = 0
(5.4)

Manipulating Equation (5.4), we express τ and σy as function of σx. Using the outward unit

vector nnn definition (5.3), we obtain the following expressions for boundary equilibrium:

τ = −
nx

ny
σx = h′σx; σy =

n2
x

n2
y

σx = (h′)
2
σx (5.5)

where h indicates both hl (x) and hu (x). We notice that, given the upper and lower surface

definitions y = hl (x) and y = hu (x) , σx could be seen as the independent variable that completely

defines the stress state on the lateral surface. Moreover, as stated in (Hodges et al., 2008) and

(Hodges et al., 2010), the unique parameter necessary to define the boundary equilibrium is the

slope of the limit functions h′
l and h′

u.

5.3 Model derivation

In this section we develop the beam model through the dimensional reduction approach, described

in Section 2.8.1. The same procedure is applied in Section 3.4 but, with respect to that section, in
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this chapter we modify the definition of the approximated fields in order to satisfy the boundary

equilibrium on lower- and upper- limits.

5.3.1 Cross-section approximation and notations

With respect to the notation introduced in Section 2.8.1, we introduce some additional hypothesis

on cross-section shape functions useful to satisfy exactly the boundary equilibrium.

• The stress cross-section shape functions are Lagrange polynomials.

• The extremal cross-section points y = hl (x) ; y = hu (x) are interpolating nodes for the

stresses cross-section shape functions.

• ∀x ∈ l rrrσy
|hl∪hu

= rrrτ |hl∪hu
= 000

We highlight that, due to rrrγ definition and the assumptions listed so far, the stress cross-section

shape functions implicitly depend also on x coordinate, since the interpolating node positions vary

according to the lower- and upper- limits. As a consequence, some computational complications

occur, but the model-derivation procedure illustrated in Auricchio et al. (2010) does not change.

Approximation definition (2.20) and the assumptions introduced so far lead to the following

definition of partial derivatives.

∂

∂x
γ =

∂

∂x

(
rrrTγ γ̂γγ

)
= rrrTγ,xγ̂γγ + rrrTγ γ̂γγ

′;
∂

∂y
γ =

∂

∂y

(
rrrTγ γ̂γγ

)
= rrrTγ,yγ̂γγ

where ( · )
′
indicates x derivative for γ̂γγ whereas we use ( · ),x and ( · ),y to indicate respectively x−

and y− partial derivatives for rrrγ .

Switching to an engineering notation, considering Equation (2.20) and introducing the bound-

ary equilibrium as expressed in (5.5), we set:

sss =

{
su(x, y)

sv(x, y)

}
≈

[
rrrTu 000

000 rrrTv

]{
ûuu

v̂vv

}
= RRRsŝss (5.6)

σσσ =





σx(x, y)

σy(x, y)

τ(x, y)



 ≈




rrrTσx
000 000

rrrTσx
TTT 2 rrrTσy

000

rrrTσx
TTT 000 rrrTτ








σ̂σσx

σ̂σσy

τ̂ττ



 = RRRσσ̂σσ (5.7)

where TTT is a diagonal matrix defined as follows:

Tii :=





0 if pσxi|hl
= pσxi|hu

= 0

h′
0 if pσxi|hl

6= 0

h′
n if pσxi|hu

6= 0

(5.8)

Virtual fields are analogously defined as:

δsss = RRRsδŝss; δσσσ = RRRσδσ̂σσ

We highlight that the stress approximation so far introduced imposes the boundary equilibrium

as essential condition, as required in S0 and St functional spaces.

Coherently with the engineering notation just introduced, in Table 5.1 we re-define the differ-

ential operators and the outward unit vector scalar product.

The matrices EEE1 and EEE2 are defined as follows:

EEE1 =

[
1 0 0

0 0 1

]
; EEE2 =

[
0 0 1

0 1 0

]
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Tensorial notation Engineering notation

∇ ·σσσ

(
d

dx
EEE1 +

d

dy
EEE2

)
RRRσσ̂σσ

σσσ ·nnn (nxEEE1 + nyEEE2) RRRσσ̂σσ

Table 5.1: Tensor and engineering equivalent notations.

In Section 5.2, with DDD−1 we denoted the fourth order elastic tensor while from now on, we

use the same notation to indicate the corresponding square matrix obtained following engineering

notation. Therefore, we have:

DDD−1 =
1

E




1 −ν 0

−ν 1 0

0 0 2 (1 + ν)




5.3.2 Model formulation

We use the notations (5.6) and (5.7) in Equation (2.13) and we assume sss = 000. As a consequence,

the HR functional stationariness (2.13) becomes:

δJHR =−

∫

Ω

δŝssTRRRT
s

[(
d

dx
E1E1E1 +

d

dy
E2E2E2

)
(RRRσσ̂σσ)

]
dΩ

−

∫

Ω

[(
d

dx
EEE1 +

d

dy
EEE2

)
(RRRσδσ̂σσ)

]T
RRRsŝss dΩ

−

∫

Ω

δσ̂σσTRRRT
σDDD

−1RRRσσ̂σσ dΩ−

∫

Ω

δŝssTRRRT
s fff dΩ = 0

(5.9)

Expanding Equation (5.9), the weak formulation becomes:

δJHR =−

∫

Ω

(
δŝssTRRRT

sE1E1E1RRRσσ̂σσ
′ + δŝssTRRRT

sE1E1E1RRRσ,xσ̂σσ + δŝssTRRRT
sE2E2E2RRRσ,yσ̂σσ

)
dΩ

−

∫

Ω

(
δσ̂σσ′TRRRT

σEEE
T
1RRRsŝss+ δσ̂σσTRRRT

σ,xEEE
T
1RRRsŝss+ δσ̂σσTRRRT

σ,yEEE
T
2RRRsŝss

)
dΩ

−

∫

Ω

δσ̂σσTRRRT
σDDD

−1RRRσσ̂σσ dΩ−

∫

Ω

δŝssTRRRT
s fff dΩ = 0

(5.10)

Recalling that only the cross-section shape functions depend on y and splitting the integral over

Ω into an integral over l and an integral over A, Equation (5.10) becomes:

δJHR =

∫

l

(
− δŝssTGGGsσσ̂σσ

′ − δŝssTHHHsσσ̂σσ − δσ̂σσ′TGGGσsŝss− δσ̂σσTHHHσsŝss

−δσ̂σσTHHHσσσ̂σσ − δŝssTFFF
)
dx = 0

(5.11)

where

HHHσs =HHHT
sσ =

∫

A

(
RRRT

σ,xE1E1E1RRRs +RRRT
σ,yE2E2E2RRRs

)
dy; FFF =

∫

A

RRRT
s fffdy;

HHHσσ =

∫

A

RRRT
σDDD

−1RRRσdy; GGGσs =GGGT
sσ =

∫

A

RRRT
σEEE

T
1RRRsdy

Equation (5.11) represents the weak formulation of the 1D beam model. We highlight that the

matrices GGGσs, HHHσs, and HHHσσ implicitly depend on x due to the cross-section shape function

definition.
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To obtain the corresponding boundary value problem, we integrate by parts the third term of

Equation (5.11):

−

∫

l

δσ̂σσ′TGGGσsŝssdx = − δσ̂σσTGGGσsŝss
∣∣∣
x=l

x=0
+

∫

l

δσ̂σσTGGG′
σsŝssdx+

∫

l

δσ̂σσTGGGσsŝss
′dx (5.12)

Substituting Equation (5.12) in Equation (5.11), recalling that δσ̂σσ = 000 on ∂Ωt, and collecting the

unknowns in a vector we obtain:

∫

l

{δŝss; δσ̂σσ}
T

(
GGG

{
ŝss′

σ̂σσ′

}
+HHH

{
ŝss

σ̂σσ

}
−

{
FFF

000

})
dx+ δσ̂σσTGGGσsŝss

∣∣∣
∂Ωs

= 0 (5.13)

where

GGG =

[
000 −GGGsσ

+GGGσs 000

]
; HHH =

[
000 −HHHsσ

GGG′
σs −HHHσs −HHHσσ

]
(5.14)

Requiring to satisfy Equation (5.13) for all the possible variations, we finally obtain the fol-

lowing ordinary differential equations:





GGG

{
ŝss′

σ̂σσ′

}
+HHH

{
ŝss

σ̂σσ

}
=

{
FFF

000

}
in l

+ suitable boundary conditions

(5.15)

5.3.3 Beam-model examples

In this section we give two examples of beam models with non-constant cross-section. More

precisely, we derive:

1. a beam model for a tapered beam, assuming simplified kinematic and stresses; by means of

this example we will illustrate how the introduction of non-constant cross-section modifies

the coefficients governing the equations;

2. a beam model for a non-constant cross-section, assuming a refined kinematic and stresses.

5.3.3.1 Simplified kinematic and stress

In this section we give an example of a beam model developed using the strategies of Section 2.8.1.

More precisely, starting from the HR div-div approach (Equation (5.15)), we derive a linear tapered

beam model in which we use a first order displacement field, as already done in Section 3.4.3.1.

We consider a linearly tapered beam in which each cross-section is symmetric width respect to

the beam axis. As a consequence the cross-section height A (x), the upper- and the lower- limits

are defined as follows:

A (x) = 2 ·h0 − 2 ·h′ ·x; hl = −hu = −h0 + h′ ·x

where h0 represents the cross-section height at x = 0 and h′ represents the slope of the lateral

surface.

We assume a first-order kinematic (as in Timoshenko model) and the usual cross-section stress

distributions (obtained from the Jourawsky theory). In other words we make the following hy-
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potheses:

u = u0(x) + yu1(x) i.e. rrru =

{
1

y

}
ûuu =

{
u0

u1

}

v = v(x) i.e. rrrv = {1} v̂vv = {v}

σxx = σx0(x) + yσx1(x) i.e. rrrσx
=

{
1

y

}
σ̂σσx =

{
σx0

σx1

}

σyy = 0 i.e. rrrσy
= {0} σ̂σσy = {0}

τ =
(y − hl) (hu − y)

(hu − hl)
2 τ(x) i.e. rrrτ =

{
(y − hl) (hu − y)

(hu − hl)
2

}
τ̂ττ = {τ}

The matrices GGG and HHH defined in (5.14) and entering into the beam model (5.15), are explicitly

given by:

GGG=




0 0 0 −A (x) 0 0

0 0 0 0 −

(
A (x)

)3

12
0

0 0 0 −
h′A (x)

2
0 −

2

3
A (x)

A (x) 0
h′A (x)

2
0 0 0

0

(
A (x)

)3

12
0 0 0 0

0 0
2

3
A (x) 0 0 0




(5.16)

HHH=




0 0 0 0 −
h′A (x)

2
0

0 0 0 0 0
2

3
A (x)

0 0 0 0 −
h′2A (x)

4
0

0 0 0 −
A (x)

E

(
1 + h′

4

)2
0 −

2h′A (x) (1 + ν)

3 ·E

−
h′A (x)

2
0 −

h′2A (x)

4
0 −

A (x)
3

12 ·E

(
1 + h′

4

)2
0

0
2

3
A (x) 0 0 0 −

8

15
A (x)

2 (1+ν)

E




(5.17)

If we compare the matrices GGG andHHH defined above with the matrices obtained for 2D beam models

with constant cross section (3.39) we notice the following statements.

• In the matrices that govern the define the model for the tapered cross-section beam, some

entries explicitly depend on the slope of the lateral surface h′.

• If the taper slope h′ vanishes, the matrices defined in (5.16) recover the constant cross-section

beam matrices defined in (3.39).

5.3.3.2 Enhanced kinematic

As in Chapter 3, we assume that deg (rrrγ) denotes the highest polynomial degree with respect to

y of the generic cross-section shape function. In the following, we assume the highest polynomial
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degrees specified in Table (5.2). The same polynomial degrees was adopted in Chapter 3 that

illustrate how the choice leads to a satisfactory beam model.

rrru rrrv rrrσx
rrrσy

rrrτ
deg (rrrγ) 1 2 1 3 2

Table 5.2: Highest polynomial degree with respect to y of the cross-section shape functions used in beam modelling.

Using all the hypotheses listed in this section and trough the symbolic calculus software

MAPLE, we evaluate the matrices GGG and HHH for a general non-constant cross-section beam. We

notice that rank (GGG) = 6 whereas the model uses 10 independent variables. As a consequence,

we conclude that beam model, as defined in (5.15) and with the refined kinematic specified in

Table 5.2, is a differential-algebraic boundary value problem. Thus, 6 variables are solutions of a

differential problem, while the remaining 4 unknowns are algebraically determined by the former

ones. Since GGG and HHH are matrices of non-constant coefficients, it is not possible to evaluate the ho-

mogeneous solution of the differential equation. Nevertheless, we can suppose that considerations

done in (Auricchio et al., 2010) about constant cross-section beam model are still valid.

Moreover, comparing the constant and non-constant cross-section beam models, we observe

that the latter does not use more independent variables. On the contrary, the non-constant cross-

section beam model increments the matrices fill-in (e.g. compare HHHσs definition given in Equation

(5.11) and HHHσ′s definition given in Equation 26 of (Auricchio et al., 2010)). As a consequence, we

conclude that the proposed model introduces new variable relations that, hopefully, will take into

account naturally the axial and bending equations coupling.

5.4 FE derivation

To obtain the beam FE formulation we integrate by parts the weak formulation of the beam model

(5.11), we introduce the axis approximation (2.21) and we perform an integration along the axis.

Starting from beam model variational formulation (5.11), we assume ∂Ωs = A0, Al ⊂ ∂Ωt and

sss = 000. We start integrating by parts with respect to the x direction both the third and the first

terms of Equation (5.11), see (5.12) and the following equations:

−

∫

l

δŝss′TGGGsσσ̂σσdx = − δŝssTGGGsσσ̂σσ
∣∣∣
x=l

x=0
+

∫

l

δŝssTGGG′
sσσ̂σσdx+

∫

l

δŝssTGGGsσσ̂σσ
′dx (5.18)

Substituting Equations (5.12) and (5.18) into Equation (5.11) we obtain an alternative beam model

formulation:

Find ŝss ∈ W̃ and σ̂σσ ∈ S̃ such that ∀ δŝss ∈ W̃ and ∀ δσ̂σσ ∈ S̃

δJHR=

∫

l

(
δŝss′TGGGsσσ̂σσ + δŝssTGGG′

sσσ̂σσ − δŝssTHHHsσσ̂σσ + δσ̂σσTGGGσsŝss
′ + δσ̂σσTGGG′

σsŝss− δσ̂σσTHHHσsŝss

− δσ̂σσTHHHσσσ̂σσ − δŝssTFFF
)
dx− δŝssTTTT = 0

(5.19)

where W̃ :=
{
ŝss ∈ H1(l) : ŝss|x=0 = 000

}
; S̃ := L2(l) and TTT =

∫
Al

RRRT
s tttdA

The FE discretization of the beam model follows from the introduction of the axis shape
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function approximation (2.21) into the variational formulation (5.19):

δJHR =

∫

l

(
δs̃ss

T
NNN ′T

s GGGsσNNNσσ̃σσ + δs̃ss
T
NNNT

sGGG
′
sσNNNσσ̃σσ − δs̃ss

T
NNNT

sHHHsσNNNσσ̃σσ

+ δσ̃σσ
T
NNNT

σGGGσsNNN
′
ss̃ss+ δσ̃σσ

T
NNNT

σGGG
′
σsNNNss̃ss− δσ̃σσ

T
NNNT

σHHHσsNNNss̃ss

− δσ̃σσ
T
NNNT

σHHHσσNNNσσ̃σσ − δs̃ss
T
NNNT

s FFF
)
dx − δs̃ss

T
NNNT

s TTT = 0

(5.20)

Collecting unknown coefficients in a vector and requiring (5.20) to be satisfied for all possible

virtual fields we obtain: [
000 KKKsσ

KKKσs KKKσσ

]{
s̃ss

σ̃σσ

}
=

{
T̃TT

000

}
(5.21)

where

KKKsσ =KKKT
σs =

∫

l

(
NNN ′T

s GGGsσNNNσ +NNNT
sGGG

′
sσNNNσ −NNNT

s HHHsσNNNσ

)
dx;

KKKσσ = −

∫

l

NNNT
σHHHσσNNNσdx; T̃TT = −

∫

l

NNNT
s FFFdx − NNNT

s

∣∣
x=l

TTT

About the properties of the axis shape functions, we refer to Section 6.1 of (Auricchio et al.,

2010).

5.5 Numerical examples

In this section we discuss the numerical results of some significant test cases, in order to understand

the model’s and FE’s capabilities.

We start considering a symmetric tapered beam for which compare the numerical results with

the analytical solutions available in literature. In the following we give some remarks on the

stiffness-matrix condition-number and we conclude considering an arch-shaped beam that shows

the capability of the beam model to take ino account also complex geometries with high accuracy.

All the presented examples are implemented in MAPLE software which allows to calculate

the stiffness matrices using symbolic calculus. Obviously, the same results could be obtained also

using numerical-calculus tools, with the shrewdness to use suitable integration rules.

5.5.1 Symmetric tapered beam

In the following we consider the tapered beam illustrated in Figure 5.2. We assume E = 105MPa

and ν = 0.25. Moreover, as illustrated in Figure 5.2, the beam is clamped in the initial cross

section A (0) and a concentrated load qqq = [0,−1]N acts in the lower limit of the final cross-section

A
(
l
)
. About FE beam model, we discretize the axis trough an homogeneous mesh of 20 elements.

Figure 5.3 plots the displacement axial coefficients ûuu and v̂vv obtained trough the FE scheme

introduced in Section 5.4.

In the considered example, we use the following displacement cross-section shape functions:

rrru = {1; y}
T
; rrrv =

{
1; y; y2

}T
; (5.22)

As a consequence, the axial coefficients have physical meanings.

• v̂1 is the mean value of transversal displacement.

• v̂2 is associated to the change of cross-section length.

• v̂3 is a deformation of the cross-section within its plane.
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O

x

y

l

A (0)
A
(

l
)

q

Figure 5.2: Symmetric tapered beam: l = 10mm, A (0) = 1mm, A
(

l
)

= 0.5mm, q = 1N, E = 100000MPa, and

ν = 0.25.
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û2

(a) Horizontal displacement, axial coefficient

functions ûi i = 1, 2.
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Figure 5.3: Displacement axial coefficient functions, evaluated for a symmetric tapered beam under shear-bending

load.



5.5. Numerical examples 77

• û1 is the mean value of axial displacement.

• û2 is the cross-section rotation.

We notice that the distributions of the displacement mean values v̂1 and û1 are qualitatively not

far from the results of the Euler-Bernoulli beam with constant cross section.

Figures 5.4(a), 5.4(b), and 5.4(e) plot the stress axial coefficient functions. Referring to Figure

5.4(a), the axial coefficient function σ̂x1 indicates the value of the axial stress at the bottom of the

cross section whereas σ̂x2 indicates the same value at the top of the cross section. Figure 5.4(c)

plots the axis distribution of bending moment M (x) which definition is recalled in the following:

M (x) =

∫

A(x)

σx · y dy (5.23)

The bending moment distribution M (x) agrees with the classical beam theories, in fact it varies

linearly along the axis, being equal to zero in the final cross-section and equal to q · l = 10Nmm in

the initial cross-section. On the other hand, the axial coefficient functions are non-linear in order

to compensate the change of the cross-section thickness.

Figure 5.4(d) plots the axis distribution of resulting shear V (x) which definition is recalled in

the following:

V (x) =

∫

A(x)

τ dy (5.24)

The resulting shear V (x) is constant and equal to −1N, with some numerical noises, that give

errors in the order of magnitude of 5 · 10−6. Also the resulting shear distribution agrees with the

classical beam theories. Once again, the resulting shear is constant whereas the beam variable

τ̂1 (x) is non linear in order to compensate the cross-section changes.

In Figure 5.4(e), far from the initial and final cross-sections, the axial coefficient functions σ̂yi

have an order of magnitude negligible with respect to the other stress components. Nevertheless,

we can appreciate how σ̂yi tends to increase going from the initial to the final cross-section.

Moreover, close to the initial and final cross-sections, the axial coefficient functions σ̂yi significantly

oscillate. In (Auricchio et al., 2010), the solution oscillations are associated to the boundary effects.

Nevertheless, in the specific case we are discussing, it is not clear if the oscillations have a physical

meaning or are associated to some numerical instability.

Figure 5.5 plots the cross-section distributions of σx and σy stresses. Specifically, the label

num indicates the numerical solution obtained trough the FE introduced in Section 5.4, whereas

the label an indicates the analytical solution obtained considering the solutions of the loaded

wedge, available in literature (see (Timoshenko and Goodier, 1951)[Section 35]). About analytical

solution, we consider a wedge obtained extending the lines constituting the lower and upper limits

of the beam illustrated in Figure 5.2 and a force system acting on the wedge end that produces

the same bending moment and resulting shear of the load applied on the final cross-section of the

tapered beam. In order to exclude any boundary effects, we consider the cross section A (5). We

highlight the good agreement between numerical results and analytical solution.

The shear cross-section distribution τ requires some additional remarks. Figures 5.6(a), 5.6(b),

and 5.6(c) plot the shear distributions evaluated on the cross sections A (2.5), A (5), and A (7.5),

respectively. It is possible to appreciate a change of concavity in shear distribution that agrees

with the analytical solution and the sign of shear axial coefficient function (see Figure 5.4(b)).

In Figures 5.6(a) and 5.6(c), qualitatively, we see a good agreement between the numerical and

analytical solutions. Moreover, the analytical solution depicted in Figure 5.6(b) shows oscillations

whereas the numerical solution has a negligible curvature. This may be the consequence of the

poorness of the cross-section shape functions adopted in beam modelling that appear to be not
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Figure 5.4: Stress axial coefficient functions (Subfigure 5.4(a), 5.4(b), and 5.4(e)) and resulting internal actions

(Subfigure 5.4(c), and 5.4(d)), evaluated for a symmetric tapered beam under shear-bending load.
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Figure 5.5: Axial (Figure 5.5(a)) and transversal (Figure 5.5(a)) stress cross-section distributions, evaluated in the

cross section A (5).
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able to catch the high frequency oscillations of the analytical solution. This statement is confirmed

also by Figure 5.6(d) that plots the absolute error in the three considered cross sections. In all

the considered cases, the maximum absolute error is 3 order of magnitude less than the shear

mean-value.

5.5.2 Stiffness-matrix condition-number

In this section we discuss the behaviour of the stiffness-matrix condition-number, which definition

is recalled in the following:

cond (AAA) := ‖AAA‖ · ‖AAA−1‖ (5.25)

The norm of the generic matrix AAA of size n× n is defined as follows:

‖AAA‖ := max
i=1...n





n∑

j=1

aij



 (5.26)

First of all, we notice that, applying the FE method introduced in Section 5.4 to a tapered beam

with the final cross-section height that tends to zero, we obtain a stiffness-matrix condition-number

that goes to infinity. Considering the limit case of a wedge shaped beam, we obtain a singular

stiffness-matrix. As a consequence, we consider significant an investigation of the condition number

of stiffness-matrix in order to understand how the geometry parameters influence the condition

number and the effectiveness of the proposed beam model.

Figure 5.9(a) plots the variation of the condition-number evaluated for a constant cross-section

beam, varying the number of axis-FE and the beam height. We notice that, in general, the

condition-number becomes bigger and bigger increasing the beam slenderness l/h and increasing

the number of elements used to discretize the axis. Nevertheless, we notice also that the slope of

plots is constant and independent from the beam slenderness.

O

x

y

l

∆

A (0)

A
(

l
)

Figure 5.7: Non-symmetric tapered beam: l = 10mm, A (0) = A
(

l
)

+∆, E = 100000MPa, and ν = 0.25.

∆ A (0) A
(
l
)

h′
l

0.0 5.50 5.50 0.00

0.1 5.55 5.45 0.01

1.0 6.00 4.00 0.10

5.0 8.00 3.00 0.50

10.0 10.50 0.50 1.00

Table 5.3: Non-symmetric tapered beams, parameter definitions for the considered examples

Figure 5.9(b) plots the variation of the condition number evaluated for the non-symmetric

tapered beam depicted in Figure 5.7. The number of axis-FE and the difference between the initial
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and final cross-section heights ∆ are the independent parameters considered in Figure 5.9(b). In

order to exclude the influence of the beam slenderness on the condition number, we choose initial

and final cross-section measures such that the average of thickness is equal to 5.5mm in all the

considered cases, as specified in Table 5.3. We notice that an increase of ∆ produces not only a

worsening of the condition number but also an increase of slope of plots. On the other hand, as

we can see in Table 5.3, the slope of lateral surface is proportional to the parameter ∆ and, in

Figure 5.9(b) we can not distinguish the effects of the two parameters on the condition number.

O

x

y

l

∆

λA (0)

Figure 5.8: Non-constant cross-section beam: l = 10mm, A (0) = 1mm, ∆ = 0.46875mm, E = 100000MPa, and

ν = 0.25.

wave number λ h′
m

0 - 0

1 10.00 1⁄8

2 5.00 1⁄4

4 2.50 1⁄2

8 1.25 1

Table 5.4: Non-constant cross-section beams, parameter definitions for the considered examples

To investigate the effect of increase of slope separately from the effect of the difference of

cross-section height, we consider the non constant cross-section beam illustrated in Figure 5.8.

The lower limit of the beam illustrated in Figure 5.8 is a periodic piecewise cubic polynomial. We

define the maximum slope h′
m as follows:

h′
m := max

x∈l
(|h′

l|) (5.27)

As illustrated in Table 5.4, we consider different wave length such that we increase the maximum

slope h′
m but we do not modify the difference of cross-section heights ∆. Figure 5.9(c) plots the

variations of condition number with respect to the number of axis elements and the maximum

slope h′
m. We observe that the maximum slope h′

m does not influence significantly the condition

number, at least for the considered values of practical interest.

As a general remark, we notice that the condition number remains into a reasonable range

for the most of practical applications, but it could lead significant errors for high-refined meshes,

beams with high taper slope, and very slender beams.
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Figure 5.9: Stiffness matrix condition number.
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5.5.3 Arch shaped beam

In this Subsection we consider the arch shaped beam illustrated in Figure 5.10. The lower and

the upper limits are defined respectively as:

hl := −
1

50
x2 +

1

5
x−

1

2
; hu :=

1

10
(5.28)

Moreover, the beam is clamped in the initial cross-section and loaded on the final cross-section

with a constant axial load distribution ttt|Al
= [1, 0, 0]T N/mm.

o

q

x

y

l

∆
A (0)

Figure 5.10: Arch shaped beam: l = 10mm, ∆ = 0.5mm, A
(

l
)

= A (0) = 0.6mm, q = 1N/mm, E = 100000MPa,

and ν = 0.25.

About FE beam model, we discretize the axis trough a regular mesh of 20 elements.
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Figure 5.11: Displacement axial coefficient functions, evaluated for an arch shaped beam under axial load.

Figure 5.11 plots the displacement axial coefficients. We highlight that the solution shows

significant transversal displacement (see v̂1 in Figure 5.11(b)) and cross-section rotation (see û2

in Figure 5.11(a)) produced by the axial load.

Figure 5.12 plots the stress axial coefficients, Figure 5.13(a) plots the resulting axial stress,

and Figure 5.13(b) plots the eccentricity, defined as:

e(x) :=
M (x)

|ttt|
(5.29)

Specifically enum denotes the eccentricity evaluated considering the FE solution whereas ean
denotes the eccentricity evaluated analytically (it coincides with the positions of cross-section
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Figure 5.12: Stress axial coefficient functions, evaluated for an arch shaped beam under axial load.
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barycentre). We notice that the stress axial-distributions are highly non linear whereas the re-

sulting axial load is constant and equal to the resulting applied load. Precisely, Figure 5.13(a)

highlights a small error, in the order of the 0.5% in the resulting axial stress. Moreover, the

numerical eccentricity enum coincides with the analytical eccentricity ean. As a consequence, we

conclude that the proposed beam model has the capability to model the coupling of axial load

and bending moment. We highlight also that the coupling factors are obtained naturally from

the dimensional reduction procedure illustrated in Section 5.3, leading the model to be extremely

efficient and effective.
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Figure 5.13: Resulting actions distributions, evaluated for an arch shaped beam under axial load.
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Chapter 6

Final Remarks

In this thesis we apply the dimensional reduction modelling approach to obtain some, linear, elastic

beam-models. In a second moment we discretize the beam-models trough a classical finite element

procedure.

The comparison of different weak formulations points out the advantages of mixed-functionals.

In particular, the Hellinger-Reissner functional formulation that finds the stress solution in the

H (div,Ω) results to be the most interesting starting point since it privilege the accuracy of stress

description.

Analytical and numerical examples highlight that the resulting mixed beam models do not need

correction factors. Moreover, for the non-homogeneous cross-section beam, they take correctly

into account also equation couplings. Finally, the beam model can predict the local effects of

both boundary displacement constraints and non homogeneous or concentrated boundary load

distributions.

The proposed FE discretisation has the peculiarity to find the axial-coefficient displacements

and stresses in H1 (l) and L2 (l) whereas the intial HR functional requires that the displacements

and stresses belong to L2 (Ω) and H (div,Ω) respectively.

Several numerical tests highlight the following positive statements.

• The finite element-solution converge to the analytical solution providing accurate description

of both displacement and stresses.

• The computational efforts produce significant benefits in solution accuracy leading the pro-

posed method to be convenient with respect to the standard ones usually adopted in practice.

• The beam model shows the expected asymptotic behaviour.

• The beam model the corresponding finite element are able to model complex bodies.

On the other hand, the numerical tests highlight also the following critical points.

• Numerical instabilities and spurious oscillations could occur close to regions of stress con-

centration.

• The stiffness-matrix condition number could hamper the FE effectiveness, in particular for

extremely slender beam elements and for non-constant cross-section beams with big changes

of the cross-section size.

Nevertheless, the limitations listed so far do not influence significantly the model effectiveness, at

least for the cases of practical interest.

Finally, the following topics could be further investigated in the future.

87
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• Development of models that consider more general cross-section meshes, as triangular or

quadrilateral fibres.

• Models of beams made of anisotropic materials.

• Multilayer non-constant cross-section beams.

• 3D non-constant cross-section beams.

• Multilayer plate models.
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