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Abstract

The purpose of this work is to operate a dimensional reduction from the 3D
problem to a 1D problem. This operation leads to a so-called beam model.
The procedure permits to reduce the complexity of the problem but at the
same time it introduces some approximations. The model goodness can be
seen as the best compromise between approximation and accuracy.

In this thesis we will discuss some models of plane beam. The material
is linear, elastic and isotropic. We will consider first an homogeneous section
and after a laminated beam, made by layers of different materials. The first
purpose of our work is to obtain a model that could predict the behavior of
the beam in exact way, without the need to introduce any correction factor,
as it appened for the Timoshenko model.

To develop the beam model we will use the stationarity conditions of func-
tionals. Specifically we will use the virtual work principle, the Hellinger-
Reissner functional and the Hu Washitzu functional. Each of these has good
and bad properties. In the next chapters we will use them to highlight the
significant merits and failings.

Starting from the homogeneous beam we will try to generalize the model
to a laminated beam for which we will develop the governing equation and
find some analytical solutions to discuss the model goodness. For the latter,
we will build also a numerical model, write the algebraic equations and find
some numerical solutions.
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Riassunto

Lo scopo di questa tesi & operare una riduzione diemensionale: partendo da
una formulazione in 3D vogliamo arrivare ad un problema monodimension-
ale. Questa operazione porta ai cosiddetti modelli di trave. La procedura
permette di ridurre la complessita del problema ma al tempo stesso introduce
alcune approssimazioni. La bonta dei modelli cosi ottenuti puo essere vista
come il miglior compromesso fra il grado di approssimazione e 'accuratezza
degli stessi.

In questa tesi ci occuperemo di alcuni modelli di trave piana. Assumiamo
che il materiale sia lineare, elastico ed isotropo. In prima istanza consider-
eremo una trave omogenea, successivamente generalizzeremo il modello ad
una trave laminata, ovvero costituita da strati orizzontali di materiali di-
versi. Il primo obiettivo del nostro lavoro sara quello di ottenere un modello
che possa predire correttamente il comportamento della trave, in particolare
senza l'introduzione di alcun fattore di correzzione come invece succede nella
trave di Tomoshenko.

Per ricavare le equazioni della trave useremo, oltre ai classici metodi vari-
azionali, la stazionarietd di alcuni funzionali. In particolare faremo uso del
principio dei lavori virtuali, del funzionale di Hellinger-Reissner e di quello
di Hu Washitzu; ognuno di essi presenta, nel suo impiego, limiti e svantaggi:
nella derivazione delle equazioni ci proponiamo anche di mettere in luce i
punti di forza ed i difetti di ogni metodo che useremo.

Partendo dalla trave omogenea cercheremo di generalizzare il modello ad
una trave laminata per la quale scriveremo le equazioni governanti. Cercher-
emo anche di ricavare alcune soluzioni analitiche per constatarne la bonta.
Per la trave laminata svilupperemo infine un modello numerico per il quale
vogliamo ricavare le equazioni algebriche che lo governano e, utilizzando
queste ultime, cercare alcune soluzioni per casi elementari al fine di dis-
cuterne 'efficacia.
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Chapter 1

Introduction

This chapter starts with a brief review of the state of the art about the sub-
ject of the present thesis followed by the definition of the problem we study,
the introduction of our hypotheses and the tools we are going to use for our
developments.

1.1 State of the art

The majority of structural members can be efficiently modeled by one-
dimensional elements, just this statement may justify the high interest of
civil engineering researchers on this topic.

In the past, when calculators were not available, engineers developed beam
models to reduce as much as possible the unknowns of the problem they
were analyzing. A class of models created for this purpose is the so called
first-order, plane, kinematics beams.

The Euler-Bernoulli beam can be considered the most significant example of
this class, by means of it the 3D, homogeneous, elastic problem is reduced to
a simple ODE (Ordinary Differential Equation) system in 2 one-dimensional
uncoupled unknows. Even today, when more accurate models and more pow-
erful instruments are available, this model is the most used. Its simplicity
allows to obtain the solution by direct integration of transversal load, as il-
lustrated in [10].

The other most significant first-order model is the Timoshenko beam where
axial, transversal displacements and section rotation are the unknown one-
dimensional fields. Timoshenko beam allows uncoupling the axial and the
shear-bending problems.

Obviously these models show some important limitations: the solutions cor-
respond to the real behavior of the body only if the ratio between length and
transversal dimension is > 1, the models predict only the stress resultant
so local effects of force distribution or kinematic constrains can not be con-
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sidered. Additionally every model has got specific limitations, as example
the Timoshenko beam needs to be correct by shear factor and its solution is
valid if length-thickness ratio > 4, the Euler-Bernoulli solution is valid when
length-thickness ratio > 10.

The necessity of most accurate models and the numerical methods nowa-
days available induce researchers to develop the so called high-order beam
models. They are developed starting from a complicated section kinematics,
usually described by high order polynomials.

Limiting our interest to plane beams, the most famous high-order model is
the Reddy beam that considers the shear section warping, on the opposite,
the most complete model is the Lo-Christenson-Wu beam where authors con-
sider the most complete kinematics. For a general treatment of high-order
plane kinematic beam models see [14].

Often the use of more accurate models is justified by the necessity to describe
the behavior of advanced materials or elements as laminated or multi-layered
beams and plates, orthotropic or inelastic bodies .... Multi-layered beams
are obtained by union of different material layers. The purpose is to obtain
a structural element in which every component exalts its specific properties
and the global answer is better than the single component behavior. The
applications of these structures are many and they span from civil to me-
chanical, naval and aerospace engineering.

Literature around laminated beam and plate modeling is very rich, there ex-
ist analytical and exact models (see [11] and [12]) but also numerical methods
are developed (as example see [16]).

Usually these models try to describe the displacement field by section glob-
ally defined functions, so it is possible to predict only global displacements
and medium stresses. On contrary in this work we try to develop a model in
which displacement and stress fields are locally defined so that it is possible
to evaluate more accurately the real stresses inside the body.

1.2 Domain and field definitions

In this section we use notation adopted in [1].
Let A be a closed domain in R? [0,] a closed interval in R. We call A
section and [ longitudinal axis. We define them rigorously as follows:

a={wae® | yelggeelgab Ay

Let © be the solid occupying the region:

Q=Ax0,] (1.2)
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and let we call it beam.

Obviously [ > h &~ b so that it is possible to recognize a predominant dimen-
sion. The domain scheme and the Cartesian coordinate system we adopt are
represented in figure 1.1.

%
| )

S — I
: 1 Z

Figure 1.1: Coordinate system and geometry of the solid we are studying

We define Ayg; = A x {0,1} extreme sections of the beam and we call
Spp = (0.0) x {25} x (5 3) and Sy = (0.0 x (<4 8) x {2} It
eral surfaces of the solid. We denote 002 = Ag; U Si% U Si% as boundary of
domain.

Consider {0€; 08}, a partition of 9Q2. Let 9€; and 0925 be respectively
the force boundary and the displacement constrained surfaces.

Let 2 be a plane beam hence we do not consider forces in z direction. Ad-
ditionally we make hypothesis of plane stress state, this means that stresses
in z direction are null (i.e. 0., = 7, = 7y, = 0). These two hypotheses
lead to consider z direction deformations and displacements as dependent or
trivial variables. For all these reasons S, » became a not significant domain

boundary so we will not consider it in the2 following developments.

We suppose that the beam is loaded by a surface force density ¢ : 9Q; — R?
and a volume force density f :  — R?, moreover on 0§}, we define the
boundary displacement function: 3 : 9Q, — R2.

The beam is made by isotropic, linear, elastic material. For the final work
purpose we do not consider homogeneity hypothesis. To define the mechani-
cal properties in the body we must introduce the scalar fields £ : A — R and
G : A — R, obviously they can not be completely independent each other in
fact E and G are linked by v that € [0,1].

Considering the plane beam hypothesis we must define the following in-
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dependent variable fields:

o:Q— R>*? (1.3a)
£: 0 — R?*? (1.3b)
s:0Q — R? (1.3c)

in which stress o and strain € are symmetric tensors and displacements s is
a vectorial field.

1.3 3D problem definition

The elastic solid problem may be formulated in many ways, nevertheless we
can classify all the formulations as derived by two paths.

e Strong formulation that is the most intuitive path, it consists in requir-
ing that displacements, stresses and strains satisfy in each point inside
the domain compatibility, equilibrium and constitutive relations. This
formulation brings to an PDE (Partial Differential Equations) system.

e Weak formulation that is the most useful for some aspects, it consists
in requiring stationarity of a scalar quantity. This path brings to write
an integro-differential equation. Energy methods belong to this class
of formulations.

For many aspects the two paths are equivalent and they give the same so-
lution. Watching at the context and the work purpose, we may choose the
formulation that better satisfy our needs.

1.3.1 Strong formulation

On the domain we want to satisfy the boundary value problem:

e=Vss (1.4a)
o=D:¢ inQ (1.4b)
V.o+f=0 (1.4c)
oon=t in 90, (1.4d)
s=3 in 99, (1.4e)

in which D is the fourth order tensor of the constitutive relations.
Equation (1.4a) is the compatibility relation, valid for small displacements
and small displacement gradients, equation (1.4b) is the material constitutive
relation and equation (1.4c¢) represents the equilibrium condition. Equations
(1.4d) and (1.4e) are respectively the boundary equilibrium and the bound-
ary compatibility conditions.
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1.3.2 Total Potential Energy and Virtual Work Principle ap-
proach

The functionals we are introducing is the most used in continuum mechan-
ics: in basic literature (as [7] and [8]) the first-order beams are developed
starting from these principles.

VWP can be written as:

6WVWp:/6e:adQ—/6s-fdQ— 08-tdS =0 (1.5)
Q Q o

in which deformation £ is compatible (i.e. it satisfies equation (1.4a)) and
stress o is equilibrate (i.e. it satisfies equation (1.4c)).

It is remarkable that this principle can be applied to every body indepen-
dently by constitutive relation (1.4b).

TPE functional can be used only for an elastic body, for which fields are
conservative and it is formulated as follows:

1
JTPE(S):—/VSSID:VSSdQ—/S-fdQ—/ s-tdS (1.6)
2 Jq Q o
Its stationarity can be expressed as:

0JrpE(s) = / Ve (0s): D :VisdQ —/ 0s - fdQ — 0s-tdS =0 (1.7)
Q Q o
For an elastic body, expressing o and € as function of s, VWP and TPE
stationarity give the same equation. In the following, since we are going to
consider only elastic bodies, we could use the 2 approach indifferently but
for more simplicity we will speak of VWP.

Expressing all terms as function of s the first term of equation (1.5) could
be written as follows:

/Vs(és):DzvssdQ: 53-(D:V53)-nd5—/63-V-(D:V53)d§2
Q Q

(1.8)
Subdividing the integral defined on the surface in the integrals on 0€2; and
on 09, equation (1.7) can be rewritten as:

[2/9]

SWwp(s) = — /Q 5s - (V- (D : V') + f) dot

ds- ((D:V?®)-n—t)dS+ 0s-(D:V°s) - n=0
O 0y
(1.9)
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It is possible to see that the first term contains the equilibrium relation ex-
pressed as function of displacements. The second term contains the force
boundary conditions. Since it is defined on the displacement constrained
boundary, considering on it a non-null virtual displacement the last term
give the constrain reactions but, having these quantities low interest in this
work, we will consider the virtual displacements always null and this term
will be omit.

It is important to see that in VWP boundary compatibility conditions do not
appear, we could expect this because the principle give only the equilibrium
condition.

An alternative VWP formulation to (1.7) from which we can start is:

5 J7pp(8) = —/053-(V-(D:Vss)+f) 40 [ ds(D:V"s) - n 1) dS =0
t (1.10)

1.3.3 Hellinger-Reissner approach

The Hellinger-Reissner functional (shortly HR) can be expressed as follows:

1
JHR(a,s):/a:VssdQ—§/a:D1:adQ—/s-fdQ
Q Q

@ (1.11)
—/ s-tdS — o-n-(s—38)dS
aﬂt 895
Its stationarity condition is:
0J R :/ V?4is : on+/ oo : Vs dQ—
Q Q
/5o:D—1:adQ—/5s-fdQ— ds - tdS— (1.12)
Q Q o
0o -n-(s—35)dS— 08-0-ndS =0

Qs Qs

The first term of (1.12) could be expressed as:

/Vsés:on:/ 5s-a-ndS—/5s-V-adQ (1.13)
Q o9 Q
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Substituting equation (1.13) in (1.12) and collecting the terms that use the
same virtual degrees of freedom we obtain:

0J R :/ bo : (V°s — D! o) dQ— (1.14a)
Q
/53-(V-a+f) 0+ (1.14b)
Q
ds-(0-n—t)dS— (1.14c)
o
do-n-(s—35)dS=0 (1.14d)
0

It is possible to see that term (1.14a) contains constitutive and compatibility
relations. Term (1.14b) is the weak expression of equilibrium relation inside
the body meanwhile (1.14c) is the force boundary equilibrium, term (1.14d)
is the displacement constrained surface compatibility.

1.3.4 Hu-Washizu approach
The Hu-Washizu functional (shortly HW) may be expressed as follows:

1
JHW(O',E,S):/O'I(VSS—E) dQ+§/e:D:edQ—/s-fdQ
@ @ @ (1.15)
—/ s-tdS — o-n-(s—35)dS
(99,5 895
Its stationarity condition can be expressed as:
6JHW:/Vsés:adQ—/és:adQ—i—/éa:(Vsa—e) dQ+
Q Q 0
/58:D:sdQ—/5s-fdQ— 0s-tdS— (1.16)
Q Q o
do-n-(s—3§)dS— 08-0-ndS =0

Qs Qs

The first term of (1.16) can be expressed as follows (this expression is the
same of (1.13)):

/Vsés:adQ:/ 6s-a-nd8—/6s-V-JdQ (1.17)
Q 19) Q
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Substituting equation (1.17) in (1.16) and collecting terms that use the same
virtual degrees of freedom we obtain:

o0Jmy 2/9(50' 1 (Vs —eg) dQ+ (1.18a)
/ de:(D:e—o) d2— (1.18b)
Q
/63-(V-a+f) 0+ (1.18¢)
Q
0s-(0-n—t)dS— (1.18d)
o
do-n-(s—8)dS=0 (1.18¢)
0

As happened in section 1.3.3 we can recognize that HW stationarity con-
dition corresponds to a weak imposition of the 3D elastic solid governing
equations ((1.4)): term (1.18a) contains compatibility relation (1.4a), term
(1.18b) contains constitutive relation (1.4b), term (1.18c) contains equilib-
rium (1.4c), (1.18d) and (1.18e) respectively require boundary equilibrium
(1.4d) and boundary compatibility(1.4e).

1.3.5 Conclusions on problem formulations

At the end of this chapter we can make some remarks on the problem for-
mulations we have just presented.

e Every weak approach can be expressed by two formulations: the former
derives directly by functional stationarity, the latter can be seen, more
easily, as weighted imposition of strong formulation. The former leads
to a symmetric formulation, while the latter leads to an un-symmetric
one. The choice of the formulation from which to start produce enor-
mously different models.

e To be applied, TPE functional needs the stronger hypotheses but it
is also the most elementary principle, on the opposite we can use HW
more freely even if it is the most complicate approach. The trade-
off between the problem complexity and the wanted approximation is
the most common criterion to choose the formulation we must use to
develop the model.



Chapter 2

Homogeneous beam models

In this chapter, starting from the weak formulations presented in section 1.3,
we develop some homogeneous beam models. The idea that leads to derive
the model is the so called “dimensional reduction” of the 2D problem! we
previously defined that consists in reducing to a finite dimension the number
of degrees of freedom that fields have respect to the section variables.

To this purpose we start defining more clearly the finite dimension field
hypotheses and introducing efficient notation, then we derive some significant
first- and high-order beams and finally we make some numerical example to
illustrate differences between models, faults, limitations, good behaviors.

2.1 Hypotheses

2.1.1 Fields definition

We impose that every component a(z,y) of field A may be expressed as
scalar product of vector pq : [—%, %] — R (called section base field vector)
with vector & : | — R (called section magnitude field vector). Choosing a
finite dimension for p,, we constrain the shape of field but at the same time
we eliminate one order of infinitive.

This hypothesis is very strong in fact it leads to express fields simply as
properties of the section, obviously the choice of p, components must be
carefully because model accuracy and effectiveness depend on it.

Moreover it is remarkable that with this assumption field partial derivatives

can be written as total differential of basis functions or of magnitude func-

'This expression is used in [1]. We adopt it because it express clearly what we are
going to do.
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tions, as displayed in the following.

d
500 = 5 (pa () a@)) = 5 paT (1) () =pa o
o) = o (pa” )al@) = pa’ (1) eax(r) = pa” o

In this work we will never consider o, and e, because they are not con-
sidered significant variables in the problem, in other words we are going
to consider alwais a constant transversal displacement on the section. To
operate more easily on tensor fields we express them, formally, as vectors.
Adopting also the previous approximations, unknown fields can be expressed

as follows:
T
Su ) Duu

o)) s

Ozx paT O

Txy Dr T

Exx peT Ex
€ = = T (22C)

Yy by Y
(2.2d)

in which v = 2e,,. Virtual fields §A use the same base field vectors of the
correspondent real one.

2.1.2 Operators

In coherence with the notation just introduced, we must re-define the differ-
ential operators, the normal versor product and the matrix that appear in
the problem formulations.

0 o
V.o= Lo = <8_E1 + 8_yE2> { pp:_T,rm } (233)
0 0
s T . T Dy u
Vs = L8_<8E1+8yE2>{pvv (2.3b)
Ps' O
o-n= No = (n,Ey +nyEy) { ;T N } (2.3¢)
Ely) 0 ]
D pu— 2.3d
Y et 234

10



2.2. BEAM GOVERNING EQUATIONS Homogeneous beam

where:

El:[:[é H (2.4)

By = [ 8 (1) ] (2.4D)

2.2 Derivation of beam governing equations

2.2.1 VWP based equations I

We try to develop beam governing equation starting from equation (1.10)
that adopting the notation just introduced becomes:

—/ 68T (LDLTs + f) dQ+ (2.5a)
Q
/ 5s” (N (DL"s) —t) dS =0 (2.5b)
o
Term (2.5a) is defined in the body while term (2.5b) is defined on the force
boundary. Obviously to satisfy the stationarity condition both of them must
be null.

In the following subsections we develop them individually.

Body equations

We re-write the body defined integral (2.5a) splitting vectors and matrix

components:
E 0
0 G

0. 9 " u I
g (352} s
lax ! 63/E2 ] ' v Jy
If we develop the matrix products, the derivatives and collect all the basis
terms in the resultant matrices we obtain:

B T o T puEp” 0 u’
0 pquvlT u
noner w0 b 27)

pquu”T 0 u DPufas .
T S )

Terms inside matrices depend only on y, on the opposite terms over the
matrices depend only on the axial variable, so we can write the volume

11



2.2. BEAM GOVERNING EQUATIONS Homogeneous beam

integral as the double integral on the two sub-spaces constituting it: the
section integral and in the axial integral. By the variable separation we
obtain:

Sl ([ R U )

. P . b 0 y P (2.8)
uv’ uu’ z =
e L SR e
in which:
Py :/ApuEpquA Py :/AvavadA
P,y = / pqu'v,TdA Py = / p,vau/TdA
A A (2.9)

Py :/pquu//TdA
A

F; :/pufmdA Fy:/pvfydA
A A

The equivalent strong formulation of the problem can be expressed as follows:

P, u" + Pyt + Pyyru + Fp =0 (2.10a)
Pyyv" + Py’ + Fy =0 (2.10Db)

Using a more compact notation we can write:

Ps"+Qs +Rs+F =0 (2.11)
in which
| Pw O _ 0 P,y
P_[ 0 Pm,:| Q_[Pwl 0 :|
P 0 F (2.12)
_ uu! _ x
m- % 0] r-{5

Force boundary equations

To facilitate the development of the force boundary term we make some
hypotheses, in particular we suppose that we are working on a cantilever,
clamped at the origin of the axis and loaded at the opposite section. We
suppose also that on the lateral surface of the beam no load is applied:

00, = AU, (2.13a)
$(A) :{ toy } 8(S,1) :{ 8 } (2.13b)

12



2.2. BEAM GOVERNING EQUATIONS Homogeneous beam

Obviously these choices are conventional, in every moment we can change
them and develop other kinds of constraint even if the development is always
the same.

Splitting components in term (2.5b) we can write:

T 0T Ng Ny E 0]]9 O | [ u |
/E)Qt[5u v ] ([ 0 ny ] [ 0 G} xE1+ yE2

0 o Pol v
t, B
Lo f)as=o

Developing the products and collecting the base functions in the resultant
matrices we obtain:

Enapu’ puGnpy’ u
(5’U:T, (S’UT <|: Du (/) () Y. +
/agt[ | 0 pGnapy” | | v
puGnyp,/T 0 u )| |t B
[ PoGnzp’T 0 v ty dA =0

Now we decompose the integral domain in the sub - regions constituting the
force boundary.

iy ([P 0 {00 b+
w0 {00} { o §) e
/l[éuT,évT} ( ]
{ : }> o (2.16)

[pu () Gpa ()" 0
0

(2.14)

(2.15)

firaon ([ OG0T L0
kA M

13



2.2. BEAM GOVERNING EQUATIONS Homogeneous beam

Using a more compact notation we obtain:

(o ([ p J 10 4

0 O u | T. N
Pv‘u,' 0 v Ty .
(2.17)
/ su” (puGpy V' + puGpu ) dz| —
l h
2
/ su” (puGpy V' + puGpyTu) dz| =0
l _h
2
in which:
L = / PulodA T, = / DylydA (2.18)
A A

The boundary conditions we obtain could be written in the following equiv-
alent strong formulation:

Py, O o 0 0 u T, .
U w0 bl o]0 {g ) o e
(PuGpy" v+ puGpu" u) [, =0 (2.19b)
(PuGpy" 0"+ puGpu" u)| . =0 (2.19¢)

Equations (2.19b) and (2.19¢) can be re-write more clearly as follow:

(P’ +pu'u) | n =0 (2.20)

Displacement boundary equations

We must impose the compatibility condition on 02, this last condition
must be imposed in strong way, in other words, in the specific case we are

considering, we must require that:
U 0
{v}o_{o} (221)

2.2.2 VWP based equations II

Adopting the notation introduced in 2.1 and adopting the same boundary
conditions used in the previous section, WVP as expressed in (1.7) becomes:

/ (L"6s)" DL sd + / osTfd — [ 0sTtdS =0 (2.22)
Q Q 0

14



2.2. BEAM GOVERNING EQUATIONS Homogeneous beam

We re-write equation splitting vectors and matrix components:
T
0 9 T puT ou E 0
L([%Eﬁa—ﬂ ]{p,,m R
0 0 Ty
—Ey + —E | Pu 0
([ax Py ] { P v }>

/ [6u” pu, 50" py] { o }dQ— / [0u” pu, 07 py ] { ba }dS: 0
0 fy oY ty
(2.23)

If we develop the matrix products and the derivatives, then we collect all the
basis terms in resultant matrices we obtain:

T T puEpuT 0 o’
/Q<[6'u, , o ][ 0 2oCipyT ] { o (T

T 5, T 0 P;Eva u’
[(SU ; 0V ] {vap;T 0 v +

[6u”, sv” ] [p;‘%p:‘T g } { Z }— (2.24)

(5u”, 507 { Pufe }) 40

pvfy

/ [ou”, 607 ] { Pule }dszo
ot Puty

Terms inside matrices depend only on the section variables, on the opposite
terms over the matrices depend only on the axial variable, hence, as we pre-
viously do we can subdivide the integral domine in the sub-domines section
and axis obtaining:

/l<[5“'Ta5v'T] {P(')‘" I;'l)m } { Z; }+ (2.252)

[6u”, 50" [ P,(,),,, B o } { :ﬁ }+ (2.25D)
[u”, 607 [P'(')'"' 0 ] { v }— (2.25¢)
[ou”, 50" ] { i: }) dz— (2.25d)
/a N [ou”, 60" ] { % }dS:O (2.25¢)

in which additionally to what we have already defined in (2.9) and in (2.18)
we must define:

Pu'v:/pu,GvadA Pulul :/pu'Gpu'TdA (2.26&)
A A
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2.2. BEAM GOVERNING EQUATIONS Homogeneous beam

At this point we integrate by parts term (2.25a), supposing to working on
the cantilever we obtain the final formulation of the problem:

/l<— su”, 60" [Pgu -Ii)vv } { :f: }+ (2.27a)

T ¢ T 0 Py u/
[6u’, ov" ] [ P 0 o (T (2.27b)
Py 0O u
T T u'u .
[6u’, ov" | [ o 0 } { v } (2.27c)
T T Fm
[6u’, bv ]{ }) dz+ (2.27d)
Fy
P, 0 o/ T,
T T uu - T _
(e[ 2T {E [0 o
The equivalent formulation of the problem is:
—Pt + Quyv’ + Rywu — Fp =0 (2.284a)
—Ppv" + Quuu' — Fy =0 inQ) (2.28b)
Pou —T,=0 (2.28¢)
P,,w' —T,=0 inA (2.284d)
That using a less compact notation we can write as:
—Ps" s +Rs—F=0 inQ
s+ Qs + :S, ?n (2.20)
Ps —T =0 inA
in which
. Puu 0 - 0 Pu'v
P_[ 0 Pm,:| Q_[Pwl 0
| Py O | F
. Po{E) ow

2.2.3 HR based equations

Adopting the notation defined in section 2.1 the HR stationarity condition
(1.14) becomes:

/ so” (L"s — Do) dQ2 — / 6s” (Lo + f) dQ2+ (2.31a)
Q Q
68T (No —t) dS— (2.31b)
0
66’ NT (s -5)dS =0 (2.31c)
Qs
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2.2. BEAM GOVERNING EQUATIONS Homogeneous beam

In which we split the terms of the equation considering the integration do-
main. Integral terms (2.31a) are defined on the body, (2.31b) is defined on
the force boundary and (2.31c¢) is defined on the displacements constrained
surface. Obviously to satisfy the stationarity condition every term of (2.31)
must be null. In the following we develop them separately.

Body equations

We rewrite the body terms (2.31a) splitting vector and matrix components.
0 0 Ty 1o
S T 5 T —E —E T Du _D—l Do Oz dQ—
/Q[ Oz Do, 0T p‘r] ((61‘ 1+ By 2 > { va,v p-,-TT
0 0 Tq f
suTpy, 507 —Ey +—Ey | { Po .00 L) an=0
/Q[upu’ ’vpv]<<ax 1+6y 2){ p‘rTT }+{fy }>

(2.32)

Applying differential operators to the vectors, splitting unknow vectors and
moving the base vectors inside the matrices, we obtain:

T 0 u’
S T’ 5 T <|: PoPu :| { } +
/Q 9oz, 07] 0 ppf ||V

DPoPo T

0
P L o B R A
DDy 0 v DrDr T

0 ¢

pupch 0 oz’
/Q[(SuT’évT] ({ 0 pupT H i }+
0 pup.” Ox Dufo _
o M [T e ) e

It is possible to decompose the integral domain in the 2 sub-spaces, in fact
only terms in the matrices depend on section variables and vector terms de-
pend only on axial variable, the weak governing equations we are developing
becomes:

(2.33)



2.2. BEAM GOVERNING EQUATIONS Homogeneous beam

in which we define the follow matrices:

Py = /ApapuT dA P, = / p‘rva dA

A

Py = / pupaT dA P, = / p'vp-rT dA

A A

T T

Pa.a. _ DoPo dA PTT _ DrDr dA (235)

a4 E a4 G
Pry = / p‘rpu/T dA Pyp = / pup‘r/T dA

A A
Fa::/pufsz Fy:/pvfydA

A A

The strong formulation of the problem could be express as:

Pou' — Pyyo =0 (2.36a)
Pov 4+ Pryu — Prrr =0 (2.36b)
Pyoy + Pypm+Fp =0 (2.36¢)
Py +F, =0 (2.36d)

Alternatively we can re-write the problem in a more compact notation. It
results as follows:

o' o 0
A7 Vel o)) .
in which
{0 s
8 = g =
v T
0 0 Pp 0 Py 0 0 0] (539
A — 0 0 0 P-rv G — 0 _PTT PT’U.’ 0
Pb 0 0 0 0 P 0 0
0 P, O 0 0 0 0 O

The problem, as we have just formulated it, can be reduced to an other,
more simple formulation in which only displacements appear: this is possible
noting that we can invert equations (2.36a) and (2.36b) and substitute the
stress definition we obtain in equations (2.36¢) and (2.36d). In other words:

0 = Pyy ' Pyyu/ (2.39a)
7 =P ' (Pt + Pryu) (2.39b)
Cuntt” + Cypt' + Cuyt + F = 0 (2.39¢)
Co?” + Coptt' + Fy =0 (2.39d)

18



2.2. BEAM GOVERNING EQUATIONS Homogeneous beam

in which: ) )
C'u.u :Pua'Paa_ Pa"u. C'wv = 'U,T'PTT_ PT’U

Cuw = Puf'Pr‘rileu' Copw = PwPfril-Prv (2-40)
CW = Pvaf-r_lp‘rul

Force boundary conditions

We suppose that the boundary conditions of the problem we are studying
here are the same of 2.2.1.
Introducing the vectorial notation term (2.31b) became:

/ (04" py, 0" py ] q . ] { po }—{ i }) S =0
o T
T
/ [(5’U,T,5’UT} ([ NgPuPo nypup‘r } { } { Puls }) dS =0
0 0 n:vpvp‘r Doty

(2.41)

’ﬂ

Considering now every beam surface we can split integrals and better define
Versors:

(e (1% pr U7 315 )]
[(san 8 2 L} {5 )
Jran o= {57 1),

in which we adopt the quantities previously defined (2. 35) and (2.18). In
strong way this means that:

_l’_

+ (242

D‘

-2

{PO"" ;W]{”:}l—{%}zo (2.43a)
(PT + puts)| 1 (2.43b)
(PT + puts)| _» (2.43¢)
in which:
P =pu(5)p- ()" (2.44)

Displacement bounded surface equations
Watching at hypotheses made in section 2.3 we have that:
Qs = Ag (2.45a)

5(Ao) :{ 8 } (2.45b)
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2.3. BEAM MODELS Homogeneous beam

To impose this condition in the model we must require that

T T ng 0 P’ u B
/895 [50‘m Do, 0T p‘r} <[ ny Ne :| { p,Tv }+{ }) ds =0
T 0 u 240
5 T’6T<|:nxpapu :|{ } { - })dS:O
/‘995 [ o " ] nyp,-puT n:vp‘rva v + p-0
=0

(socmor7 ([ B 5 {2} +0))

SIS

0
(2.46)
The equivalent strong formulation of this condition is:
— Py 0 u _
REAInE oam

2.2.4 Conclusions on governing equations

The sets of governing equations we have just developed show many differ-
ences:

e In the first set of governing equations, since we apply the divergence
theorem, it is possible to impose boundary equilibrium everywhere,
also in the lateral surface.

e In the second set of equations, since we only integrate by parts in x
direction, it is possible to impose boundary conditions only on surfaces
with n, # 0.

e Differently from the first set, the second shows a symmetric formula-
tion.

e Even if the first formulation could appear better, trying to introduce
the hypotheses of classical beams, it is not possible to obtain the correct
equation, this happened using the second set.

2.3 Beam models

In this section we are going to develop some homogeneous beam models in-
troducing field hypotheses in the governing equations we have derivated in
section 2.2. In the following we illustrate the most common path used in
literature (VWP) but also we try to obtain models using different one (HR).
For every model we are going to develop we will make some numerical ex-
ample to highlight differences between them.

Watching at the hypotheses we are using in this section we can consider
E and G simply as scalar quantities

20



2.3. BEAM MODELS Homogeneous beam

2.3.1 Timoshenko beam
Governing equation

To develop the Timoshenko beam we must introduce in the second set of
equations (2.28) the follow hypotheses:

Pu = { 11/ } pv = {1} (2.48a)

u= { “ } v={v} (2.48b)

Fxl
F = Fxg (248(})
Fy

As consequence the ODE system matrices can be evaluated, we report them
in the follow:

Py = [AG] (2.49a)

PW:[AE 0 }

0 IFE

Qui = QunT = [0 AG ] Ry = [ 8 AOG ] (2.49b)

So the beam governing equations became:

ABY! = Fiy (2.50a)
IEuy + AG(V' + ug) = Fyo (2.50b)
AG(W" +uy) = F, (2.50c)

in which A and I are respectively the section area and second order static
moment

bh?

Shear factor

In the Timoshenko beam, to have a correct solution, we need to introduce
in the constitutive relation some factors to equalize deformation works as
obtained by the model and by the exact solution of the problem. In the
Timoshenko beam the axial compression and the bending equations give
a correct solution, so if we compare the exact deformation work and the
deformation work obtained by the model, these are the same. About the
shear, contrarily, we know that the model solution is approximated and it
violates the boundary equilibrium, hence we aspect a factor unequal to 1,
for this reason we must correct the 7 constitutive relation as follows:

T =kGy (2.52)
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2.3. BEAM MODELS Homogeneous beam

Factor k can be estimated comparing the deformation works of Timo-
shenko and Jourawski beams.
The Jourawsky solution, where 7 is parabolic, can be considered correct for a
rectangular section so the exact work of shear deformation can be expressed

as:
2
( 6T (y> — %) )
h/2 2 h/2 bt3 372
L:/—d:/ dy=—— (253
J 20 Y " 5G y (2.53)

5AG
in which T is the resultant of shear stresses on the section.
In the Timoshenko model 7 is constant on the section, so the work becomes:

()
h/2 2 ni2 \ 2
Lr= b/ Ty = b/ LV — (2.54)

2 2kG np 2kG YT 2ARG

Equalizing these two works, we obtain, for the rectangular section, the fol-
lowing value of k:

372 T2

Li=Lr = 16~ 2aka

We can observe that for the Timoshenko problem the shear factor depends
only on section geometry and it’s independent on the dimensions of the sec-
tion and from the mechanical characteristics of the material. It’s possible to
demonstrate that the shear factor can not be higher than one (k < 1).

We can now rewrite the governing equations in the complete and correct
way:

ABY! = Fiy (2.56a)
5

Eluj + EAG(UI + u2) = Fpo (2.56b)

)

EAG(U” + uy) = F), (2.56¢)

For the numerical example see section 2.3.3

2.3.2 Euler-Bernoulli beam
Governing equation

The fundamental hypothesis that permits to develop the Fuler-Bernoulli
beam is that shear deformation is negligible. This means that v = 0 so, using
the same notation we have already adopted previously v’ + us = Osoug = v’
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2.3. BEAM MODELS Homogeneous beam

substituting this hypothesis in equation (2.25) and using the matrices (2.49)
we obtain:

AE 0 0 !

/— [5u1,5v',5v] 0 IE 0 "+
! 0 0 AG V"
0 0 0 u)
0 0 AG vy +
0 AG 0 v’
" (2.57)
0O 0 O u) Fq
0 AG 0 vy — < Fyo dz+
0 0 O v F,
AE 0 0 u) Ty
[5u1, o', 52}} 0 IE 0 vy — < Ty =0
0 0 AG v T, .
Developing the products in the body integrals we obtain:
/ —0uy (AE U] — Fp1) da+ (2.58a)
l
/51}’ (—IEV" + AGV' — AG V') da+ (2.58b)
l
/51} (+AGV" — AGV" — F) dx (2.58¢)
l
(2.58d)

Integrating by parts term (2.58b) and summing to term (2.58c) we obtain:

—6v (=ITEV") [h+ (2.59a)
/ sv (IEv"Y — F,) dQ (2.59b)

Q
(2.59¢)

The governing equations are:

AEW] = Fyy (2.60a)
IEv"Y = F, (2.60D)

2.3.3 Timoshenko/Jourawsky beam

The first test we will make is to introduce y - linear horizontal displacements
and axial stress, quadratic shear stress and constant transversal displace-
ments in the previous differential equations and see if it’s possible to obtain
the shear-factor corrected Timoshenko beam.
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2.3. BEAM MODELS Homogeneous beam

The name we assign to this model (from now TJ) depends on the statement
that displacements and axial stresses are the classical of Timoshenko beam,
contrarily the parabolic shear distribution come from the Jourawski theory.
If we do not obtain this result we can not hope that using more complex
fields the model we develop give a improved solution respect to the classical
models.

Hypotheses

Here we better specify the hypotheses we previously discuss and we introduce
also numerical value for quantities we are using, this last to make numerical
examples in the following.

We try to develop the model for a beam (length [ = 10) made by homo-
geneous material (F = 10°,G = 4 - 10*).We impose also that h = 1 and
b=1.

The field basis we choose are the following:

Pu=Po = { ; } (2.61a)

Py = {1} pr = {1 — 4%} (2.61b)

We could use a more general basis to describe the shear but, in every case,
imposing equations (2.43b), (2.43¢c) we obtain newly the base we have already
adopted, in other words, choosing shear base we are imposing in strong way
lateral surface boundary conditions.

It could be interesting to note that, in the case we are considering, even if
we have chosen a more complex shear field we do not increase the degree of
freedom respect to the Timoshenko beam.

About constrains and loads we suppose that the section is clamped at the
origin and in the opposite section there is a transversal load of magnitude 1.
In other words the boundary condition of the problem are:

w(0)=0;  0(0)=0;  0a(10)=0;  ¢,(10) :{ Y } (2.62)
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2.3. BEAM MODELS Homogeneous beam

Governing equation

We must re-write equations (2.36) evaluating matrix terms. Introducing field
hypotheses and numeric values in their definition we obtain:

1 0 5
P =Pp=| 1 Por=Pry=3 (2.63a)
12
L
— 8
Py = f . e (2.63b)
12E
Py =P.7 = [ 0 ; } Fo=0 F,=0 (2.63c)

About the boundary conditions, equations (2.43b) and (2.43c) are already
satisfied so we must impose condition (2.43a) that became simply:

()= —2 (2.64)

At this point, to simplify the ODE system we can explicit o, from equation
(2.36a) and T from equation (2.36b) and substitute them in equations (2.36c¢)
and(2.36d), in this way we reduce our problem to a displacement formulation.
This new formulation can be expressed as follows:

Cuutt” + Cypv’ + Cyyu = 0 (2.65a)
CpV” + Cp’ = 0 (2.65b)
In which
E 0
Cu'u. - PMPgailpgu — 0 iE (266&)
12
)
Cm; — P’UTPTT_IPT'U — EG (266b)
0
Cuv = Pyr' Prr ' Pry = 5G (2.66¢)
6
Cou = P’UTPT‘I'il-PT‘M' = |: 0 gG :| (266d)
0 0
Cu'u. = m-'Pfrilpru' = 0 —§G (2'666)
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2.3. BEAM MODELS Homogeneous beam

Writing in extensive way the ODE system we obtain:

Eul =0 (2.67a)
1 " 5 /

EEUQ - EG(U +u2) =0 (2.67b)
5

EG(U” +uh) =0 (2.67c)

It is immediate to see that what we have just written are the Timoshenko
governing equations in which the shear factor appears without introducing
it as correction.
Imposing the boundary condition and solving the ODE we obtain the fol-
lowing solution:

‘- { —6,00 x 107° :c20+ 1,20 x 1073 z } (2.68a)

v=2,00x10""2%—6,10 x 1072 = 3,00 x 10 ° z (2.68b)
0

7 { —1,20 x 10' 2 + 1,20 x 10? } (2.68¢)

7 =—1,50 x 10° (2.684)

To have a qualitative check up of the goodness of the solution obtained we
plot in figure 2.1 the cantilever transversal displacements v(x).

2.3.4 Warping beam

In the previous section we highlight how HR principle permits to obtain the
Timoshenko beam equations without introducing any shear factor, to this
purpose we use a parabolic shear distribution. Really, this hypothesis does
not agree with the hypotheses around displacements, in fact looking at 7
local definition

0 0
T:vy = G (%Sv(‘rzy) + a_ysu(xay)> (269)

it is possible to see that parabolic shear is congruent with y-cubic horizontal
displacements.

To create a more correct model now we are going to consider this kind of
displacements in the section, watching at the physical problem, this means
that we are removing the hypothesis of plane sections and we let the section
free to warp over its undeformed plane.

Hypotheses

About material, geometry and boundary conditions we maintain the same
hypotheses used in the previous subsection.
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2.3. BEAM MODELS Homogeneous beam
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Figure 2.1: Transversal displacements of the cantilever for which we find the Tim-
oshenko/Jourawsky solution

About the field we make the follow assumptions:

1 1
y 2 Y
Pu = Do = 2 Pr = 1- 492 (2'7()&)
Yy 1 Ty
y3 2
po= (1) (2.700)

About the choice of p; here we do not satisfy in strong way the lateral surface
equilibrium but, at the same time, we assume a field base that permits to
satisfy it in a very easy way. In fact to impose conditions (2.43b) and (2.43c)
it is sufficient to annul the first and the last terms of vector T and the first
and the last lines or/and columns of the system matrices.

Governing equations

We proceed as we do in the previous subsection: we start evaluating the ma-
trix terms. Since the complexity of integrals this procedure was implemented
in a numerical algorithm. Then we solve the ODE system, the solution we
obtain is the following:
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2.3. BEAM MODELS Homogeneous beam

(75} 0
_ —5 .2 -3
el 2 | _ 6,00 x 107922 +1,20 x 1073z (2.71a)
us 0
Uy 1,89 x 1071822 — 3,78 x 1072 ¢
v=2,00x10"°2%-6,10 x 107422 - 3,00 x 105z (2.71b)
01 0
_ 1 2
o= d o2\ _ 1,20 x 10" 2+ 1,20 x 10 2.710)
g3 0
o4 3,78 x 10782 —3,78 x 1077
7al 0
T=2 7 —1,50 x 10° (2.71d)
T3 0

(2.71e)

In figures 2.2, 2.3, 2.4, 2.5 and 2.6 we represent the plots of most significant
quantities.

-3

x 10

x [1]

Figure 2.2: Rotation magnitude of the warping beam solution
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2.3. BEAM MODELS Homogeneous beam
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Figure 2.3: Warping magnitude of the warping beam solution

2.3.5 Discussion of results

The solid for which we are evaluating the solution satisfies clearly the Euler-
Bernoulli hypotheses so, if the models are good, we expect equality between
them.

First of all it is easy to see that in TJ beam solution the derivatives of
v is the opposite of uy less a constant term 3 x 177, so we can confirm that
v =0 4+uy; =3 x 17~ 0 as we expect, this confirm that, under the hy-
potheses we are working, the hypothesis to neglect « is correct.

In the warping model orders of magnitude are crucial: w4 is negligible re-
specting us (they differ of 8 order of magnitude). This is a good behavior of
the beam and confirm the goodness of TJ model under the hypotheses we
are using. At the same time this statement indicate the consistency of the
warping beam that converge to TJ model.

An other important aspect is that the displacements u; and ug are null:
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2.3. BEAM MODELS Homogeneous beam
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Figure 2.4: Transversal displacements of the warping beam solution

since the nature of loads we expect u; = 0 meanwhile we hope that ug = 0

because the strains related to it violate the lateral boundary conditions 2.

Assuming as control parameter the transversal free extreme displacement
and the resultant stress in the clamp we report in table 2.1 the values of
these quantities for the different models we develop and the relative errors
assuming Euler-Bernoulli as exact solution.

It is possible to see how the models we developed are good: the maximum

l

beam model v(l) % N(0) M(0) | T(0)
v

Euler-Bernoulli | 4.000 x 10=2 | 1.0000 | 0.000 | -10.000 | 1.000

Timoshenko | 4.030 x 1072 | 1.0075 | 0.000 | -10.000 | 1.000

warping beam | 4.030 x 10=2 | 1.0075 | 0.000 | -10.000 | 1.000

Table 2.1: Extreme displacements and stresses using different beam models

transversal displacement difference between the models is less than the 1%.
Again we can say that there is not substantial difference between the TJ and

2The statement that usz related stress violate the lateral equilibrium induces many
authors to do not consider this degree of freedom in their work, as happened in [9]
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2.3. BEAM MODELS Homogeneous beam
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Figure 2.5: y-linear axial stress magnitude of the warping beam solution

the warping beams, that at last are the more correct model.

This few conclusions permit us to say that the models we have developed
are good.
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2.3. BEAM MODELS Homogeneous beam
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Figure 2.6: Shear magnitude of the warping beam solution
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Chapter 3

Laminated beam

In this chapter we will discuss the model of a laminated beam. To build the
model we will start from the homogeneous beam developed in section 2.3.4
because, as we have seen in the examples, the HR functional guarantees the
best behavior of the models and warping beam kinematics is the most correct
and complete one among those of the models previously discussed.

The first section is aimed to the description of the beam geometry and the
discussion of base functions; in the next sections we will make some numerical
examples and discuss the results obtained.

3.1 Hypotheses

3.1.1 Geometry

In chapter 1 we have presented a general beam geometry without better
specifying the fields. In section 2.1 we assumed an homogeneous beam and
smooth fields while now our purpose is to remove these assumptions. As for
the geometry we assume a section as illustrated in figure 3.1, where a 3 layer
beam section is represented while, obviously, in the model that we are going
to develop we want to consider a n-layer beam. To describe the geometry
and the properties of the beam we are working on, it is sufficient to define
a vector Y that contains the layers geometry and an array M that give the
mechanical properties of layers, they can be written as:

U1 B, Gy
Y2 E, Gy
y={ : M=y 7 (3.1)
yn En Gn
Yn+1

in which y; and y;41 are respectively the lower and the upper limits of the
ith layer and F; and G; are the mechanical properties of ith layer.
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3.1. HYPOTHESES Laminated beam

W S

™M v

' 9
%EZ GZ y2

h

Vi

Figure 3.1: Section geometry and mechanical properties of a 3-layer beam

3.1.2 Field approximations

The choice of field approximation is the critical step in model development.
In section 2.3.4 we developed a beam in which equilibrium and compatibility
on its lateral surface can be very easily imposed. On this basis, in order
to generate a laminated beam, we may applicate the homogeneous one to
every layer constituting the beam and impose equilibrium and compatibility
among them.

Therefore we are going to choose a field basis that is piecewise defined,
smooth inside layers and that satisfies interlayer equilibrium and compati-
bility conditions. By these means, the model should bring the most accurate
problem solution.

Developing the examples in section 2.3.3 we obtained the correct solution
for TJ model. Indeed this happened only because in that model we forced
the shape of shear distribution: in T.J we impose the shear to be parabolic
even if it should be constant for compatibility. With more degrees of freedom,
i.e. without forcing shear distribution, we expect it to tend to a displacement
consistent distribution i.e. an homogeneous distribution. In this way we are
sure to lose the exact solution. The only path that ensures a good behavior
of the beam is to consider the warping model locally.

This choice implies high number of degrees of freedom: this may cause some
problems and may reduce the efficiency of the model. We hope, in the defi-
nition of numerical model, to reduce the total number of degrees of freedom
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3.1. HYPOTHESES Laminated beam

with static condensations.
As a consequence of what we have just said, horizontal displacements must

be locally cubic and globally continuous. In figure 3.2 we represent the base
displacements for the three layers beam. In the same figure a possible shape

pu (3n-1)

i Ll DY

-puj’

Figure 3.2: Horizontal displacement base

of resultant displacements is represented. This image highlights that the
horizontal displacements s, € Cy(A): this condition ensure us the compati-
bility is verified on the inter-layer surfaces. The analytical expression of the
base functions on the ith layer is reported in the following:

Yi+1 — Y
27y" + 2yiv —wi) Yy~ + (Y21 — 2vi41%) Y — Y7 Y
pi={ b, (i1 — ) : (32
27y” — (i +yir1) ¥2 + (V2 + 2yiyit1) Y — v2yi
4 (Yis1 — i)
Y—Y
Yi+1 — Yi

We assume that transversal displacements are constant on the section, so
the base for this field is simply p, = {1}.
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3.1. HYPOTHESES Laminated beam
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Figure 3.3: Base field of axial stress

Axial stress base is represented in figure 3.3. The local analytical expression
of pyi base is the same of py;. As it is showed in figure, these two fields
differ only by inter-layer continuities: axial stress can be discontinuous.

The base of shear distribution is represented in figure 3.4. The possible
shear distribution represented in the same figure shows that 7 € Cy(A).
This assumption ensure us that the inter-layer surface equilibrium is satis-

fied.
The analytical expression of 7 base is reported in the following:

( )
Yi+r1 — Y
) Yiv1 — Yi

pr={ 4_ Y+ (Yir1 + Y)Y — Vi (3.3)
;= .
(Yig1 — yi)2
Y—Yi

\ Yi+1 — Yi

The choice of each local field component is mainly motivated by practical
problems:

e [t is easy to distinguish the linear components of the displacements
from the warping components.

e It is easy to impose inter-layer compatibility and equilibrium: since
the base functions are involved in computation of coefficient matrices
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3.2. TRIVIAL EXAMPLE

Laminated beam
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|

Figure 3.4: Base field of shear stress

Prenn

it is possible to evaluate coefficients in every layer and assemble the
global matrices with an assembling procedure analogous analogous to
that used in FEM algorithm.

e The scatter plots of global matrices are good: the whole of matrices
are multi - diagonal: this fact is useful for the numerical evaluation of
the problem solution.

3.2 Trivial example

First of all we will consider a trivial example: we assume a section composed
by more layers, all of which with the same mechanical characteristics. We
are hence working on the homogeneous beam: in this case we are going to
use more complex field basis to obtain once again the solution of the warping

model.

3.2.1 Geometry, materials and boundary conditions

As for the global dimensions and the characteristics of materials we will use
the same parameters we already defined in 2.3.3.
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3.2. TRIVIAL EXAMPLE Laminated beam

In addition to what we already know we must define the layer geometry:

2
y={ 1
6

1

2
This choice arises by an arbitrary assumption: we are simply adopting the
lowest and most significant number of degrees of freedom. The position of

discontinuity surface answers to the need of having not any symmetry in the
model that could “help” a good behavior of the beam.

The governing equations of the problem are (2.36), (2.43) and (2.47).

As for the boundary conditions of the model we are working on a beam
clamped at both extremes and without any load. We impose an unitarian
transversal displacement to one of the two extremes, in particular v(10) = 1.

3.2.2 About the solution computation

The problem formulated in the previous section is very hard to solve: it is a
ODE system of 21 unknowns in first order 21 ODEs. As explained in section
2.2.3, the problem can be reduced to a displacement formulation: in this
case the problem is a ODE system of 8 unknowns in 8 second order ODEs.
The two possible formulations highlight a problem: watching the first one we
expect to obtain a 21-parameter dependent solution, on the opposite looking
at the second formulation we can see that the solution depends only on 16
parameters. Since the physical problem is the same we expect to obtain the
same solution and so the same number of parameters, independently on the
formulation.

Being p the number of unknown displacements and ¢ the unknown stress
one, we can see, watching the boundary conditions (2.43) and (2.47), that
the first imposes p conditions on ¢ stresses and the second imposes ¢ condi-
tions on p displacements.

In the case we are discussing, in which p = 8 and ¢ = 13, equation (2.43) im-
poses 8 significant conditions on 13 variables while equation (2.47) imposes
13 conditions. Since there are only 8 variables, the significant conditions can
be at most 8. So globally the significant conditions we can impose are 16 in

every case !.

To solve the ODE system we used the programme Maple 11 that permits to

!The stress-displacement. formulation has a good behavior if p = ¢. This always hap-
pened in examples of section 2.1 in which we used this formulation without having this
kind of problems
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3.2. TRIVIAL EXAMPLE Laminated beam

obtain the analytical solution with symbolic calculus. Unfortunately, due to
problem complexity and program limits, we did not obtain do not lead to
obtain a completely exhaustive solution:

e it was possible to calculate the analytical solution for both problem
formulations only without imposition of boundary conditions;

e when they were imposed it was necessary to use a numerical algorithm
and the displacement formulation to evaluate the solution ;

e when we are using the displacement formulation the program does not
allow to impose Robin boundary conditions, so it is not possible to
bound with a force the beam extremities .

This last statement led us to impose the boundary conditions illustrated at
the beginning of this section.

3.2.3 Results
Analytical solution

The analytical solution of the problem is very complex and we do not report
it here. However we can make some interesting remarks on it.

e The solution of stress and displacement formulation depends on only
16 parameters. This statement corroborates the fact that the problem
really depends only on 16 parameters, as discussed in the previous
section.

e The structure of the solution is the following:
P = Cieiax + ijn (3.5)

i.e. the solution contains exponential terms and polynomial terms,
the latter give the first-order beam solution, while the former, being
significantly different from zero only near the extremities, could model
the extinction of local effects produced by the shape of external loads.
Nevertheless this good and unexpected behavior of the solution must
be considered carefully in fact it can not be used to evaluate local stress
magnitudes because in the 3D solution there is significant transversal
axial stress o, # 0, while we are assuming it to be always null.

e The degree of solution polynomials is the same of the one of TJ or
warping models.

e Structure of T variable is the following: 7; = C'G; where C' is the same in
every vector term, depending on the boundary conditions of problem,
while §; depends on the component. This means that C gives the
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3.2. TRIVIAL EXAMPLE Laminated beam
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Figure 3.5: Generic shear field shape for a 2-layer beam

magnitude of the resultant shear and 3; - pr; gives the shape of the
shear field. In figure 3.5 we report a plot of the field as obtained by
the analytical solution: it is evident that the shape of resultant shear
is parabolic.

Thanks to these considerations we may say that the model consider so far
can show a good behavior.

Numerical solution

Now we will discuss the most significant results obtained by means of the nu-
merical algorithm. First of all we report, in figure 3.6, the plot of transversal
displacement. Qualitatively, it is possible to see that the solution is exact
and reflects what we were expecting.
In figures 3.7 and 3.9 we report horizontal displacement field and shear field
on the section at x = 5 respectively. In the same plots we can compare the
multi-layered model solution and the warping beam one. In figures 3.8 and
3.10 we report the plots of the relative errors, evaluated as ®210y — Puarp-
Qualitatively the solution obtained is exact. Evaluating more accurately
the error, we can make some remarks.

e The errors are always of 2 or 3 orders of magnitude inferior than the
magnitude of the variables they are related to. This means that the
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3.2. TRIVIAL EXAMPLE Laminated beam
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Figure 3.6: 2-layer beam transversal displacements, numerical result

relative error is always less than 1 %. Relative shear error is generally
less than relative displacement error.

e The displacement error has the same order of magnitude as the warp-
ing variable on the section. We can try to justify this behavior realizing
that also y-linear error has the same magnitude, so we can make the
hypothesis that in multi-layer beam the warping variables could com-
pensate the error of y linear variables.

e The mean value of error on the section is null 2, in other words:
/ (Sudlay — Suwarp) dA = —2,54 x 1072 ~ 0. (3.6)
A

This statement corroborate the previous hypothesis about the behavior
of warping.

e The warping error, obtained as difference between the global error and
the linear error is bigger inside the beam thickness, where also shear
error is big, and it tends to become smaller near the lateral surfaces,
where shear error is null. This lead us to think that the warping error
and the shear error are in some way related the one to the other.

2 As for the value of this integral it worths noting that 107! is the error tolerance of
numerical algorithm.
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3.2. TRIVIAL EXAMPLE Laminated beam
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Figure 3.7: 2-layer beam horizontal displacements evaluated at x=5, numerical
result

In table 3.1 we report numeric values of axial stress, bending moment and
shear stress resultants in the origin section and their relative errors, assuming
as the exact model the Euler-Bernoulli beam and the transversal displace-
ment at = 2,5 with its the relative error?. Hence it is worth making the
following remarks.

e The axial resultant force is always correctly predicted. In 2-layer beam
error must be imputed to the numerical method too.

e There are not significant differences between TJ, warping and the 2-
layer models. It is possible to notice a small difference between the
latter and the former two but this can be attributed, once again, to
the numerical error.

e There is a significant difference ( 2 or 3 %) between the Euler-Bernoulli
solution and the others: particularly it is possible to see that the Euler-
Bernoulli beam is more rigid than the others: in the EB solution we
have stronger forces and less strains. We could have expected this
result: having less degrees of freedom the EB beam has more inter-

3The number “1” representing axial force errors means that the solution is exact, dif-
ferently it is not possible to evaluate the error
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3.2. TRIVIAL EXAMPLE Laminated beam
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Figure 3.8: 2-layer beam horizontal displacement error evaluated at x=5

nal constraints and this justifies the increment of stiffness. This phe-
nomenon is offen mentioned in literature.

e The statement that EB beam is more rigid could be deduced also
watching table 2.1. However in this table it is not possible to see
differences of the forces because the cantilever is an isostatic structure
and so the reactions depend only on external force; in the opposite
case the model we are considering is now hyper-static and the external
reactions are also influenced by beam.

We analyzed also an homogeneous beam composed by 3 layers. Once more,
we obtained the same results already illustrated.

3.2.4 Extinction of local effects

As we have already discussed in section 3.2.2 the model we developed can
predict the extinction of local effects produced by the shape of external loads
and displacements. In fact we know that, far from the boundary, the behav-
ior of the elastic solid depends only on the resultant of external loads or
average displacements. Moreover the theory ensures that the local effects
are significant only in a region equal to 1 + 1.5h in which A is the character-
istic dimension of the beam section.
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Figure 3.9: 2-layer beam shear distribution evaluated at x=>5, numerical result

Now we will impose a “not homogeneous” boundary condition that will

produce local effects. Afterward, we will study how the model answers to
this imposition. On the boundary, we assign null displacements everywhere
except for the first degree of freedom of s, in the origin, which we impose to
be equal to 1 (u1(0) = 1).

In the following we will plot displacements and stress distributions near the
extreme in which we imposed the not homogeneous displacement. The
horizontal displacements at x=0 in figure 3.12 are the plot of the imposed
boundary conditions.

e Watching figure 3.11 it is possible to see how the global effect of our
boundary condition is simply the imposition of a non null average
rotation in the origin.

e Looking at figure 3.13 we realize that the shear is the field that ex-
tinguishes the local effects less quickly than the others. It worths re-
marking that this field at « = 1.5k is not parabolic but the maximum

“by this term we define every boundary condition that is able to produce significant
local effects, in other words every distribution of forces or displacements different from
what we can impose on homogeneous beam
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Figure 3.10: 2-layer beam shear error evaluated at x=5

shear on the section has the same order of magnitude of the exact dis-
tribution. So the statement we previously inferred about the length of
extinction region can be considered true in this case too.

e Being the boundary condition not symmetric we expected, as global
effect, a non symmetric behavior of the section: in fact, as it is possible
to see in figure 3.14 the neutral axis of the section is not at the half of
its height.

This behavior of the beam can obviously be considered (or not) in numerical
models using (or not) adequate shape functions. Nevertheless it can be
interesting to use the displayed behavior to model some problems of interest
in appliance of beam theory such as:

e Section geometry discontinuities.
e Plastic hinges model.

e Every kind of problem in which local effect could be significant.
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3.2. TRIVIAL EXAMPLE Laminated beam

v T
beam model v(2.5) — T(0) —
VEB TEB
Euler-Bernoulli | 1,5625 x 10! | 1.0000 | —1.0000 x 10? | 1.0000
Timoshenko | 1.5898 x 10~! | 1.0175 | —9.7087 x 10! | 0.9709
warping beam | 1.5898 x 10~! | 1.0175 | —9.7087 x 10' | 0.9709
2-layer beam | 1.5896 x 10~! | 1.0173 | —9.7092 x 10' | 0.9709

b del N(0) N M(0) M

eam moae

Ngp Mgp
Euler-Bernoulli | 0.0000 x 10=7 | 1.0000 | 5.0000 x 102 | 1.0000
Timoshenko | 0.0000 x 10~7 | 1.0000 | 4.8544 x 102 | 0.9709
warping beam | 0.0000 x 10=7 | 1.0000 | 4.8544 x 10% | 0.9709
2-layer beam | —1.6140 x 1077 - | 4.8546 x 10% | 0.9709

Table 3.1: Stress resultants and displacements at significant sections
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Figure 3.11: Transversal displacements obtained as solution of the problem with
not homogeneous boundary conditions
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Laminated beam
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05 05 0.5 05 05
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Figure 3.12: Section displacements near the section in which we

geneous boundary condition

apply not homo-

x=0.0 x=0.5 x=1.0 x=1.5 x=2.0
0.5 0.5 0.5 0.5 0.5
0.4 0.4 0.4} 1 04t 0.4} J
0.3f 0.3 0.3f 1 0.3t 0.3f 1
0.2t 0.2 0.21 1 0.2¢ 0.2 1
0.1t 0.1 0.1r 1 0.1f 0.1r 1
or 0 or 1 or or 1
-0.1 1-0.1 -0.1f 1 -0.1 -0.1f 1
-0.2 1-0.2 -0.2H 1 -0.2 -0.2F 1
-0.3f 1-0.3 -0.3f 1 -0.3f 1-0.3f 1
-0.4¢t 1-0.4} -0.4¢t 1 -04r 1-0.4} 1
-0.5 -0.5 -0.5 -0.5 : -0.5
-2 0 2 -1 0 1 -20000 2000 -1006500 O -1000 O 1000
5 4
x 10 x 10

Figure 3.13: Shear distributions near the section in which we apply not homoge-
neous boundary condition
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Laminated beam
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Figure 3.14: Axial stress near the section in which we apply not homogeneous

boundary condition
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3.3. ADVANCED EXAMPLE Laminated beam

3.3 Advanced example

3.3.1 Geometry and materials

For the advanced example we define the following geometry and material
vectors:

—05 1.00 x 10°  4.00 x 10*

Y = _0033 M =< 240 x 10* 1.00 x 10* (3.7a)
0‘5 1.00 x 10° 4.00 x 10*

The beam is composed by 3 layers the intermediate of which has mechanical
properties poorer than the others.

We choose a symmetric section and we expect consequently to obtain sym-
metric or emi-symmetric fields on the section.

As a boundary condition we impose null displacements everywhere except
for an unitarian transversal displacement at x = 10.

3.3.2 Results

Here we are going to report the plots of most significant quantities obtained

by the solution of the problem we have just defined. It is interesting to
note that in figure 3.15 the horizontal displacements are nearly linear respect
to y.

Moreover it is possible to see that, as we expected, the solutions we obtained
are all odd or even respect y domine.
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Figure 3.15: Transversal displacements obtained as solution of the non homoge-
neous beam
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Figure 3.16: Horizontal displacements on the section at the half of the beam
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Figure 3.17: Axial stress distribution at x=0.00
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Figure 3.18: Shear distribution at x=0.00

o1



Chapter 4

The numerical beam model

In this chapter we will develop the numerical model of the laminated beam
we have previously analyzed.

We will start by developing the weak formulation of the problem, introducing
field hypotheses and reducing the problem to an algebraic form. Then we
will go on discussing the choice of the so called shape functions and, at last,
we will make some examples and discuss them.

4.1 Weak formulation

In order to develop the numerical method we must start from a weak formula-
tion of the problem. The most natural choice is to start from the stationarity
of the functional from which we derivated the governing equations.

In section 1.3.3 we wrote two possible weak formulations: the first is equation
(1.12), and the second is equation (1.14). Usually people prefer to develop
numerical models starting from the first of the two formulations, that is
properly the stationarity of functional and lead to a symmetric formulation.
This is the path we want to use.

So starting form equation (1.12), we rewrite it adopting notations and con-
ventions of section 2.1. We obtain:

§JrR = / (L75s)" o dQ + / 6o L5 d2— (4.1a)
Q Q
/ 66D g dQ) — / o8 f dQ— (4.1b)
Q Q
6sTtdS — (6oN)" (s — 5) dS — 6s"No dS =0
o0 0Qs Qs
(4.1¢)

As we did in section 2.1 we split the weak formulation in body equation,
bounded displacement surface and force boundary.
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4.2. FIELD APPROX. FEM model

4.1.1 Body equations

Substituting definitions (2.2) and developing matrix products in terms (4.1a)
and (4.1b) we obtain:

/ [L76s])" o dQ + / 50T L"s dQ— (4.2a)
Q Q
/ sc’ Do dQ — / osTfda=0 (4.2b)
Q Q

Introducing the field definitions (2.2) and developing the matrix product we
arrive to the following formulation:

T Ion T
T T | PuPo 0 Oz 7 o1 0 Pu'DPr Oz
/Q[éu , 0V }[ 0 pvaT]{T}—i-[éu , 0V ][0 0 }{‘r}—i_

(4.3a)
o0 o/ 0 0] fu
[(50‘,,;T, 5TT] [ pagu p‘rva :| {’Ul }+ [50xT7 5TT] I: p‘rpu/T 0 ] {’v }_
(4.3b)
papaT 0
(60,7, 61" E T {””” }— [ou”, su”] {p“f”” } dQ =0
0 DrPv T pvfy
G
(4.3¢c)

As happened in section 2.1, only the terms inside the matrices depends on
the sections variable, so it is possible to split the integrals. Using definitions
(2.35) and introducing the following

P, :/Ap;p‘rdA (4-4)

we obtain:

[t sy [ B O T Lo Vo paur gy [ 8 Bar ] o L
ort ) [ B O T8 o[ 0 8]0 )
[&IIT,&TT][ P(:

(4.5)

4.2 Field approximations and algebraic reduction

Now we must introduce the hypothesis of finite dimension of fields: we sup-
pose that every unknown field can be expressed as a linear combination of the
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4.3. HYPOTHESES FEM model

so called shape functions weighted with scalar quantities. In the following
we introduce the new notation that uses the shape functions.

u(z) = By(z) u (4.6a)
v(z) = B,(z) v (4.6b)
oz(r) = B,(x) o (4.6¢)
T(z) = B(x) T (4.6d)

The problem we are developing can be written as:
/ (64’ B’ PyyB, 6 + 60" B’ P,y B, 7+
l
ou’ B'Py,B, 7 + 66" BT P, B, i+
6T BTP,,B" v + 6+" BT P,yB, ii— (4.7)
66" B'P,;B,6 — 6+ BTP;,B, # )dx =
/ (ou’ B, F, + 60" B, F,))dx
l

At this point is possible to transfer the integral only on x dependent terms
and rewrite the governing equation in a arrayal form:

0 0 Ky Ky i F,

e 0 0 0 K, v | | P,

[0w, 00, 66, OT] K, 0 K, 0 6 (= 0 (4.8)
Kfu K‘rv 0 K‘r‘r T 0

The matrix K we have just introduced is usually called “stiffness matriz”
and its terms are defined as follows:

Kuo = /l B'"P,,B,dx Kyr = /l BTP,.B.dx (4.9a)
Kyr = /l B'P,.B.dx Koy = /Z BTP,,B' dx (4.9b)
K.y = /l BTP.,B dx Kpy = /l BIP,,B,dx (4.9¢)
Ky = /l BlP,,B,dx Kpp = /l BB, P.dx (4.9d)
F,= /Z BIF,dx F;= /Z BT F,dx (4.9¢)

4.3 Hypotheses

4.3.1 New base functions and numerical problem definitions

The choice of shape functions is a critical step in definition of FEM (Finite
Element Method) algorithm: the accuracy and efficiency of the algorithm
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4.3. HYPOTHESES FEM model

depends on it.

The multi-layered beam defined in chapter 2 uses a high number of un-
knowns (being n the number of layers, the unknown functions in the beam
are 3n + 2 displacements and 6n — 1 stresses). Supposing the continuity of
every unknown function to be necessary, we are going to define an enormous
stiffness matrix, in other words a low-efficiency numerical algorithm. To
remedy this problem we will make the following choice.

e We assume inter-element discontinuous functions to model stresses.
Looking at the structure of K and using this hypothesis we can op-
erate a static condensation on the element stiffness matrix, reducing
the dimension of global algebraic problem and with the possibility to
evaluate stress magnitude in post processing.

e We split displacement field as follows: 8 = sp + 8y in which s are
the Timoshenko displacements that use base functions globally defined
on the section while sy are the warping displacements and are locally
defined on the layers as illustrated in figure 2.9. In the numerical model,

s i P

y2 RPN T PRI ¥ S —— RS (RIS PR /475 N R

Figure 4.1: Section base functions used in FEM algorithm

as shape functions we will use continuous piecewise defined functions
to model the Timoshenko displacements and bubble functions to the
warping components. With this choice we simplify the assembling
procedure and improve the stiffness matrix scatter-plot.
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4.3.2 Shape function local definition

In the numerical algorithm we are going to use, for every unknown the fol-
lowing shape functions. Z is the element local coordinate and [ is the element

(4.10)

length.
e Transversal displacement v is modeled by cubic shape functions defined
as follows:
.%3 52
5 3 2 +1
N
qo = 12 l
v ) .%3 3 i.2
j3 5&2
\ l~2 l ),

In figure 2.18 we report the plot of shape function.
function we obtain a solution v(z) € C?.

By this shape
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Figure 4.2: v shape functions

e Timoshenko horizontal displacements ur are modeled by linear piece-
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wise functions, defined as follows:

~
|
=

Qur =

(4.11)

~] B~

In this way we obtain a C° solution for these functions.

e Warping horizontal displacements uyy are modeled by a quadratic bob-
ble, defined as follows:

4 M (4.12)

In this way we obtain a C? solution for these functions that are null in
the mesh nodes.

e Stresses are modeled by quadratic shape functions defined as the union
of gy, and qy, -

4.4 Numerical examples

In the following we will discuss the results of the numerical algorithm we
have just defined and we will report plots for some significant examples.

4.4.1 Bending moment loaded cantilever

We consider the laminated beam we have already presented in section 3.2.
As unique load we consider an unitarian bending moment applied at one
extremity while as boundary condition we clamp the other beam extremity.
By the load characteristics we can deduce that the bending moment is con-
stant inside the length of beam, so the shear is null and the rotation mag-
nitude is linear. In these conditions the laminated, material homogeneous
beam we are considering must give exactly the EB solution, moreover being
the shape functions sufficiently rich, we expect that also the numerical model
may catch the exact solution using only 1 element.

In figures 4.3 and 4.4 we plot the solution as obtained by the numerical model
using 1 element. In table 4.1 we report numerical value of unknowns found
with analitical and numerical models. It is possible to see how the numerical
model catches exactly the solution.

4.4.2 Shear loaded cantilever

Now we are going to consider once again the laminated beam introduced
in section 3.2 but, differently from what we did in previous section we will
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Figure 4.3: Transversal displacements of a cantilever loaded by extreme concen-
trated bending moment

quantities num. mode EB model
v(0) 0.0000 0.0000

v(1) —  6.0000 x 1072 | — 6.0000 x 1073
v'(0) 1.5710 x 10742 0.0000

v'(1) 1.2000 x 10~3 1.2000 x 10~3
(1) — 1.2000 x 1073 | — 1.2000 x 1073

Table 4.1: Displacements at significant sections

consider a transversal load in the extremitiy of the beam.
In the analytical solution the rotations are parabolic, on the opposite the
numerical model contains only linear horizontal displacements so we expect
an error in the numerical solution. To improve the solution we must use more
elements. In figures 4.5, 4.6 and 4.7 we report the solutions as obtained by
the TJ analytical model and by the numerical model, in the latter considering
1, 2 and 4 elements. In figures 4.8 and 4.9 we plot the magnitudes of an axial
stress component (o) and of a shear stress component (73) for 2, 4 and 8
elements.

It is possible to see how the solution error becomes quickly small increasing
the number of elements, moreover we can observe how the rotations are
exactly evaluated at nodes. It is possible to see also an error on the free
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Figure 4.4: Section rotations of a cantilever loaded by extreme concentrated bend-

ing moment

extreme displacements: in table 4.2 we write the magnitude of these errors
as function of the number of elements used. Looking at the table we can say
that the solution displays a good convergence to the exact solution, moreover
we can see that the relative error is near the 1 % also using few elements.

In figure 2.25 we plot the section shear distribution on the node x = 5,000
and at the half of element 4 (z = 4.375) as calculated using 8 elements. It is
clear that inside the element the model predicts exactly the shear distribution
while in the nodes, being null the warping, shear distribution tends to become
constant and, in any case far from the exact solution.

elem n v(l) o)
vy (1)
1el —3.92 x 1072 | 0.9727
2 el —3.99 x 1072 | 0.9901
4 el —4.02 x 1072 | 0.9975
8 el —4.027 x 1072 | 0.9993
TJ model | —4.03 x 1072 | 1.0000

Table 4.2: Free extreme transversal displacement
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Figure 4.5: Transversal displacements of a cantilever loaded by extreme shear
resultant
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Figure 4.6: Section rotations of a cantilever loaded by extreme shear resultant
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Figure 4.7: Section rotations of a cantilever loaded by extreme shear resultant
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Figure 4.8: Axial stress component o1 of a cantilever loaded by extreme shear

resultant

61



4.4. NUMERICAL EXAMPLES

FEM model

0.9

0.8

o
~
T

-
”

tau [F/1?]
o o
o o
T T

o
S
T

o
w
T

0.2f

0.1r

x [1]

Shear stress

Figure 4.9:

resultant

0.5

= = =x=5.000

0.1F

y [

_Ol -

-0.2F

-0.3}

component 73 of a cantilever loaded by extreme shear

0.8 1
tau [F/1%]
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the element length (x = 4.375)
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Chapter 5

Conclusions

In this thesis we discussed some models of homogeneous and laminated
beams, for the latter we developed also a FEM model.

The analytical models can predict in a correct way the internal stress dis-
tribution and do not need to be corrected by any factor, as happens in
Timoshenko beam. Moreover, looking at laminated beam, the model we de-
veloped can predict the answer of the body to local effects.

As far as the numerical model is concerned, we wrote an algorithm that
uses a low number of degrees of freedom, in particular stresses are locally
static condensated and the global stiffness matrix is formulated as a function
of nodal linear displacements and some bubbles that account the high order
section displacements. In post processing it is possible to evaluate stresses
that estimate correctly the real ones.

A possible development of this work might be the improvement of the FEM

model to enhance the prediction of stress distributions, and model general-
ization to non-planar stress and kinematics.
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