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AbstratThe purpose of this work is to operate a dimensional redution from the 3Dproblem to a 1D problem. This operation leads to a so-alled beam model.The proedure permits to redue the omplexity of the problem but at thesame time it introdues some approximations. The model goodness an beseen as the best ompromise between approximation and auray.In this thesis we will disuss some models of plane beam. The materialis linear, elasti and isotropi. We will onsider �rst an homogeneous setionand after a laminated beam, made by layers of di�erent materials. The �rstpurpose of our work is to obtain a model that ould predit the behavior ofthe beam in exat way, without the need to introdue any orretion fator,as it appened for the Timoshenko model.To develop the beam model we will use the stationarity onditions of fun-tionals. Spei�ally we will use the virtual work priniple, the Hellinger-Reissner funtional and the Hu Washitzu funtional. Eah of these has goodand bad properties. In the next hapters we will use them to highlight thesigni�ant merits and failings.Starting from the homogeneous beam we will try to generalize the modelto a laminated beam for whih we will develop the governing equation and�nd some analytial solutions to disuss the model goodness. For the latter,we will build also a numerial model, write the algebrai equations and �ndsome numerial solutions.

II



RiassuntoLo sopo di questa tesi è operare una riduzione diemensionale: partendo dauna formulazione in 3D vogliamo arrivare ad un problema monodimension-ale. Questa operazione porta ai osiddetti modelli di trave. La proedurapermette di ridurre la omplessità del problema ma al tempo stesso introduealune approssimazioni. La bontà dei modelli osì ottenuti può essere vistaome il miglior ompromesso fra il grado di approssimazione e l'auratezzadegli stessi.In questa tesi i ouperemo di aluni modelli di trave piana. Assumiamohe il materiale sia lineare, elastio ed isotropo. In prima istanza onsider-eremo una trave omogenea, suessivamente generalizzeremo il modello aduna trave laminata, ovvero ostituita da strati orizzontali di materiali di-versi. Il primo obiettivo del nostro lavoro sarà quello di ottenere un modellohe possa predire orrettamente il omportamento della trave, in partiolaresenza l'introduzione di alun fattore di orrezzione ome invee suede nellatrave di Tomoshenko.Per riavare le equazioni della trave useremo, oltre ai lassii metodi vari-azionali, la stazionarietà di aluni funzionali. In partiolare faremo uso delprinipio dei lavori virtuali, del funzionale di Hellinger-Reissner e di quellodi Hu Washitzu; ognuno di essi presenta, nel suo impiego, limiti e svantaggi:nella derivazione delle equazioni i proponiamo anhe di mettere in lue ipunti di forza ed i difetti di ogni metodo he useremo.Partendo dalla trave omogenea erheremo di generalizzare il modello aduna trave laminata per la quale sriveremo le equazioni governanti. Cerher-emo anhe di riavare alune soluzioni analitihe per onstatarne la bontà.Per la trave laminata svilupperemo in�ne un modello numerio per il qualevogliamo riavare le equazioni algebrihe he lo governano e, utilizzandoqueste ultime, erare alune soluzioni per asi elementari al �ne di dis-uterne l'e�aia.
III
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Chapter 1IntrodutionThis hapter starts with a brief review of the state of the art about the sub-jet of the present thesis followed by the de�nition of the problem we study,the introdution of our hypotheses and the tools we are going to use for ourdevelopments.1.1 State of the artThe majority of strutural members an be e�iently modeled by one-dimensional elements, just this statement may justify the high interest ofivil engineering researhers on this topi.In the past, when alulators were not available, engineers developed beammodels to redue as muh as possible the unknowns of the problem theywere analyzing. A lass of models reated for this purpose is the so alled�rst-order, plane, kinematis beams.The Euler-Bernoulli beam an be onsidered the most signi�ant example ofthis lass, by means of it the 3D, homogeneous, elasti problem is redued toa simple ODE (Ordinary Di�erential Equation) system in 2 one-dimensionalunoupled unknows. Even today, when more aurate models and more pow-erful instruments are available, this model is the most used. Its simpliityallows to obtain the solution by diret integration of transversal load, as il-lustrated in [10℄.The other most signi�ant �rst-order model is the Timoshenko beam whereaxial, transversal displaements and setion rotation are the unknown one-dimensional �elds. Timoshenko beam allows unoupling the axial and theshear-bending problems.Obviously these models show some important limitations: the solutions or-respond to the real behavior of the body only if the ratio between length andtransversal dimension is ≫ 1, the models predit only the stress resultantso loal e�ets of fore distribution or kinemati onstrains an not be on-1



1.2. DOMAIN AND FIELD DEFINITIONS Introdutionsidered. Additionally every model has got spei� limitations, as examplethe Timoshenko beam needs to be orret by shear fator and its solution isvalid if length-thikness ratio ≥ 4, the Euler-Bernoulli solution is valid whenlength-thikness ratio ≥ 10.The neessity of most aurate models and the numerial methods nowa-days available indue researhers to develop the so alled high-order beammodels. They are developed starting from a ompliated setion kinematis,usually desribed by high order polynomials.Limiting our interest to plane beams, the most famous high-order model isthe Reddy beam that onsiders the shear setion warping, on the opposite,the most omplete model is the Lo-Christenson-Wu beam where authors on-sider the most omplete kinematis. For a general treatment of high-orderplane kinemati beam models see [14℄.Often the use of more aurate models is justi�ed by the neessity to desribethe behavior of advaned materials or elements as laminated or multi-layeredbeams and plates, orthotropi or inelasti bodies . . . . Multi-layered beamsare obtained by union of di�erent material layers. The purpose is to obtaina strutural element in whih every omponent exalts its spei� propertiesand the global answer is better than the single omponent behavior. Theappliations of these strutures are many and they span from ivil to me-hanial, naval and aerospae engineering.Literature around laminated beam and plate modeling is very rih, there ex-ist analytial and exat models (see [11℄ and [12℄) but also numerial methodsare developed (as example see [16℄).Usually these models try to desribe the displaement �eld by setion glob-ally de�ned funtions, so it is possible to predit only global displaementsand medium stresses. On ontrary in this work we try to develop a model inwhih displaement and stress �elds are loally de�ned so that it is possibleto evaluate more aurately the real stresses inside the body.1.2 Domain and �eld de�nitionsIn this setion we use notation adopted in [1℄.Let A be a losed domain in R
2, [0, l] a losed interval in R. We all Asetion and l longitudinal axis. We de�ne them rigorously as follows:

A =

{
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2
,
h

2
], z ∈ [−

b

2
,
b

2
]

} (1.1)Let Ω be the solid oupying the region:
Ω = A × [0, l] (1.2)2



1.2. DOMAIN AND FIELD DEFINITIONS Introdutionand let we all it beam.Obviously l ≫ h ≈ b so that it is possible to reognize a predominant dimen-sion. The domain sheme and the Cartesian oordinate system we adopt arerepresented in �gure 1.1.

Figure 1.1: Coordinate system and geometry of the solid we are studyingWe de�ne A0,l = A × {0, l} extreme setions of the beam and we all
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as boundary ofdomain.Consider {∂Ωt; ∂Ωs}, a partition of ∂Ω. Let ∂Ωt and ∂Ωs be respetivelythe fore boundary and the displaement onstrained surfaes.Let Ω be a plane beam hene we do not onsider fores in z diretion. Ad-ditionally we make hypothesis of plane stress state, this means that stressesin z diretion are null (i.e. σzz = τxz = τyz = 0). These two hypotheseslead to onsider z diretion deformations and displaements as dependent ortrivial variables. For all these reasons S
±

b

2

beame a not signi�ant domainboundary so we will not onsider it in the following developments.We suppose that the beam is loaded by a surfae fore density ttt : ∂Ωt → R
2and a volume fore density fff : Ω → R

2, moreover on ∂Ωs we de�ne theboundary displaement funtion: s̄̄s̄s : ∂Ωs → R
2.The beam is made by isotropi, linear, elasti material. For the �nal workpurpose we do not onsider homogeneity hypothesis. To de�ne the mehani-al properties in the body we must introdue the salar �elds E : A → R and

G : A → R, obviously they an not be ompletely independent eah other infat E and G are linked by ν that ∈ [0 , 1
2
[ .Considering the plane beam hypothesis we must de�ne the following in-3



1.3. 3D PROBLEM DEFINITION Introdutiondependent variable �elds:
σσσ : Ω → R

2×2 (1.3a)
εεε : Ω → R

2×2 (1.3b)
sss : Ω → R

2 (1.3)in whih stress σσσ and strain εεε are symmetri tensors and displaements sss isa vetorial �eld.1.3 3D problem de�nitionThe elasti solid problem may be formulated in many ways, nevertheless wean lassify all the formulations as derived by two paths.
• Strong formulationStrong formulationStrong formulation that is the most intuitive path, it onsists in requir-ing that displaements, stresses and strains satisfy in eah point insidethe domain ompatibility, equilibrium and onstitutive relations. Thisformulation brings to an PDE (Partial Di�erential Equations) system.
• Weak formulationWeak formulationWeak formulation that is the most useful for some aspets, it onsistsin requiring stationarity of a salar quantity. This path brings to writean integro-di�erential equation. Energy methods belong to this lassof formulations.For many aspets the two paths are equivalent and they give the same so-lution. Wathing at the ontext and the work purpose, we may hoose theformulation that better satisfy our needs.1.3.1 Strong formulationOn the domain we want to satisfy the boundary value problem:

εεε = ∇ssss (1.4a)
σσσ = DDD : εεε inΩ (1.4b)
∇ · σσσ + fff = 000 (1.4)
σσσ · nnn = ttt in ∂Ωt (1.4d)
sss = s̄̄s̄s in ∂Ωs (1.4e)in whih DDD is the fourth order tensor of the onstitutive relations.Equation (1.4a) is the ompatibility relation, valid for small displaementsand small displaement gradients, equation (1.4b) is the material onstitutiverelation and equation (1.4) represents the equilibrium ondition. Equations(1.4d) and (1.4e) are respetively the boundary equilibrium and the bound-ary ompatibility onditions. 4



1.3. 3D PROBLEM DEFINITION Introdution1.3.2 Total Potential Energy and Virtual Work Priniple ap-proahThe funtionals we are introduing is the most used in ontinuum mehan-is: in basi literature (as [7℄ and [8℄) the �rst-order beams are developedstarting from these priniples.VWP an be written as:
δWVWP =

∫

Ω

δεεε : σσσ dΩ −

∫

Ω

δsss · fff dΩ −

∫

∂Ωt

δsss · ttt dS = 0 (1.5)in whih deformation εεε is ompatible (i.e. it satis�es equation (1.4a)) andstress σσσ is equilibrate (i.e. it satis�es equation (1.4)).It is remarkable that this priniple an be applied to every body indepen-dently by onstitutive relation (1.4b).TPE funtional an be used only for an elasti body, for whih �elds areonservative and it is formulated as follows:
JTPE(sss) =

1

2

∫

Ω

∇ssss : DDD : ∇ssss dΩ −

∫

Ω

sss · fff dΩ −

∫

∂Ωt

sss · ttt dS (1.6)Its stationarity an be expressed as:
δJTPE(sss) =

∫

Ω

∇s (δsss) : DDD : ∇ssss dΩ−

∫

Ω

δsss · fff dΩ−

∫

∂Ωt

δsss · ttt dS = 0 (1.7)For an elasti body, expressing σσσ and εεε as funtion of sss, VWP and TPEstationarity give the same equation. In the following, sine we are going toonsider only elasti bodies, we ould use the 2 approah indi�erently butfor more simpliity we will speak of VWP.Expressing all terms as funtion of sss the �rst term of equation (1.5) ouldbe written as follows:
∫

Ω

∇s (δsss) : DDD : ∇ssss dΩ =

∫

∂Ω

δsss · (DDD : ∇ssss) ·nnn dS −

∫

Ω

δsss · ∇ · (DDD : ∇ssss) dΩ(1.8)Subdividing the integral de�ned on the surfae in the integrals on ∂Ωt andon ∂Ωs, equation (1.7) an be rewritten as:
δWVWP (sss) = −

∫

Ω

δsss · (∇ · (DDD : ∇ssss) + fff) dΩ+

∫

∂Ωt

δsss · ((DDD : ∇ssss) ·nnn − ttt) dS +

∫

∂Ωu

δsss · (DDD : ∇ssss) · nnn = 0(1.9)5



1.3. 3D PROBLEM DEFINITION IntrodutionIt is possible to see that the �rst term ontains the equilibrium relation ex-pressed as funtion of displaements. The seond term ontains the foreboundary onditions. Sine it is de�ned on the displaement onstrainedboundary, onsidering on it a non-null virtual displaement the last termgive the onstrain reations but, having these quantities low interest in thiswork, we will onsider the virtual displaements always null and this termwill be omit.It is important to see that in VWP boundary ompatibility onditions do notappear, we ould expet this beause the priniple give only the equilibriumondition.An alternative VWP formulation to (1.7) from whih we an start is:
δJTPE(sss) = −

∫

Ω

δsss·(∇ · (DDD : ∇ssss) + fff) dΩ+

∫

∂Ωt

δsss·((DDD : ∇ssss) · nnn − ttt) dS = 0(1.10)1.3.3 Hellinger-Reissner approahThe Hellinger-Reissner funtional (shortly HR) an be expressed as follows:
JHR(σσσ,sss) =

∫

Ω

σσσ : ∇ssss dΩ −
1

2

∫

Ω

σσσ : DDD−1 : σσσ dΩ −

∫

Ω

sss · fff dΩ

−

∫

∂Ωt

sss · ttt dS −

∫

∂Ωs

σσσ · nnn · (sss − s̄̄s̄s) dS

(1.11)Its stationarity ondition is:
δJHR =

∫

Ω

∇sδsss : σσσ dΩ +

∫

Ω

δσσσ : ∇ssss dΩ−

∫

Ω

δσσσ : DDD−1 : σσσ dΩ −

∫

Ω

δsss · fff dΩ −

∫

∂Ωt

δsss · ttt dS−

∫

∂Ωs

δσσσ ·nnn · (sss − s̄̄s̄s) dS −

∫

∂Ωs

δsss · σσσ ·nnn dS = 0

(1.12)The �rst term of (1.12) ould be expressed as:
∫

Ω

∇sδsss : σσσ dΩ =

∫

∂Ω

δsss · σσσ ·nnn dS −

∫

Ω

δsss · ∇ · σσσ dΩ (1.13)
6



1.3. 3D PROBLEM DEFINITION IntrodutionSubstituting equation (1.13) in (1.12) and olleting the terms that use thesame virtual degrees of freedom we obtain:
δJHR =

∫

Ω

δσσσ :
(

∇ssss −DDD−1 : σσσ
)

dΩ− (1.14a)
∫

Ω

δsss · (∇ · σσσ + fff) dΩ+ (1.14b)
∫

∂Ωt

δsss · (σσσ · nnn − ttt) dS− (1.14)
∫

∂Ωs

δσσσ ·nnn · (sss − s̄̄s̄s) dS = 0 (1.14d)It is possible to see that term (1.14a) ontains onstitutive and ompatibilityrelations. Term (1.14b) is the weak expression of equilibrium relation insidethe body meanwhile (1.14) is the fore boundary equilibrium, term (1.14d)is the displaement onstrained surfae ompatibility.1.3.4 Hu-Washizu approahThe Hu-Washizu funtional (shortly HW) may be expressed as follows:
JHW (σσσ,εεε,sss) =

∫

Ω

σσσ : (∇ssss − εεε) dΩ +
1

2

∫

Ω

εεε : DDD : εεε dΩ −

∫

Ω

sss · fff dΩ

−

∫

∂Ωt

sss · ttt dS −

∫

∂Ωs

σσσ ·nnn · (sss − s̄̄s̄s) dS

(1.15)Its stationarity ondition an be expressed as:
δJHW =

∫

Ω

∇sδsss : σσσ dΩ −

∫

Ω

δεεε : σσσ dΩ +

∫

Ω

δσσσ : (∇sσσσ − εεε) dΩ+

∫

Ω

δεεε : DDD : εεε dΩ −

∫

Ω

δsss · fff dΩ −

∫

∂Ωt

δsss · ttt dS−

∫

∂Ωs

δσσσ ·nnn · (sss − s̄̄s̄s) dS −

∫

∂Ωs

δsss · σσσ ·nnn dS = 0

(1.16)The �rst term of (1.16) an be expressed as follows (this expression is thesame of (1.13)):
∫

Ω

∇sδsss : σσσ dΩ =

∫

∂Ω

δsss · σσσ ·nnn dS −

∫

Ω

δsss · ∇ · σσσ dΩ (1.17)
7



1.3. 3D PROBLEM DEFINITION IntrodutionSubstituting equation (1.17) in (1.16) and olleting terms that use the samevirtual degrees of freedom we obtain:
δJHW =

∫

Ω

δσσσ : (∇ssss − εεε) dΩ+ (1.18a)
∫

Ω

δεεε : (DDD : εεε − σσσ) dΩ− (1.18b)
∫

Ω

δsss · (∇ · σσσ + fff) dΩ+ (1.18)
∫

∂Ωt

δsss · (σσσ · nnn − ttt) dS− (1.18d)
∫

∂Ωs

δσσσ · nnn · (sss − s̄̄s̄s) dS = 0 (1.18e)As happened in setion 1.3.3 we an reognize that HW stationarity on-dition orresponds to a weak imposition of the 3D elasti solid governingequations ((1.4)): term (1.18a) ontains ompatibility relation (1.4a), term(1.18b) ontains onstitutive relation (1.4b), term (1.18) ontains equilib-rium (1.4), (1.18d) and (1.18e) respetively require boundary equilibrium(1.4d) and boundary ompatibility(1.4e).1.3.5 Conlusions on problem formulationsAt the end of this hapter we an make some remarks on the problem for-mulations we have just presented.
• Every weak approah an be expressed by two formulations: the formerderives diretly by funtional stationarity, the latter an be seen, moreeasily, as weighted imposition of strong formulation. The former leadsto a symmetri formulation, while the latter leads to an un-symmetrione. The hoie of the formulation from whih to start produe enor-mously di�erent models.
• To be applied, TPE funtional needs the stronger hypotheses but itis also the most elementary priniple, on the opposite we an use HWmore freely even if it is the most ompliate approah. The trade-o� between the problem omplexity and the wanted approximation isthe most ommon riterion to hoose the formulation we must use todevelop the model.

8



Chapter 2Homogeneous beam modelsIn this hapter, starting from the weak formulations presented in setion 1.3,we develop some homogeneous beam models. The idea that leads to derivethe model is the so alled �dimensional redution� of the 2D problem1 wepreviously de�ned that onsists in reduing to a �nite dimension the numberof degrees of freedom that �elds have respet to the setion variables.To this purpose we start de�ning more learly the �nite dimension �eldhypotheses and introduing e�ient notation, then we derive some signi�ant�rst- and high-order beams and �nally we make some numerial example toillustrate di�erenes between models, faults, limitations, good behaviors.2.1 Hypotheses2.1.1 Fields de�nitionWe impose that every omponent α(x, y) of �eld AAA may be expressed assalar produt of vetor pαpαpα : [−h
2
, h

2
] → R (alled setion base �eld vetor)with vetor ααα : l → R (alled setion magnitude �eld vetor). Choosing a�nite dimension for pαpαpα, we onstrain the shape of �eld but at the same timewe eliminate one order of in�nitive.This hypothesis is very strong in fat it leads to express �elds simply asproperties of the setion, obviously the hoie of pαpαpα omponents must bearefully beause model auray and e�etiveness depend on it.Moreover it is remarkable that with this assumption �eld partial derivativesan be written as total di�erential of basis funtions or of magnitude fun-1This expression is used in [1℄. We adopt it beause it express learly what we aregoing to do.
9



2.1. HYPOTHESES Homogeneous beamtions, as displayed in the following.
∂

∂y
α(x, y) =

∂

∂y

(

pαpαpα
T (y)ααα(x)

)

=
d

dy
pαpαpα

T (y)ααα(x) = pαpαpα
′T ααα

∂

∂x
α(x, y) =

∂

∂x

(

pαpαpα
T (y)ααα(x)

)

= pαpαpα
T (y)

d

dx
ααα(x) = pαpαpα

T ααα′

(2.1)In this work we will never onsider σyy and εyy beause they are not on-sidered signi�ant variables in the problem, in other words we are goingto onsider alwais a onstant transversal displaement on the setion. Tooperate more easily on tensor �elds we express them, formally, as vetors.Adopting also the previous approximations, unknown �elds an be expressedas follows:
sss

{

su

sv

}

=

{

pupupu
T uuu

pvpvpv
T vvv

} (2.2a)
σσσ ⇒

{

σxx

τxy

}

=

{

pσpσpσ
T σxσxσx

pτpτpτ
T τττ

} (2.2b)
εεε ⇒

{

εxx

γxy

}

=

{

pεpεpε
T εxεxεx

pγpγpγ
T γγγ

} (2.2)(2.2d)in whih γ = 2εxy. Virtual �elds δAAA use the same base �eld vetors of theorrespondent real one.2.1.2 OperatorsIn oherene with the notation just introdued, we must re-de�ne the di�er-ential operators, the normal versor produt and the matrix that appear inthe problem formulations.
∇ · σσσ ⇒ LLLσσσ =

(

∂

∂x
E1E1E1 +

∂

∂y
E2E2E2

)

{

pσpσpσ
T σxσxσx

pτpτpτ
T τττ

} (2.3a)
∇ssss ⇒ LLLTsss =

(

∂

∂x
E1E1E1 +

∂

∂y
E2E2E2

T

)

{

pupupu
T uuu

pvpvpv
T vvv

} (2.3b)
σσσ ·nnn ⇒ NNNσσσ = (nxE1E1E1 + nyE2E2E2)

{

pσpσpσ
T σxσxσx

pτpτpτ
T τττ

} (2.3)
DDD =

[

E(y) 0
0 G(y)

] (2.3d)
10



2.2. BEAM GOVERNING EQUATIONS Homogeneous beamwhere:
E1E1E1 = III =

[

1 0
0 1

] (2.4a)
E2E2E2 =

[

0 1
0 0

] (2.4b)2.2 Derivation of beam governing equations2.2.1 VWP based equations IWe try to develop beam governing equation starting from equation (1.10)that adopting the notation just introdued beomes:
−

∫

Ω

δsssT
(

LLLDDDLLLTsss + fff
)

dΩ+ (2.5a)
∫

∂Ωt

δsssT
(

NNN
(

DDDLLLTsss
)

− ttt
)

dS = 0 (2.5b)Term (2.5a) is de�ned in the body while term (2.5b) is de�ned on the foreboundary. Obviously to satisfy the stationarity ondition both of them mustbe null.In the following subsetions we develop them individually.Body equationsWe re-write the body de�ned integral (2.5a) splitting vetors and matrixomponents:
−

∫

Ω

[

δuuuTpupupu, δvvvTpvpvpv

]

([

∂

∂x
E1E1E1 +

∂

∂y
E2E2E2

]

[

E 0
0 G

]

[

∂

∂x
E1E1E1 +

∂

∂y
E2E2E2

T

]

{

pupupu
T uuu

pvpvpv
T vvv

}

+

{

fx

fy

}

)

dΩ = 0

(2.6)If we develop the matrix produts, the derivatives and ollet all the basisterms in the resultant matries we obtain:
−

∫

Ω

[

δuuuT , δvvvT
]

([

pupupuEpupupu
T 0

0 pvpvpvGpvpvpv
T

]{

uuu′′

vvv′′

}

+

[

0 pupupuGpvpvpv
′T

pvpvpvGpupupu
′T 0

]{

uuu′

vvv′

}

+

[

pupupuGpupupu
′′T 0

0 0

]{

uuu

vvv

}

+

{

pupupufx

pvpvpvfy

})

dΩ=0

(2.7)Terms inside matries depend only on y, on the opposite terms over thematries depend only on the axial variable, so we an write the volume11



2.2. BEAM GOVERNING EQUATIONS Homogeneous beamintegral as the double integral on the two sub-spaes onstituting it: thesetion integral and in the axial integral. By the variable separation weobtain:
−

∫

l

[

δuuuT , δvvvT
]

([

PuuPuuPuu 000
000 PvvPvvPvv

]{

uuu′′

vvv′′

}

+

[

000 Puv′Puv′Puv′

Pvu′Pvu′Pvu′ 000

]{

uuu′

vvv′

}

+

[

Puu′′Puu′′Puu′′ 000
000 000

]{

uuu

vvv

}

+

{

FxFxFx

FyFyFy

})

dx = 0

(2.8)in whih:
PuuPuuPuu =

∫

A
pupupuEpupupu

T dA PvvPvvPvv =

∫

A
pvpvpvGpvpvpv

T dA

Puv′Puv′Puv′ =

∫

A
pupupuGpvpvpv

′T dA Pvu′Pvu′Pvu′ =

∫

A
pvpvpvGpupupu

′T dA

Puu′′Puu′′Puu′′ =

∫

A
pupupuGpupupu

′′T dA

FxFxFx =

∫

A
pupupufxdA FyFyFy =

∫

A
pvpvpvfydA

(2.9)
The equivalent strong formulation of the problem an be expressed as follows:

PuuPuuPuuuuu
′′ + Puv′Puv′Puv′vvv

′ + Puu′′Puu′′Puu′′uuu + FxFxFx = 0 (2.10a)
PvvPvvPvvvvv

′′ + Pvu′Pvu′Pvu′uuu′ + FyFyFy = 0 (2.10b)Using a more ompat notation we an write:
PPPŝss′′ + QQQŝss′ + RRRŝss + FFF = 0 (2.11)in whih

PPP =

[

PuuPuuPuu 000
000 PvvPvvPvv

]

QQQ =

[

000 Puv′Puv′Puv′

Pvu′Pvu′Pvu′ 000

]

RRR =

[

Puu′′Puu′′Puu′′ 000
000 000

]

FFF =

{

FxFxFx

FyFyFy

} (2.12)Fore boundary equationsTo failitate the development of the fore boundary term we make somehypotheses, in partiular we suppose that we are working on a antilever,lamped at the origin of the axis and loaded at the opposite setion. Wesuppose also that on the lateral surfae of the beam no load is applied:
∂Ωt ≡ Al ∪ S

±
h

2

(2.13a)
ttt(Al) =

{

0
ty

}

ttt(S
±

h

2

) =

{

0
0

} (2.13b)12



2.2. BEAM GOVERNING EQUATIONS Homogeneous beamObviously these hoies are onventional, in every moment we an hangethem and develop other kinds of onstraint even if the development is alwaysthe same.Splitting omponents in term (2.5b) we an write:
∫

∂Ωt

[

δuuuT , δvvvT
]

(

[

nx ny

0 nx

] [

E 0
0 G

]

[

∂

∂x
E1E1E1 +

∂

∂y
E2E2E2

T

]

{

pupupu
T uuu

pvpvpv
T vvv

}

−

{

tx
ty

})

dS = 0 (2.14)Developing the produts and olleting the base funtions in the resultantmatries we obtain:
∫

∂Ωt

[

δuuuT , δvvvT
]

([

pupupuEnxpupupu
T pupupuGnypvpvpv

T

0 pvpvpvGnxpvpvpv
T

]{

uuu′

vvv′

}

+

[

pupupuGnypupupu
′T 0

pvpvpvGnxpupupu
′T 0

]{

uuu

vvv

}

−

{

tx
ty

})

dA = 0

(2.15)Now we deompose the integral domain in the sub - regions onstituting thefore boundary.
∫

A

[

δuuu(l)T , δvvv(l)T
]

([

pupupuEpupupu
T 0

0 pvpvpvGpvpvpv
T

]{

uuu′(l)
vvv′(l)

}

+

[

0 0
pvpvpvGpupupu

′T 0

]{

uuu(l)
vvv(l)

}

−

{

pupuputx
pvpvpvty

})

dA+

∫

l

[

δuuuT , δvvvT
]

([

0 pupupu

(

h
2

)

Gpvpvpv

(

h
2

)T

0 0

]

{

uuu′

vvv′

}

+

[

pupupu

(

h
2

)

Gpupupu
′
(

h
2

)T
0

0 0

]

{

uuu

vvv

}

)

dx−

∫

l

[

δuuuT , δvvvT
]

([

0 pupupu

(

−h
2

)

Gpvpvpv

(

−h
2

)T

0 0

]

{

uuu′

vvv′

}

+

[

pupupu

(

−h
2

)

Gpupupu
′
(

−h
2

)T
0

0 0

]

{

uuu

vvv

}

)

dx = 0

(2.16)
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2.2. BEAM GOVERNING EQUATIONS Homogeneous beamUsing a more ompat notation we obtain:
(

[

δuuuT , δvvvT
]

([

PuuPuuPuu 000
000 PvvPvvPvv

]{

uuu′

vvv′

}

+

[

000 000
Pvu′Pvu′Pvu′ 000

]{

uuu

vvv

}

−

{

TxTxTx

TyTyTy

}))∣

∣

∣

∣

l

+

∫

l
δuuuT

(

pupupuGpvpvpv
Tvvv′ + pupupuGpupupu

′Tuuu
)

dx

∣

∣

∣

∣

h

2

−

∫

l
δuuuT

(

pupupuGpvpvpv
Tvvv′ + pupupuGpupupu

′Tuuu
)

dx

∣

∣

∣

∣

−
h

2

= 0

(2.17)
in whih:

TxTxTx =

∫

A
pupuputxdA TyTyTy =

∫

A
pvpvpvtydA (2.18)The boundary onditions we obtain ould be written in the following equiv-alent strong formulation:

([

PuuPuuPuu 000
000 PvvPvvPvv

]{

uuu′

vvv′

}

+

[

000 000
Pvu′Pvu′Pvu′ 000

]{

uuu

vvv

}

−

{

TxTxTx

TyTyTy

})∣

∣

∣

∣

l

= 0 (2.19a)
(

pupupuGpvpvpv
Tvvv′ + pupupuGpupupu

′Tuuu
)∣

∣

h

2

= 0 (2.19b)
(

pupupuGpvpvpv
Tvvv′ + pupupuGpupupu

′Tuuu
)∣

∣

−
h

2

= 0 (2.19)Equations (2.19b) and (2.19) an be re-write more learly as follow:
(

pvv
′pvv
′pvv
′ + pupupu

′uuu
)∣

∣

±
h

2

= 0 (2.20)Displaement boundary equationsWe must impose the ompatibility ondition on ∂Ωs, this last onditionmust be imposed in strong way, in other words, in the spei� ase we areonsidering, we must require that:
{

uuu

vvv

}∣

∣

∣

∣

0

=

{

000
000

} (2.21)2.2.2 VWP based equations IIAdopting the notation introdued in 2.1 and adopting the same boundaryonditions used in the previous setion, WVP as expressed in (1.7) beomes:
∫

Ω

(

LLLT δsss
)T

DDDLLLTsssdΩ +

∫

Ω

δsssTfffdΩ −

∫

∂Ωt

δsssT ttt dS = 0 (2.22)14



2.2. BEAM GOVERNING EQUATIONS Homogeneous beamWe re-write equation splitting vetors and matrix omponents:
∫

Ω

([

∂

∂x
E1E1E1 +

∂

∂y
E2E2E2

T

]

{

pupupu
T δuuu

pvpvpv
T δvvv

}

)T [
E 0
0 G

]

([

∂

∂x
E1E1E1 +

∂

∂y
E2E2E2

T

]

{

pupupu
T uuu

pvpvpv
T vvv

}

)

dΩ−

∫

Ω

[

δuuuTpupupu, δvvvTpvpvpv

]

{

fx

fy

}

dΩ −

∫

∂Ωt

[

δuuuTpupupu, δvvvTpvpvpv

]

{

tx
ty

}

dS = 0(2.23)If we develop the matrix produts and the derivatives, then we ollet all thebasis terms in resultant matries we obtain:
∫

Ω

(

[

δuuu′T , δvvv′T
]

[

pupupuEpupupu
T 000

000 pvpvpvGpvpvpv
T

]{

uuu′

vvv′

}

+

[

δuuuT , δvvvT
]

[

000 p′up′up′uEpvpvpv
T

pvpvpvGp′up′up′u
T 000

]{

uuu′

vvv′

}

+

[

δuuuT , δvvvT
]

[

p′up′up′uEp′up′up′u
T 000

000 000

]{

uuu

vvv

}

−

[

δuuuT , δvvvT
]

{

pupupufx

pvpvpvfy

})

dΩ−

∫

∂Ωt

[

δuuuT , δvvvT
]

{

pupuputx
pvpvpvty

}

dS =0

(2.24)
Terms inside matries depend only on the setion variables, on the oppositeterms over the matries depend only on the axial variable, hene, as we pre-viously do we an subdivide the integral domine in the sub-domines setionand axis obtaining:

∫

l

(

[

δuuu′T , δvvv′T
]

[

PuuPuuPuu 000
000 PvvPvvPvv

]{

uuu′

vvv′

}

+ (2.25a)
[

δuuuT , δvvvT
]

[

000 Pu′vPu′vPu′v

Pvu′Pvu′Pvu′ 000

]{

uuu′

vvv′

}

+ (2.25b)
[

δuuuT , δvvvT
]

[

Pu′u′Pu′u′Pu′u′ 000
000 000

]{

uuu

vvv

}

− (2.25)
[

δuuuT , δvvvT
]

{

FxFxFx

FyFyFy

})

dx− (2.25d)
∫

∂Ωt

[

δuuuT , δvvvT
]

{

TxTxTx

TyTyTy

}

dS =0 (2.25e)in whih additionally to what we have already de�ned in (2.9) and in (2.18)we must de�ne:
Pu′vPu′vPu′v =

∫

A
pupupu

′Gpvpvpv
T dA Pu′u′Pu′u′Pu′u′ =

∫

A
pupupu

′Gpupupu
′T dA (2.26a)15



2.2. BEAM GOVERNING EQUATIONS Homogeneous beamAt this point we integrate by parts term (2.25a), supposing to working onthe antilever we obtain the �nal formulation of the problem:
∫

l

(

−
[

δuuuT , δvvvT
]

[

PuuPuuPuu 000
000 PvvPvvPvv

]{

uuu′′

vvv′′

}

+ (2.27a)
[

δuuuT , δvvvT
]

[

000 Pu′vPu′vPu′v

Pvu′Pvu′Pvu′ 000

]{

uuu′

vvv′

}

+ (2.27b)
[

δuuuT , δvvvT
]

[

Pu′u′Pu′u′Pu′u′ 000
000 000

]{

uuu

vvv

}

− (2.27)
[

δuuuT , δvvvT
]

{

FxFxFx

FyFyFy

})

dx+ (2.27d)
(

[

δuuuT , δvvvT
]

[

PuuPuuPuu 000
000 PvvPvvPvv

]{

uuu′

vvv′

}

−

{

TxTxTx

TyTyTy

})∣

∣

∣

∣

l

=0 (2.27e)The equivalent formulation of the problem is:
−PuuPuuPuuuuu

′′ + Qu′vQu′vQu′vvvv
′ + Ru′u′Ru′u′Ru′u′uuu −FxFxFx = 000 (2.28a)

−PvvPvvPvvvvv
′′ + Qvu′Qvu′Qvu′uuu′ −FyFyFy = 000 inΩ (2.28b)

PuuPuuPuuuuu
′ − TxTxTx = 000 (2.28)

PvvPvvPvvvvv
′ − TyTyTy = 000 inA (2.28d)That using a less ompat notation we an write as:

−PPPŝss′′ + QQQŝss′ + RRRŝss −FFF = 0 inΩ
PPPŝss′ − TTT = 0 inAl

(2.29)in whih
PPP =

[

PuuPuuPuu 000
000 PvvPvvPvv

]

QQQ =

[

000 Pu′vPu′vPu′v

Pvu′Pvu′Pvu′ 000

]

RRR =

[

Pu′u′Pu′u′Pu′u′ 000
000 000

]

FFF =

{

FxFxFx

FyFyFy

}

TTT =

{

TxTxTx

TyTyTy

}

(2.30)
2.2.3 HR based equationsAdopting the notation de�ned in setion 2.1 the HR stationarity ondition(1.14) beomes:

∫

Ω

δσσσT
(

LLLTsss −DDD−1σσσ
)

dΩ −

∫

Ω

δsssT (LLLσσσ + fff) dΩ+ (2.31a)
∫

∂Ωt

δsssT (NNNσσσ − ttt) dS− (2.31b)
∫

∂Ωs

δσσσTNNNT (sss − s̄̄s̄s) dS = 0 (2.31)16



2.2. BEAM GOVERNING EQUATIONS Homogeneous beamIn whih we split the terms of the equation onsidering the integration do-main. Integral terms (2.31a) are de�ned on the body, (2.31b) is de�ned onthe fore boundary and (2.31) is de�ned on the displaements onstrainedsurfae. Obviously to satisfy the stationarity ondition every term of (2.31)must be null. In the following we develop them separately.Body equationsWe rewrite the body terms (2.31a) splitting vetor and matrix omponents.
∫

Ω

[

δσxσxσx
Tpσpσpσ, δτττTpτpτpτ

]

((

∂

∂x
E1E1E1 +

∂

∂y
E2E2E2

T

)

{

pupupu
Tuuu

pvpvpv
Tvvv

}

−DDD−1

{

pσpσpσ
Tσxσxσx

pτpτpτ
Tτττ

}

)

dΩ−

∫

Ω

[

δuuuTpupupu, δvvvTpvpvpv

]

((

∂

∂x
E1E1E1 +

∂

∂y
E2E2E2

)

{

pσpσpσ
T σxσxσx

pτpτpτ
T τττ

}

+

{

fx

fy

}

)

dΩ = 0(2.32)Applying di�erential operators to the vetors, splitting unknow vetors andmoving the base vetors inside the matries, we obtain:
∫

Ω

[

δσxσxσx
T , δτττT

]

([

pσpupσpupσpu
T 000

000 pτp
T
vpτp
T
vpτp
T
v

]{

uuu′

vvv′

}

+

[

000 000
pτp

′
upτp
′
upτp
′
u

T 000

]{

uuu

vvv

}

−







pσpσpσpσpσpσ
T

E
000

000
pτpτpτpτpτpτ

G







{

σxσxσx

τττ

}






dΩ−

∫

Ω

[

δuuuT , δvvvT
]

([

pupσpupσpupσ
T 000

000 pvpτpvpτpvpτ
T

]{

σxσxσx
′

τττ ′

}

+

[

000 pup′τpup′τpup′τ
T

000 000

]{

σxσxσx

τττ

}

+

{

pupupufx

pvpvpvfy

})

dΩ = 0

(2.33)
It is possible to deompose the integral domain in the 2 sub-spaes, in fatonly terms in the matries depend on setion variables and vetor terms de-pend only on axial variable, the weak governing equations we are developingbeomes:

∫

l

[

δσxσxσx
T , δτττT

]

([

PσuPσuPσu 000
000 PτvPτvPτv

]{

uuu′

vvv′

}

+

[

000 000
Pτu′Pτu′Pτu′ 000

]{

uuu

vvv

}

−

[

PσσPσσPσσ 000
000 PττPττPττ

]{

σxσxσx

τττ

})

dx−

∫

l

[

δuuuT , δvvvT
]

([

PuσPuσPuσ 000
000 PvτPvτPvτ

]{

σxσxσx
′

τττ ′

}

+

[

000 Puτ ′Puτ ′Puτ ′
T

000 000

]{

σxσxσx

τττ

}

+

{

FxFxFx

FyFyFy

})

dx = 0

(2.34)
17



2.2. BEAM GOVERNING EQUATIONS Homogeneous beamin whih we de�ne the follow matries:
PσuPσuPσu =

∫

A
pσpupσpupσpu

T dA PτvPτvPτv =

∫

A
pτpvpτpvpτpv

T dA

PuσPuσPuσ =

∫

A
pupσpupσpupσ

T dA PvτPvτPvτ =

∫

A
pvpτpvpτpvpτ

T dA

PσσPσσPσσ =

∫

A

pσpσpσpσpσpσ
T

E
dA PττPττPττ =

∫

A

pτpτpτpτpτpτ
T

G
dA

Pτu′Pτu′Pτu′ =

∫

A
pτpupτpupτpu

′T dA Puτ ′Puτ ′Puτ ′ =

∫

A
pupτpupτpupτ

′T dA

FxFxFx =

∫

A
pupupufx dA FyFyFy =

∫

A
pvpvpvfy dA

(2.35)
The strong formulation of the problem ould be express as:

PσuPσuPσuuuu
′ −PσσPσσPσσσσσ = 0 (2.36a)

PτvPτvPτvvvv
′ + Pτu′Pτu′Pτu′uuu −PττPττPτττττ = 0 (2.36b)

PuσPuσPuσσxσxσx
′ + Puτ ′Puτ ′Puτ ′τττ + FxFxFx = 0 (2.36)

PvτPvτPvττττ
′ + FyFyFy = 0 (2.36d)Alternatively we an re-write the problem in a more ompat notation. Itresults as follows:

AAA

{

σ̂σσ′

ŝss′

}

+ GGG

{

σ̂σσ

ŝss

}

+

{

000
FFF

}

= 000 (2.37)in whih
ŝss =

{

uuu

vvv

}

σ̂σσ =

{

σσσ

τττ

}

AAA =









000 000 PσuPσuPσu 000
000 000 000 PτvPτvPτv

PuσPuσPuσ 000 000 000
000 PvτPvτPvτ 000 000









GGG =









−PσσPσσPσσ 000 000 000
000 −PττPττPττ Pτu′Pτu′Pτu′ 000
000 Puτ ′Puτ ′Puτ ′ 000 000
000 000 000 000









(2.38)The problem, as we have just formulated it, an be redued to an other,more simple formulation in whih only displaements appear: this is possiblenoting that we an invert equations (2.36a) and (2.36b) and substitute thestress de�nition we obtain in equations (2.36) and (2.36d). In other words:
σσσ = PσσPσσPσσ

−1PσuPσuPσuuuu
′ (2.39a)

τττ = PττPττPττ
−1
(

PτvPτvPτvvvv
′ + Pτu′Pτu′Pτu′uuu

) (2.39b)
CuuCuuCuuuuu

′′ + CuvCuvCuvvvv
′ + Cuu′Cuu′Cuu′uuu + FxFxFx = 0 (2.39)

CvvCvvCvvvvv
′′ + CvuCvuCvuuuu

′ + FyFyFy = 0 (2.39d)18



2.2. BEAM GOVERNING EQUATIONS Homogeneous beamin whih:
CuuCuuCuu = PuσPuσPuσPσσPσσPσσ

−1PσuPσuPσu CuvCuvCuv = Puτ ′Puτ ′Puτ ′PττPττPττ
−1PτvPτvPτv

Cuu′Cuu′Cuu′ = Puτ ′Puτ ′Puτ ′PττPττPττ
−1Pτu′Pτu′Pτu′ CvvCvvCvv = PvτPvτPvτPττPττPττ

−1PτvPτvPτv

CvuCvuCvu = PvτPvτPvτPττPττPττ
−1Pτu′Pτu′Pτu′

(2.40)Fore boundary onditionsWe suppose that the boundary onditions of the problem we are studyinghere are the same of 2.2.1.Introduing the vetorial notation term (2.31b) beame:
∫

∂Ωt

[

δuuuTpupupu, δvvvTpvpvpv

]

([

nx ny

0 nx

]{

pσpσpσ
Tσxσxσx

pτpτpτ
Tτττ

}

−

{

tx
ty

})

dS = 0

∫

∂Ωt

[

δuuuT , δvvvT
]

([

nxpupσpupσpupσ
T nypupτpupτpupτ

T

000 nxpvpτpvpτpvpτ
T

]{

σxσxσx

τττ

}

−

{

pupuputx
pvpvpvty

})

dS = 0(2.41)Considering now every beam surfae we an split integrals and better de�neversors:
(

[

δuuuT , δvvvT
]

([

PuσPuσPuσ
T 000

000 PvτPvτPvτ
T

]{

σxσxσx

τττ

}

−

{

TxTxTx

TyTyTy

}))∣

∣

∣

∣

l

+

∫

l

(

[

δuuuT , δvvvT
]

[

000 −pupupupτpτpτ
T

000 000

]{

σxσxσx

τττ

}

−

{

pupuputx
000

})

dx

∣

∣

∣

∣

−
h

2

+

∫

l

(

[

δuuuT , δvvvT
]

[

000 pupupupτpτpτ
T

000 000

]{

σxσxσx

τττ

}

−

{

pupuputx
000

})

dx

∣

∣

∣

∣

h

2

(2.42)
in whih we adopt the quantities previously de�ned (2.35) and (2.18). Instrong way this means that:

[

PuσPuσPuσ 000
000 PvτPvτPvτ

] {

σxσxσx

τττ

}∣

∣

∣

∣

l

−

{

TxTxTx

TyTyTy

}

= 000 (2.43a)
(PPPτττ + pupuputx)|−h

2

(2.43b)
(PPPτττ + pupuputx)|−h

2

(2.43)in whih:
PPP = pupupu(ȳ)pτpτpτ (ȳ)T (2.44)Displaement bounded surfae equationsWathing at hypotheses made in setion 2.3 we have that:
∂Ωs ≡ A0 (2.45a)
s̄̄s̄s(A0) =

{

0
0

} (2.45b)19



2.3. BEAM MODELS Homogeneous beamTo impose this ondition in the model we must require that
∫

∂Ωs

[

δσxσxσx
Tpσpσpσ, δτττTpτpτpτ

]

([

nx 0
ny nx

]{

pupupu
Tuuu

pvpvpv
Tvvv

}

+

{

ū

v̄

})

dS = 0

∫

∂Ωs

[

δσxσxσx
T , δτττT

]

([

nxpσpupσpupσpu
T 000

nypτpupτpupτpu
T nxpτpvpτpvpτpv

T

]{

uuu

vvv

}

+

{

pσpσpσ0
pτpτpτ0

})

dS = 0

(

[

δσxσxσx
T , δτττT

]

([

−PσuPσuPσu 000
000 −PτvPτvPτv

]{

uuu

vvv

}

+ 000

))∣

∣

∣

∣

0

= 0 (2.46)The equivalent strong formulation of this ondition is:
[

−PσuPσuPσu 000
000 −PτvPτvPτv

] {

uuu

vvv

}∣

∣

∣

∣

0

= 000 (2.47)2.2.4 Conlusions on governing equationsThe sets of governing equations we have just developed show many di�er-enes:
• In the �rst set of governing equations, sine we apply the divergenetheorem, it is possible to impose boundary equilibrium everywhere,also in the lateral surfae.
• In the seond set of equations, sine we only integrate by parts in xdiretion, it is possible to impose boundary onditions only on surfaeswith nx 6= 0.
• Di�erently from the �rst set, the seond shows a symmetri formula-tion.
• Even if the �rst formulation ould appear better, trying to introduethe hypotheses of lassial beams, it is not possible to obtain the orretequation, this happened using the seond set.2.3 Beam modelsIn this setion we are going to develop some homogeneous beam models in-troduing �eld hypotheses in the governing equations we have derivated insetion 2.2. In the following we illustrate the most ommon path used inliterature (VWP) but also we try to obtain models using di�erent one (HR).For every model we are going to develop we will make some numerial ex-ample to highlight di�erenes between them.Wathing at the hypotheses we are using in this setion we an onsider

E and G simply as salar quantities 20



2.3. BEAM MODELS Homogeneous beam2.3.1 Timoshenko beamGoverning equationTo develop the Timoshenko beam we must introdue in the seond set ofequations (2.28) the follow hypotheses:
pupupu =

{

1
y

}

pvpvpv = {1} (2.48a)
uuu =

{

u1

u2

}

vvv = {v} (2.48b)
FFF =







Fx1

Fx2

Fy







(2.48)As onsequene the ODE system matries an be evaluated, we report themin the follow:
PuuPuuPuu =

[

AE 0
0 IE

]

PvvPvvPvv = [AG] (2.49a)
Qvu′Qvu′Qvu′ = Qu′vQu′vQu′v

T =
[

0 AG
]

Ru′u′Ru′u′Ru′u′ =

[

0 0
0 AG

] (2.49b)So the beam governing equations beame:
AEu′′

1 = Fx1 (2.50a)
IEu′′

2 + AG(v′ + u2) = Fx2 (2.50b)
AG(v′′ + u′

2) = Fy (2.50)in whih A and I are respetively the setion area and seond order statimoment
A = bh I =

bh3

12
(2.51)Shear fatorIn the Timoshenko beam, to have a orret solution, we need to introduein the onstitutive relation some fators to equalize deformation works asobtained by the model and by the exat solution of the problem. In theTimoshenko beam the axial ompression and the bending equations givea orret solution, so if we ompare the exat deformation work and thedeformation work obtained by the model, these are the same. About theshear, ontrarily, we know that the model solution is approximated and itviolates the boundary equilibrium, hene we aspet a fator unequal to 1,for this reason we must orret the τ onstitutive relation as follows:

τ = kGγ (2.52)21



2.3. BEAM MODELS Homogeneous beamFator k an be estimated omparing the deformation works of Timo-shenko and Jourawski beams.The Jourawsky solution, where τ is paraboli, an be onsidered orret for aretangular setion so the exat work of shear deformation an be expressedas:
LJ = b

∫ h/2

−h/2

τ2

2G
dy = b

∫ h/2

−h/2

(

6T (y2 − 1
4
h2)

bt3

)2

2G
dy =

3T 2

5AG
(2.53)in whih T is the resultant of shear stresses on the setion.In the Timoshenko model τ is onstant on the setion, so the work beomes:

LT = b

∫ h/2

−h/2

τ2

2kG
dy = b

∫ h/2

−h/2

(

T

bh

)2

2kG
dy =

T 2

2AkG
(2.54)Equalizing these two works, we obtain, for the retangular setion, the fol-lowing value of k:

LJ = LT =⇒
3T 2

5AG
=

T 2

2AkG
=⇒ k =

5

6
(2.55)We an observe that for the Timoshenko problem the shear fator dependsonly on setion geometry and it's independent on the dimensions of the se-tion and from the mehanial harateristis of the material. It's possible todemonstrate that the shear fator an not be higher than one (k ≤ 1).We an now rewrite the governing equations in the omplete and orretway:

AEu′′

1 = Fx1 (2.56a)
EIu′′

2 +
5

6
AG(v′ + u2) = Fx2 (2.56b)

5

6
AG(v′′ + u′

2) = Fy (2.56)For the numerial example see setion 2.3.32.3.2 Euler-Bernoulli beamGoverning equationThe fundamental hypothesis that permits to develop the Euler-Bernoullibeam is that shear deformation is negligible. This means that γ = 0 so, usingthe same notation we have already adopted previously v′ + u2 = 0sou2 = v′22



2.3. BEAM MODELS Homogeneous beamsubstituting this hypothesis in equation (2.25) and using the matries (2.49)we obtain:
∫

l
−
[

δu1, δv
′, δv

]









AE 0 0
0 IE 0
0 0 AG











u′′
1

v′′′

v′′







+





0 0 0
0 0 AG

0 AG 0











u′
1

v′′

v′







+





0 0 0
0 AG 0
0 0 0











u′
1

v′′

v′







−







Fx1

Fx2

Fy









 dx+





[

δu1, δv
′, δv

]





AE 0 0
0 IE 0
0 0 AG











u′
1

v′′

v′







−







Tx1

Tx2

Ty











∣

∣

∣

∣

∣

∣

l

=0

(2.57)
Developing the produts in the body integrals we obtain:

∫

l
−δu1

(

AE u′′

1 − Fx1

)

dx+ (2.58a)
∫

l
δv′
(

−IE v′′′ + AGv′ − AGv′
)

dx+ (2.58b)
∫

l
δv
(

+AGv′′ − AGv′′ − Fy

)

dx (2.58)(2.58d)Integrating by parts term (2.58b) and summing to term (2.58) we obtain:
− δv

(

−IE v′′′
)

|l0+ (2.59a)
∫

Ω

δv
(

IE vIV − Fy

)

dΩ (2.59b)(2.59)The governing equations are:
AEu′′

1 = Fx1 (2.60a)
IE vIV = Fy (2.60b)2.3.3 Timoshenko/Jourawsky beamThe �rst test we will make is to introdue y - linear horizontal displaementsand axial stress, quadrati shear stress and onstant transversal displae-ments in the previous di�erential equations and see if it's possible to obtainthe shear-fator orreted Timoshenko beam.23



2.3. BEAM MODELS Homogeneous beamThe name we assign to this model (from now TJ) depends on the statementthat displaements and axial stresses are the lassial of Timoshenko beam,ontrarily the paraboli shear distribution ome from the Jourawski theory.If we do not obtain this result we an not hope that using more omplex�elds the model we develop give a improved solution respet to the lassialmodels.HypothesesHere we better speify the hypotheses we previously disuss and we introduealso numerial value for quantities we are using, this last to make numerialexamples in the following.We try to develop the model for a beam (length l = 10) made by homo-geneous material (E = 105, G = 4 · 104).We impose also that h = 1 and
b = 1.The �eld basis we hoose are the following:

pupupu = pσpσpσ =

{

1
y

} (2.61a)
pvpvpv = {1} pτpτpτ =

{

1 − 4y2
} (2.61b)We ould use a more general basis to desribe the shear but, in every ase,imposing equations (2.43b), (2.43) we obtain newly the base we have alreadyadopted, in other words, hoosing shear base we are imposing in strong waylateral surfae boundary onditions.It ould be interesting to note that, in the ase we are onsidering, even ifwe have hosen a more omplex shear �eld we do not inrease the degree offreedom respet to the Timoshenko beam.About onstrains and loads we suppose that the setion is lamped at theorigin and in the opposite setion there is a transversal load of magnitude 1.In other words the boundary ondition of the problem are:

uuu(0) = 000; v(0) = 0; σxσxσx(10) = 000; ty(10) =

{

0
−1

} (2.62)

24



2.3. BEAM MODELS Homogeneous beamGoverning equationWe must re-write equations (2.36) evaluating matrix terms. Introduing �eldhypotheses and numeri values in their de�nition we obtain:
PuσPuσPuσ = PσuPσuPσu =





1 0

0
1

12



 PvτPvτPvτ = PτvPτvPτv =
2

3
(2.63a)

PσσPσσPσσ =







1

E
0

0
1

12E






PττPττPττ =

8

15G
(2.63b)

Pτu′Pτu′Pτu′ = Puτ ′Puτ ′Puτ ′
T =

[

0
2

3

]

FxFxFx = 000 Fy = 0 (2.63)About the boundary onditions, equations (2.43b) and (2.43) are alreadysatis�ed so we must impose ondition (2.43a) that beame simply:
τττ(l) = −

3

2
(2.64)At this point, to simplify the ODE system we an expliit σxσxσx from equation(2.36a) and τττ from equation (2.36b) and substitute them in equations (2.36)and(2.36d), in this way we redue our problem to a displaement formulation.This new formulation an be expressed as follows:

CuuCuuCuuuuu
′′ + CuvCuvCuvvvv

′ + CuuuCuuuCuuu = 0 (2.65a)
CvvCvvCvvvvv

′′ + CvuuCvuuCvuu′ = 0 (2.65b)In whih
CuuCuuCuu = PuσPσσPuσPσσPuσPσσ

−1PσuPσuPσu =





E 0

0
1

12
E



 (2.66a)
CvvCvvCvv = PvτPττPvτPττPvτPττ

−1PτvPτvPτv =
5

6
G (2.66b)

CuvCuvCuv = Puτ ′PττPuτ ′PττPuτ ′Pττ
−1PτvPτvPτv =





0

−
5

6
G



 (2.66)
CvuCvuCvu = PvτPττPvτPττPvτPττ

−1Pτu′Pτu′Pτu′ =

[

0
5

6
G

] (2.66d)
CuuCuuCuu = Puτ ′PττPuτ ′PττPuτ ′Pττ

−1Pτu′Pτu′Pτu′ =





0 0

0 −
5

6
G



 (2.66e)25



2.3. BEAM MODELS Homogeneous beamWriting in extensive way the ODE system we obtain:
Eu′′

1 = 0 (2.67a)
1

12
Eu′′

2 −
5

6
G(v′ + u2) = 0 (2.67b)

5

6
G(v′′ + u′

2) = 0 (2.67)It is immediate to see that what we have just written are the Timoshenkogoverning equations in whih the shear fator appears without introduingit as orretion.Imposing the boundary ondition and solving the ODE we obtain the fol-lowing solution:
uuu =

{

0
−6, 00 × 10−5 x2 + 1, 20 × 10−3 x

} (2.68a)
v = 2, 00 × 10−5 x3 − 6, 10 × 10−4 x2 − 3, 00 × 10−5 x (2.68b)
σxσxσx =

{

0
−1, 20 × 101 x + 1, 20 × 102

} (2.68)
τ = −1, 50 × 100 (2.68d)To have a qualitative hek up of the goodness of the solution obtained weplot in �gure 2.1 the antilever transversal displaements v(x).2.3.4 Warping beamIn the previous setion we highlight how HR priniple permits to obtain theTimoshenko beam equations without introduing any shear fator, to thispurpose we use a paraboli shear distribution. Really, this hypothesis doesnot agree with the hypotheses around displaements, in fat looking at τloal de�nition

τxy = G

(

∂

∂x
sv(x, y) +

∂

∂y
su(x, y)

) (2.69)it is possible to see that paraboli shear is ongruent with y-ubi horizontaldisplaements.To reate a more orret model now we are going to onsider this kind ofdisplaements in the setion, wathing at the physial problem, this meansthat we are removing the hypothesis of plane setions and we let the setionfree to warp over its undeformed plane.HypothesesAbout material, geometry and boundary onditions we maintain the samehypotheses used in the previous subsetion.26



2.3. BEAM MODELS Homogeneous beam
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x[l]Figure 2.1: Transversal displaements of the antilever for whih we �nd the Tim-oshenko/Jourawsky solutionAbout the �eld we make the follow assumptions:
pupupu = pσpσpσ =















1
y

y2

y3















pτpτpτ =







1

2
− y

1 − 4y2

1
2

+ y







(2.70a)
pvpvpv = {1} (2.70b)About the hoie of pτpτpτ here we do not satisfy in strong way the lateral surfaeequilibrium but, at the same time, we assume a �eld base that permits tosatisfy it in a very easy way. In fat to impose onditions (2.43b) and (2.43)it is su�ient to annul the �rst and the last terms of vetor τττ and the �rstand the last lines or/and olumns of the system matries.Governing equationsWe proeed as we do in the previous subsetion: we start evaluating the ma-trix terms. Sine the omplexity of integrals this proedure was implementedin a numerial algorithm. Then we solve the ODE system, the solution weobtain is the following: 27



2.3. BEAM MODELS Homogeneous beam
uuu =















u1

u2

u3

u4















=















0
−6, 00 × 10−5 x2 + 1, 20 × 10−3 x

0
1, 89 × 10−13 x2 − 3, 78 × 10−12 x















(2.71a)
v = 2, 00 × 10−5 x3 − 6, 10 × 10−4 x2 − 3, 00 × 10−5 x (2.71b)
σxσxσx =















σ1

σ2

σ3

σ4















=















0
−1, 20 × 101 x + 1, 20 × 102

0
3, 78 × 10−8 x − 3, 78 × 10−7















(2.71)
τττ =







τ1

τ2

τ3













0
−1, 50 × 100

0







(2.71d)(2.71e)In �gures 2.2, 2.3, 2.4, 2.5 and 2.6 we represent the plots of most signi�antquantities.
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Figure 2.2: Rotation magnitude of the warping beam solution
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2.3. BEAM MODELS Homogeneous beam
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Figure 2.3: Warping magnitude of the warping beam solution
2.3.5 Disussion of resultsThe solid for whih we are evaluating the solution satis�es learly the Euler-Bernoulli hypotheses so, if the models are good, we expet equality betweenthem.First of all it is easy to see that in TJ beam solution the derivatives of
v is the opposite of u2 less a onstant term 3 × 1−5, so we an on�rm that
γ = v′ + u2 = 3 × 1−5 ≈ 0 as we expet, this on�rm that, under the hy-potheses we are working, the hypothesis to neglet γ is orret.In the warping model orders of magnitude are ruial: u4 is negligible re-speting u2 (they di�er of 8 order of magnitude). This is a good behavior ofthe beam and on�rm the goodness of TJ model under the hypotheses weare using. At the same time this statement indiate the onsisteny of thewarping beam that onverge to TJ model.An other important aspet is that the displaements u1 and u3 are null:29
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Figure 2.4: Transversal displaements of the warping beam solutionsine the nature of loads we expet u1 = 0 meanwhile we hope that u3 = 0beause the strains related to it violate the lateral boundary onditions 2.Assuming as ontrol parameter the transversal free extreme displaementand the resultant stress in the lamp we report in table 2.1 the values ofthese quantities for the di�erent models we develop and the relative errorsassuming Euler-Bernoulli as exat solution.It is possible to see how the models we developed are good: the maximumbeam model v(l)
v(l)

v(l)
N(0) M(0) T(0)Euler-Bernoulli 4.000 × 10−2 1.0000 0.000 -10.000 1.000Timoshenko 4.030 × 10−2 1.0075 0.000 -10.000 1.000warping beam 4.030 × 10−2 1.0075 0.000 -10.000 1.000Table 2.1: Extreme displaements and stresses using di�erent beam modelstransversal displaement di�erene between the models is less than the 1%.Again we an say that there is not substantial di�erene between the TJ and2The statement that u3 related stress violate the lateral equilibrium indues manyauthors to do not onsider this degree of freedom in their work, as happened in [9℄30
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Figure 2.5: y-linear axial stress magnitude of the warping beam solutionthe warping beams, that at last are the more orret model.This few onlusions permit us to say that the models we have developedare good.
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Figure 2.6: Shear magnitude of the warping beam solution
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Chapter 3Laminated beamIn this hapter we will disuss the model of a laminated beam. To build themodel we will start from the homogeneous beam developed in setion 2.3.4beause, as we have seen in the examples, the HR funtional guarantees thebest behavior of the models and warping beam kinematis is the most orretand omplete one among those of the models previously disussed.The �rst setion is aimed to the desription of the beam geometry and thedisussion of base funtions; in the next setions we will make some numerialexamples and disuss the results obtained.3.1 Hypotheses3.1.1 GeometryIn hapter 1 we have presented a general beam geometry without betterspeifying the �elds. In setion 2.1 we assumed an homogeneous beam andsmooth �elds while now our purpose is to remove these assumptions. As forthe geometry we assume a setion as illustrated in �gure 3.1, where a 3 layerbeam setion is represented while, obviously, in the model that we are goingto develop we want to onsider a n-layer beam. To desribe the geometryand the properties of the beam we are working on, it is su�ient to de�nea vetor YYY that ontains the layers geometry and an array MMM that give themehanial properties of layers, they an be written as:
YYY =
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(3.1)in whih yi and yi+1 are respetively the lower and the upper limits of the
ith layer and Ei and Gi are the mehanial properties of ith layer.33



3.1. HYPOTHESES Laminated beam

Figure 3.1: Setion geometry and mehanial properties of a 3-layer beam3.1.2 Field approximationsThe hoie of �eld approximation is the ritial step in model development.In setion 2.3.4 we developed a beam in whih equilibrium and ompatibilityon its lateral surfae an be very easily imposed. On this basis, in orderto generate a laminated beam, we may appliate the homogeneous one toevery layer onstituting the beam and impose equilibrium and ompatibilityamong them.Therefore we are going to hoose a �eld basis that is pieewise de�ned,smooth inside layers and that satis�es interlayer equilibrium and ompati-bility onditions. By these means, the model should bring the most aurateproblem solution.Developing the examples in setion 2.3.3 we obtained the orret solutionfor TJ model. Indeed this happened only beause in that model we foredthe shape of shear distribution: in TJ we impose the shear to be parabolieven if it should be onstant for ompatibility. With more degrees of freedom,i.e. without foring shear distribution, we expet it to tend to a displaementonsistent distribution i.e. an homogeneous distribution. In this way we aresure to lose the exat solution. The only path that ensures a good behaviorof the beam is to onsider the warping model loally.This hoie implies high number of degrees of freedom: this may ause someproblems and may redue the e�ieny of the model. We hope, in the de�-nition of numerial model, to redue the total number of degrees of freedom34



3.1. HYPOTHESES Laminated beamwith stati ondensations.As a onsequene of what we have just said, horizontal displaements mustbe loally ubi and globally ontinuous. In �gure 3.2 we represent the basedisplaements for the three layers beam. In the same �gure a possible shape

Figure 3.2: Horizontal displaement baseof resultant displaements is represented. This image highlights that thehorizontal displaements su ∈ C0(A): this ondition ensure us the ompati-bility is veri�ed on the inter-layer surfaes. The analytial expression of thebase funtions on the ith layer is reported in the following:
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(3.2)
We assume that transversal displaements are onstant on the setion, sothe base for this �eld is simply pv = {1}.35



3.1. HYPOTHESES Laminated beam

Figure 3.3: Base �eld of axial stressAxial stress base is represented in �gure 3.3. The loal analytial expressionof pσ ipσ ipσ i base is the same of pu ipu ipu i. As it is showed in �gure, these two �eldsdi�er only by inter-layer ontinuities: axial stress an be disontinuous.The base of shear distribution is represented in �gure 3.4. The possibleshear distribution represented in the same �gure shows that τ ∈ C0(A).This assumption ensure us that the inter-layer surfae equilibrium is satis-�ed.The analytial expression of τ base is reported in the following:
pτpτpτ =
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(3.3)The hoie of eah loal �eld omponent is mainly motivated by pratialproblems:
• It is easy to distinguish the linear omponents of the displaementsfrom the warping omponents.
• It is easy to impose inter-layer ompatibility and equilibrium: sinethe base funtions are involved in omputation of oe�ient matries36



3.2. TRIVIAL EXAMPLE Laminated beam

Figure 3.4: Base �eld of shear stressit is possible to evaluate oe�ients in every layer and assemble theglobal matries with an assembling proedure analogous analogous tothat used in FEM algorithm.
• The satter plots of global matries are good: the whole of matriesare multi - diagonal: this fat is useful for the numerial evaluation ofthe problem solution.3.2 Trivial exampleFirst of all we will onsider a trivial example: we assume a setion omposedby more layers, all of whih with the same mehanial harateristis. Weare hene working on the homogeneous beam: in this ase we are going touse more omplex �eld basis to obtain one again the solution of the warpingmodel.3.2.1 Geometry, materials and boundary onditionsAs for the global dimensions and the harateristis of materials we will usethe same parameters we already de�ned in 2.3.3.
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3.2. TRIVIAL EXAMPLE Laminated beamIn addition to what we already know we must de�ne the layer geometry:
YYY =
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(3.4)This hoie arises by an arbitrary assumption: we are simply adopting thelowest and most signi�ant number of degrees of freedom. The position ofdisontinuity surfae answers to the need of having not any symmetry in themodel that ould �help� a good behavior of the beam.The governing equations of the problem are (2.36), (2.43) and (2.47).As for the boundary onditions of the model we are working on a beamlamped at both extremes and without any load. We impose an unitariantransversal displaement to one of the two extremes, in partiular v(10) = 1.3.2.2 About the solution omputationThe problem formulated in the previous setion is very hard to solve: it is aODE system of 21 unknowns in �rst order 21 ODEs. As explained in setion2.2.3, the problem an be redued to a displaement formulation: in thisase the problem is a ODE system of 8 unknowns in 8 seond order ODEs.The two possible formulations highlight a problem: wathing the �rst one weexpet to obtain a 21-parameter dependent solution, on the opposite lookingat the seond formulation we an see that the solution depends only on 16parameters. Sine the physial problem is the same we expet to obtain thesame solution and so the same number of parameters, independently on theformulation.Being p the number of unknown displaements and q the unknown stressone, we an see, wathing the boundary onditions (2.43) and (2.47), thatthe �rst imposes p onditions on q stresses and the seond imposes q ondi-tions on p displaements.In the ase we are disussing, in whih p = 8 and q = 13, equation (2.43) im-poses 8 signi�ant onditions on 13 variables while equation (2.47) imposes13 onditions. Sine there are only 8 variables, the signi�ant onditions anbe at most 8. So globally the signi�ant onditions we an impose are 16 inevery ase 1.To solve the ODE system we used the programme Maple 11 that permits to1The stress-displaement formulation has a good behavior if p = q. This always hap-pened in examples of setion 2.1 in whih we used this formulation without having thiskind of problems 38



3.2. TRIVIAL EXAMPLE Laminated beamobtain the analytial solution with symboli alulus. Unfortunately, due toproblem omplexity and program limits, we did not obtain do not lead toobtain a ompletely exhaustive solution:
• it was possible to alulate the analytial solution for both problemformulations only without imposition of boundary onditions;
• when they were imposed it was neessary to use a numerial algorithmand the displaement formulation to evaluate the solution ;
• when we are using the displaement formulation the program does notallow to impose Robin boundary onditions, so it is not possible tobound with a fore the beam extremities .This last statement led us to impose the boundary onditions illustrated atthe beginning of this setion.3.2.3 ResultsAnalytial solutionThe analytial solution of the problem is very omplex and we do not reportit here. However we an make some interesting remarks on it.
• The solution of stress and displaement formulation depends on only16 parameters. This statement orroborates the fat that the problemreally depends only on 16 parameters, as disussed in the previoussetion.
• The struture of the solution is the following:

Φ = Cie
±αx + Cjx

n (3.5)i.e. the solution ontains exponential terms and polynomial terms,the latter give the �rst-order beam solution, while the former, beingsigni�antly di�erent from zero only near the extremities, ould modelthe extintion of loal e�ets produed by the shape of external loads.Nevertheless this good and unexpeted behavior of the solution mustbe onsidered arefully in fat it an not be used to evaluate loal stressmagnitudes beause in the 3D solution there is signi�ant transversalaxial stress σy 6= 0, while we are assuming it to be always null.
• The degree of solution polynomials is the same of the one of TJ orwarping models.
• Struture of τττ variable is the following: τi = Cβi where C is the same inevery vetor term, depending on the boundary onditions of problem,while βi depends on the omponent. This means that C gives the39



3.2. TRIVIAL EXAMPLE Laminated beam
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Figure 3.5: Generi shear �eld shape for a 2-layer beammagnitude of the resultant shear and βi · pτi gives the shape of theshear �eld. In �gure 3.5 we report a plot of the �eld as obtained bythe analytial solution: it is evident that the shape of resultant shearis paraboli.Thanks to these onsiderations we may say that the model onsider so faran show a good behavior.Numerial solutionNow we will disuss the most signi�ant results obtained by means of the nu-merial algorithm. First of all we report, in �gure 3.6, the plot of transversaldisplaement. Qualitatively, it is possible to see that the solution is exatand re�ets what we were expeting.In �gures 3.7 and 3.9 we report horizontal displaement �eld and shear �eldon the setion at x = 5 respetively. In the same plots we an ompare themulti-layered model solution and the warping beam one. In �gures 3.8 and3.10 we report the plots of the relative errors, evaluated as Φ2lay − Φwarp.Qualitatively the solution obtained is exat. Evaluating more auratelythe error, we an make some remarks.
• The errors are always of 2 or 3 orders of magnitude inferior than themagnitude of the variables they are related to. This means that the40



3.2. TRIVIAL EXAMPLE Laminated beam
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Figure 3.6: 2-layer beam transversal displaements, numerial resultrelative error is always less than 1 %. Relative shear error is generallyless than relative displaement error.
• The displaement error has the same order of magnitude as the warp-ing variable on the setion. We an try to justify this behavior realizingthat also y-linear error has the same magnitude, so we an make thehypothesis that in multi-layer beam the warping variables ould om-pensate the error of y linear variables.
• The mean value of error on the setion is null 2, in other words:

∫

A
(su2lay − suwarp) dA = −2, 54 × 10−12 ≈ 0. (3.6)This statement orroborate the previous hypothesis about the behaviorof warping.

• The warping error, obtained as di�erene between the global error andthe linear error is bigger inside the beam thikness, where also shearerror is big, and it tends to beome smaller near the lateral surfaes,where shear error is null. This lead us to think that the warping errorand the shear error are in some way related the one to the other.2As for the value of this integral it worths noting that 10
−11 is the error tolerane ofnumerial algorithm. 41



3.2. TRIVIAL EXAMPLE Laminated beam
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Figure 3.7: 2-layer beam horizontal displaements evaluated at x=5, numerialresultIn table 3.1 we report numeri values of axial stress, bending moment andshear stress resultants in the origin setion and their relative errors, assumingas the exat model the Euler-Bernoulli beam and the transversal displae-ment at x = 2, 5 with its the relative error3. Hene it is worth making thefollowing remarks.
• The axial resultant fore is always orretly predited. In 2-layer beamerror must be imputed to the numerial method too.
• There are not signi�ant di�erenes between TJ, warping and the 2-layer models. It is possible to notie a small di�erene between thelatter and the former two but this an be attributed, one again, tothe numerial error.
• There is a signi�ant di�erene ( 2 or 3 %) between the Euler-Bernoullisolution and the others: partiularly it is possible to see that the Euler-Bernoulli beam is more rigid than the others: in the EB solution wehave stronger fores and less strains. We ould have expeted thisresult: having less degrees of freedom the EB beam has more inter-3The number �1� representing axial fore errors means that the solution is exat, dif-ferently it is not possible to evaluate the error42



3.2. TRIVIAL EXAMPLE Laminated beam
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Figure 3.8: 2-layer beam horizontal displaement error evaluated at x=5nal onstraints and this justi�es the inrement of sti�ness. This phe-nomenon is o�en mentioned in literature.
• The statement that EB beam is more rigid ould be dedued alsowathing table 2.1. However in this table it is not possible to seedi�erenes of the fores beause the antilever is an isostati strutureand so the reations depend only on external fore; in the oppositease the model we are onsidering is now hyper-stati and the externalreations are also in�uened by beam.We analyzed also an homogeneous beam omposed by 3 layers. One more,we obtained the same results already illustrated.3.2.4 Extintion of loal e�etsAs we have already disussed in setion 3.2.2 the model we developed anpredit the extintion of loal e�ets produed by the shape of external loadsand displaements. In fat we know that, far from the boundary, the behav-ior of the elasti solid depends only on the resultant of external loads oraverage displaements. Moreover the theory ensures that the loal e�etsare signi�ant only in a region equal to 1÷ 1.5h̃ in whih h̃ is the harater-isti dimension of the beam setion. 43



3.2. TRIVIAL EXAMPLE Laminated beam
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Figure 3.9: 2-layer beam shear distribution evaluated at x=5, numerial resultNow we will impose a �not homogeneous�4 boundary ondition that willprodue loal e�ets. Afterward, we will study how the model answers tothis imposition. On the boundary, we assign null displaements everywhereexept for the �rst degree of freedom of su in the origin, whih we impose tobe equal to 1 (u1(0) = 1).In the following we will plot displaements and stress distributions near theextreme in whih we imposed the not homogeneous displaement. Thehorizontal displaements at x=0 in �gure 3.12 are the plot of the imposedboundary onditions.
• Wathing �gure 3.11 it is possible to see how the global e�et of ourboundary ondition is simply the imposition of a non null averagerotation in the origin.
• Looking at �gure 3.13 we realize that the shear is the �eld that ex-tinguishes the loal e�ets less quikly than the others. It worths re-marking that this �eld at x = 1.5h̃ is not paraboli but the maximum4by this term we de�ne every boundary ondition that is able to produe signi�antloal e�ets, in other words every distribution of fores or displaements di�erent fromwhat we an impose on homogeneous beam 44



3.2. TRIVIAL EXAMPLE Laminated beam
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err [F/l2]Figure 3.10: 2-layer beam shear error evaluated at x=5shear on the setion has the same order of magnitude of the exat dis-tribution. So the statement we previously inferred about the length ofextintion region an be onsidered true in this ase too.
• Being the boundary ondition not symmetri we expeted, as globale�et, a non symmetri behavior of the setion: in fat, as it is possibleto see in �gure 3.14 the neutral axis of the setion is not at the half ofits height.This behavior of the beam an obviously be onsidered (or not) in numerialmodels using (or not) adequate shape funtions. Nevertheless it an beinteresting to use the displayed behavior to model some problems of interestin appliane of beam theory suh as:
• Setion geometry disontinuities.
• Plasti hinges model.
• Every kind of problem in whih loal e�et ould be signi�ant.

45



3.2. TRIVIAL EXAMPLE Laminated beam
beam model v(2.5)

v

vEB
T (0)

T

TEBEuler-Bernoulli 1, 5625 × 10−1 1.0000 −1.0000 × 102 1.0000Timoshenko 1.5898 × 10−1 1.0175 −9.7087 × 101 0.9709warping beam 1.5898 × 10−1 1.0175 −9.7087 × 101 0.97092-layer beam 1.5896 × 10−1 1.0173 −9.7092 × 101 0.9709beam model N(0)
N

NEB
M(0)

M

MEBEuler-Bernoulli 0.0000 × 10−7 1.0000 5.0000 × 102 1.0000Timoshenko 0.0000 × 10−7 1.0000 4.8544 × 102 0.9709warping beam 0.0000 × 10−7 1.0000 4.8544 × 102 0.97092-layer beam −1.6140 × 10−7 - 4.8546 × 102 0.9709Table 3.1: Stress resultants and displaements at signi�ant setions
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Figure 3.11: Transversal displaements obtained as solution of the problem withnot homogeneous boundary onditions 46
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Figure 3.12: Setion displaements near the setion in whih we apply not homo-geneous boundary ondition
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Figure 3.13: Shear distributions near the setion in whih we apply not homoge-neous boundary ondition 47
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Figure 3.14: Axial stress near the setion in whih we apply not homogeneousboundary ondition
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3.3. ADVANCED EXAMPLE Laminated beam3.3 Advaned example3.3.1 Geometry and materialsFor the advaned example we de�ne the following geometry and materialvetors:
YYY =
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0.3
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MMM =







1.00 × 105 4.00 × 104

2.40 × 104 1.00 × 104

1.00 × 105 4.00 × 104







(3.7a)The beam is omposed by 3 layers the intermediate of whih has mehanialproperties poorer than the others.We hoose a symmetri setion and we expet onsequently to obtain sym-metri or emi-symmetri �elds on the setion.As a boundary ondition we impose null displaements everywhere exeptfor an unitarian transversal displaement at x = 10.3.3.2 ResultsHere we are going to report the plots of most signi�ant quantities obtainedby the solution of the problem we have just de�ned. It is interesting tonote that in �gure 3.15 the horizontal displaements are nearly linear respetto y.Moreover it is possible to see that, as we expeted, the solutions we obtainedare all odd or even respet y domine.
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3.3. ADVANCED EXAMPLE Laminated beam
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Figure 3.15: Transversal displaements obtained as solution of the non homoge-neous beam
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Figure 3.16: Horizontal displaements on the setion at the half of the beam50



3.3. ADVANCED EXAMPLE Laminated beam
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Chapter 4The numerial beam modelIn this hapter we will develop the numerial model of the laminated beamwe have previously analyzed.We will start by developing the weak formulation of the problem, introduing�eld hypotheses and reduing the problem to an algebrai form. Then wewill go on disussing the hoie of the so alled shape funtions and, at last,we will make some examples and disuss them.4.1 Weak formulationIn order to develop the numerial method we must start from a weak formula-tion of the problem. The most natural hoie is to start from the stationarityof the funtional from whih we derivated the governing equations.In setion 1.3.3 we wrote two possible weak formulations: the �rst is equation(1.12), and the seond is equation (1.14). Usually people prefer to developnumerial models starting from the �rst of the two formulations, that isproperly the stationarity of funtional and lead to a symmetri formulation.This is the path we want to use.So starting form equation (1.12), we rewrite it adopting notations and on-ventions of setion 2.1. We obtain:
δJHR =

∫

Ω

(

LLLT δsss
)T

σσσ dΩ +

∫

Ω

δσσσTLLLTsss dΩ− (4.1a)
∫

Ω

δσσσTDDD−1σσσ dΩ −

∫

Ω

δsssTfff dΩ− (4.1b)
∫

∂Ωt

δsssT ttt dS −

∫

∂Ωs

(δσσσNNN)T (sss − s̄̄s̄s) dS −

∫

∂Ωs

δsssTNNNσσσ dS = 0(4.1)As we did in setion 2.1 we split the weak formulation in body equation,bounded displaement surfae and fore boundary.52



4.2. FIELD APPROX. FEM model4.1.1 Body equationsSubstituting de�nitions (2.2) and developing matrix produts in terms (4.1a)and (4.1b) we obtain:
∫

Ω

[

LLLT δsss
]T

σσσ dΩ +

∫

Ω

δσσσTLLLTsss dΩ− (4.2a)
∫

Ω

δσσσTDDD−1σσσ dΩ −

∫

Ω

δsssTfff dΩ = 0 (4.2b)Introduing the �eld de�nitions (2.2) and developing the matrix produt wearrive to the following formulation:
∫

Ω

[

δuuu′T , δvvv′T
]

[

pupupupσpσpσ
T 000

000 pvpvpvpτpτpτ
T

]{

σxσxσx

τττ

}

+
[

δuuuT , δvvvT
]

[

000 pupupu
′pτpτpτ

T

000 000

]{

σxσxσx

τττ

}

+(4.3a)
[

δσxσxσx
T , δτττT

]

[

pσpσpσpupupu
T 000

000 pτpτpτpvpvpv
T

]{

uuu′

vvv′

}

+
[

δσxσxσx
T , δτττT

]

[

000 000
pτpτpτpupupu

′T 000

]{

uuu

vvv

}

−(4.3b)
[

δσxσxσx
T , δτττT

]







pσpσpσpσpσpσ
T

E
000

000
pτpτpτpvpvpv

T

G







{

σxσxσx

τττ

}

−
[

δuuuT , δuuuT
]

{

pupupufx

pvpvpvfy

}

dΩ = 0 (4.3)As happened in setion 2.1, only the terms inside the matries depends onthe setions variable, so it is possible to split the integrals. Using de�nitions(2.35) and introduing the following
Pu′τPu′τPu′τ =

∫

A
p′upτp′upτp′upτdA (4.4)we obtain:

∫

l

[

δuuu′T , δvvv′T
]

[

PuσPuσPuσ 000
000 PvτPvτPvτ

]{

σxσxσx

τττ

}

+
[

δuuuT , δvvvT
]

[

000 Pu′τPu′τPu′τ

000 000

]{

σxσxσx

τττ

}

+

[

δσxσxσx
T , δτττT

]

[

PσuPσuPσu 000
000 PτvPτvPτv

]{

uuu′

vvv′

}

+
[

δσxσxσx
T , δτττT

]

[

000 000
Pτu′Pτu′Pτu′ 000

]{

uuu

vvv

}

−

[

δσxσxσx
T , δτττT

]

[

PσσPσσPσσ 000
000 PττPττPττ

]{

σxσxσx

τττ

}

−
[

δuuuT , δuuuT
]

{

FxFxFx

FyFyFy

}

dx = 0 (4.5)4.2 Field approximations and algebrai redutionNow we must introdue the hypothesis of �nite dimension of �elds: we sup-pose that every unknown �eld an be expressed as a linear ombination of the53



4.3. HYPOTHESES FEM modelso alled shape funtions weighted with salar quantities. In the followingwe introdue the new notation that uses the shape funtions.
uuu(x) ⇒ BBBu(x) ûuu (4.6a)
vvv(x) ⇒ BBBv(x) v̂vv (4.6b)
σxσxσx(x) ⇒ BBBσ(x) σ̂σσ (4.6)
τττ(x) ⇒ BBBτ (x) τ̂ττ (4.6d)The problem we are developing an be written as:

∫

l
(δûuuT BBB′T

u PuσPuσPuσBBBσ σ̂σσ + δv̂vvT BBB′T
v PvτPvτPvτBBBτ τ̂ττ+

δûuuT BBBT
uPu′τPu′τPu′τBBBτ τ̂ττ + δσ̂σσT BBBT

σPσuPσuPσuBBB
′

u ûuu+

δτ̂ττT BBBT
τ PτvPτvPτvBBB

′

v v̂vv + δτ̂ττT BBBT
τ Pτu′Pτu′Pτu′BBBu ûuu−

δσ̂σσT BBBT
σPσσPσσPσσBBBσ σ̂σσ − δτ̂ττT BBBT

τ PττPττPττBBBτ τ̂ττ ) dx =
∫

l
(δûuuT BBBu Fu + δv̂vvT BBBv Fv)dx

(4.7)
At this point is possible to transfer the integral only on x dependent termsand rewrite the governing equation in a arrayal form:

[δûuu, δv̂vv, δσ̂σσ, δτ̂ττ ]









000 000 KuσKuσKuσ KuτKuτKuτ

000 000 000 KvτKvτKvτ

KσuKσuKσu 000 KσσKσσKσσ 000
KτuKτuKτu KτvKτvKτv 000 KττKττKττ























ûuu

v̂vv

σ̂σσ

τ̂ττ















=















F̂FF u

F̂FF v

000
000















(4.8)The matrix KKK we have just introdued is usually alled �sti�ness matrix �and its terms are de�ned as follows:
KuσKuσKuσ =

∫

l
BBB′T

u PuσPuσPuσBBBσdx KvτKvτKvτ =

∫

l
BBB′T

v PvτPvτPvτBBBτdx (4.9a)
KuτKuτKuτ =

∫

l
BBBT

uPu′τPu′τPu′τBBBτdx KσuKσuKσu =

∫

l
BBBT

σPσuPσuPσuBBB
′

udx (4.9b)
KτvKτvKτv =

∫

l
BBBT

τ PτvPτvPτvBBB
′

vdx KτuKτuKτu =

∫

l
BBBT

τ Pτu′Pτu′Pτu′BBBudx (4.9)
KσσKσσKσσ =

∫

l
BBBT

σPσσPσσPσσBBBσdx KhhKhhKhh =

∫

l
BBBT

τ BττBττBττPPP τdx (4.9d)
F̂FF i =

∫

l
BBBT

uFuFuFudx F̂FF j =

∫

l
BBBT

v FvFvFvdx (4.9e)4.3 Hypotheses4.3.1 New base funtions and numerial problem de�nitionsThe hoie of shape funtions is a ritial step in de�nition of FEM (FiniteElement Method) algorithm: the auray and e�ieny of the algorithm54



4.3. HYPOTHESES FEM modeldepends on it.The multi-layered beam de�ned in hapter 2 uses a high number of un-knowns (being n the number of layers, the unknown funtions in the beamare 3n + 2 displaements and 6n − 1 stresses). Supposing the ontinuity ofevery unknown funtion to be neessary, we are going to de�ne an enormoussti�ness matrix, in other words a low-e�ieny numerial algorithm. Toremedy this problem we will make the following hoie.
• We assume inter-element disontinuous funtions to model stresses.Looking at the struture of KKK and using this hypothesis we an op-erate a stati ondensation on the element sti�ness matrix, reduingthe dimension of global algebrai problem and with the possibility toevaluate stress magnitude in post proessing.
• We split displaement �eld as follows: sss = sssT + sssW in whih sssT arethe Timoshenko displaements that use base funtions globally de�nedon the setion while sssW are the warping displaements and are loallyde�ned on the layers as illustrated in �gure 2.9. In the numerial model,

Figure 4.1: Setion base funtions used in FEM algorithmas shape funtions we will use ontinuous pieewise de�ned funtionsto model the Timoshenko displaements and bubble funtions to thewarping omponents. With this hoie we simplify the assemblingproedure and improve the sti�ness matrix satter-plot.55



4.3. HYPOTHESES FEM model4.3.2 Shape funtion loal de�nitionIn the numerial algorithm we are going to use, for every unknown the fol-lowing shape funtions. x̃ is the element loal oordinate and l̃ is the elementlength.
• Transversal displaement v is modeled by ubi shape funtions de�nedas follows:

qqqv =
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(4.10)
In �gure 2.18 we report the plot of shape funtion. By this shapefuntion we obtain a solution v(x) ∈ C1.
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Figure 4.2: v shape funtions
• Timoshenko horizontal displaements uuuT are modeled by linear piee-
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4.4. NUMERICAL EXAMPLES FEM modelwise funtions, de�ned as follows:
qqquT

=















l̃ − x̃

l̃
x̃

l̃















(4.11)In this way we obtain a C0 solution for these funtions.
• Warping horizontal displaements uuuW are modeled by a quadrati bob-ble, de�ned as follows:

quW
= 4

(

l̃ − x̃
)

x̃

l̃2
(4.12)In this way we obtain a C0 solution for these funtions that are null inthe mesh nodes.

• Stresses are modeled by quadrati shape funtions de�ned as the unionof qqquT
and quW

.4.4 Numerial examplesIn the following we will disuss the results of the numerial algorithm wehave just de�ned and we will report plots for some signi�ant examples.4.4.1 Bending moment loaded antileverWe onsider the laminated beam we have already presented in setion 3.2.As unique load we onsider an unitarian bending moment applied at oneextremity while as boundary ondition we lamp the other beam extremity.By the load harateristis we an dedue that the bending moment is on-stant inside the length of beam, so the shear is null and the rotation mag-nitude is linear. In these onditions the laminated, material homogeneousbeam we are onsidering must give exatly the EB solution, moreover beingthe shape funtions su�iently rih, we expet that also the numerial modelmay ath the exat solution using only 1 element.In �gures 4.3 and 4.4 we plot the solution as obtained by the numerial modelusing 1 element. In table 4.1 we report numerial value of unknowns foundwith analitial and numerial models. It is possible to see how the numerialmodel athes exatly the solution.4.4.2 Shear loaded antileverNow we are going to onsider one again the laminated beam introduedin setion 3.2 but, di�erently from what we did in previous setion we will57



4.4. NUMERICAL EXAMPLES FEM model
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ϑ(l) − 1.2000 × 10−3 − 1.2000 × 10−3Table 4.1: Displaements at signi�ant setionsonsider a transversal load in the extremitiy of the beam.In the analytial solution the rotations are paraboli, on the opposite thenumerial model ontains only linear horizontal displaements so we expetan error in the numerial solution. To improve the solution we must use moreelements. In �gures 4.5, 4.6 and 4.7 we report the solutions as obtained bythe TJ analytial model and by the numerial model, in the latter onsidering1, 2 and 4 elements. In �gures 4.8 and 4.9 we plot the magnitudes of an axialstress omponent (σ1) and of a shear stress omponent (τ3) for 2, 4 and 8elements.It is possible to see how the solution error beomes quikly small inreasingthe number of elements, moreover we an observe how the rotations areexatly evaluated at nodes. It is possible to see also an error on the free58



4.4. NUMERICAL EXAMPLES FEM model
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Figure 4.4: Setion rotations of a antilever loaded by extreme onentrated bend-ing momentextreme displaements: in table 4.2 we write the magnitude of these errorsas funtion of the number of elements used. Looking at the table we an saythat the solution displays a good onvergene to the exat solution, moreoverwe an see that the relative error is near the 1 % also using few elements.In �gure 2.25 we plot the setion shear distribution on the node x = 5, 000and at the half of element 4 (x = 4.375) as alulated using 8 elements. It islear that inside the element the model predits exatly the shear distributionwhile in the nodes, being null the warping, shear distribution tends to beomeonstant and, in any ase far from the exat solution.
elem n v(l) v(l)

vTJ(l)1 el −3.92 × 10−2 0.97272 el −3.99 × 10−2 0.99014 el −4.02 × 10−2 0.99758 el −4.027 × 10−2 0.9993TJ model −4.03 × 10−2 1.0000Table 4.2: Free extreme transversal displaement59



4.4. NUMERICAL EXAMPLES FEM model
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Figure 4.5: Transversal displaements of a antilever loaded by extreme shearresultant
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Figure 4.6: Setion rotations of a antilever loaded by extreme shear resultant60



4.4. NUMERICAL EXAMPLES FEM model
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Figure 4.7: Setion rotations of a antilever loaded by extreme shear resultant(detail)
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Figure 4.8: Axial stress omponent σ1 of a antilever loaded by extreme shearresultant 61



4.4. NUMERICAL EXAMPLES FEM model
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Figure 4.9: Shear stress omponent τ3 of a antilever loaded by extreme shearresultant
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Chapter 5ConlusionsIn this thesis we disussed some models of homogeneous and laminatedbeams, for the latter we developed also a FEM model.The analytial models an predit in a orret way the internal stress dis-tribution and do not need to be orreted by any fator, as happens inTimoshenko beam. Moreover, looking at laminated beam, the model we de-veloped an predit the answer of the body to loal e�ets.As far as the numerial model is onerned, we wrote an algorithm thatuses a low number of degrees of freedom, in partiular stresses are loallystati ondensated and the global sti�ness matrix is formulated as a funtionof nodal linear displaements and some bubbles that aount the high ordersetion displaements. In post proessing it is possible to evaluate stressesthat estimate orretly the real ones.A possible development of this work might be the improvement of the FEMmodel to enhane the predition of stress distributions, and model general-ization to non-planar stress and kinematis.
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