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Abstract

Shape memory alloys (SMAs) are a type of smart materials which have unique features

known as pseudo-elasticity, one-way and two-way shape memory effects. The interest

in the mechanical behavior of SMAs is rapidly growing with the increasing number of

potential industrial applications. The origin of SMA material features is a reversible

thermo-elastic martensitic phase transformation between a high symmetry, austenitic

phase and a low symmetry, martensitic phase. In most applications, SMAs experience

general non-proportional thermo-mechanical loads. Thus, according to experimental

observations, the so-called variant reorientation should be considered in the constitutive

model development. Moreover, SMA structures typically undergo very large rotations

and moderate strains (in the range of 10-15%) and the use of a finite deformation scheme

is preferred.

In this thesis, we have studied the SMA behavior under multiaxial loadings at small

and finite deformations. Considering variant reorientation accompanied by finite defor-

mations, we have derived several SMA constitutive models and have proposed a robust

and efficient numerical formulation. With the aim of properly modeling of the vari-

ant reorientation, based on continuum thermodynamics with internal variables, we have

presented a class of SMA models in the small strain regime. We have shown that sev-

eral available models can be identified as members of the proposed class of models.

With emphasis on non-proportional loading and reorientation, we specifically have in-

troduced a model which has the property of decoupling pure reorientation from pure

phase transformation. In addition, we have shown that most available SMA models are

basically the same under proportional loadings while they yield different results under

non-proportional loading conditions.

We have also proposed finite deformation SMA constitutive models, which are exten-

sions of available small strain models. The approach is based on the multiplicative

decomposition of the deformation gradient into elastic and inelastic parts. The derived

constitutive models are well-defined, singularity-free and fully-symmetric. In addition,

we have proposed a model which utilizes interesting properties of the logarithmic strain.

A main part of this thesis has been devoted to numerical implementation of the proposed

constitutive models. To this end, we have proposed a logarithmic mapping, and defining

a nucleation-completion condition, we have also proposed a robust and efficient integra-

tion algorithm. We have compared different models as well as integration algorithms

in terms of robustness and computational efficiency. Implementing into a user defined

subroutine (UMAT) in the commercial software ABAQUS, we have simulated several



SMA-based applications, i.e., an SMA spring, a nitinol stent and a smart micro-gripper.

It has been shown that, comparing with the algorithms available in the literature, the

proposed integration algorithm reduces the computational cost about 35%.

Keywords: shape memory alloys, pseudo-elasticity, constitutive modeling, numerical

integration, large deformations, multiplicative decomposition, UMAT.
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Chapter 1

Introduction to shape memory

alloys

1.1 Smart materials

Material technology has had such a profound impact on the evolution of human civiliza-

tion that historians have characterized periods in that evolution by such terms as the

Stone Age, the Bronze Age, and the Iron Age. Each new era was brought about by the

continuing quest for even better products, a quest that is very much in evidence today.

The drawn of the 21st century will witness the emergence of the ”Smart Materials Age”

(Gandhi and Thompson, 1992).

Smart materials respond to environmental stimuli with particular changes in some vari-

ables e.g., temperature, moisture, electric or magnetic fields, pH, and stress. For that

reason they are often also called responsive materials. Depending on changes in some

external conditions, smart materials change either their properties (mechanical, electri-

cal, appearance), their structure or composition, or their functions. Intelligent, smart,

adaptive, active, sensory, metamorphic structures and/or materials and/or systems have

all been used (many times interchangeably) to describe the research in this field (Spill-

man Jr. et al., 1996). In the following we address some smart materials.

Piezoelectric materials are materials that produce a voltage when stress is applied. Since

this effect also applies in the reverse manner, a voltage across the sample will produce

stress within the sample. Shape memory alloys and shape memory polymers are ma-

terials in which large deformation can be induced and recovered through temperature

changes (shape memory effect) or stress changes (pseudo-elasticity). Magnetostrictive

materials exhibit change in shape under the influence of magnetic field and also exhibit

change in their magnetization under the influence of mechanical stress. Magnetic shape

memory alloys are materials that change their shape in response to a significant change
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in the magnetic field. pH-sensitive polymers are materials which swell/collapse when the

pH of the surrounding media changes. Temperature-responsive polymers are materials

which undergo changes upon temperature. Halochromic materials are commonly used

materials that change their color as a result of changing acidity. Chromogenic systems

change color in response to electrical, optical or thermal changes. Photomechanical ma-

terials change shape under exposure to light. Electrorheological fluid (ERF) is a smart

suspension, whose structure and rheological properties can be quickly tuned by an ex-

ternal electric field. We refer to the encyclopedia of smart materials (Schwartz, 2002)

to see a full list of smart materials and their applications.

Figures 1.1 and 1.2 compare the actuation energy densities and the actuation frequen-

cies, respectively, of some common active materials. The actuation energy density (work

output per unit mass) is denoted in Figure 1.1 by the dotted lines and is defined as the

product of the actuation strain (related to the stroke of an actuator) with the actuation

stress, assuming here that the active material is operating under constant stress. The

specific actuation energy density for a specific active material can be calculated from

Figure 1.1 by dividing the actuation energy density by the mass density. An increase

Figure 1.1: Actuation energy density diagram of different active materials (Lagoudas,

2008).

in temperature of an SMA can result in shape recovery even under high applied loads

therefore resulting in high actuation energy densities as shown in Figure 1.1. SMAs

do, however, exhibit low frequency response, as shown in Figure 1.2. Higher actuation

frequencies are achievable for a class of SMAs called magnetic shape memory alloys.
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Figure 1.2: Actuation frequency diagram of different active materials (Lagoudas, 2008).

1.2 Shape memory Alloys

The martensitic transformation was perhaps the most widely studied metallurgical phe-

nomenon during the early 1900s. The martensitic transformation, as observed in the

Fe-C system, was established as an irreversible process. The concept of thermoelastic

transformation explained the reversibility of martensitic transformation. The reversible

martensitic transformation and the alloys that exhibited them remained unutilized un-

til 1963. The breakthrough for engineering applications occurred with the discovery of

NiTi by Buehler and coworkers while investigating materials useful for heat shielding

(Buehler et al., 1963). It was noticed that in addition to its good mechanical properties,

comparable to some common engineering metals, the material also possessed a shape

recovery capability. The term NiTiNOL was coined for this NiTi material in honor of

its discovery at the Naval Ordnance Laboratory (NOL). The term Shape Memory Effect

(SME) was given to the associated shape recovery behavior. The discovery of Nitinol

spearheaded active research interest into SMAs.

The first commercial SMA application, known as Cryofitr, was pipe couplings in F-14

fighter aircraft1 (Wayman and Harrison, 1989). Since the initial discovery of Nitinol in

1The registered trademark symbol, designated by r (the circled ”R”) is a symbol used to provide

notice that the preceding mark is a trademark or service mark that has been registered with a national

trademark office. In some countries it is against the law to use the registered trademark symbol

for a mark that is not officially registered in any country. Trademarks not so registered are instead

marked with the trademark symbol TM, while unregistered service marks are marked with the service
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1963, many commercial applications have been developed. During the 1970s, several

uses of NiTi in biomedical applications appeared, but it was not until the 1990s that

NiTi stents made their commercial breakthrough. By this time, SMAs had found ad-

ditional applications in air conditioning vents, electronic cable connectors, valves and a

variety of other products (Duerig et al., 1990; Lagoudas, 2008).

Within the typical operating temperature range, SMAs have two phases, each with a dif-

ferent crystal structure and therefore different properties. One is the high temperature

phase called austenite (A) and the other is the low temperature phase called marten-

site (M). Austenite (generally cubic) has a different crystal structure from martensite

(tetragonal, orthorhombic or monoclinic). The transformation from one structure to

the other does not occur by diffusion of atoms, but rather by shear lattice distortion.

Such a transformation is known as martensitic transformation. Each martensitic crystal

formed can have a different orientation direction, called a variant. The assembly of

martensitic variants can exist in two forms: twinned martensite (M t), which is formed

by a combination of self-accommodated martensitic variants, and detwinned (Md) or

reoriented martensite in which a specific variant is dominant. The reversible phase

transformation from austenite (parent phase) to martensite (product phase) and vice

versa forms the basis for the unique behavior of SMAs. Upon cooling in the absence of

an applied load, the crystal structure changes from austenite to martensite. The phase

transition from austenite to martensite (is termed the forward transformation) results

in the formation of several martensitic variants, up to 24 for NiTi. The arrangement

of variants occurs such that the average macroscopic shape change is negligible, result-

ing in twinned martensite. When the material is heated from the martensitic phase,

the crystal structure transforms back to austenite, and this transition is called reverse

transformation, during which there is no associated shape change. We remark that the

martensitic transformation in SMAs consists mainly in a shear, without volume change

(Lagoudas, 2008; Otsuka and Wayman, 1998).

The crystal structures of twinned martensite and austenite for an SMA and the transfor-

mation between them is shown in Figure 1.3. There are four characteristic temperatures

associated with the phase transformation. During the forward transformation, austen-

ite, under zero load, begins to transform to twinned martensite at the martensitic start

temperature (Ms) and completes transformation to martensite at the martensitic finish

temperature (Mf ). At this stage, the transformation is complete and the material is

fully in the twinned martensitic phase. Similarly, during heating, the reverse trans-

formation initiates at the austenitic start temperature (As) and the transformation is

completed at the austenitic finish temperature (Af ).

mark symbol SM. The proper manner to display these symbols is immediately following the mark in

superscript style (source: wikipedia).
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If a mechanical load is applied to the material in the twinned martensitic phase (at low

Figure 1.3: Temperature-induced phase transformation of an SMA without mechanical

loading (Lagoudas, 2008).

temperature), it is possible to detwin the martensite by reorienting a certain number of

variants (see Figure 1.4). The detwinning process results in a macroscopic shape change,

where the deformed configuration is retained when the load is released. A subsequent

heating of the SMA to a temperature above Af will result in a reverse phase transforma-

tion (from detwinned martensite to austenite) and will lead to complete shape recovery

(see Figure 1.5). Cooling back to a temperature below Mf (forward transformation)

leads to the formation of twinned martensite again with no associated shape change ob-

served. The process described above is referred to as the Shape Memory Effect (SME).

The load applied must be sufficiently large to start the detwinning process. The mini-

mum stress required for detwinning initiation is termed the detwinning start stress (σs).

Sufficiently high load levels will result in complete detwinning of martensite where the

corresponding stress level is called the detwinning finish stress (σf ).

When the material is cooled with a mechanical load greater than σs applied in the

austenitic phase, the phase transformation will result in the direct formation of de-

twinned martensite, producing a shape change. Reheating the material will result in

shape recovery while the load is still applied. A schematic of the above-described loading

path is shown in Figure 1.6. Recognizing that the forward and reverse transformations

occur over a range of temperatures (Ms to Mf , As to Af ) for a given SMA composition,

we can construct transformation regions in the stress-temperature space. The transfor-
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Figure 1.4: Schematic of the shape memory effect of an SMA showing the detwinning

of the material with an applied stress (Lagoudas, 2008).

Figure 1.5: Schematic of the shape memory effect of an SMA showing the unloading

and subsequent heating to austenite under no load condition (Lagoudas, 2008).
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Figure 1.6: Temperature-induced phase transformation in the presence of applied load

(Lagoudas, 2008).

mation temperatures strongly depend on the magnitude of the applied load, with higher

values of applied load leading to higher transformation temperatures. Irrespective of

the nature of applied load (tension or compression), the transformation temperatures

increase with an increase in the magnitude of the load. Under an applied uniaxial

tensile load with a corresponding stress, σ, the new transformation temperatures are

represented as Mσ
f , Mσ

s , Aσs and Aσf for martensitic finish, martensitic start, austenitic

start and the austenitic finish temperatures, respectively (Lagoudas, 2008).

In addition to thermally induced phase transformation, transformation can also be in-

duced by applying a sufficiently high mechanical load to the material in the austenitic

phase. The result of this load is fully detwinned martensite created from austenite.

If the temperature of the material is above Af , a complete shape recovery is observed

upon unloading to austenite. This material behavior is called the pseudo-elastic effect.

A loading path demonstrating the pseudo-elastic effect is shown schematically in Figure

1.7, while the associated macroscopic shape change due to the applied load is captured

in the resulting stress-strain diagram, as shown schematically in Figure 1.8. The stress

levels at which the martensite transformation initiates and completes are denoted by

σMs and σMf , respectively. Similarly, as the SMA is unloaded, the stress levels at which

the material initiates and completes its reverse transformation to austenite are denoted

by σAs and σAf , respectively. If the material in the austenitic phase is tested above the

Ms temperature, but below the Af temperature, only partial shape recovery is observed

(Lagoudas, 2008).

Figure 1.9 shows a schematic representation of the different phases of the SMA, which
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Figure 1.7: A pseudo-elastic loading path (Lagoudas, 2008).

Figure 1.8: Schematic of a pseudo-elastic stress-strain diagram (Lagoudas, 2008).

include the austenitic phase and both the twinned (M t) and detwinned (Md) marten-

site, along with the transition zones, in a stress-temperature diagram. Such a diagram,

illustrating the different phases in a stress-temperature space for a given SMA with

fixed composition, is called the phase diagram. Construction of the phase diagram

involves the interpretation of the SMA material response subjected to various thermo-

mechanical loading paths resulting in shape memory thermal actuation under load and

pseudo-elastic behavior. In the following, the two important characteristics of SMAs,

namely the shape memory effect and pseudo-elasticity, will be discussed in more detail.
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Figure 1.9: Schematic of a stress-temperature phase diagram for an SMA (Lagoudas,

2008).

1.2.1 Shape memory effect

An SMA exhibits the shape memory effect (SME) when it is deformed while in the

twinned martensitic phase and then unloaded while at a temperature below As. When

it is subsequently heated above Af , the SMA will regain its original shape by trans-

forming back into the parent austenitic phase. The nature of the SME can be better

understood by following the thermo-mechanical loading path in a combined stress-strain-

temperature space as shown in Figure 1.10. Starting from the parent phase (point A

in Figure 1.10), the stress-free cooling of austenite below the forward transformation

temperatures (Ms and Mf ) results in the formation of twinned martensite (point B).

When the twinned martensite is subjected to an applied stress that exceeds the start

stress level (σs), the reorientation process is initiated, resulting in the growth of certain

favorably oriented martensitic variants that grow at the expense of other less favorable

variants. The stress level for reorientation of the variants is far lower than the per-

manent plastic yield stress of martensite. The detwinning process is completed at a

stress level, σf , that is characterized by the end of the plateau in the σ − ε diagram in

Figure 1.10. The material is then elastically unloaded from C to D and the detwinned

martensitic state is retained. Upon heating in the absence of stress, the reverse transfor-

mation initiates as the temperature reaches As (at E) and is completed at temperature
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Figure 1.10: Stress-strain-temperature data exhibiting the shape memory effect for a

typical NiTi SMA (Lagoudas, 2008).

Af (point F ), above which only the parent austenitic phase exists. In the absence of

permanent plastic strain generated during detwinning, the original shape of the SMA is

regained (indicated by A). The strain recovered due to the phase transformation from

detwinned martensite to austenite is termed as the transformation strain. Subsequent

cooling to martensite will again result in the formation of self-accommodated twinned

martensitic variants with no associated shape change, and the whole cycle of the SME

can be repeated. The above described phenomenon is called one-way shape memory

effect, or simply SME, because the shape recovery is achieved only during heating after

the material has been detwinned by an applied mechanical load.

1.2.2 Pseudo-elasticity

The pseudo-elastic (PE) behavior of SMAs is associated with stress-induced transfor-

mation, which leads to strain generation during loading and subsequent strain recovery

upon unloading at temperatures above Af . A pseudo-elastic thermo-mechanical loading

path generally starts at a sufficiently high temperature where stable austenite exists,

then develops under an applied load to a state at which detwinned martensite is sta-

ble, and finally returns to the austenitic phase when returned to zero stress state. An

example of this path (a → b → c → d → e → a) is shown in Figure 1.11 as path 1.

Most commonly, a pseudo-elastic test is performed at a nominally constant temperature

above Af . The loading path for such a test is shown as path 2 in Figure 1.11 (Lagoudas,
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2008).

To illustrate the pseudo-elastic behavior in greater detail, let us consider the thermo-

Figure 1.11: Phase diagram and two possible pseudo-elastic loading paths (Lagoudas,

2008).

mechanical loading path (A → B → C → D → E → F → A) in Figure 1.11, which

starts at zero stress at a temperature above Af . The corresponding σ − ε experimental

data for the loading path is shown in Figure 1.12. When a mechanical load is applied,

Figure 1.12: A typical SMA pseudo-elastic loading cycle (Lagoudas, 2008).

the parent phase (austenite) undergoes elastic loading (A→ B). At a specific load level,

the loading path intersects the surface for initiation of martensitic transformation on the
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phase diagram. This marks the stress level (σMs) for the onset of transformation into

martensite. Note that the stress-induced transformation from austenite to martensite

is accompanied by the generation of large inelastic strains as shown in the stress-strain

diagram of Figure 1.12. The transformation proceeds (B → C), to the stress level (σMf )

where the loading path intersects the Mf transformation surface, indicating the end of

the transformation.

The completion of martensitic transformation is indicated by a distinct change in slope

on the σ− ε curve, which is associated with the elastic loading of the martensitic phase.

A subsequent increase in the stress causes no further transformation and only the elas-

tic deformation of detwinned martensite occurs (C → D). When the stress is released

gradually by unloading, the martensite elastically unloads along the path (D → E).

At point E, the unloading path intersects the austenitic start surface (at σAs), which

causes the martensite to revert to austenite. The process is accompanied by the recov-

ery of the strain due to phase transformation at the end of unloading. The end of the

transformation back into austenite is denoted by the point at which the σ− ε unloading

curve rejoins the elastic region of austenite (point F corresponding to stress σAf ). The

material then elastically unloads to A. The forward and reverse phase transformation

during a complete pseudo-elastic cycle results in a hysteresis, which in the σ − ε space,

represents the energy dissipated in the transformation cycle. The transformation stress

levels and the size of the hysteresis vary depending on the SMA material and testing

conditions (Lagoudas, 2008).

The detwinned martensite that forms from austenite as a result of the applied stress

during Path 1 or 2 in Figure 1.11 is one form of stress-induced martensite (SIM). SIM,

in general, is martensite that forms from austenite in the presence of stress. There are

many thermo-mechanical loading paths that can result in the formation of SIM.

1.2.3 SMA behavior under multiaxial loading

Even though significant interest in modeling the pseudo-elastic and pseudo-plastic be-

havior of shape memory alloys and NiTi in particular exists, the experimental data,

which are used to fit the material models, are in most cases associated to simple uniax-

ial tests or even simple tension experiments. In order to develop reliable models, which

may be used to simulate complex structures, it is of paramount importance to use multi-

axial experiments so that material models can be cross-checked utilizing a high degree of

complexity. Furthermore, temperature controlled multiaxial experiments, which cover

the whole transformation temperature regime are requisite in order to characterize the

path dependence of the one-way shape memory effect.
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Basically, most experimental research in the field of shape memory alloys is conducted

on Cu-based and NiTi shape memory alloys. on a relatively thick-walled (Radius-to-

wall thickness ratio of r/t = 2.2) Cu-based specimen. Multiaxial experiments covering

a wide range of temperatures have been performed by Grabe and Bruhns (2009). The

experimental multiaxial data are interesting resources in order to allow for a broad

cross-checking of material models as well as to give some explanations and hints how

to model the non-linearity of the material with reference to pseudo-elasticity and the

one-way effect. SMA constitutive models have been proposed at the mesoscale based

on J2 type transformation theory as a generalization to the multiaxial case. However,

the experimental works show that the direction of transformation strain rate is not

collinear with the deviatoric stress, in general. Accordingly, generalizations must reflect

the role of the orientation distribution of transformed martensite variants, variant co-

alescence, and related phenomena. Figure 1.13 compares the response of an elastic, a

plastic and an SMA material under a square-shaped axial-torsional stress-control path

(Figure 1.13a). According to Figure 1.13b, the three material behaviors are completely

Figure 1.13: Biaxial path with a square-shaped stress history; a) Stress path; (b) compar-

ison of response of pure elastic, elasto-plastic and SMA materials (Panico and Brinson,

2007).

different; in particular, the elastic response is purely affine to the stress loading path

while the elasto-plastic response presents a large residual strain upon unloading and

substantially less axial-shear coupling compared with the SMA behavior. This high-

lights the importance of using a proper modeling tool for SMA materials specifically

under non-proportional loadings.
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1.2.4 Classification of SMA behaviors

Two main characteristic behavior of SMAs is pseudo-elasticity and shape memory effect

under a general three-dimensional multiaxial loading (i.e., the variant reorientation is

also important) while other behaviors are of secondary importance. We may then cate-

gorize the SMA behaviors into two groups as follows:

Primary effects: include pseudo-elasticity, shape memory effect as well as variant reori-

entation. It is expected that an SMA constitutive model, at least, can capture these

effects.

Secondary effects: cover other effects which may turn out to be relevant in some practical

cases. We can include the following items in this category:

Tension-compression asymmetry

Experimental observations show that loading conditions have significant influences on

the deformation behavior of SMAs. In particular, deformation behavior is observed

to be asymmetric in tension and in compression (Figure 1.14). The physical origins of

such an asymmetry is attributed to the low crystallographic symmetry of the martensite

structure. This implies that conclusions derived from tensile deformation tests cannot

be directly translated to other deformation modes and that independent experimental

investigations of deformation modes other than tension are needed for a full characteri-

zation of the thermo-mechanical behavior of NiTi (Orgeas and Favier, 1998).

Figure 1.14: Asymmetric behavior under tension, compression and torsion (Orgeas and

Favier, 1998).
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Different elastic properties for austenite and martensite

Usually the elastic modulus of an SMA depends on the phase transformation level.

In other words, the elastic properties of martensite and austenite phases are different

(Auricchio et al., 2009b; Cernoch et al., 2004).

Progressive strain under cyclic loadings

Sometimes, as shown by many experimental observations, the stress-strain pseudo-elastic

loop is not closed and a permanent inelastic strain remains after unloading (Figure

1.15). Moreover, if the SMA is subjected to cyclic loading, the permanent inelastic

strain increases up to it reaches a stable value after a certain number of cycles (e.g.,

Sittner et al. (1995); Tanaka et al. (1995)). This particular behavior of pseudo-elastic

SMAs under cyclic loading is sometimes called ratcheting effect (Feng and Sun, 2007)

as observed in the mechanical behavior of classic metallic alloys under cyclic loading.

Figure 1.15: Pseudo-elastic response of an as-received NiTi wire and stabilized hysteresis

loop after 20 cycles (Lagoudas, 2008).

Internal loops (subloops)

If the range of the cyclic thermo-mechanical loading does not fully cover the transfor-

mation zones, the martensitic and/or reverse transformations are not complete in each
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cycle, resulting in subloops. Figure 1.16 shows an experimentally-observed behavior

under incomplete phase transformation.

Figure 1.16: Pseudo-elastic behavior of a NiTi wire - development of internal loops

(Dolce and Cardone, 2001).

Thermo-mechanical coupling

In problems involving SMA materials, thermo-mechanical coupling has to be taken into

account due mainly to the latent heat associated to the martensitic transformation and

heat production/absorption resulting from SMA material by internal dissipation process.

It is known that the forward transformation (A → M) is exothermal and the reverse

transformation (M → A) endothermal. It means that during forward phase change, the

temperature of the SMA increases due to heat generation. Austenite thus becomes more

stable and higher stress becomes required to drive the formation of martensite forward.

During reverse phase change, because latent heat is predominant, the temperature of the

SMA decreases making martensite more stable. Stress must then be decreased further for

the reverse transformation to continue. Therefore, thermo-mechanical coupling explains

the observed dependence of SMA behavior on strain rate. This was discussed, for

example, by Shaw and Kyriakides (1995), Grabe and Bruhns (2008a) and Tobushi et al.

(1998) who found that strain rate dependence can be neglected for rates lower than 2

%/min.
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1.3 Applications

Many alloy systems show shape memory behavior but only a few of them have been

developed on a commercial scale (NiTi, NiTi-X, Cu-Zn-Al). At present more than 90%

of new SMA-applications are based on NiTi or ternary NiTi-Cu and NiTi-Nb alloys

(Van Humbeeck, 2010). Other shape memory alloys are close to market introduction

(Fe-Mn-Si) while still others have interesting potentials but are difficult to produce or

suffer from brittleness such as alloys envisaged for applications at higher temperatures

(Firstov et al., 2006).

Although NiTi SMAs are more expensive and more difficult to machine than Cu-based

SMAs, there are several reasons why almost only NiTi SMAs are used in new develop-

ments. NiTi SMAs are much stronger and more ductile. NiTi SMAs show in general a

higher stability in cyclic applications, NiTi SMAs are available in the shape of thin wires

and thin films, and NiTi SMAs have a higher electrical resistivity making electrical acti-

vation much simpler. The requirements for medical applications (biocompatiblity) also

eliminate the Cu-based alloys. For some reasons, mainly Ni but also Ti can be partially

(a few percent) replaced by Cu, Co, Fe, Nb or Mo. These elements can improve the

hysteresis (stress and/or temperature hysteresis), corrosion, resistance, transformation

temperatures, fatigue behavior and so on.

SMA applications can be divided into the following categories (Van Humbeeck, 2010):

1. The one and two way shape memory effects can be used for free recovery applica-

tions. This refers to applications in which the single function of the SMA-element

is to cause motion or shape changes without any biasing stress.

2. The generation of recovery stresses can be used for diverse clamping devices, such

as SMA-couplings and SMA-connectors, ranging from very small diameters (< 1

mm) to very large diameters (> 1 m).

3. Diverse actuation applications have been developed based on the work production

capacity of SMAs.

4. Pseudo-elasticity is used in many biomedical and other super-elastic applications

where higher reversible strains have to be combined with high stress plateaus.

5. Damping applications can be developed based on the high damping capacity of

SMAs. The high damping capacity of the martensite phase is interesting for

passive damping. The super-elastic hysteresis might be interesting for earthquake

damping and isolation purposes.
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Since a few years ago, shape memory alloys have found their specific position in many

domains of industrial activities. A steadily growing amount of different SMA applica-

tions are now produced at large volumes, but the large majority of applications is still

in the biomedical field. In the following we mention some applications.

1.3.1 Couplings and Fasteners

Heat-recoverable couplings as well as heat-to-shrink fasteners make use of the force cre-

ated by a deformed SMA-element during constrained recovery. In fact, a coupling to

connect titanium hydraulic tubing in the Grumman F-14 aircraft, developed by Ray-

chem, was the first large scale application of SMA in 1971 (Otsuka and Wayman, 1998).

The original alloy was a NiTiFe; Fe was alloyed to obtain a low transformation tem-

perature down to −55◦C. This should prevent that the coupling would transform into

martensite at lower temperatures and thus would soften and start leaking. The mount-

ing procedure was quite complicated: expansion of the ring in liquid nitrogen, storing

(also during transport) in liquid nitrogen until mounting by just bringing it to room

temperature.

The problem of liquid nitrogen storage has been later solved by stabilisation of marten-

site either thermal (in Cu-based alloys) or mechanical (in NiTiNb alloys). The develop-

ment of NiTiNb alloy was a real breakthrough for the coupling business (Duerig et al.,

1990). But also FeMnSi alloys received quite a lot of attention, in spite of their lower

recoverable strain.

Dedicated applications were specifically named such as Crocon and Crofitr (hydraulic

couplings), Croliver (a more complicated tool to couple), BetaflexTM and CrotactTM

electrical connectors for Zero Insertion Force (ZIF) connectors, and Tinelr-lock and

Unilockr rings (Van Humbeeck, 2010).

The main advantages of all those systems are the followings (Otsuka and Wayman,

1998):

• Lightweight

• Easy installation even in difficult to access areas

• Proven reliability

• Good shock, vibration and thermal cycling properties can provide a hermetic seal

Disadvantages are:

• High cost relative to classic alternatives
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• Remain operational in a limited temperature range (−20◦C to 200◦C)

• Limited memory amount of motion available

A specific class of couplings or fasteners based on SMA are heat sensitive elements

that should lock or unlock two different parts within a short time and at a critical

temperature. Those types of applications can be found especially in the area of fire

(or excessive heat) protection and release mechanisms in space technology. In fact, the

SMA-element is retained here in a non-constrained but deformed martensitic condition.

During heating the one-way effect allows to release the part formerly hold by the SMA-

device. As such, it can be classified also as a one-way SMA-actuator. Figure 1.17 shows

some commercially available SMA-devices.

Figure 1.17: Shape memory devices. Clockwise from top left: memory card ejector

mechanism for laptop computers; Cryofitr hydraulic pipe couplings; Cryoconr electrical

connector; fire safety lid release for public garbage receptacles (Schwartz, 2002).

1.3.2 Actuators

Since the recovery force, e.g. generated by a constrained shape memory element, acts in

the direction of the recoverable shape change, this force can be used to perform work.

The shape memory element can thus be classified as a thermal actuator. Indeed thermal

energy is directly converted into mechanical energy. Before selecting SMA for actuating
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elements it is worth to overview the most important advantages and drawbacks of SMA

actuation (Van Humbeeck, 2010).

Important reasons to select SMA as an actuation mechanism are:

• Simplicity of mechanism.

• Creation of clean, silent, spark-free and zero gravity working conditions.

• High power/weight (or power/volume) ratios.

In spite of those significant advantages, some drawbacks on the use of SMA-actuators

have to be considered as:

• Low energy efficiency (It is advantageous to use tension loaded wires to get more

efficiency)

• Limited bandwidth due to heating and cooling restrictions.

• Degradation and fatigue

Apart from some specific on/off applications such as an air damper for a multifunction

electric oven or an SMA generated fog lamp protective louver, designers have shown a

special interest in this type of applications, namely in robotic applications.

For robotic applications there are three important items that distinguishes several types:

• the type of deformation used for the active memory element: bending, torsion or

pure tension.

• the position feedback that enables free positioning of the actuator.

• the way of heating (cooling) the active element (mainly resistive heating, induction

heating, immersion heating, RF energy)

Space applications offer a few more arguments in favor of shape memory actuators. The

main arguments are:

• almost zero-gravity action in contrast to most electrical engines.

• high power/volume (mass) density and simple mechanism. this can compensate

for the low efficiency since the launch cost for every piece of material equals half

the item’s wight in gold.

• no dust particles created, no leakage of fluids
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For space applications, most interest has been given to single action devices such as a

release mechanism, truss mounting or solar panel deployment. But the applications of

repeated action actuator in space stations, satellites or planet robots such as the Mars

Pathfinder is gaining an increased interest (Van Humbeeck, 2010).

SMA-based actuators are also considered for repeated actions such as grippers, po-

sitioners, etc. The low thermal energy is here compensated by the ease of mechanism

which includes a high gain on weight, high work/volume density and almost zero gravity

accelerations.

1.3.3 Adaptive materials and hybrid composites

Smart materials involve three functions: sensor, actuator and control. Those three func-

tions are generally combined by using different materials in combination with a control

unit. Combination of several materials leads to structural elements that can be called

hybrid composites. Hybrid composites connected with a control unit can then be used

eventually as a smart structure.

More important for future new technologies are hybrid composites in which shape mem-

ory alloys can perform their specific role. The most envisaged applications can be

summarized as follows:

Active strain energy tuning: Restrained wires are embedded in the matrix. If such com-

posite plate vibrates at resonance, the wires can be heated which will develop a recovery

stress at the composite matrix wire interface. This produces a change in energy balance.

Active modal modification: Unstrained wires are embedded. To change the modal re-

sponse, the wires are heated resulting in a large increase of the elastic modulus of wires

during the martensitic transformation.

Active shape control: The shape memory effect is used to change the shape of the com-

posite matrix.

Active fatigue life and impact resistance improvement (self-repairing or self-healing):

Super-elastic embedded deformed wires create compressive stresses inhibiting crack

growth and even promoting crack closure. Embedded strained martensitic wires can

also be activated by heating.

Active stress-relaxation: Stress- or strain-induced martensite can relax imposed stresses

due to specific loading, differences in thermal expansion coefficients or thermal chocks.

Depending on the type of application, the shape memory alloys can be embedded as

thin wires, fibers, particles, thin films, while the matrix can be a metallic material, a

ceramic, a polymer or a composite.
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1.3.4 Biomedical applications

In recent years it became clear that the largest commercial successes of SMAs are linked

to biomedical applications (Duerig et al., 1999). The combination of good biocom-

patibility, good strength and ductility with the specific functional properties such as

shape memory effect and super-elasticity creates a unique material for medical appli-

cations. Especially the super-elastic effect of SMAs results in a unique combination of

high strength, high stiffness and high pliability; no other material or technology can of-

fer this unique combination. The temperature dependent character of the super-elastic

effect, which is disadvantageous in other application areas, is of less importance in the

biomedical field because of the stable temperature of the human body. NiTi with a

proper surface treatment shows an excellent biocompatibility. Also the concept of a

metallic material with an extreme elasticity and with nearly constant stress levels over

a large strain area is something that can be tackled easier by designers.

As a consequence, regarding the specific functional properties, the largest commercial

successes of SMAs are linked with the use of pseudo-elasticity (Van Humbeeck, 2010).

In the following, we study some medical applications.

Orthodontic applications

The properties of SMAs have been successfully implemented in a variety of dental ap-

plications. Nitinol orthodontic arch wires have been used since the 1970s, and are more

effective than other alternative materials. In a linear elastic material, like stainless steel,

there is a large increment in stress, for a small increment in strain which results in a

large amount of force on the tooth for a small amount of corrective motion. The advan-

tage of pseudo-elastic arch wires is the ability to operate in the pseudo-elastic plateau,

during which the material has a near-zero stress change over a large strain increment.

As a result, they provide a nearly constant, moderate force to actively move the teeth

over a longer period of time compared with stainless steel. Further, the material com-

position and processing can be engineered to produce different levels of optimal force.

An example of Nitinol orthodontic braces is shown in Figure 1.18a. Another key dental

application for SMAs involves the use of Nitinol drills in root canal surgery, which in-

volves careful drilling within the tooth (Figure 1.18b). The advantage of these Nitinol

drills is that they can bend to rather large angles, which induce large strains, yet still

withstand the high cyclic rotations (Lagoudas, 2008).
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Figure 1.18: Orthodontic applications of SMAs: (a) Nitinol braces used for alignment

purposes in dental applications. (b) A schematic showing a NiTi drill used for root canal

surgery (Lagoudas, 2008).

Cardiovascular applications:

An early cardiovascular SMA device was the Simon Filter. The device acts as a filter

that traps clots traveling in the blood stream. The trapped clots are then eventually

dissolved. From the original expanded state, the device is deformed and constrained

within a catheter. At the time of implantation, the filter is deployed in the blood vessel

where the ambient temperature exceeds As of the filter material. The release from the

constraint and the active properties of the SMA filter cause the filter to expand and

it assumes its original shape as shown in Figure 1.19a (Duerig et al., 1997). Another

application of SMAs in the cardiovascular field is the atrial septal occlusion device. This

device is used to seal an atrial hole that is located on the surface dividing the upper heart

chambers. The traditional surgical technique used to address this problem is highly in-

vasive and dangerous. The atrial septal occlusion device provides a suitable alternative

to such a surgery. This device also exploits the shape memory characteristics exhibited

by SMAs, and consists of two umbrella shape halves that can be screwed together in

the center. Initially, these halves are folded, constrained and introduced into the heart.

The two halves are deployed on either side of the hole and are connected using a screw.

The resulting sandwich configuration forms a patch that seals the hole.

A more common cardiovascular application is the self-expanding NiTi stent. Like other

conventional stents, this device is used to support the inner circumference of tubular

passages in the body such as blood vessels. Traditionally, stents are made using stain-

less steel. These stents are expanded from the size of the introduced catheter to the

size of the artery walls by an inflatable balloon. As the balloon is deflated, the steel

stent undergoes elastic unloading, often resulting in a loose fit. Furthermore, to reach
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Figure 1.19: Cardiovascular devices: (a) Top view (above) and side view (below) of the

Simon filter in the deployed configuration (Duerig et al., 1997). (b) A self-expanding

Nitinol stent shown in the deployed configuration (above) and constrained state (below)

(Lagoudas, 2008).

a particular nominal diameter, it is necessary to over-expand the stent to account for

this unloading. This process of over-inflation can damage the vessels and can cause a

condition where the blood vessel collapses after the procedure due to weakening of the

walls. The self-expanding NiTi stents provide an attractive alternative to the traditional

method. The device is generally laser cut from sheets or tubing and is then shape set

to the appropriate diameter. After being constrained, the NiTi stent is introduced into

the body where the temperature exceeds As of the stent material. It is then released in

the artery where it expands to its original larger diameter and gently pushes outward

on the walls. Furthermore, the device can adapt to any oblong passage as compared to

the balloon inflated steel stents that are biased toward a circular shape. Figure 1.19b

shows an illustration of a Nitinol stent in the constrained and deployed configuration.

Orthopedic applications:

The devices developed for orthopedic applications are used to support injured, weakened

or fractured bones. One such device is the spinal vertebra spacer (Figure 1.20a), used

to provide local reinforcement to the vertebrae and prevent motion during the healing
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process. The device applies a constant force on the joint while providing flexibility

(Machado and Savi, 2003). Porous SMAs represent a different kind of material form

and can be used as artificial bone implants (Figure 1.20b). The porous nature of the

material enables the existing bone tissue to migrate inward, increasing bonding strength.

Furthermore, the implant properties (stiffness and porosity) can be engineered to match

those of the bone. In a separate application, SMAs fasten to broken or fractured bones

to facilitate healing. These devices include orthopedic staples and shape memory plates.

The staple, for example, is installed in an open configuration at the fractured joint. An

external heating source is used to heat the staple causing it to return to its original

form via SME, which consequently provides a compressive force at the interface of the

separated bones (Machado and Savi, 2003). The shape memory plate is a device used

when a cast cannot be applied over the fracture surface (i.e. facial areas, jaw, nose).

The plate is also shape set, deformed, installed and then actuated via (external) heating,

providing a force which holds the fractured joints together (Machado and Savi, 2003).

Figure 1.20: Orthopedic applications of SMAs. (a) Spinal vertebrae spacers showing

the device in the martensitic and the deployed austenitic state (Duerig et al., 1997).

(b) A schematic showing the prospective use of porous SMAs as artificial bone implants

(Machado and Savi, 2003).

Surgical instrument applications:

Advances in medicine continue to enhance the use of minimally invasive surgery (MIS).

Some of the enabling technologies advancing MIS includes instruments that can be in-

serted through these small openings followed by expansion to a desired size for the

particular function. The pseudo-elastic and shape memory effect properties of SMAs

allow for more creative design options compared to conventional materials. One such

device is the SMA basket used to remove stones in the bile duct. Other instruments

using the shape memory effect behavior include surgical tools with grippers, scissors

and tongs used in laparoscopy procedures. Pseudo-elastic guide wires are widely used
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in surgery due to their kink resistance and superior flexibility (Duerig et al., 1997).

1.3.5 Other applications

There are many other fields and applications that incorporate SMAs. The oil industry

has shown extensive interest to use the SMA actuation capabilities in release devices and

protection systems for downhole drilling equipment. The high-temperature operating

conditions have also opened the avenue for the use of high-temperature SMAs (HTSMAs)

in these devices (Lagoudas, 2008).

Flexible metallic eyeglasses and headphones, that can be bent without breaking are

other applications that employ the pseudo-elastic behavior. SMAs have also been used

in sporting goods like golf clubs where the SMA embedded in the club absorbs the

impact of the strike.
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Chapter 2

Literature review and research

outline

2.1 Constitutive modeling approaches

From 1980 up to now, constitutive modeling of shape memory alloys has been an active

research subject. The resulting models can be in general classified into three major

categories:

Macroscopic phenomenological models (macro-models): Macroscopic phenomenological

models are built on phenomenological thermodynamics and/or directly curve fitting ex-

perimental data. Many are based on the common phase diagram of SMA transformation

where the transition regions of martensite to parent phase or parent phase to martensite

transformation are determined experimentally and plotted in stress-temperature space.

Researchers typically use the martensite volume fraction as an internal variable and

different mathematical functions to describe a smooth transition.

These kinds of models are generally more suitable for engineering applications due to

their simplicity and fast computations, but they can only describe the global mechan-

ical response while all the microscopic details are ignored; because the phase diagram

is built on experimental data, the models are also quite accurate. Based on contin-

uum thermodynamics with internal variables, several three-dimensional macroscopic

phenomenological models have been proposed, in the literature, with success.

In this research, we will use the macroscopic or phenomenological approach and will

present more details in the next sections.

Microscopic thermodynamics models (micro models): Micro-models focus on the de-

scription of micro-scale features, such as nucleation, interface motion, twin growth, etc.

(Abeyaratne and Knowles, 1990; Ball and James, 1987). They are extremely helpful to
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understand the fundamental phenomena, but are often difficult to apply for engineering

applications. They do not take into account phase volume fractions as a-priori internal

variables, but as a consequence of interface movements. More details can be found, e.g.,

in Falk (1980), Falk (1983) and Ball and James (1987).

Micro-mechanics based macroscopic models (micro-macro models): The essence of the

micro-mechanics-based models is in the modeling of a single grain and further averag-

ing the results over a representative volume element (RVE) to obtain a polycrystalline

response of the SMA. Such models have been presented in the literature by different

researchers. As an example, Patoor et al. (1996) have modeled the behavior of a poly-

crystalline SMA by utilizing the model for single crystals and using the self-consistent av-

eraging method to account for the interactions between the grains. A micro-mechanical

model for SMAs which is able to capture different effects of SMA behavior such as super-

elasticity and shape memory effect has been presented by Sun and Hwang (1993a,b).

In other words, this group of models uses thermodynamics laws to describe the trans-

formation and utilizes micro-mechanics to estimate the interaction energy due to the

transformation in the material, which is a key factor in the transformation mechanism.

Appropriate formulation of this interaction energy is very important and requires knowl-

edge of the micro-structural evolution. Several assumptions at the micro-structure level

is made to approximate the interaction energy (Fischer and Tanaka, 1992; Gao et al.,

2000; Huang and Brinson, 1998; Huang et al., 2000; Lexcellent et al., 1996; Patoor et al.,

1994; Sun and Hwang, 1993a). These models appear to have good predictive capabilities

and moreover, in some cases they are also able to successfully reproduce reorientation

and detwinning of martensite variants (Gao and Brinson, 2002; Huang and Brinson,

1998; Marketz and Fischer, 1996; Thamburaja, 2005). However, they employ a large

number of internal variables which makes computations time intensive, resulting in a

difficult application for engineering purposes.

One can summarize the advantages and disadvantages of the different approaches by the

following general remarks. First, the models developed with the macroscopic approach

are generally easy to use and allow quick computations but they are less predictive.

Concerning the micro-macro approach, it is much more predictive, but a large number

of internal variables is introduced. That is the reason why micro-mechanical models

still remain difficult to be used in structural engineering applications. The micro-level

approach is more suitable for the development of fundamental studies than for the quan-

titative description of macroscopic behaviors.
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2.2 Phenomenological SMA models

As we stated, we will use the phenomenological approach in the present study; conse-

quently, in the following, we review phenomenological SMA constitutive models. The

available phenomenological constitutive modeling approaches can be categorized in two

groups:

2.2.1 Models without internal variables

In such models the material behavior is described by strain, stress, temperature, and

entropy without the introduction of quantities representing phase mixture.

Polynomial potential models

In this approach, constitutive information are provided by a polynomial free energy func-

tion whose partial derivatives provide constitutive equations for strain (or stress) and en-

tropy. In 1980, Falk proposed a Landau-Devonshire like free energy function based on the

analogy between SMA uniaxial stress-strain curves and the electric field-magnetization

curves of ferromagnetic materials. In his work, Non-monotone stress-strain curves were

obtained, and the unstable negative slope part was interpreted as the occurrence of the

phase transition. The actual pattern followed during the transformation was assumed

to proceed at constant stress. The particular form of the Landau-Devonshire free energy

accounts for the temperature dependence of the isothermal stress-strain behavior. We

can address Falk (1980, 1983); Falk and Konopka (1990) as models in this group. The

main advantage of these models is their simple form, but they are not able to model

complicated behavior of the material as well as they do not describe accurately the

evolutive nature of the processes.

Hysteresis models

Hysteresis models seek to reproduce experimentally observed curves that involve high

nonlinearity and complex looping. They have been widely used in several fields, in

particular for magnetic materials. In this approach, constitutive equations are proposed

directly on the basis of their mathematical properties, often without explicit focus on

their link with the underlying physical phenomena of interest.

Two main algorithm classes have received special attention in the context of SMA phase

transformation. The first one is based on tracking sub-domain conversion/reversion and
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lead to integral based algorithms. The most common of these is known as the Preisach

algorithm and it has been used to describe uniaxial isothermal pseudo-elastic stress-

strain SMA response (Huo, 1989; Ortin, 1992). The second algorithm class involves

differential equations with separate forms for driving input increase and driving input

decrease. Differential equations of Duhem-Madelung form have been used to model

SMA phase fraction evolution during the thermally induced transformation (Ivshin and

Pence, 1994; Likhacev and Koval, 1992).

2.2.2 Models with internal variables

The key feature of this approach is to introduce appropriate internal variables describ-

ing the material internal structure. Internal variables, along with a set of mechanical

and thermal control variables, define a collection of state variables. A general thermo-

dynamical consistent approach then allows to derive evolution equations for the internal

variables. Mechanical control variables can be either strain or stress, while thermal

control variables can be either temperature or entropy. The internal variables typically

include one or more phase fractions and/or macroscopic transformation strains. The

first application of such an approach to SMAs seems to be due to Tanaka and Nagaki

(1982), where internal variables are employed to describe the development of the under-

lying phase mixture.

The models based on internal variables can furthermore be categorized into two groups:

Models with assumed phase transformation kinetics

Models with assumed phase transformation kinetics consider the involved martensitic

volumetric fraction as internal variable, which is expressed as function of current values

of stress and temperature. Several authors propose different functions to describe the

volumetric fraction evolution. The model firstly developed by Tanaka and coworkers (Lin

et al., 1994; Tanaka, 1986, 1990; Tanaka and Iwasaki, 1985; Tanaka and Nagaki, 1982;

Tanaka et al., 1995) was originally conceived to describe three-dimensional problems

involving SMAs. Nevertheless, its implementation was naturally restricted to the one-

dimensional context. The authors considered exponential functions to describe phase

transformations. Since an exponential function was adopted, there should be an extra

consideration for the phase transformation final bounds.

Boyd and Lagoudas (1994) rewrote Tanaka’s original model, for a three-dimensional

theory, while the relations used to describe phase transformation evolution remained the

same as in Tanaka’s model. Liang and Rogers (1990) presented an alternative evolution

law for the volumetric fraction based on cosine functions. The authors also developed a
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three-dimensional model, in which they suggest that phase transformations are driven

by the associated distortion energy. Brinson (1993) offered an alternative approach

to the phase transformation kinetics, in which, besides considering cosine functions,

the martensite fraction was split into two distinct quantities, the temperature-induced

martensite and the stress-induced martensite. The author also considered different

elastic moduli for austenite and martensite.

Models with internal variable(s) evolution equation(s)

These models are developed within a more rigorous thermodynamical continuum ap-

proach. The theory is then composed of physical laws, i.e. the constitutive equations

that characterize the features typical of each material, and material behavior require-

ments that ensure thermo-dynamical process restrictions. Constitutive information are

specified by two kinds of relations: 1. state equations for the entities conjugate to con-

trol variables. These can be formulated directly or obtained as partial derivatives of

a suitable free energy function after enforcing the Clausius-Duhem inequality for ev-

ery process. If heat conduction is to be included, then a constitutive equation relating

temperature gradient and heat flux (usually the Fourier equation) is also required; 2.

kinetic equations for the internal variables. In view of phase transformation hysteresis,

these equations generally depend on the material past history. Standard practice in

most internal variable models is to specify this dependence through equations relating

the rates of the internal variables to the current state and its time derivatives. The

internal state then follows from the solution of differential equations in time.

Although, sometimes employing formalisms are quite different, several models fitting

into this basic framework have been proposed to describe SMA behavior. While most

of the efforts are limited to modeling one-dimensional behavior of the material, in the

last decade, motivated by extensive engineering applications as well as available multi-

axial experimental data, considerable attention has been devoted into developing three-

dimensional constitutive models. Nowadays, there are varieties of 3D phenomenological

models trying to properly capture different aspects of SMA behaviors.

Compared with the extensive efforts in constitutive modeling, there are not considerable

publications in the corresponding numerical implementation. This fact is partially due

to unavailability of proper constitutive models suitable for the corresponding numeri-

cal implementation. High nonlinear behavior of material and complicated structure of

models - compared to plasticity - are other obstacles in numerical implementation. It

is generally accepted in the literature that in order to reach a computational tool for

design and analysis of SMA devices and structures, 3D phenomenological constitutive

models in the framework of continuum thermodynamics with internal variables should
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be developed.

Micro-plane method

Another approach in constitutive modeling is based on micro-plane theory. This ap-

proach is interesting for its capability of extending a 1D constitutive model to a 3D one.

The micro-plane modeling approach originated from the work of Taylor (1938), who

studied the constitutive behavior of polycrystalline metals by developing relations be-

tween stress and strain vectors on generic planes of arbitrary orientations in the material

and determining the macroscopic stress or strain tensors as a resultant of all these vec-

tors. This concept was later modified by others and is commonly known as slip theory of

plasticity. As slip is not the source of inelastic response for all types of materials, Bazant

(1984) introduced a neutral term called the micro-plane theory, which can be used for

general inelastic behavior. In this approach, a 1D constitutive law for one stress compo-

nent and the associated strain component on each micro-plane is sufficient to generate

a macroscopic 3D model by considering either of two main formulations in micro-plane

theory named static constraint and kinematic constraint. In static constraint formula-

tion, it is assumed that the stress vector acting on each micro-plane is the projection

of the macroscopic stress tensor. In kinematic constraint formulation, the strain vector

on any micro-plane is considered as the projection of the macroscopic strain tensor.

Moreover, there are some particular material laws where both static and kinematic con-

straints coexist. Such a case is called double constraint formulation. Brocca et al. (2002)

present a model based on micro-plane theory, which can model both shape memory and

pseudo-elasticity. A micro-plane constitutive model for polycrystalline SMA is proposed

in Kadkhodaei et al. (2007) by first deriving a 1D model and then generalizing it to a

3D case.

Fremond’s model

Fremond (1987, 1996) developed a model for a three dimensional media, being able to

reproduce both pseudo-elasticity and shape memory effect, with the aid of three internal

variables that should obey internal constraints related to the coexistence of the different

phases. The modified model takes into account some changes in the original formulation

that allows new phenomena description such as linear hardening plasticity, plastic-phase

transformation coupling, phase transformation due to temperature variation, internal

subloops due to incomplete phase transformation, tension-compression asymmetry and

transformation induced plasticity (TRIP). Based on the Fremond’s model, several works

have been published by a group around Paiva and Savi (Baêta-Neves et al., 2002, 2004;
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Paiva et al., 2005, 2007; Savi and Paiva, 2005).

2.3 Literature review: models based on the contin-

uum thermodynamics with internal variables

In this thesis we use continuum thermodynamics with internal variables which is, in

our opinion, the most suited approach for the development of reliable 3D SMA consti-

tutive equations, able to describe material response under complex multiaxial thermo-

mechanical loadings. In the following we present a detailed literature review based on

the continuum thermodynamics with internal variables.

2.3.1 SMA modeling activities between 1980–1995

After the discovery of Nitinol in 1963 and first commercial application as F-14 cou-

pling in 1971, it seems that the first book on shape memory alloys appeared in 1975 by

Perkins which presented some metallurgical aspects of SMAs. As we mentioned in previ-

ous sections, most of the works in the beginning of 1980 is devoted to micro-modeling or

simple phenomenological ones. In a series of papers, Müller and his colleagues developed

a systematic thermodynamic theory of pseudo-elasticity and presented a plausible one-

dimensional theory which is very useful in understanding the physics of most phenomena

in the material (Hu and Müller, 1993; Müller, 1986, 1989; Müller and Wilmanski, 1980;

Müller and Xu, 1991).

Tanaka and Nagaki (1982) were evidently the first researchers who discussed marten-

sitic transformations within the context of continuum thermodynamics with internal

variables. The phase transformation is basically governed by the minimization of the

free energy. The energy equation and Clausius-Duhem inequality were used to describe

the hysteresis associated with the phase transformation (Lin et al., 1994; Tanaka, 1986,

1990; Tanaka and Iwasaki, 1985; Tanaka et al., 1995).

In 1987, another book on shape memory alloys appeared (Funakubo, 1987). In the set-

ting of 3-D media, Bondaryev and Wayman (1988) proposed a phenomenological model

inspired by the classical plasticity theory. Motivated by the work of Tanaka (1986),

Liang and Rogers (1990) proposed a model with cosine kinetics for martensite volume

fraction.

In 1990, there were several motivations toward SMA applications, e.g. various medical

applications were introduced. Moreover, the first comprehensive book on engineering

applications of SMAs appeared in 1990 (Duerig et al., 1990). Inspired from several SMA

medical and industrial applications, it seems that, after 1990, there was more motivation
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Table 2.1: SMA macro-modeling up to 1995

year description

1963 NiTiNOL Discovery

1971 F-14 hydraulic coupling (first commercial application)

1975 Book: Perkins (1975)

≈ 1980 phenomenological thermodynamics approach

1982-1986 Tanka model (Tanaka and Nagaki (1982), Tanaka (1986))

1987 Book: Funakubo (1987)

1988 The paper by Bondaryev and Wayman (1988)

1990 Liang and Rogers (1990) model

1990 Book: Duerig et al. (1990)

≈ 1990 Various biomedical applications

1992 Raniecki et al. (1992) model

1993 Brinson (1993) decomposition

1994 Grasser and Cozzarelli (1994) model

1994 Boyd and Lagoudas (1994) model

1994 Ivshin and Pence (1994) model

1994 Raniecki and Lexcellent (1994) model

1995 Experiment by Shaw and Kyriakides (1995)

1995 Multiaxial experiment by Sittner et al. (1995)

toward SMA three-dimensional macro-modeling (e.g., Raniecki et al. (1992), Grasser and

Cozzarelli (1994), Boyd and Lagoudas (1994), Ivshin and Pence (1994) and Raniecki and

Lexcellent (1994)). However, one-dimensional modeling yet remained interesting due to

the use of SMA wires in smart composites and similar applications e.g., for actuators;

we can refer to the work by Brinson in 1993 where she introduced the decomposition of

the martensite volume fraction into stress-induced and temperature-induced parts.

In 1995, two comprehensive experimental studies published which affected considerably

the SMA modeling after on; the work by Shaw and Kyriakides (1995) presented several

aspects of thermo-mechanical behavior of NiTi wires and addressed questions concern-

ing local versus average measures of strains, spurious measurements of residual strains

and dependence of the heat transfer conditions on the stress-strain curves. The work

by Sittner et al. (1995), for the first time, presented a comprehensive multiaxial study

on Cu-Al-Zn-Mn SMAs. Table 2.1 summarizes the main activities from NiTi discovery

in 1963 up to 1995.
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2.3.2 SMA modeling activities after 1995

Starting 1996, there was more motivation toward SMA three-dimensional modeling due

to: it was generally accepted that continuum thermodynamics with internal variable is

a proper tool for effective SMA 3-D macro-modeling, there was extensive multidimen-

sional experimental data under proportional and non-proportional loadings and there

was much interest in medical and industrial applications. However, due to simplicity

in one-dimensional models and applications to smart composites (in a wire form), the

one-dimensional modeling yet remained active, with focus on secondary effects, e.g.,

progressive accumulated strain in (wire) actuator applications, different material prop-

erties for austenite and martensite and so on. Therefore, it was expected that the future

research to be directed toward proposing accurate 3D macro models and studying ma-

terial behavior under multidimensional loading (e.g., phase transformation surface) and

reporting more experimental data.

From a different aspect, engineering applications yet needed a proper computational

tool in design and simulation of SMA devices, specifically for biomedical applications.

Accordingly, developing a 3D SMA model to consider many SMA complicated behaviors

does not mean that it is an effective SMA model in engineering applications. To this

end, besides research activities in SMA modeling, it was necessary to decide on which

behaviors should be included in modeling according to engineering requirements as well

as corresponding computational tool development.

In the following, we focus on 3D macro-modeling, experimental studies and numerical

implementations of SMA models. We remark that we only focus on the works which

present a new modeling approach or a new model, skipping the works focused just on

secondary effects modeling.

Following the work by Raniecki and Lexcellent (1994), Leclercq and Lexcellent (1996)

presented a macroscopic description for the simulation of the global thermo-mechanical

behavior of SMAs; two internal variables were taken into account, i.e., the volume frac-

tion of self-accommodating (pure thermal effect) and oriented (stress-induced) prod-

uct phases. Lubliner and Auricchio (1996) applied the generalized plasticity theory

(Lubliner, 1984) to SMAs and proposed a three-dimensional model. In 1997, based on

a plasticity-like return mapping method, Masud et al. presented a finite deformation fi-

nite element model for the pseudo-elastic response of shape memory alloys under stress

loading-unloading conditions at constant temperature. Similarly, a plasticity-like fi-

nite element model for super-elastic SMA structures was proposed by Trochu and Qian

(1997). Sittner et al. (1997) presented several experimental data on thin wall tubes

made of CuAlZnMn subjected to combined axial and torsional loads in low temperature

martensite state (SME). With the aid of developing a computational tool to be used
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during the design of SMA-based devices, Auricchio et al. (1997) and Auricchio and Tay-

lor (1997) proposed constitutive models in small and finite strain regimes, respectively,

and implementing in the FEM, they solved several boundary value problems (BVP).

Souza et al. (1998) proposed a model which can describes the main features of polycrys-

talline shape memory materials in the setting of 3D media. It had been conceived within

the framework of generalized standard materials (Maugin, 1992), that internal variables

were defined to describe the phase transformation processes. Raniecki and Lexcellent

(1998) generalized the thermodynamic theory of pseudo-elastic behavior of SMAs to

account for the large differences between hysteresis loops in tension and compression.

In 1998, Otsuka and Wayman published a book on shape memory materials, with focus

on metallurgical aspects.

Qidwai and Lagoudas (2000) investigated various transformation functions and proposed

a generalized type transformation function. Auricchio (2001) presented a robust inte-

gration algorithm for a 3D finite-strain SMA model. Also, Liew et al. (2002) simulated

multidimensional super-elastic behavior of shape memory alloys via nonlinear finite el-

ement method. Thamburaja and Anand (2002) presented a model for super-elastic

behavior in tension-torsion of an initially textured NiTi shape memory alloy. Lexcellent

et al. (2002) determined the initial surface of phase transformation under biaxial loading

in some polycrystalline shape memory alloys both experimentally and numerically.

Auricchio and Petrini (2002) improved the model proposed by Souza et al. (1998) and

obtained a robust integration algorithm. In another work, Auricchio and Petrini (2004a)

included the asymmetric behavior and simulated several SMA-devices. Moreover, the

same model was extended to capture thermo-mechanical coupling effects in Auricchio

and Petrini (2004b).

Helm and Haupt (2003) have proposed a model to represent the multiaxial material

behavior of shape memory alloys which is able to represent the main effects of shape

memory alloys; i.e., the one-way shape memory effect, the two-way shape memory effect

due to external loads, the pseudo-elastic and pseudo-plastic behavior as well as the tran-

sition range between pseudo-elasticity and pseudo-plasticity. Bouvet et al. (2004) have

proposed a phenomenological model, taking into account the tension-compression asym-

metry effect, the temperature effect, the return point memory effect and the influence of

the loading path non-proportionality on the SMA mechanical behavior. Terriault et al.

(2006) have proposed a non-isothermal finite element modeling of SMA actuators using

the commercial software ANSYSr. Müller and Bruhns (2006) have proposed a thermo-

dynamic finite strain model to describe the pseudo-elastic response of shape memory

alloys. The model is based on a self-consistent Eulerian theory of finite deformations

using the logarithmic rate. Based on a modified phase transformation diagram, Popov

and Lagoudas (2007) proposed a 3D constitutive model for polycrystalline shape mem-
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ory alloys (SMAs).

Thiebaud et al. (2007) have presented an implementation of a phenomenological model

based on the so-called RL model (Raniecki and Lexcellent, 1998) in a finite element

code called COMSOL. Panico and Brinson (2007) have proposed a model that accounts

for the effect of multiaxial stress states and non-proportional loading histories. The

model is able to account for the evolution of both twinned and detwinned martensite.

Moreover, this model accounts for the reorientation of the product phase according to

loading direction. Within the framework of generalized standard materials with in-

ternal constraints, Zaki and Moumni (2007) have used the martensite volume fraction

and the martensite orientation strain tensor as internal variables to account for self-

accommodation, orientation and reorientation of martensite, as well as super-elasticity

and one-way shape memory. In another work, Moumni et al. (2008) have simulated

the pseudo-elastic response of SMAs as well as the one-way shape memory effect. In

addition, they have compared the results with the experimental data reported in Sittner

et al. (1995) and Tokuda et al. (1999).

Extending the small-strain model by Helm and Haupt (2003), Reese and Christ (2008)

have recently suggested a finite strain phenomenological model and implemented into

finite element formulation to simulate NiTi stents. After around 15 years of research in

SMA modeling, Lagoudas published, to the our knowledge, the first book on constitu-

tive modeling of shape memory alloys (Lagoudas, 2008). In an attempt to model variant

reorientation, as an important phenomenon under non-proportional loading conditions,

Arghavani et al. (2010c) have introduced a new set of internal variables, a scalar and

a tensor to describe phase transformation and reorientation. In addition, Based on the

new set of internal variables, they have proposed a new SMA constitutive model within

small strain regime and have compared with several experimental data. In another work

Arghavani et al. (2010e) have utilized the introduced internal variables and proposed a

class of small strain SMA constitutive models. They have showed that several SMA mod-

els, available in the literature, appear to be the members of the proposed class. Tham-

buraja and Nikabdullah (2009) have developed a non-local and thermo-mechanically-

coupled constitutive model for polycrystalline shape-memory alloys (SMAs) capable of

undergoing austenite into martensite phase transformations. The theory is developed

in the isotropic metal-plasticity setting using fundamental thermodynamic laws and the

principle of micro-force balance. Moreover, Thamburaja (2010) has extended the model

developed in Thamburaja and Nikabdullah (2009) to the finite strain regime.

More recently, Arghavani et al. (2010d) have extended the small strain model proposed

by Panico and Brinson (2007) to finite deformation regime. They have used a multiplica-

tive decomposition of the deformation gradient into elastic and inelastic parts together

with an additive decomposition of the inelastic strain rate tensor into transformation
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and reorientation parts. With the aim of obtaining a robust and efficient integration

algorithm for a 3D finite strain SMA model, Arghavani et al. (2010b) have proposed

a logarithmic mapping as well as a nucleation-completion condition to construct the

integration algorithm. Moreover, they have compared the robustness and efficiency of

different algorithms.

2.3.3 Experimental studies on mechanical behavior of SMAs

Even though significant interest exists in the modeling of pseudo-elastic and pseudo-

plastic behavior of shape memory alloys, and NiTi in particular, however the experi-

mental data, which are used to fit the material models, are in most cases associated with

uniaxial tests or even simple tension experiments. In order to allow for the development

of reliable models, which may be used to simulate complex structures, it is of paramount

importance to use multiaxial experiments so that material models can be cross-checked

utilizing a high degree of complexity.

Basically, most experimental research in the field of shape memory alloys is conducted

on Cu-based and NiTi shape memory alloys. One of the early experimental analysis

of the 3D behavior of SMAs was performed by Sittner et al. (1995, 1996). They in-

vestigated the stabilization of the transformation behavior in stress-induced martensite

in NiTi hollow bar cylinders. A number of loading cycles were performed in combined

tension-torsion and the specimen was then loaded in either tension or torsion revealed

strain anisotropy, i.e. the appearance of other strain components. Similar studies con-

cerning the examination of the path dependence, for NiTi, have been conducted by

Rogueda et al. (1996). Jacobus et al. (1996) and Gall et al. (1997, 1998) have concen-

trated on the influence of the triaxial compression state on the material behavior of

NiTi, analyzing zero hydrostatic pressure, triaxial compression, and hydrostatic com-

pression states. Proportional and non-proportional loading experiments on SMA torque

tubes have been conducted by Lim and McDowell (1999). They investigated the stress-

temperature coupling in tension, compression and torsion. As to examine the initial

surface of transformation onset, elaborate tests concerning internal pressure and bi-

compression experiments on Cu-based SMA cylinders have been published, for instance,

by the research group around Bouvet (see Bouvet et al. (2002, 2004)). In addition, Mc-

Naney et al. (2003) have addressed the combined tension/ torsion behavior for different

box tests in the first axial/torsional quadrant varying the aspect ratios of the respective

box shape. Extensive biaxial tests have also been performed by Helm (2001) and Helm

and Haupt (2003) who presented their findings on box and butterfly shaped strain con-

trolled experiments.

Moreover, when the interrelation of complex stress states and temperature variations ,
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effect Sittner et al. (1997) and Tokuda et al. (2002, 1999) have conducted some multiax-

ial tension/ torsion experiments on a relatively thick-walled (radius-to-wall-thickness

ratio of r/t = 2.2) Cu-based specimen at low temperature. Recently, Grabe and

Bruhns (2008b) have used a new method of temperature control to study the ten-

sion/torsion tests of pseudo-elastic, polycrystalline NiTi shape memory alloys under

controlled-temperature conditions. In another work, Grabe and Bruhns (2008a) have

focused on the decoupling of thermal and viscous effects on the transformation stress

level as the specimen material is subjected to heating and cooling due to latent heat

generation and absorption during phase transition. They have conducted uniaxial and

two-dimensional tension/torsion experiments to generalize the uniaxial findings.

More recently, Grabe and Bruhns (2009) have conducted several multiaxial experiments

on polycrystalline NiTi within a wide temperature range to investigate the pseudo-

elastic as well as the pseudo-plastic behavior within the distinct temperature regimes.

Isothermal and temperature varying thermo-mechanical loading paths have been ap-

plied by means of an active temperature control to characterize the path dependence of

pseudo-elasticity and the multiaxial one-way effect of the alloy. In the experimets, they

focused on the determination of the dependence of the loading sequence, the related

non-linearity of the material and the combined material interaction, e.g., referring to

reorientation processes for complex loading paths with respect to pseudo-elasticity and

the one-way effect.

We summarize the experimental studies on mechanical behavior of SMAs in Table 2.2.

2.4 Outline of the research

In this thesis, we develop several SMA constitutive models at small and finite deforma-

tions. To this end we use the following assumptions:

• we neglect the secondary effects, i.e.:

– we assume that material exhibits symmetric behavior under tension and com-

pression.

– we neglect thermo-mechanical coupling effects.

– we assume that the austenite and martensite phases have the same elastic

properties.

– we neglect the progressive strain under cyclic loadings.

• the material is assumed to be isotropic.
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Table 2.2: Experimental studies on mechanical behavior of SMAs

year material description Ref.

1995 CuAlZnMn tension-torsion Sittner et al. (1995, 1996)

1996 CuZnAl tension-torsion Rogueda et al. (1996)

1996 NiTi 3-D compression Jacobus et al. (1996)

1997 NiTi 3-D compression Gall et al. (1997)

1997 CuAlZnMn tension-torsion Sittner et al. (1997)

1998 CuZnAl 3-D compression Gall et al. (1998)

1999 CuAlZnMn tension-torsion Tokuda et al. (1999)

1999 NiTi axial-torsion Lim and McDowell (1999)

2001 NiTi axial-torsion Helm (2001); Helm and Haupt (2003)

2002 CuAlBe axial-axial Bouvet et al. (2002)

2002 CuAlZnMn tension-torsion Tokuda et al. (2002)

2003 NiTi tension-torsion McNaney et al. (2003)

2004 CuAlBe axial-axial Bouvet et al. (2004)

2008 NiTi axial-torsion Grabe and Bruhns (2008a,b)

2009 NiTi axial-torsion Grabe and Bruhns (2009)

Employing the above mentioned assumptions and based on the continuum thermody-

namics with internal variables, we develop a class of constitutive models within small

deformation regime. We then extend the models proposed by Panico and Brinson (2007)

and Souza et al. (1998) into finite deformation regime. Utilizing the multiplicative de-

composition of the deformation gradient, we develop constitutive models in which both

strains and rotations are assumed to be large. We propose a constitutive model in which

only large rotations are considered (strain is assumed to be small). In addition, we dis-

cuss numerical implementation of the developed constitutive models. In this regard,

we propose an integration algorithm and discuss in detail the corresponding solution

algorithm. We also address the construction of the consistent tangent matrix. Imple-

menting the developed integration algorithm into a user defined subroutine (UMAT)

in the nonlinear finite element software ABAQUS, we finally simulate several bound-

ary value problems and compare different algorithms in terms of robustness as well as

efficiency. The results show that the developed computational tool is an effective tool

which can be used in the design, analysis and optimization of SMA structures. The

structure of the thesis is as follows.

After an introduction to shape memory alloys in Chapter 1 and a comprehensive review

on different approaches in constitutive modeling of SMAs, specifically on SMA modeling

within continuum thermodynamics with internal variables, in this Chapter (Chapter 2),
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we present some basic preliminaries from nonlinear solid mechanics in chapter 3.

The rest of the thesis is then devoted to constitutive modeling in small and finite strain

regimes and numerical implementation in FEM. To this end, in Chapter 4, after re-

viewing some small strain formulations available in the literature, we present a class

of small-strain SMA models. We show that, several models, available in the litera-

ture, can be identified as members of the proposed class of models. With emphasis on

non-proportional loading and reorientation, we specifically introduce a model with the

property of decoupling pure reorientation from pure phase transformation.

In Chapter 5, we extend the small strain constitutive models proposed by Panico and

Brinson (2007) and Souza et al. (1998) into finite strain regime. The approach is based

on the use of a multiplicative decomposition of the deformation gradient into elastic and

inelastic parts. We then use the finite strain extension of Souza model and improve it

in several aspects, e.g.: well-defining the variables, presenting a fully-symmetric formu-

lation. We also develop a finite strain constitutive model based on the Hencky strain

measure.

Chapter 6 is totally devoted to numerical implementation of the developed constitu-

tive models. We give details on time-discretization, integration algorithm and solution

schemes.

In chapter 7, we propose an effective formulation for SMA simulation and compare the

robustness and efficiency of different algorithms. To this end, we compare the finite

strain, small strain and finite rotation formulations. Finally we present a summary and

draw conclusions in Chapter 8. Moreover, we use several appendices to present the

details of some derivations we have used in different chapters.
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Chapter 3

Preliminaries from nonlinear solid

mechanics

3.1 Introduction

This chapter contains a summary of the continuum mechanics background. The kine-

matical relations, the balance laws with their weak forms, the constitutive equations

and the linearization, which is used in the finite element formulation, are described.

3.2 Kinematics

The kinematical relations concern the description of the deformation and motion of a

body, the derivation of strain measures and the time derivatives of kinematical quan-

tities. All kinematical relations are needed within the constitutive equations and the

weak formulation of balance laws.

Motion and deformation gradient

The configuration of a body B is a one-to-one mapping ϕ: B → E3 where the location

of a particle X is given as x = ϕ(X). The motion of body B is then given as a one-

parametric series of configurations ϕt : B → E3. The location of a particle X at time

t ∈ R+ yields

x = ϕt(X) = ϕ(X, t) (3.1)

If the motion is characterized with respect to the material coordinates X, this is called

material, referential or Lagrangian description. Another possibility is the use of the
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spatial coordinates x when the motion of body B has to be described and is called

spatial or Eulerian description.

The equations of continuum mechanics can be formulated with respect to the deformed

or undeformed configurations of a body. From the theoretical point of view, there is

no difference or preference whether the equations are related to the initial or current

configuration and the configuration can be chosen freely (Wriggers, 2008).

To describe the deformation process locally, the deformation gradient tensor F with

J = det(F ) > 0 is introduced such that

dx = FdX or F = Gradx =
∂x

∂X
(3.2)

Knowing the deformation gradient allows to express further transformations of differ-

ential quantities between B and ϕ(B). For example, the transformation of surface area

elements between B and ϕ(B) is given by the formula of Nanson as (Bonet and Wood,

2008)

da = nda = JF−TNdA = JF−TdA (3.3)

where n is the normal vector of the surface of the deformed body ϕ(B) and N is the

normal vector in B. The transformation between volume elements of initial and current

configuration is provided by the relation

dv = JdV (3.4)

The polar decomposition of the deformation gradient splits the deformation gradient in

a multiplicative way in a proper orthogonal rotation tensor R (with R−1 = RT ) and

the symmetrical right and left stretch tensors U and V as

F = RU = V R (3.5)

The right and left Cauchy-Green tensors C and b are then defined, respectively, as

C = F TF = U 2, b = FF T = V 2 (3.6)

Finally, by introducing a displacement vector u(X, t) as

u(X, t) = ϕ(X, t)−X (3.7)

the deformation gradient can be written as

F = Grad[X + u(X, t)] = 1 + Gradu = 1 +H (3.8)

where the tensor H = Gradu is called displacement gradient and 1 represents the sec-

ond order identity tensor.
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Strain measures

In this section, different strain measures are discussed. The first strain tensor referred

to the initial configuration B and called Green-Lagrange strain tensor is defined by

E =
1

2
(C − 1) =

1

2
(U 2 − 1) (3.9)

The Green-Lagrange strain measure is often used in nonlinear structural engineering

applications. Since this strain measure can describe arbitrary rigid body motions cor-

rectly, it is mostly applied for problems with large displacements but small strains, e.g.

within beam or shell theory (Crisfield, 1997; Wriggers, 2008).

A generalization of (3.9) yields Seth-Hill class of strain measures defined by

Eα =
1

α
(Uα − 1), α ∈ R (3.10)

This strain tensor is referred to the initial configuration B. It is constructed such that

its linearization yields the classical linear strain measure. For α = 0, the strain tensor

E0 = log(U ) (3.11)

follows which is known under the name of Hencky and also called logarithmic or natural

strain measure.

The equivalent to the generalized strain measure (3.10) which is formulated with respect

to the current configuration ϕ(B) is given by

eα =
1

α
(V α − 1), α ∈ R (3.12)

We observe that the Green-Lagrange strain is included in (3.10) for the special case of

α = 2. Moreover, the so-called Almansi strain tensor is obtained with α = −2 from

(3.12) as

e := e−2 =
1

2
(1− V −2) =

1

2
(1− b−1) (3.13)

Finally, spectral decomposition of U and V is provided by

U =
3∑
i=1

λiNi ⊗Ni, V =
3∑
i=1

λini ⊗ ni (3.14)

where λi are the principal values of the stretch tensors, also called principal stretches.

They are equal for U and V . The eigenvectors Ni of U are related to the reference

configuration. The eigenvectors ni of V are referred to the spatial configuration. The

eigenvectors ni can be obtain from Ni via the relation ni = RNi.

The spectral decomposition of the Seth-Hill strain tensors are then given by

Eα =
3∑
i=1

fα(λi)Ni ⊗Ni, eα =
3∑
i=1

fα(λi)ni ⊗ ni (3.15)
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where the scale function f(λi, α) is defined as:

fα(λi) =

{
1
α

(λαi − 1) if α 6= 0

ln(λi) if α = 0
(3.16)

Transformation of vectors and tensors

Knowledge regarding the transformation between differential quantities in the current

and reference configuration is essential for many theoretical derivations and their ap-

plications in finite element methods. Tangent fields which are related to the current

configuration can be expressed in terms of quantities in the reference configuration.

With the notation introduced in Marsden and Hughes (1983) this is called pull back.

Conversely a push forward relates tangent fields referred to the reference configuration

to the current configuration ϕ(B).

For a covariant gradient of a scalar field G(X) = g(x) = g[ϕ(X)] relation

GradG = F Tgradg ⇐⇒ ∂G

∂XI

=
∂g

∂xi

∂xi
∂XI

(3.17)

gradg = F−TGradG (3.18)

can be derived. In an analogous way, the transformation for the covariant gradient of

the vector field W(X) = w(x) = w[ϕ(X)] is obtained

GradW = gradwF ⇐⇒ gradw = GradWF−1 (3.19)

As an application, the deformation gradient is computed from a displacement field

u[ϕ(X)] which is referred to the current configuration. With (3.8) and (3.19) it follows

F = 1 + Gradu

= 1 + graduF | F−1

=⇒ F−1 = 1− gradu

(3.20)

Hence the inverse of the deformation gradient can be obtained directly with displace-

ments which are referred to the current configuration. This result is applied in formu-

lations of the finite element method.

Time derivatives

The dependence of the deformation ϕ(X, t) on time t has to be considered in nonlinear

problems in case that the constitutive behavior is history dependent (e.g. in plasticity

or visco-elasticity) or in case that the complete process is of dynamical nature. The
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velocity of a material point with respect to the reference configuration is defined by the

material time derivative

v(X, t) =
Dϕ

Dt
=
∂ϕ(X, t)

∂t
= ϕ̇(X, t) (3.21)

In the current configuration, the velocity v̂ of a particle which assumes point x at time

t in ϕ(B) is given by

v̂(x, t) = v̂(ϕ(X, t), t) = v(X, t) (3.22)

The acceleration is given in an analogous way by the second derivative with respect to

time

a = ϕ̈(X, t) = v̇(X, t) (3.23)

Based on this definition, the acceleration can be determined with reference to the current

configuration. With (3.22) and the chain rule, it yields

â = ˙̂v =
∂

∂t
[v̂(ϕ(X, t), t)] =

∂v̂

∂t
+ (gradv̂)v̂ (3.24)

Time derivative of the deformation gradient F yields with (3.21) and (3.19)

Ḟ = Gradϕ̇(X, t) = Gradv = (gradv̂)F (3.25)

In this equation, the spatial velocity gradient gradv̂ occurs which is often denoted by l.

It can be written with (3.25) as

l = Ḟ F−1 (3.26)

The symmetric and skew-symmetric parts of l supply the strain rate tensor d and the

vorticity tensor w, i.e.:

d =
1

2
(l + lT ), w =

1

2
(l− lT ) (3.27)

Equation (3.25) can now be used to compute the time derivative of the Green-Lagrange

strain tensor (3.9)

Ė =
1

2

(
Ḟ
T
F + F T Ḟ

)
(3.28)

Using (3.26) in (3.28) with (3.27) yields the time derivative of E as

Ė = F T 1

2

(
l + lT

)
F = F TdF (3.29)

This equation denotes a pull back of the strain rate tensor d to the reference configura-

tion.

Finally, the convective time derivative of a spatial tensor is considered which is also

called Lie derivative. The Lie derivative is defined for a spatial tensor g(x, t) with

covariant basis by

Lvg = F

{
∂

∂t

[
F−1gF−T

]}
F T (3.30)
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This means that tensor g must be transformed first to the reference configuration by a

pull back operation. Here the material time derivative can be computed and afterward

the resulting quantity is related to the current configuration by a push forward operation.

The analogous rule for the Lie derivative of a spatial tensor ĝ with contravariant basis

is given by

Lvĝ = F−T
{
∂

∂t

[
F T ĝF

]}
F−1 (3.31)

Corotational rate

An Eulerian symmetric second order tensor A defined in a deforming material body is

said to be objective if it obeys the transformation rule under the change of frame (Xiao

et al., 1998)

x∗(X, t) = x∗0 + Q̂(t)x(X, t) =⇒ A∗ = Q̂(t)AQ̂(t)T (3.32)

where x and x∗ are, respectively, the current position vectors of the material particle X

in two frames in question and Q̂(t) is the proper orthogonal tensor characterizing the

relative rotation between the two frames in question. Let Ω∗ be a given spin tensor, i.e.

a skew-symmetric tensor varying with time. Then there is a rotation tensor Q̂ = Q̂(t)

such that

Ω∗ =
˙̂
Q(t)T Q̂(t) = −Q̂(t)T

˙̂
Q(t) (3.33)

In a rotating frame with the spin Ω∗, an Eulerian tensor A becomes Q̂(t)AQ̂(t)T and

therefore the material time rate of the latter is given by

˙
(Q̂(t)AQ̂(t)T ) = Q̂(t)ȦQ̂(t)T +

˙̂
Q(t)AQ̂(t)T + Q̂(t)A ˙̂

Q(t)T (3.34)

which yields
˙

(Q̂(t)AQ̂(t)T ) = Q̂(t)
◦
A Q̂(t)T (3.35)

In deriving (3.35), we have used (3.33) and have defined the corotational rate of the

Eulerian tensor
◦
A associated with the spin Ω∗ as:

◦
A = Ȧ+AΩ∗ −Ω∗A (3.36)

If the spin tensor Ω∗ is given in an arbitrary way, the corotational rate
◦
A need not be

objective, i.e. whether or not a corotational rate is objective depends on its defining

spin tensor. For instance, let Ω∗ = cw with c a real constant. Then it defines an in-

finitely many corotational rates of A when c runs over the reals. Of them, only the one

with c = 1, i.e. the well-known Zaremba-Jaumann rate, is objective. The well known

Green-Naghdi rate is also obtained from (3.36) when the spin tensor Ω∗ = ṘRT (with

Q̂(t) = RT ) is used. However different objective rates yields approximately the same

result under small shear strain condition (ABAQUS/Standard, 2008; Naghdabadi et al.,
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2005).

3.3 Balance equations

This section contains the differential equations which describe the local balance equa-

tions such as balance of mass, balance of linear and angular momentum as well as the

first law of thermodynamics. These equations represent the fundamental relations of

continuum mechanics.

Balance of mass

We consider only processes in which the mass of a system is conserved. This means

that the change of mass has to be zero (ṁ = 0). Hence an infinitesimal mass element in

initial and current configuration has to be equal which leads with dm(X) = ρ0dV and

dm(x) = ρdv to

ρdv = ρ0dV (3.37)

Here ρ0 and ρ are the densities in initial and current configuration, respectively. With

(3.4), the volume elements dV and dv can be transformed leading to the Lagrangian

description of the mass balance

ρ0 = Jρ (3.38)

Balance of linear and angular momentum

The linear momentum or the translational momentum, for the continuous case, is given

in the current and initial configuration with (3.37) by

L =

∫
ϕ(B)

ρvdv =

∫
B

ρ0vdV (3.39)

The balance of linear momentum can be then expressed by

L̇ =

∫
ϕ(B)

ρb̄dv +

∫
ϕ(∂B)

tda (3.40)

where ρb̄ defines the volume force (e.g. gravitational force) and t is the stress vector

acting on the surface of the body. With Cauchy’s theorem which relates the stress vector

t to the surface normal n via the linear mapping

t = σn (3.41)
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the stress vector can be expressed in terms of Cauchy stress tensor σ. Using now the

divergence theorem, the local balance equation of linear momentum is derived from

(3.40). With reference to the current configuration ϕ(B) relation

divσ + ρb̄ = ρv̇ (3.42)

is obtained. Following a similar approach, The balance of angular momentum demands

the symmetry of the Cauchy stress tensor

σ = σT (3.43)

First law of thermodynamics

Another balance law which postulates the conservation of energy in a thermodynamical

process is the first law of thermodynamics. It reads: The change in time (material time

derivative) of the total energy E is equal to the sum of the mechanical power P of all

external loads plus the heat supply Q

Ė = P +Q (3.44)

The mechanical power due to volume and surface loads is given by

P =

∫
ϕ(B)

ρb̄.vdv +

∫
ϕ(∂B)

t.vda (3.45)

The heat supply

Q = −
∫
ϕ(∂B)

q.nda+

∫
ϕ(B)

ρrdv (3.46)

consists of a conduction through the surface of the body which is described by the heat

flux vector q and the surface normal n and a distributed inner heat source r (specific

heat supply).

The total energy is composed of the kinetic energy

K =

∫
ϕ(B)

1

2
ρv.vdv (3.47)

and the internal energy

U =

∫
ϕ(B)

ρudv (3.48)

where u is the specific internal energy. Inserting relations (3.45)-(3.48) into equation

(3.44) yields, after several manipulations, the local form of the first law of thermody-

namics

ρu̇ = σ : d+ ρr − divq (3.49)
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where the term σ : d is called specific stress power.

In the framework of constitutive theory, the free Helmholtz energy ψ is often introduced

by the relation

ψ = u− ηT (3.50)

Here η denotes the entropy of the system and T is the absolute temperature. With this

definition, the first law of thermodynamics can be recast as

ρψ̇ = σ : d+ ρr − divq− η̇T − ηṪ (3.51)

Introduction of different stress tensors

Equations (3.42) and (3.43) are referred to the current configuration. Often it is desirable

to relate all quantities to the initial configuration B. For this purpose, further stress

tensors have to be introduced. Since a given stress vector does not change when referred

to the current or initial configuration, the following transformation can be performed

using Nansons formula (3.3) for surface elements∫
∂ϕ(B)

σnda =

∫
∂B

σJF−TNdA =

∫
∂B

PNdA (3.52)

which defines the first Piola-Kirchhoff stress tensor P as

P = JσF−T (3.53)

The spatial stress tensor σ in (3.53) is multiplied only from one side by F , hence the

tensor P is a two field tensor with one basis referred to the current and the other to the

initial configuration.

Naturally, it is simpler to work in the initial configuration with symmetrical stress

tensors. The second Piola-Kirchhoff stress was introduced through a complete transfor-

mation of the Cauchy stress to the initial configuration

S = F−1P = JF−1σF−T (3.54)

S does not represent a stress which can be interpreted physically. Hence it is a pure

mathematical quantity which however plays a prominent role in constitutive theory

(Wriggers, 2008), since S is work conjugated to the Green-Lagrange strain tensor (3.9).

Besides the Cauchy stress tensor σ, often the so-called Kirchhoff stress tensor τ is

introduced which results from a push forward of the second Piola-Kirchhoff stress tensor

S to the current configuration

τ = FSF T , τ = Jσ (3.55)
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Balance equations with respect to initial configuration

With the first Piola-Kirchhoff stress, the local balance of linear momentum (3.42) can

be recast with respect to the initial configuration as

DivP + ρ0b̄ = ρ0v̇ (3.56)

where Div denotes the divergence operation with respect to the initial configuration.

Furthermore, the use of (3.53) in the balance of angular momentum (3.43) yields

PF T = FP T (3.57)

From this it is clear that the first Piola-Kirchhoff stress tensor is nonsymmetric. Using

(3.54), the balance of angular momentum yields the symmetry of the second Piola-

Kirchhoff stress tensor: S = ST .

Transformation of the first law of thermodynamics (3.49) to the initial configuration is

obtained with the transformation of the stress power using (3.29)

Jσ : d = τ : d = (FSF T ) : (F−T ĖF−1) = S : Ė (3.58)

and (3.37) as

ρ0u̇ = S : Ė −DivQ + ρ0r0 (3.59)

Here the heat source r0 and the heat flux vector Q are referred to the initial configuration.

Time derivatives of stress tensors

The time derivative of stress tensors is of significance for the statement of incremental

forms of constitutive equations. For stresses which are referred to the initial configu-

ration (e.g. the second Piola-Kirchhoff stress tensor S), the derivative with respect to

time is given by the material time derivative

Ṡ =
∂S

∂t
(3.60)

Time derivatives for stress tensors like the Cauchy stress tensor σ which are related to

the current configuration are computed according to (3.24)

σ̇ =
∂σ

∂t
+ gradσv (3.61)

It can easily be shown that the material time derivative of the Cauchy stress tensor is not

objective, but objectivity is an inevitable prerequisite for the formulation of constitutive

equations. Hence numerous time derivatives were formulated - so-called objective time

derivatives - which can be applied to compute stress rates. The Lie derivative of a stress
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tensor provides an objective stress rate and is given for the Kirchhoff stress tensor using

(3.30) as

Lvτ = F

{
∂

∂t

[
F−1τF−T

]}
F T (3.62)

With
˙

F−1 = −F−1Ḟ F−1 and some algebraic manipulations,

Lvτ = τ̇ − lτ − τ lT (3.63)

can be derived using (3.26). The term Lvτ is also called Oldroyd stress rate. It is

equivalent to the Lie derivative of the Kirchhoff stress tensor. We observe that the Lie

derivative of τ is obtained as push forward of the material time derivative of the second

Piola- Kirchhoff stress if (3.55) is employed in (3.62)

Lvτ = F ṠF T (3.64)

Another objective stress rate called the Jaumann stress rate is applied in many formu-

lations of elasto-plastic material behavior at finite strains. This rate is defined by

∆
τ = τ̇ −wτ + τw (3.65)

Since l = d+w is valid, the Lie derivative of τ can be written with (3.63) as

Lvτ =
∆
τ −dτ − τd (3.66)

This relates the Jaumann stress rate to the Lie derivative (3.62).

By the exchange of the deformation gradient F by the rotation tensor for the polar

decomposition R in the Lie derivatives above, further objective stress rates can be

defined. An example is given by

LRv (τ ) = τ̇ −Ωτ + τΩ, Ω = ṘRT (3.67)

This stress rate is called Green-Naghdi stress rate.

3.4 Constitutive equations

The kinematical relations and balance laws derived so far are not sufficient to solve a

boundary or initial value problem in continuum mechanics. For a complete set of equa-

tions, a constitutive equation has to be formulated which characterizes the material

response of a solid body.

The constitutive theory describes either the microscopic or the macroscopic behavior of

a material. For most materials like steel or concrete which are used in technical appli-

cations, a macroscopic description is sufficient. In that case the functional dependence
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of stresses or heat flux with respect to the motion or temperature has to be considered.

Since real materials can exhibit very complex behavior, approximations have to be ap-

plied within the derivation process of constitutive equations. These, however, have to be

extensive enough to cover all effects observed in experimental investigations. Further-

more, basic principles from mechanics have to be obeyed to obtain theoretically sound

constitutive equations. These principles, which are listed in the following, can contribute

on their part to a simplification of the constitutive equations (Wriggers, 2008).

Using the principle of determinism, a decision will be made with regard to independent

and dependent variables which occur in the constitutive equations. Classically motion

and temperature are chosen as unknowns. The principle of equipresence demands the

same set of variables for all constitutive equations. By the principle of local action, the

material functions are restricted to a pointwise dependence on the deformation gradient,

the temperature and its gradient. Finally, the invariance or objectivity of constitutive

equations with respect to rigid body motions is postulated.

Another essential restriction for constitutive equations is provided by the second law

of thermodynamics. The second law of thermodynamics postulates that heat cannot

flow itself from a system with low temperature to a system with a higher temperature.

Another physical observation is that a substance with equally distributed temperature

which is free of heat sources can only receive mechanical energy but not release it. These

observations lead to two inequalities which contain mathematical statements regarding

the local entropy production and the entropy production as a result of heat conduc-

tion. An essential postulate states that for closed systems the entropy always increases

(dη > 0) within an irreversible process. With this the direction of process has to be

considered. Since only the weaker form of the second law of thermodynamics is needed,

one inequality is sufficient. By introducing the absolute temperature T (T > 0), the

entropy production is given by

Γ =
d

dt

∫
ϕ(B)

ρηdv −
∫
ϕ(B)

ρr

T
dv +

∫
ϕ(∂B)

1

T
q.nda (3.68)

The postulate that Γ ≥ 0, leads by addition of the energy balance (3.49) to the second

law of thermodynamics

ρη̇ ≥ ρr

T
− div(

q

T
) (3.69)

With the introduction of the free Helmholtz energy (3.50), ψ = u − Tη, the so-called

reduced form of the second law of thermodynamics can be defined by using (3.49)

ρ(ηṪ + ψ̇)− σ : d− 1

T
q.gradT ≤ 0 (3.70)

The free Helmholtz energy ψ denotes the part of inner energy which performs work at

constant temperature (Wriggers, 2008).

With inequalities (3.69) and (3.70), the irreversibility of processes can be described
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in which mechanical energy is transformed to heat energy (e.g. in case of friction or

inelastic deformations). The material form of (3.69) is derived in the same way as the

first law of thermodynamics, leading to

ρ0η̇ ≥
ρ0r0

T
− div(

Q

T
) (3.71)

Some special cases of thermodynamical processes can now be stated: (1) supply of heat

energy is excluded as well in the interior as over the surface of the body (r0 = 0,Q = 0);

such process is called adiabatic. (2) A process in which the temperature in the body is

kept constant (T = const.) is known as isothermal process.

Constitutive model development – for shape memory alloys – is the subject of the next

two chapters where we present the details of model derivation.

3.5 Weak form of equilibrium.

For the analysis of nonlinear initial boundary value problems in continuum mechan-

ics, a coupled system of partial differential equations has to be solved which consist of

kinematical relations, local balance of momentum and the constitutive equations. An

analytical solution of systems of nonlinear partial differential equations is only possible

for a selected number of simple initial boundary value problems. Hence approximate

methods like the method of finite differences or finite elements have to be applied to

solve this set of equations. The use of the finite element method, which is based on a

variational formulation of the equations expands the solution range to a broad spectrum

of applications. The necessary variational formulation will be described in the following

sections based on a referential and spatial description (Wriggers, 2008).

Several approaches can be applied to derive the variational formulation. In the engi-

neering literature, the principle of virtual work is often basis for the derivation of the

finite element approximations. It can, however, easily be shown that this formulation is

equivalent to using the weak form. In the following section, several variational formula-

tions are derived which can be applied in the context of finite elements.

3.5.1 Weak form of linear momentum in the initial configura-

tion

When an approximation uh of the exact solution u is inserted in the equations, then an

error will occur since the approximate solution is usually not equal to the exact solution.

Hence the insertion of the approximate solution into the momentum balance equation
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DivP + ρ0b̄− ρ0v̇ will lead to

DivP (uh) + ρ0b̄− ρ0v̇h = R (3.72)

The residual R, which denotes the error not fulfilling the momentum balance equation

by uh, will now be reduced to zero in a weak sense by multiplying the residual by

a weighting function η and by integrating the residual over the whole domain. The

vector-valued function η = {η|η = 0 on ∂Bu} is often called virtual displacement or

test function. This procedure leads to∫
B

DivP (uh).ηdV +

∫
B

ρ0(b̄− v̇h).ηdV = 0 (3.73)

which of course also has to hold for exact solution u∫
B

DivP (u).ηdV +

∫
B

ρ0(b̄− v̇).ηdV = 0 (3.74)

The weak form is also known as principle of virtual work in engineering. Since no

further assumptions, like existence of a potential are made, the weak form is applicable

to general problems such as inelastic materials, friction, non-conservative loading, etc.

By partial integration of the first term in (3.74), application of the divergence theorem

and introduction of the traction boundary condition, the weak form of linear momentum

G(ϕ,η) =

∫
B

P : GradηdV −
∫
B

ρ0(b̄− v̇).ηdV −
∫
∂Bσ

t̄.ηdA = 0 (3.75)

is obtained. The gradient of the test function η can also be interpreted as the direc-

tional derivative of the deformation gradient DF .η also known as variation δF of the

deformation gradient. In the weak form (3.75), the first Piola-Kirchhoff stress tensor

can be replaced through P = FS by the second Piola-Kirchhoff stress tensor leading to

P : Gradη = S : F TGradη = S :
1

2

(
F TGradη + GradTηF

)
= S : δE (3.76)

where the fact has been used that the scalar product of a symmetrical tensor (here

S) with an antisymmetric part of a tensor is zero. δE denotes the variation of the

Green-Lagrange strain tensor which is obtained via the directional derivative (Wriggers,

2008)

DE.η =
d

dα

1

2

[
F T (ϕ+ αη)F (ϕ+ αη)− 1

]
|α=0

=
d

dα

1

2

[
[Grad(ϕ+ αη)]TGrad(ϕ+ αη)− 1

]
|α=0

=
1

2

[
(Gradη)TF + F T (Gradη)

]
= δE

(3.77)

Using (3.76), equation (3.75) can be rewritten as

G(ϕ,η) =

∫
B

S : δEdV −
∫
B

ρ0(b̄− v̇).ηdV −
∫
∂Bσ

t̄.ηdA = 0 (3.78)

The first term in (3.78) denotes the internal virtual work, also called stress divergence

term.
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3.5.2 Weak form of linear momentum in the current configu-

ration

The transformation of the weak form (3.75) to the current or spatial configuration is

performed by kinematical operations in which the base vectors are push forward to the

configuration ϕ(B). With the transformation σ = 1
J
PF T of the first Piola-Kirchhoff

stress tensor to the Cauchy stress tensor, see (3.53), and considering (3.19) we can write

equation (3.76) as

P : Gradη = JσF−T : Gradη = Jσ : GradηF−1 = Jσ : gradη (3.79)

Furthermore, from (3.4) dv = JdV follows which is equivalent to ρ = ρ0J . With these

relations, the weak form (3.75) can be written in terms of the current configuration

g(ϕ,η) =

∫
ϕ(B)

σ : gradηdv −
∫
ϕ(B)

ρ(b̄− v̇).ηdv −
∫
ϕ(∂Bσ)

t.ηda = 0 (3.80)

In this relations, equation (3.52) has been used to transform the traction vector t̄ to

ϕ(B). The symmetry of the Cauchy stress tensor facilitates the replacement of the

spatial gradient of the test function η by its symmetric part. Hence with the definition

∇Sη =
1

2
(gradη + gradTη) (3.81)

the weak form follows with respect to the spatial configuration

g(ϕ,η) =

∫
ϕ(B)

σ : ∇Sηdv −
∫
ϕ(B)

ρ(b̄− v̇).ηdv −
∫
ϕ(∂Bσ)

t̂.ηda = 0 (3.82)

This relation is, in a formal sense, equivalent to the principle of virtual work of the

geometrically linear theory. But here the integral, the stress and virtual strain mea-

sures have to be evaluated with respect to the current configuration. Due to this, the

nonlinearities do appear, however hidden (Wriggers, 2008).

3.6 Linearizations

Nonlinearities appear in continuum mechanics due to different phenomena. In this

respect, geometrical nonlinearities can be mentioned which occur due to the nonlin-

ear strain measures such as the Green-Lagrange strain tensor. Physical nonlinearities

stem from nonlinear constitutive behavior like elasto-plastic or visco-plastic response.

Further, nonlinearities are related to one-sided or unilateral geometrical constraints as

appear in contact problems. These lead to variational inequalities and hence include

nonlinear effects.

Linearizations of the associated models have to be derived for several reasons when the
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initial or boundary values are solved. At one hand, the linearization process can be

applied to derive approximate theories which can still be solved analytically. This is,

e.g. the case for the theory of linear elasticity or for first and second order beam, plate

and shell theories. On the other hand, linearizations are needed within the algorithmic

treatment of the solution process for the nonlinear boundary value problems. This is,

e.g. the case for finite element methods where Newton-Raphson algorithms are em-

ployed to solve the nonlinear algebraic equation systems.

The directional derivative of the function f at x̄ in the direction of the vector u is defined

by (Bonet and Wood, 2008)
d

dα
[f(x̄ + αu)]|α=0 (3.83)

where α is a scalar parameter. Due to the fact that x̄ + αu describes a straight line in

R3, the directional derivative measures the increment of the function f in the direction

of this straight line at point x̄. The directional derivative can be computed using the

chain rule

d

dα
[f(x̄ + αu)]|α=0 =

[
∂f(x̄ + αu)

∂x
.
∂(x̄ + αu)

∂α

]
|α=0 =

∂f(x)

∂x
.u (3.84)

A comparison of the coefficients yields the result

d

dα
[f(x̄ + αu)]|α=0 = D̄f.u = D̄f [u] (3.85)

The directional derivative can be generalized for functional spaces in a formal way to

obtain the linear part of the mapping G at x̄:

L[G]x=x̄ = Ḡ + D̄G.u (3.86)

To simplify notation the directional derivative is written instead of D̄G.u in the following

in the short form ∆Ḡ. Here the bar denotes evaluation at x̄.

3.6.1 Linearization of kinematical quantities

The linearization of different kinematical relations is derived in this section (Bonet and

Wood, 2008).

Linearized deformation gradient

Consider a small displacement u(x) from the current configuration x = ϕt(X) = ϕ(X, t)

as shown in Figure 3.1. The deformation gradient F can be linearized in the direction
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Figure 3.1: Linearized kinematics.

of u at this position as

DF .u =
d

dα
[F (x + αu)]|α=0

=
d

dα
|α=0

∂(x + αu)

∂X

=
d

dα
|α=0

(
∂x

∂X
+ α

∂u

∂X

)
=
∂u

∂X
= Gradu

= (gradu)F = (∇u)F

(3.87)

Linearized strain

Using Equation (3.87) and the product rule, the Green-Lagrange strain can be linearized

at the current configuration in the direction u as

DE[u] =
1

2
(F TDF [u] +DF T [u]F )

=
1

2

[
F T∇uF + F T (∇u)TF

]
=

1

2
F T [∇u + (∇uT )]F

(3.88)

Note that half the tensor inside [ ] is the small strain tensor ε, and, therefore,DE[u]

can be interpreted as the pull back of the small strain tensor ε as

DE[u] = F TεF (3.89)
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In particular, if the linearization of E is performed at the initial material configuration,

that is, when x = X and therefore F = I, then

DE0[u] = ε (3.90)

Similarly, the right and left CauchyGreen deformation tensors, the inverse Cauchy-Green

tensor and Jacobi determinant can be linearized to give, respectively

DC[u] = 2F TεF (3.91)

Db[u] = (∇u)b+ b(∇u)T (3.92)

DC−1[u] = −2F−1εF−T (3.93)

DJ [u] = Jdivu = Jtrε (3.94)

Linearization of Almansi strain tensor

The linearization of spatial vectors and tensors is derived by a pull back of the spatial

objects to the initial configuration. In this configuration, the linearization is performed

and the linearized object then is push forward to the spatial configuration. This proce-

dure can now be applied to linearize the Almansi strain tensor. With the pull back of

the strain tensor, the linearization

De[u] = F−T{DE[u]}F−1 = ε (3.95)

is obtained.

3.6.2 Linearization of constitutive equations

The linearization of constitutive equations can be determined for elastic materials sim-

ply by linearizing the equations. For inelastic constitutive equations, the linearization

for the continuous case can be derived; however in the framework of the finite element

method a time integration has to be applied to evaluate the differential evolution equa-

tions describing such materials. Due to that, the linearization depends also upon the

integration algorithm. Hence these linearizations cannot be derived without the knowl-

edge of the integration algorithms. For a more general overview see e.g. Simo and

Hughes (1998).

The elastic constitutive equation describes the dependence of the 2nd Piola-Kirchhoff

stress tensor on the right Cauchy-Green tensor. The linearization of this constitutive

relation gives

L[S] = S̄ + D̄S[u] = S̄ + ∆S̄ (3.96)
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However, linearization of the constitutive equation yields:

∆S̄ = D[∆Ē] = D : ∆Ē (3.97)

where D is a fourth order tensor. This relation has the same structure as the incremen-

tal constitutive equation. The only difference is that the time derivatives have to be

exchanged by the directional derivatives.

The transformation of (3.97) to the current configuration can be formulated with the

Lie-derivative of the Kirchhoff stress tensor (3.64). This derivative is given in index

notation as

(Lvτ )ij = FiI ṠIJFjJ (3.98)

With the time derivative of the right Cauchy-Green tensor, see (3.9) and (3.29),

ĊKL = 2FkKdklFlL (3.99)

the final result can be expressed by

(Lvτ )ij = FiIFjJFkKFlLDIJKLdkl (3.100)

where d is the rate of deformation tensor. Since each basis vector of the incremental

constitutive tensor D in (3.100) is transformed to the current configuration, the spatial

incremental constitutive tensor C can be introduced as

Cijkl =
1

J
FiIFjJFkKFlLDIJKL (3.101)

Hence equation (3.100) can be reformulated with this relation

1

J
(Lvτ )ij = Cijkldkl,

1

J
Lvτ = C : d (3.102)

Often the Jaumann stress rate, defined in (3.65), is used in the literature to describe

elasto-plastic material behavior. Hence the incremental constitutive equation (3.102)

will be rewritten for the Jaumann stress rate. Using (3.66) the relation

1
J

∆
τ = C : d+ σd+ dσ

1
J

∆
τ ij = Cijkldkl + σikdkj + dikσkj

(3.103)

follows which can be abbreviated by placing dkl outside the brackets

1

J

∆
τ ij = CJ

ijkldkl with CJ
ijkl = Cijkl + δilσjk + δikσjl (3.104)

Equation (3.104) is from the physical point of view equivalent to (3.102).
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3.6.3 Linearization of weak form

The solutions of nonlinear initial boundary value problems in solid mechanics can be

obtained in general only by employing approximate solution techniques. Since many of

these methods like the finite element method rely on a variational formulation of the

field equations, the basis for numerical methods are provided by the weak forms of the

associated field equations. A discretization of the weak form leads to a set of nonlinear

algebraic equations.

For the solution of the set of nonlinear equations, many different algorithms are known.

Often Newton’s method is applied since it possesses the advantage of a quadratic con-

vergence close to the solution point. In case of Newton’s method, an improved solution

is obtained from the Taylor series expansion of the nonlinear equation at the already

computed approximate solution. This Taylor expansion corresponds in finite element

applications to the linearization of the weak form, or in solid mechanics to the lineariza-

tion of the principle of virtual work, and can be obtained by the directional derivative

discussed above. Such linearization will be computed here. The linearization will be

stated first for the weak form with respect to the initial configuration (3.75). In general,

the linearization at a deformation state of the solid is computed which is in equilibrium.

This state will be denoted by ϕ̄.

The linear part of the weak form is given by

L[G]ϕ=ϕ̄ = G(ϕ̄,η) +DG(ϕ̄,η).∆u (3.105)

The operator G(ϕ̄,η) corresponds to (3.75), just the deformation ϕ̄ is inserted instead

of ϕ. By assuming that the load is conservative the directional derivative of G can be

computed in the direction of ∆u by only taking the first term in (3.75) into account

DG(ϕ̄,η).∆u =

∫
B

[DP (ϕ̄).∆u].GradηdV (3.106)

hence all other terms do not depend upon the deformation. The linearization of the first

Piola-Kirchhoff stress tensor yields with P = FS

DG(ϕ̄,η).∆u =

∫
B

{Grad∆uS̄ + F̄ [DS(ϕ̄).∆u]}.GradηdV (3.107)

Terms with a bar have to be evaluated at the deformation state ϕ̄. The linearization of

the second Piola-Kirchhoff stress tensor can be expressed as:

DS(ϕ̄).∆u = D[∆Ē] (3.108)

where the last term is the linearization of the Green-Lagrange strain tensor E at ϕ̄.

At the state ϕ̄, The use of (3.108) in (3.107) completes the linearization

DG(ϕ̄,η).∆u =

∫
B

{Grad∆uS̄ + F̄D[∆Ē].∆u]}.GradηdV (3.109)
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Note that D̄ has also to be evaluated at state ϕ̄. By applying the trace operation to the

second term and by using the symmetry of D̄, a more compact form of (3.109) can be

found

DG(ϕ̄,η).∆u =

∫
B

{Grad∆uS̄Gradη + δĒD[∆Ē]}dV (3.110)

Here the symmetry in η and ∆u can be observed which results from the lineariza-

tion operation. The first term in (3.110) is often named initial stress term since the

stresses at the given state appear directly. The second term contains, besides the

incremental constitutive tensor D̄, the variation of the Green-Lagrange strain tensor

δĒ = 1
2
(F̄

T
Gradη + GradTηF̄ ) and the increment of the Green-Lagrange strain tensor

∆Ē = 1
2
(F̄

T
Grad∆u + GradT∆uF̄ ).

The linearization of the principle of virtual work can be obtained in terms of the current

configuration by a push forward of the linearization (3.110) to the already computed

configuration ϕ̄. Using the transformations for the linearization of the Green-Lagrange

strain tensor (3.89), which resulted as push forward in ∇S
x̄∆u (= ε̄) , it follows for the

second term in (3.110) ∫
B

∇S
x̄η.C̄[∇S

x̄∆u]JdV (3.111)

In this equations, the fourth order tensor C̄ can be computed by the transformation

(3.101) from D̄.

The first term in (3.110) can be directly recast with τ̄ = ¯FSF
T

as

Grad∆uS̄.Gradη = Grad∆uF̄
−1
τ̄ F̄

−1
.Gradη = (grad∆u)τ̄ .gradη (3.112)

This results in the linearization with respect to the known current configuration ϕ̄ where

all quantities have to be evaluated at ϕ̄

Dg(ϕ̄,η).∆u =

∫
B

{
(grad∆u)τ̄ .gradη + J∇S

x̄η.C̄[∇S
x̄∆u]

}
dV (3.113)

The integral (3.113) can now be referred to the current configuration with the relation

dv̄ = J̄dV , such that

Dg(ϕ̄,η).∆u =

∫
ϕ̄(B)

{
(grad∆u)σ̄ : gradη +∇S

x̄η : C[∇S
x̄∆u]

}
dv (3.114)

is obtained.

The deformation state ϕ̄ to which the formulation is referred is not known and can only

be obtained within the nonlinear solution process by an update of all deformation states

in a successive manner. Hence relation (3.114) is known in the literature also as updated

Lagrange formulation, see e.g. Bathe (1996).

With the above given linearizations all relations needed within the Newton method are

available as well as for formulations with respect to the initial configuration as with

respect to the current configuration. These linearizations are basis for finite element

simulations.
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3.7 Finite element formulation

A finite element discretization may be constructed by dividing the body into finite

elements. Accordingly, we have

Ω ≈ Ωh =
∑
e

Ωe (3.115)

where Ωe is the domain of an individual element, e, and Ωh is the domain covered by

all the elements. We note that, in general, Ωh is an approximation to the domain of

the real body. With this approximation the integrals in the variational equation may

be approximated as ∫
Ω

(·)dv ≈
∫

Ωh

(·)dv =
∑
e

∫
Ωe

(·)dv (3.116)

An approximate variational solution may be developed by writing trial solutions and

test functions for the motions and virtual displacements, respectively. Adopting an

isoparametric formulation, we may write for a typical element

X = NI(ζ)XI I = 1, 2, . . . , nen (3.117)

where nen is the number of nodes defining an element, I are node labels for the ele-

ment, NI(ζ) are shape functions for node I which maintain suitable continuity between

contiguous elements and XI are the coordinates for node I. Similarly, we may write

approximations for the current configuration as

x = NI(ζ)xI I = 1, 2, , nen (3.118)

the displacements as

u = NI(ζ)uI I = 1, 2, , nen (3.119)

the incremental displacements as

∆u = NI(ζ)∆uI I = 1, 2, , nen (3.120)

and the virtual displacements as

η = NI(ζ)ηI I = 1, 2, , nen (3.121)

Also, time dependence is included in the nodal parameters for the current position and

displacements.

Substituting (3.117)–(3.121) into (3.82), we obtain the basic finite element formulation

f int − f ext = Mü (3.122)

where

f intI =
∑
e

∫
Ωe

BT
I σdv (3.123)
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f extI =
∑
e

∫
Ωe

NIρb̄dv +
∑
e

∫
∂Ωe

NItds (3.124)

MIJ =
∑
e

∫
Ωe

NIρNJdv1 (3.125)

where the BI matrix describes the transformation from the virtual displacements, ηI to

the δε. Solution of this set of equations together with satisfying the material constitution

and the displacement boundary conditions, yields the solution to the problem. A com-

mon solution procedure is to use a Newton-type solution method and solve a sequence

of linear problems. Accordingly, in a Newton-type method we write the momentum

equation as

R = f int − f ext −Mü = 0 (3.126)

According to (3.113), a linearization of this set of equations gives

M∆ü + Kt∆u = R (3.127)

where

Kt = Kg + Km (3.128)

and the geometric stiffness matrix Kg and material tangent matrix Km are computed

by (3.114) as:

(Kg)IJ =
∑
e

∫
Ωe

tr(∇NT
I [σ]∇NJ)dv1 (3.129)

(Km)IJ =
∑
e

∫
Ωe

BT
I [C]BJdv (3.130)

where we have used [·] to denote the matrix form of a tensorial quantity.

The crucial step in the outline given above which remains to be addressed concerns

the computation of the stress field σ within a typical element. However, the element

internal force vector given by (3.123) is evaluated by numerical quadrature formula, i.e:

f inte =

nint∑
l=1

BT
e σ(x, t)|x=xle

wldve (3.131)

where xle ∈ Ωe denotes a quadrature point, wl is the corresponding weight, and nint is

the number of quadrature points for element Ωe.

The important conclusion to be extracted from expression (3.131) is that the stress within

an element Ωe is required only at discrete points; typically the quadrature points xle of

the element (Simo and Hughes, 1998).

We highlight that, according to the above fact, we will restrict our numerical discussions,

in the following chapters, to computation of the stress and tangent matrix at a point

level (Gauss point).
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Chapter 4

Constitutive modeling:

small deformation regime

4.1 Introduction

Depending on the amount of strain, or local deformation, the analysis of deformation is

subdivided into three deformation theories:

Finite strain theory , also called large strain theory deals with deformations in which

both rotations and strains are arbitrarily large. In this case, the undeformed and de-

formed configurations of the continuum are significantly different and a clear distinction

has to be made between them.

Infinitesimal strain theory , also called small strain theory or small deformation theory

where strains and rotations are both small. In this case, the undeformed and deformed

configurations of the body can be assumed identical.

Large-rotation theory , which assumes small strains but large rotations and displace-

ments.

In each of these theories the strain is then defined differently. The engineering strain

is the most common definition applied to materials used in mechanical and structural

engineering, which are subjected to very small deformations. On the other hand, for

some materials, e.g. elastomers and polymers, subjected to large deformations, the

engineering definition of strain is not applicable, thus other more complex definitions of

strain are required.In this chapter we review some three-dimensional SMA constitutive

models within the infinitesimal theory framework. Focusing only on primary effects, we

recast all models in a simple form, called basic model. Afterward, we develop a class of

constitutive models and show that it includes some models available in the literature.

We focus on a specific member of the proposed class and comparing with the available
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models, in theoretical formulation and numerical results, we show its capabilities in

capturing SMAs behavior under multiaxial non-proportional loadings. Extension of

small strain models into the finite strain deformation as well as large rotation regime is

the subject of the next chapter.

4.2 Some models available in the literature

4.2.1 Model proposed by Souza et al. (1998)

The model proposed by Souza et al. is developed within the theory of irreversible ther-

modynamics in the realm of a small-deformation regime. Accordingly, at each instant

the thermodynamical state of a homogenized volume element is described by a set of

external (controllable) and internal variables. Moreover, given proper potentials and

following classical arguments, it is possible to compute the quantities thermodynami-

cally conjugate to both the external and the internal variables. Such a model utilizes

an additive decomposition of the total strain into an elastic and an inelastic (traceless)

part, as usual in the case of small strains:

ε = εe + εin (4.1)

It is convenient to split the strain, ε, and the stress, σ, as follows:

ε = e+
θ

3
1 (4.2)

σ = s+ p1 (4.3)

where e is the deviatoric strain; θ = tr(ε) is the volumetric strain; s is the deviatoric

stress; p = tr(σ)/3 is the volumetric stress, in general indicated as pressure. In this

study, the second-order identity tensor is denoted by 1.

Souza et al. choose the strain, ε, split in its volumetric and deviatoric components,

and the absolute temperature, T , as control variables and a second-order tensor, εin,

indicated as transformation strain, as internal variable. Assumed to be traceless, εin

(which is equal to its deviatoric part, ein) is a measure of the strain associated to the

phase transformation and, in particular, to the conversion from austenite or multiple-

variant martensite (twinned) to the single-variant martensite (detwinned). Accordingly,

the norm of ein should be bounded between zero, for the case of a material without

oriented martensite, and a maximum value εL, for the case in which the material is fully

transformed in single variant oriented martensite, i.e.:

‖ein‖ ≤ εL (4.4)

66



where ‖ · ‖ is the Euclidean norm, defined as ‖A‖ = (A : A)
1
2 , while A : B = AijBij.

Henceforth, Souza et al. set the free-energy equal to:

Ψ(θ, e, T, ein) =
1

2
Kθ2 +G‖e− ein‖2 + τM(T )‖ein‖+

1

2
h‖ein‖2

+ IεL(‖ein‖) (4.5)

where K and G are the bulk and the shear moduli; τM(T ) is a proper function of

temperature and h defines the phase transformation hardening. We assume τM(T ) in

the form τM(T ) = β〈T−T0〉 where β is a material parameter, T0 a reference temperature

and 〈·〉 the positive part function, defined as:

〈a〉 =

{
a if a > 0

0 otherwise
(4.6)

Moreover, in equation (4.5) we use the indicator function IεL defined as

IεL(‖ein‖) =

{
0 if ‖ein‖ ≤ εL

+∞ otherwise
(4.7)

in order to enforce inequality constraint (4.4). Following classical arguments, it is pos-

sible to compute the quantities thermodynamically conjugate to the volumetric and the

deviatoric components of the strain, θ and e, and to the transformation strain, ein. In

particular, we have:

p =
∂Ψ

∂θ
= Kθ (4.8)

s =
∂Ψ

∂e
= 2G(e− ein) (4.9)

xin = −
∂Ψ

∂ein
= s− x (4.10)

with xin indicated in the following as transformation stress where:

x =
[
τM(T ) + h‖ein‖+ γ

] ein

‖ein‖
(4.11)

The variable γ results from the indicator function subdifferential ∂IεL(‖ein‖) and it is

defined as: {
γ = 0 if ‖ein‖ < εL

γ ≥ 0 if ‖ein‖ = εL
(4.12)

It is interesting to observe that the quantity x in equation (4.11) plays a role similar to

the so-called back-stress in classical plasticity and, accordingly, xin can be identified as

a relative stress. The mechanical dissipation inequality reduces to

Dmech = σ : ε̇− (Ψ̇ + ηṪ ) = xin : ėin ≥ 0 (4.13)
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To satisfy the second law of thermodynamics or the mechanical dissipation inequality

(4.13), we choose the following flow rule for the internal variable:

ėin = ζ̇
xin

‖xin‖
(4.14)

To describe phase transformation evolution, we choose a J2 type limit function f defined

as:

f = ‖xin‖ −R (4.15)

where the material parameter R is the elastic region radius. The model is finally com-

pleted by the classical Kuhn-Tucker and consistency conditions, respectively, as follows:

ζ̇ ≥ 0, f ≤ 0, ζ̇f = 0 (4.16)

ζ̇ ≥ 0, ḟ ≤ 0, ζ̇ ḟ = 0 if f = 0 (4.17)

We then summarize the basic Souza (coincides with the original Souza model) model in

Table 4.1

Table 4.1: Basic Souza model

External variables: ε, T

Internal variable: ein

Stress quantities:

s = 2G(e− ein)

x = [τM(T ) + h‖ein‖+ γ]
ein

‖ein‖
xin = s− x

with{
γ ≥ 0 if ‖ein‖ = εL

γ = 0 otherwise

Evolution equation:

ėin = ζ̇
xin

‖xin‖
Limit function:

f = ‖xin‖ −R
Kuhn-Tucker conditions:

f ≤ 0, λ̇ ≥ 0, λ̇f = 0
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4.2.2 Model proposed by Panico and Brinson (2007)

In this section we present the small strain constitutive model proposed by Panico and

Brinson (2007). The stress-induced martensite fraction, zσ is related to the inelastic

strain as follows:

zσ =
‖εin‖√

3
2
γ0

(4.18)

where γ is the maximum uniaxial transformation strain (γ0 =
√

2
3
εL). From (4.18) the

rate of martensite volume fraction can be written as:

żσ =
εin : ε̇in√

3
2
γ0‖εin‖

(4.19)

It is assumed that the rate of inelastic strain is due to transformation of the parent

phase and to reorientation of the previously developed oriented martensite, i.e.:

ε̇in = ε̇tr + ε̇re (4.20)

where ε̇tr and ε̇re are the transformation and reorientation strain rate tensors, respec-

tively.

Also, the total martensite fraction, z, is obtained as the sum of stress-induced and

temperature-induced parts:

z = zσ + zT , 0 ≤ z ≤ 1, 0 ≤ zσ ≤ 1, 0 ≤ zT ≤ 1 (4.21)

where zT represents the temperature-induced martensite fraction.

Since the reorientation strain term does not contribute to the variation of the martensite

volume fraction, the condition εin : ε̇re = 0 has to be imposed. Then equation (4.19)

becomes:

żσ =
εin : ε̇tr√
3
2
γ0‖εin‖

(4.22)

Considering stress-induced martensite fraction, zσ, and temperature-induced martensite

fraction, zT , as internal variables together with εe and T as control variables, the follow-

ing classical expression for the Helmholtz free energy function of the three-phase system

is adopted:

ψ(εe, T, zσ, zT ) =
1

2ρ
εe : L : εe + uA0 − TηA0 − zT (∆u0 − T∆η0)

+ zσ 〈T∆η0 −∆u0〉+ cν

[
(T − T0)− T ln

(
T

T0

)]
+ ∆ψ

(4.23)

where ρ is the material density, L is the isotropic elasticity tensor assumed to be the same

for all phases. The energy and entropy differences ∆u0 = uA0 − uM0 and ∆η0 = ηA0 − ηM0
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have been adopted where uA0 and uM0 are the specific free energies of austenite and

martensite, ηA0 and ηM0 are the specific entropies of austenite and martensite. Moreover,

cν is the specific heat at constant volume, ∆ψ is the so-called configurational energy

originated by the phase mixture.

The configurational energy is assumed to depend only on zσ according to the following

quadratic form:

∆ψ =
1

2
Hσz

2
σ (4.24)

where Hσ is a material parameter governing the initial hardening during the phase

transformation.

The rest of the formulation follows standard arguments, so it is not reported here and

the reader is referred to Panico and Brinson (2007) for more details. The final form of

the constitutive model is summarized as follows:

• Stress quantities

σ = L : (ε− εin)

x̄ = ρ√
3
2
γ0

[〈T∆η0 −∆u0〉+Hσzσ]
εin

‖εin‖
xtr = s− x̄
xre = s

xT = −ρ (T∆η0 −∆u0)

(4.25)

• Evolution equations

ε̇in = λ̇trx
tr + λ̇reÎ : xre

żT = λ̇Tx
T

(4.26)

• Limit functions
ftr = ‖xtr‖ − ytr(zσ)

fre = 1
2
xre : Î : xre − yre

fT =

{
xT − yfT (zT ) if żT > 0

−xT − yrT (zT ) if żT < 0

(4.27)

• Kuhn-Tucker conditions

ftr ≤ 0, λ̇tr ≥ 0, λ̇trftr = 0

fre ≤ 0, λ̇re ≥ 0, λ̇refre = 0

fT ≤ 0, λ̇T ≥ 0, λ̇TfT = 0

(4.28)

• Martensite volume fractions

zσ =
‖εin‖√

3
2
γ0

, 0 ≤ zσ ≤ 1, 0 ≤ zT ≤ 1, 0 ≤ zT + zσ ≤ 1 (4.29)
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In the equations above, the fourth-order tensor Î is defined as:

Î = I− εin

‖εin‖
⊗ εin

‖εin‖
(4.30)

where I is the fourth-order identity tensor. Moreover, yre is a material parameter which

controls the reorientation process, while ytr(zσ) is a function that governs the kinematics

of the phase transformation and is assumed to have the following form:

ytr(zσ) =

{
Afzσ −Bfzσ ln (1− zσ) + Cf if żσ > 0

Ar (1− zσ)−Br (1− zσ) ln (zσ) + Cr if żσ < 0
(4.31)

with Af,r, Bf,r, Cf,r material parameters. Dependency of ytr on the stress-induced

martensite fraction, zσ, through a logarithmic function ensures that 0 ≤ zσ ≤ 1. The

functions yf (zT ) and yr(zT ) have the following expressions:{
yfT (zT ) = cfzT

yrT (zT ) = Y r
T0 + σ̄ + cr (1− zT )

(4.32)

with σ̄ =
√

3
2
s : s, while cf , cr and Y r

T0 are material parameters.

4.2.3 A basic model extracted from Panico-Brinson model

In order to obtain the basic model, we ignore temperature-induced terms. For simplicity,

we use the following definitions:

τM(T ) =
ρ√

3/2γ0

〈T∆η0 −∆u0〉 = β 〈T − T0〉 (4.33)

εL =
√

3/2γ0 (4.34)

h =
2ρHσ

3γ2
0

(4.35)

which yields

β =
ρ∆η0√
3/2γ0

=
ρ∆η0

εL
(4.36)

T0 =
∆u0

∆η0

(4.37)

We then summarize the basic Panico-Brinson model in Table 4.2

4.2.4 A modified Panico-Brinson model

In the original work of Panico and Brinson (2007), they have used a logarithmic func-

tion to enforce the inelastic strain norm constraint (4.4). Moreover they use different
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Table 4.2: Basic model obtained from Panico-Brinson model

External variables: ε, T

Internal variable: ein

Stress quantities:

s = 2G(e− ein)

x̄ = [τM(T ) + h‖ein‖]
εin

‖εin‖
xtr = s− x̄
xre = Î : s

Evolution equation:

ėin = λ̇trx
tr + λ̇rex

re

Limit functions:

ftr = ‖xtr‖ − ytr(zσ)

fre = ‖xre‖ − yre

with ytr(zσ) =

{
Afzσ −Bfzσ ln (1− zσ) + Cf if żσ > 0

Ar (1− zσ)−Br (1− zσ) ln (zσ) + Cr if żσ < 0

and zσ = ‖ein‖
εL

Kuhn-Tucker conditions:

ftr ≤ 0, λ̇tr ≥ 0, λ̇trftr = 0

fre ≤ 0, λ̇re ≥ 0, λ̇refre = 0

functions in forward and reverse phase transformations. However, in the Souza model,

instead of using a logarithmic function, they use the indicator function which is more

interesting from a numerical point of view. They also use one limit function for both for-

ward and reverse transformations which simplifies considerably the solution algorithm.

To these reasons, we are interested to recast the basic Panico and Brinson model in a

simple form similar to Souza model. It can also be considered as the modified Souza

model, where we have split the inelastic strain into transformation and reorientation

parts. Following this approach, we derive the model equations and propose the modi-

fied basic Panico-Brinson constitutive model in Table 4.3.

4.2.5 Model proposed by Lagoudas (2008)

Lagoudas and his coworkers have used an SMA model in several works. They have

assumed that for the forward phase transformation from austenite to martensite (ż > 0)

the transformation strain will form in the direction of the deviatoric stress. During

the reverse transformation from martensite to the parent austenitic phase (ż < 0), the

72



Table 4.3: Modified basic Panico-Brinson model

External variables: ε, T

Internal variable: ein

Stress quantities:

s = 2G(e− ein)

x = [τM(T ) + h‖ein‖+ γ]
εin

‖εin‖
xtr = s− x
xre = Î : s

with{
γ ≥ 0 if ‖ein‖ = εL

γ = 0 otherwise

Evolution equation:

ėin = λ̇trx
tr + λ̇rex

re

Limit functions:

ftr = ‖xtr‖ −Rtr

fre = ‖xre‖ −Rre

Kuhn-Tucker conditions:

ftr ≤ 0, λ̇tr ≥ 0, λ̇trftr = 0

fre ≤ 0, λ̇re ≥ 0, λ̇refre = 0

transformation strain will be recovered proportionally to the existing transformation

strain at the reversal point (et−r) from forward to the reverse transformation (Lagoudas,

2008). We introduce the basic Lagoudas model as summarized in Table 4.4.

4.3 Proposing a class of SMA constitutive models

Selecting an appropriate set of internal variables as macroscopic consequences of the

micro-structural changes is the first fundamental issue of phenomenological modeling

(Haupt, 2002). In fact, introduction and definition of such internal variables would play

a crucial role in arriving at a physically sound constitutive formulation with a simple

and consistent structure. Since internal variables are related to micro-structural mech-

anisms, the definition of their evolution equations is the second fundamental issue of

phenomenological modeling and they should be well established with relevant physical

considerations (Xiao et al., 2006).

Focusing on shape memory alloys, since the martensitic phase transformation is the basic
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Table 4.4: Basic Lagoudas model

External variables: ε, T

Internal variable: z

Stress quantities:

s = 2G(e− ein)

x̄ = τM(T ) + hεLzσ

xtr = s : n− x̄
with

ein = (εLz)n and n =


s

‖s‖
if żσ > 0

et−r

‖et−r‖
if żσ < 0

Evolution equation:

żσ = ζ̇
∂f

∂xtr
= ζ̇

xtr

|xtr|
Limit function:

f = |xtr| −Rtr

Kuhn-Tucker conditions:

f ≤ 0, λ̇ ≥ 0, λ̇f = 0

micro-structural property, in order to incorporate the growth, orientation and reorien-

tation of variants, an appropriate set of internal variables should be able to represent at

least a scalar and a directional information (Luig and Bruhns, 2008). So, on one hand,

a set of scalar variables is not adequate for a simple description of the material behavior

due to the loss of explicit directional information, while, on the other hand, models

that have used tensorial internal variables seem to be more successful since they explic-

itly include simple directional information. In most of the previously proposed models,

inelastic strain has been considered as a unique internal variable; following these ap-

proaches, in general, the norm of the inelastic strain represents the scalar martensite

amount and its direction represents the preferred direction of the variants. Accordingly,

in this class of models scalar and directional informations are tightly interconnected,

possibly leading to a somehow more limited or constrained modeling approach.

To give more freedom, a different set of internal variables is proposed with an empha-

sis on reorientation. A measure of the amount of stress-induced martensite is chosen

as a scalar internal variable, being related to the amount of inelastic strain due to

stress-induced phase transformation, while the average direction of different variants (or

preferred direction of variants) is chosen as a tensorial internal variable, representing

the inelastic strain direction. So, using a standard literature terminology (Bouvet et al.,
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2004; Panico and Brinson, 2007) the internal variables may be clearly interpreted as

phase transformation and variant reorientation; in this way, transformation and reori-

entation can be hopefully described with more flexibility.

4.3.1 Constitutive model development

From a physical point of view, the application of a thermo-mechanical load activates the

phase transformation and the preferred martensite variants start to nucleate or shrink

(Otsuka and Wayman, 1998). Changing the load direction, another set of variants, that

are in the new preferred direction with respect to the applied stress, starts to nucleate

and previous variants may grow or shrink depending on the available stress for that di-

rection (this phenomenon is known in the literature as simultaneous forward and reverse

transformation under non-proportional loading (see, e.g., Bouvet et al. (2004) and Lim

and McDowell (1999)). In the phenomenological framework, we consider the average

behavior of variants as the behavior of an equivalent single variant. So when the load

direction changes, this equivalent single variant rotates to a new preferred direction.

In general the inelastic strain εin should include the description of several physical phe-

nomena, ranging, for example, from permanent plasticity and phase transformation up

to void generation and fracture. However, in the following we neglect all inelastic phe-

nomena except reversible martensitic phase transformations which are then the only

physics to be described by εin.

Moreover, keeping in mind all the preliminary shape memory alloy material descrip-

tions, in the following we assume to use εin as the only internal variable in the model.

However, we do not treat εin as a unique second-order tensor variable, but we clearly

distinguish between its norm and direction with the aim of getting more freedom in

the modeling. Besides this distinction, the position of non-introducing other micro-

structures describing variables leads to obtain a model which is able only to give a very

simplified representation of the phenomena occurring at the material micro-mechanical

level. In particular there is no attempt to include in the modeling the description of

each single martensite variant as well as to obtain a good representation of phenomena

such as the phase transformation between single variants.

Accordingly, the choice of dealing with only one second-order tensor internal variable

(even decomposed, as mentioned, into its norm and direction) allows only to distinguish

between a generic (parent) phase to which no macroscopic strain is associated and a

generic (product) phase to which a homogenized macroscopic strain can be associated.

This perspective is similar to other effective modeling approaches as the one proposed

in Souza et al. (1998).
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According to our previous discussion we now introduce a scalar internal variable q and

a tensorial internal variable N such that:

εin = qN (4.38)

with

‖N‖ = 1 (4.39)

According to (4.38) and (4.39), it is clear that, supposing q ≥ 0, we have

‖εin‖ = q (4.40)

Hence, introducing the material parameter εL corresponding to the maximum trans-

formation strain reached at the end of the transformation during a uniaxial test, we

require

0 ≤ q ≤ εL (4.41)

Taking time derivative of equation (4.38), we obtain:

ε̇in = q̇N + qṄ (4.42)

which somehow naturally induces to introduce the following positions:

ε̇tr = q̇N (4.43)

ε̇re = qṄ (4.44)

and using another classical terminology available in the literature, we can interpret equa-

tions (4.43) and (4.44) as pure transformation and pure reorientation rates, respectively.

Accordingly, we can read equation (4.42) as an additive decomposition of the inelastic

strain rate as:

ε̇in = ε̇tr + ε̇re (4.45)

Relation (4.45) is interesting since it states that the inelastic strain evolution induced

by the reversible martensite phase transformation is due to two contributions, one from

pure transformation and another one from pure reorientation. We also notice that rela-

tion (4.45) is the same as assumed in Panico and Brinson (2007) (see equation (4.20)).

Moreover, following (4.45), pure transformation has no effect on the preferred (or aver-

age) direction of martensite variants and pure reorientation affects only the direction of

variants without directly affecting the amount of martensite. Clearly, also if uncoupled

in terms of evolution with respect to their contribution to inelastic strain, the two pro-

cesses could be related and interconnected through a proper choice of limit functions,

as discussed in the following.
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Helmholtz free energy function

The model assumes the total strain ε and the absolute temperature T as control vari-

ables, the amount of martensite q and the average direction of martensite variants N as

internal variables. Assuming εin to be traceless, the free energy density function Ψ for

a polycrystalline SMA material is then expressed as the convex potential (Souza et al.,

1998)

Ψ(θ, e, T, q,N , λ) =
1

2
Kθ2 +G‖e− qN‖2 + τM(T )q

+
1

2
hq2 + I0,εL(q) + κ(‖N‖ − 1)

(4.46)

In equation (4.46) we also use the indicator function I0,εL defined as

I0,εL(q) =

{
0 if 0 ≤ q ≤ εL

+∞ otherwise
(4.47)

in order to enforce inequality constraint (4.41), while the Lagrange multiplier κ is the

constraint force to enforce equality constraint (4.39).

Starting from the adopted free energy density function Ψ presented in equation (4.46)

and following standard arguments, we can derive the constitutive equations

p =
∂Ψ

∂θ
= Kθ

s =
∂Ψ

∂e
= 2G(e− qN )

η = −
∂Ψ

∂T
= −q

τM(T )

|T − T0|

Q = −
∂Ψ

∂q
= s : N − (τM(T ) + hq + γ)

X = −
∂Ψ

∂N
= qs− κN

K̄ = −
∂Ψ

∂κ
= −‖N‖+ 1 = 0

(4.48)

The thermodynamic forces Q and X are associated to the internal variables q and N ,

while K̄ is the thermodynamic force associated to κ. The variable γ results from the

indicator function subdifferential ∂I0,εL(q) and it is defined as

γ = ∂I0,εL(q) =


γ1 ≤ 0 if q = 0

0 if 0 < q < εL

γ2 ≥ 0 if q = εL

(4.49)
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Evolution equations for the internal variables

According to (4.48), the mechanical dissipation inequality reduces to

Dmech = σ : ε̇− (Ψ̇ + ηṪ ) = Qq̇ +X : Ṅ ≥ 0 (4.50)

To satisfy the second law of thermodynamics or the mechanical dissipation inequality

(4.50), we choose the following flow rules for the internal variables:{
q̇ = λ̇trQ = λ̇tr(s : N − τM(T )− hq − γ)

Ṅ = λ̇reX = λ̇re(qs− κN )
(4.51)

where λ̇tr and λ̇re are non-negative consistency parameters.

Moreover, double contracting both sides of equation (4.51)2 withN , applying constraint

(4.39) and noting that N : Ṅ = 0 (from time differentiation of ‖N‖ = 1), allow to

compute the Lagrange multiplier κ as:

κ = qs : N (4.52)

Substituting expression (4.52) for the Lagrange multiplier in the definition (4.48)5 for

the thermodynamic force X, we obtain:

X = q(s− (s : N )N ) = q(I−N ⊗N )s = qY (4.53)

where I is the fourth-order identity tensor and Y = (I−N⊗N )s is the stress component

normal to N .

We now aim at presenting a general form of limit functions for internal variables q and

N ; to this end, we will use the following identities:
(QN ) : (q̇N ) = Qq̇

Y : N = 0

Ṅ : N = 0

(4.54)

In the dissipation inequality (4.50), only the component of the thermodynamic forces

contributing to dissipation (i.e., those components that are in the direction of evolution)

are present and other components do not appear, but using (4.54) it is possible to rewrite

(4.50) in a more general, but equivalent, form as :

Dmech = (QN + k(q)Y ) : (q̇N ) + q(Y + k̃(q)QN ) : Ṅ ≥ 0 (4.55)

Relation (4.55) shows that QN + k(q)Y is the thermodynamic force conjugate to the

transformation strain, but since according to (4.54)2 the work done by its normal com-

ponent is zero it can be ignored. There is a similar discussion for the reorientation

part. The point is that although only the component of thermodynamic force in the
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direction of evolution affects the dissipation, both components of force contribute in the

nucleation of corresponding internal variable.

We use a simple example for clarifying and explaining the nucleation mechanism (to

define the limit function for transformation), and investigate the dissipation in a mov-

ing block with mass m under coulomb friction in a horizontal surface. The dissipated

energy is only due to horizontal component of force (similar to relation (4.50)). Now we

study the condition of motion (Nucleation), by increasing the horizontal force up to the

maximum friction force, the motion starts. Friction force at this time is proportional to

the force normal to the contact surface which is affected by the vertical component of

the applied force. So, both components of the force contribute to motion (nucleation)

although only the horizontal component contributes to dissipation. In other words, the

normal component affects the motion condition by changing the threshold level of resis-

tance against motion.

Now, using relation (4.55) we may define evolution equations as follows:{
q̇N = λ̇tr(QN + k(q)Y )

qṄ = λ̇re(Y + k̃(q)QN )
(4.56)

Double contracting both sides of (4.56) with N and using (4.54), we obtain:{
q̇ = λ̇trQ

k̃(q)Q = 0
(4.57)

so the evolution equations can be written as:{
q̇ = λ̇trQ

qṄ = λ̇reY
(4.58)

Evolution equations (4.51) and (4.58) differ since in (4.51) qY is the thermodynamic

force of Ṅ , while in (4.58) Y represents the thermodynamic force for qṄ (i.e., for the

reorientation strain rate). Although definitions (4.51) and (4.58) are equivalent from

a mathematical point of view (since they both satisfy the dissipation inequality), we

prefer the latter from a physical point of view.

According to (4.58), the mechanical dissipation inequality (4.55) reduces to:

Dmech = λ̇trQ
2 + λ̇reY : Y ≥ 0 (4.59)

Limit functions

To describe phase transformation and reorientation evolutions, we choose two limit

functions F tr and F re defined as: F tr(q,Q,Y ) = ‖QN + k(q)Y ‖ −Rtr(q) =
√
Q2 + k2(q)‖Y ‖2 −Rtr(q)

F re(q,Q,Y ) = ‖Y ‖ −Rre(q)
(4.60)
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We remark that, Rtr(q) represents the radius of the elastic domain to activate pure

transformation, while the term k(q) reflects the effect of reorientation on transformation.

Moreover, Rre(q) represents a threshold value for the component of stress in the direction

normal to the preferred direction of variants to activate the variant reorientation.

The limit function F re affects reorientation by controlling the component of stress normal

to the preferred direction of variants and the limit function F tr affects transformation

by controlling the transformation thermodynamic force components in the preferred

direction of variants, N , and k(q)Y normal to that direction.

Also, for generality we assume that transformation affects reorientation and define an

interaction function k̄(q) which leads to redefined evolution equations as:{
q̇ = λ̇trQ

qṄ = (λ̇re + k̄(q)λ̇tr)Y
(4.61)

According to (4.61), it can be concluded that only the component of stress in the pre-

ferred direction of variants evolves phase transformation and variant preferred direction

changes only through the component of stress orthogonal to its direction.

Considering (4.61), the mechanical dissipation inequality (4.50) reduces to:

Dmech = λ̇trQ
2 + (λ̇re + k̄(q)λ̇tr)Y : Y ≥ 0 (4.62)

The model is finally completed by the classical Kuhn-Tucker and consistency conditions,

respectively, as follows:{
λ̇tr ≥ 0, F tr ≤ 0, λ̇trF

tr = 0

λ̇re + k̄(q)λ̇tr ≥ 0, F re ≤ 0, (λ̇re + k̄(q)λ̇tr)F
re = 0

(4.63)

{
λ̇tr ≥ 0, Ḟ tr ≤ 0, λ̇trḞ

tr = 0 if F tr = 0

λ̇re + k̄(q)λ̇tr ≥ 0, Ḟ re ≤ 0, (λ̇re + k̄(q)λ̇tr)Ḟ
re = 0 if F re = 0

(4.64)

which also guarantee the positiveness of the energy dissipation (4.62).
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Summary of proposed class of constitutive equations

We now summarize the material law in the time-continuous frame as follows:

p = Kθ

s = 2G(e− qN )

Q = s : N − (τM(T ) + hq + γ)

Y = s− (s : N )N

q̇ = λ̇trQ

qṄ = (λ̇re + k̄(q)λ̇tr)Y

F tr =
√
Q2 + k2(q)‖Y ‖2 −Rtr(q)

F re = ‖Y ‖ −Rre(q)

λ̇tr ≥ 0, F tr ≤ 0, λ̇trF
tr = 0

λ̇re + k̄(q)λ̇tr ≥ 0, F re ≤ 0, (λ̇re + k̄(q)λ̇tr)F
re = 0

(4.65)

To decide on the form of interaction functions k(q) and k̄(q) together with F tr(q) and

F re(q), experimental observations should be considered.

Adopting a slightly different notation, we present an equivalent form of equations (4.65)

expressed in terms of the internal variable ein, which is more consistent with different

papers in the literature, such as Panico and Brinson (2007); Souza et al. (1998). To this

end, we substitute q with ‖ein‖ and N with
ein

‖ein‖
in (4.65) and use relation (4.42) to

find ėin, which results in:

p = Kθ

s = 2G(e− ein)

xin = s− x
Y = s− (s : N )N

x = (τM(T ) + h‖ein‖+ γ)
ein

‖ein‖
ėin = λ̇trx

in + (λ̇re + (k̄(q)− 1)λ̇tr)Y

F tr = ‖xin + (k(q)− 1)Y ‖ −Rtr(q)

F re = ‖Y ‖ −Rre(q)

(4.66)

4.3.2 Identification and comparison of some models belonging

to the proposed general class

To properly show the features of the modeling approach up to now presented, we now

try to identify some models belonging to the general class (4.65) which has also been

previously discussed in the literature. We can rewrite the models in a unified format,

consistent with the notation of section 4.3. To this end, we substitute q instead of ‖ein‖
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and N instead of
ein

‖ein‖
in the previously discussed models in Section 4.2. Moreover,

we propose a new model considering no effect on reorientation due to transformation.

In particular we consider three different models organized as following:

• Model 1. This model, proposed by Souza et al. (1998), is characterized by a

simple reorientation mechanism and can be considered as a particular member of

class of models introduced in Section 4.3, obtained for:

k(q) = 1, k̄(q) = 1, Rtr(q) = Rtr, Rre(q)→ +∞ (4.67)

According to (4.67) we conclude that the limit function F re is always negative

which results in λ̇re = 0. In other words, in Model 1 this surface is never activated.

Also this model considers the effect of reorientation on transformation (k(q) 6= 0)

and since it is assumed that k̄(q) 6= 0, reorientation is affected by transformation.

• Model 2. This model, we introduced as modified basic Panico-Brinson model,

can be interpreted either as an extension of Model 1 (including a more flexible de-

scription of reorientation mechanism) or as a modification of the model by Panico

and Brinson (2007) we presented in Section 4.2.4. This model is also a particular

member of the general class of models previously discussed, obtained for:

k(q) = 1, k̄(q) = 1, Rtr(q) = Rtr, Rre(q) = Rre (4.68)

A saturation limit for the component of stress normal to direction N is present,

but similar to Model 1, orientation is affected by transformation part K̄(q) 6= 0.

• Model 3. This new model (Arghavani et al., 2010c) is a member of the general

class introduced before, but no effect on reorientation due to transformation is

considered. The proposed model is obtained for:

k(q) = 1, k̄(q) = 0, Rtr(q) = Rtr, Rre(q) = Rre (4.69)

For simplicity we have chosen k(q) = 1.

Although other choices are possible, we have chosen the above mentioned form for

Model 3, under the assumption that transformation has no effect on reorientation.

Moreover for simplicity, we have assumed that Rtr and Rre are constants, instead

of general functions of the martensite amount, while, e. g., in Panico and Brinson

(2007), Rtr is considered as a function of martensite fraction.

The evolution equations and limit functions for the three models are:
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• Model 1. 
q̇ = λ̇trQ

qṄ = λ̇trY

F tr =
√
Q2 + ‖Y ‖2 −Rtr

(4.70)

• Model 2. 
q̇ = λ̇trQ

qṄ = (λ̇re + λ̇tr)Y

F tr =
√
Q2 + ‖Y ‖2 −Rtr

F re = ‖Y ‖ −Rre

(4.71)

• Model 3. 
q̇ = λ̇trQ

qṄ = λ̇reY

F tr =
√
Q2 + ‖Y ‖2 −Rtr

F re = ‖Y ‖ −Rre

(4.72)

From the comparison of the models, the first observation is that in both Model 1 and

Model 2 the evolution equation for N is coupled to the evolution equation of q, while

in Model 3 the independency of the evolution of N from λ̇tr decouples the reorientation

from transformation.

The second observation is about limit functions; in fact, Model 1 has a unique limit

function, while Model 2 and Model 3 have two distinct limit functions.

The interesting point is that, all of the above mentioned differences appear only under

non-proportional loading conditions. We may observe that, in the case of proportional

loading, by definition N = s/‖s‖, hence Y = 0 and λ̇re = 0; so the proposed model

(4.65) reduces to: 
Q = ‖s‖ − (τM(T ) + hq + γ)

q̇ = λ̇trQ

F tr = |Q| −Rtr(q)

(4.73)

Accordingly, for a proportional loading, the preferred variant direction coincides with

the deviatoric stress direction and the only unknown, i.e., the martensite amount q, can

be computed by (4.73).

Now, comparing equations (4.65)7 and (4.73)3 we can also get some insights on how

non-proportional loadings affect the model response. In fact, according to (4.73)3, the

hysteresis size in a proportional loading is constant and is equal to Rtr, while loading

non-proportionality reduces the hysteresis size, as given by (4.65)7, of an amount directly
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related to ‖Y ‖, up to a maximum value of Rre; this change in the hysteresis size can be

interpreted as the reorientation effect on the transformation. On the other hand, due to

the simple limit function adopted for reorientation and based on assuming a constant

threshold value for ‖Y ‖ to activate reorientation, we conclude that pure transformation

does not affect reorientation.

4.4 Comparison of models with each other and with

experimental data

In this section we perform several uniaxial and multiaxial proportional and nonpropor-

tional numerical tests to demonstrate the ability of the presented model (Model 3) to

capture the main features of SMA mechanical behavior. All of the results are presented

for three models introduced in Section 4.3.2. Since the results of all models for propor-

tional loading are the same, the figures for proportional loading case are presented only

for Model 3.

As the aim of this work is to show the model behavior without focusing on algorithmic

problems, backward-Euler integration algorithm with small time steps is used for the

solution of the examples, and a solution to the nonlinear system is found by means of the

function fsolve implemented in the Optimization Toolbox of the program MATLABr.

The present section deals with several uniaxial and multiaxial proportional as well as

non-proportional loading conditions. In particular, Section 4.4.1 presents the results for

uniaxial tests at three different temperatures to show the model capability of reproducing

basic effects such as pseudo-elasticity and shape memory effect. Section 4.4.2 presents

the results for multiaxial combined tension-torsion proportional tests with two different

proportionality factors. Section 4.4.3 presents the results for several non-proportional

loading paths comparing them also with experimental data available in the literature.

For all the simulations discussed in Section 4.4.1 and in Section 4.4.2 as well as for

the first set of simulations discussed in Section 4.4.3, we adopt the material parame-

ters reported in Table 4.5. It is worthful to note that no value is attributed to Rre

since this parameter is not significant for the case of proportional loadings. Moreover,

material parameters reported in Table 4.5 do not specifically describe any alloy since

they are not deduced from experimental data, but simply looking at similar material

parameters presented in the literature (Helm and Haupt, 2003; Panico and Brinson,

2007). The chosen material parameters correspond to the following characteristic tem-

peratures M0
f = 306,M0

s = 310, A0
s = 317 and A0

f = 319 (Panico and Brinson, 2007)

where M0
s ,M

0
f , A

0
s and A0

f are martensite start, martensite finish, austenite start and

austenite finish temperatures at stress-free condition, respectively. For simulation of the
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Table 4.5: Material parameters used in the numerical tests (Panico and Brinson, 2007).

parameter value unit

E 68400 MPa

ν 0.36 -

h 369.35 MPa

εL 4.65 %

β 8.165 MPa K−1

T0 310 K

Rtr 72.6 MPa

Rre 10 MPa

non-proportional loading paths in Section 4.4.3, the material parameters are directly

identified from experimental data available in the literature and they are discussed in

that section. Finally, in all examples we assume the material to be initially in a generic

parent phase (q = 0).

Before starting to present the model performance, we wish to point out that we tried

to present as much as possible a wide and complete set of loading situations. Unfortu-

nately, in the literature, there is no corresponding set of experimental data on a unique

material (this is the reason for dealing with two sets of material data in Section 4.4.3

as discussed above), as well as there is no other macro-modeling paper addressing all

the extensive sets of loading conditions reported here. Finally connected to the large

variety of situations considered, we cannot absolutely claim that the proposed model is

adequate and satisfactory in all the tests, but we try to clearly and honestly address

model performance in particular in comparison with what is currently available in the

literature.

4.4.1 Uniaxial tests

We start considering uniaxial loading-unloading at the three different constant temper-

atures of 300, 320 and 340 K and up to a maximum stress value of 600 MPa. As shown

in Figure 4.1, the model is able to reproduce the characteristic hysteresis loops of SMAs

both in tension and compression. Furthermore, critical transformation stress increases

with temperature, as experimentally observed. Then, to test the model reproduction of

the shape memory effect, we simulate a thermo-mechanical loading (see Figure 4.2). At

a temperature of 300 K, the material is loaded up to a maximum stress of 250 MPa,

so it fully transforms to oriented martensite. Keeping the temperature constant and

unloading to zero stress results in a mechanically unrecoverable residual strain, which
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can be however recovered after heating the material above the austenite finish temper-

ature. Finally, cooling the strain-free material to the initial temperature does not alter

its strain or stress state. Sharp increase of stress over the plateau in Figures 4.1 and

4.2 is also predicted by the model as it is only due to elastic behavior of stress-induced

martensite phase in the saturated case (fully transformed to martensite) and no phase

transformation can occur anymore.

Figure 4.1: Model response for tension-compression uniaxial loading at constant tem-

perature.

4.4.2 Multiaxial proportional tests

Following the idea of Sittner et al. (1995) we now investigate the model predictions in

the super-elastic range under two different proportional loading paths characterized by

the same equivalent stress (defined as σeq =
√
σ2 + 3τ 2 ), but with different proportion-

ality factors. In particular, we set the temperature equal to 330 K and, as suggested by

Sittner et al. (1995), we consider two paths, presented in Figure 4.3, such that in path

1 tension is governing, while in path 2 shear is governing. Figures 4.4 and 4.5 show the

model response under these loading paths, which qualitatively reproduces experimen-

tally observed material response.
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Figure 4.2: Model reproduction of the shape memory effect.

4.4.3 Multiaxial non-proportional tests

We now start investigating the model predictions for non-proportional loadings, still

focusing on the material super-elastic range. Accordingly, in all the examples proposed

in the following, the test temperature is set to 320 K, for which a super-elastic behavior

is expected.

Following the recently published experimental study by Grabe and Bruhns (2009) we

start considering a tension-shear test, where stresses are varied in the range ±250 MPa

following a squared-shaped history, as reported in Figure 4.6a. Since during the first

tension loading segment, the material fully transforms to oriented martensite, the en-

Figure 4.3: Stress path in proportional loading (τeq =
√

3τ, tan(α) =
√

3τ
σ
, α = π

9
, π

3
).
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Figure 4.4: Model prediction for proportional path 1: a) stress-strain curves, b) axial-

shear strain response.

Figure 4.5: Model prediction for proportional path 2: a) stress-strain curves, b) axial-

shear strain response.

tire subsequent part of the loading only involves reorientation. A comparison between

predictions of the proposed model and the model discussed by Auricchio and Petrini

(2002) (in the following, we refer to this model as AP (2002)) is presented in Figure

4.6b. Circle and triangle symbols in Figure 4.6b correspond to points A to G in the

stress path for the proposed and for the AP (2002) models, respectively.

It is interesting to observe that in the proposed model, an increase of the value cor-

responding to the material parameter Rre would produce a clockwise rotation of the

response path, while there is no equivalent material parameter in AP (2002) to tune the

response path rotation. The rotation of the response path has also been observed in the

experimental study by Grabe and Bruhns (2009).

Now, we compare the model prediction with experimental data available in the liter-

ature. For this purpose we employ the results of tension-torsion experiments with thin

wall specimens of CuAlZnMn polycrystalline SMAs reported by Sittner et al. (1995).

Since the model discussed in the previous section has been based on an idealized SMA

behavior, ignoring asymmetric behavior in tension-compression, subloops, non-constant

hysteresis size, etc., only an approximate description of the experimentally observed

behavior is possible, and so the comparison between the model prediction and the ex-

perimental data will be discussed from a qualitative point of view. We identify material
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Figure 4.6: Biaxial non-proportional loading: a) axial-shear stress path, b) comparison

of model predictions for axial-shear strain response.

parameters (reported in Table 4.6) using the experimental data reported by Sittner

et al. (1995) for proportional tension and torsion tests (Figure 4.7). Figures 4.7a and

4.7b show the corresponding model predictions.

Table 4.6: Material parameters adopted for Sittner et al. (1995) experiment.

parameter value unit

E 30700 MPa

ν 0.35 -

h 11000 MPa

εL 4.9 %

τM 150 MPa

T 285 K

Rtr 63.3 MPa

Figure 4.7: Model prediction compared to the experimental data by Sittner et al. (1995):

a) uniaxial tension, b) torsion.

After material parameter identification, we simulate some of the combined non-proportional

loading paths proposed and experimentally realized in Sittner et al. (1995). Figure 4.8a

shows a biaxial non-proportional stress path. Initially, an axial stress of 240 MPa is ap-

89



plied and then the shear stress is increased up to approximately 195 MPa, while tension

is kept constant. During stages 3 and 4, first tension and then shear are sequentially

unloaded, respectively.

Figures 4.8b, 4.8c, 4.8d show the comparison between the predictions of the proposed

model, of the model presented by Auricchio and Petrini (2002) (referred to as AP (2002))

and the model presented by Panico and Brinson (2007) (referred to as PB (2007)) with

the experimental data in terms of shear strain versus normal strain, normal stress versus

normal strain and shear stress versus shear strain, respectively. A qualitatively good

agreement between experiments and simulations is obtained for the proposed model,

which is able to reproduce the main characteristics of the experimentally observed be-

haviors. This is particularly true for the coupling between axial and shear strains both

in stages 2 and 3.

Moreover, the proposed model can predict the crossing in the shear response observed

Figure 4.8: Comparison between model predictions and experimental data (Sittner et al.,

1995): a) non-proportional biaxial tension-shear path, b) axial-shear strain response, c)

axial stress-axial strain response, d) shear stress-shear strain response.

experimentally in Figure 4.8d . Although there is a good qualitative agreement between

the proposed model and experimental data, some drawbacks are observed, for example

in the second stage of loading, where the coupling effect is not completely in agreement

with experiments. This can be partially due to the very simple structure of the proposed

model, i.e. assuming Rre as a constant material parameter. In order to investigate more

this drawback, we present the simulation results along with comparison with AP (2002)

and experimental data for two other non-proportional loading paths proposed by Sit-
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tner et al. (1995). Accordingly, Figures 4.9 and 4.10 present the results for triangle- and

L-shaped stress paths, respectively.

The proposed model captures the basic features of material response to the mentioned

loading situations although some differences can be clearly noted if compared to the AP

(2002) model. This aspect should be investigated in future studies.

Figure 4.9: Proposed model prediction and comparison with AP (2002) and experimental

results (Sittner et al., 1995): a) axial-shear triangle-shaped stress path, b) axial-shear

strain response.

Figure 4.10: Proposed model prediction and comparison with AP (2002) and experi-

mental results (Sittner et al., 1995): a) axial-shear L-shaped stress path, b) axial-shear

strain response.

We finally consider the experimental data reported by Bouvet et al. (2002) and Bouvet

et al. (2004) on a tubular CuAlBe specimen. In particular, focusing only on experimental

tension test data, we choose the material parameters reported in Table 4.7. Figure 4.11

shows a comparison between the proposed model response and experimental data. Using

only uniaxial data it is clearly not possible to set a value for the reorientation activation

threshold, which is the only parameter left to be determined.

Biaxial tension/compression-internal pressure tests have been performed on tubular

CuAlBe specimens to investigate the effects of non-proportionality of the loading path

on the super-elastic behavior of SMAs (Bouvet et al., 2002). Since we are using an
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Table 4.7: Material parameters adopted for (Bouvet et al., 2002, 2004) experiment.

parameter value unit

E 75000 MPa

ν 0.3 -

h 4233 MPa

εL 5.85 %

τM 51 MPa

T 305 K

Rtr 16 MPa

Figure 4.11: Uniaxial tension behavior predicted by the model and comparison with

experimental results from Bouvet et al. (2004)

idealized model, experimental data are chosen to reduce tension-compression asymmetry

effects, although the material elastic behavior is transversely isotropic (Er = 84 GPa,

Ez = 68 GPa (Bouvet et al., 2002)). So we concentrate only on the qualitative behavior.

With the selected material parameters, we try to reproduce the material response under

a non-proportional biaxial tension-internal pressure loading. Figure 4.12a shows a non-

proportional biaxial tension test, in which initially a tension stress of 140 MPa in the

axial direction is applied, and then an internal pressure is applied to increase the hoop

tension stress up to 140 MPa, while the axial tension is kept constant. Then, sequentially,

axial tension and internal pressure are removed.

A good correlation between the proposed model predictions and the experimental

data is observed for Rre = Rtr. Figures 4.12b, 4.12c and 4.12d present the comparison

between the present model prediction, AP (2002) model prediction and experimental

results (Bouvet et al., 2002), respectively in terms of axial versus hoop strain (Figure

4.12b), axial strain versus axial stress (Figure 4.12c), hoop strain versus hoop stress

(Figure 4.12d). The model prediction for the axial direction is in good qualitative
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Figure 4.12: Comparison between simulation and experimental results (Bouvet et al.,

2002): a) non-proportional biaxial loading path, b) corresponding strain path, c) axial

stress-strain curve, d) hoop stress-strain curve.

agreement with the experimental data, but there is a discrepancy with the experiments

in the prediction for the hoop direction.

We then consider another set of experimental data, reported in Bouvet et al. (2004),

obtained on the same CuAlBe specimen. Figure 4.13a shows the loading path, which is

identical to the one considered in the previous test (Figure 4.12a) but it is now applied

in the reverse direction (i.e., in Figure 4.13a it is clockwise while in Figure 4.12a it is

counter-clockwise).

Figures 4.13b, 4.13c and 4.13d present the comparison between the present model and

AP (2002) predictions and experimental results (Bouvet et al., 2004). As a reference

we also include the digitized data related to the model proposed in Bouvet et al. (2004)

(referred to as BE (2004)), which takes into account the tension-compression asymmetry

and the return point memory effects.

A good correlation between the proposed model predictions and the experimental data

is again observed for Rre = Rtr. This equality can be interpreted as the macroscopic

consequence of microscopic simultaneous forward and reverse transformation, which can

link the phase transformation parameter to the reorientation one. We do not limit the

model to this case, but this will be the subject of future studies.

According to all the tests reported, we may conclude that the proposed model can de-

scribe the reorientation phenomenon in SMAs under non-proportional loading in a good
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Figure 4.13: Comparison between simulation and experimental results (Bouvet et al.,

2004): a) non-proportional biaxial loading path, b) corresponding strain path, c) axial

stress-strain curve, d) hoop stress-strain curve.

qualitative way, but it needs some improvements, such as considering the material pa-

rameter Rre as a function of q, which will be the subject of future works.

Since the internal variables are somehow related to micro-mechanical phenomena, we

can find similar concepts if compared with micro-mechanics-based studies. For example

the thermodynamic forces and the dissipation inequality arising from the present model

are in correlation with analogous expressions in Levitas and Ozsoy (2009). Deriving

limit functions motivated by micro-mechanical studies (e.g., Sun and Hwang (1993a);

Levitas and Stein (1997); Levitas and Ozsoy (2009)) is an interesting subject for future

studies which if adopted, could improve the proposed model capabilities.

4.5 Summary

In this chapter we presented some new features of modeling SMAs behavior under non-

proportional loading. A new set of internal variables were introduced; these variables are

more physical and in a clear way describe phase transformation and reorientation. It was

shown that transformation evolves only by the component of stress in the direction of

preferred direction of variants and only the component of stress normal to the preferred

direction affects evolution of variants preferred direction.
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The presented formulation has some benefits from numerical point of view, free of

regularization can be considered as the most important one. Comparison of the pro-

posed model predictions with experimental data under different non-proportional load-

ing shows a good qualitative agreement which verifies the proposed model capability in

capturing the reorientation phenomenon. Moreover, we showed that all models predict

the same behavior under a proportional loading and the differences between models are

exhibited under non-proportional loadings.

The proposed model has also some drawbacks and needs improvements. Improving the

simple model presented in this paper by considering asymmetric behavior, subloops, non-

constant hysteresis parameters and etc. can improve the prediction of shape memory

alloys behavior under non-proportional loading which could be the subject of future

work.

We finally highlight that, reviewing some available models and introducing a class of

constitutive models based on the proposed set of internal variables has clarified sev-

eral aspects of constitutive modeling of shape memory alloys under multiaxial (non-

proportional) loading. Introducing an idealized behavior and the concept of the basic

constitutive model helped to focus on the most important features of SMAs behavior

and to include other less important features (secondary effects) after developing a basic

constitutive model.

As a conclusion, we can observe that one of the most important features which still

needs considerable research is capturing reorientation behavior under non-proportional

loadings. The proposed member of the introduced class, investigated in this work, can

be an appropriate start point.
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Chapter 5

Constitutive modeling:

finite deformation regime

5.1 Introduction

Most devices based on shape memory alloys experience both finite deformations (very

large rotations and moderate strains, i.e. in the range of 10-15% for polycrystals (Otsuka

and Wayman, 1998)) and non-proportional loading conditions in engineering applica-

tions. For example, with reference to biomedical applications, stent structures are usu-

ally designed to significantly reduce their diameter during the insertion into a catheter;

thereby, large rotations combined with moderate strains occur and the use of a finite

deformation scheme is preferred.

Several experimental studies show that the so-called variant reorientation can be as-

sumed as the main phenomenon in non-proportional loadings of SMAs (Bouvet et al.,

2002; Grabe and Bruhns, 2009; Helm, 2001; Lim and McDowell, 1999; Sittner et al.,

1995). Recently, Grabe and Bruhns (2009) have conducted several multiaxial exper-

iments on polycrystalline NiTi within a wide temperature range, showing the strong

nonlinearity as well as the path dependencies of the response and highlighting the pres-

ence of reorientation processes for complex loading paths.

These experimental observations, as well as situations experienced by SMAs in real en-

gineering applications, call for the development of 3D SMA constitutive models, taking

into account both finite strain and variant reorientation under general loading conditions

(multiaxial non-proportional loadings). To this end, in this chapter, based on the prin-

ciples of continuum thermodynamics with internal variables, several three-dimensional

finite strain phenomenological constitutive models are proposed. The proposed finite-

strain models took their basis from the constitutive models in the small strain regime

discussed in Chapter 4.
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We extend the small strain models proposed by Panico and Brinson (2007) and Souza

et al. (1998) to the finite strain regime. The finite strain constitutive model derivation is

based on the multiplicative decomposition of the deformation gradient into elastic and

inelastic parts.

We remark that the extension of a small strain constitutive model into the finite strain

regime yields a variety of problems. There are many possible formulations the lineariza-

tion of which properly recovers the small strain model. But the theoretical concepts de-

viate noticeably from each other. Considering this point, besides proposing finite strain

models based on Green-Lagrange strain measure, we propose a constitutive model based

on the logarithmic or Hencky strain measure known as an interesting physical measure

of strain. Moreover, we show how it is possible to extend a constitutive model developed

within the small-deformation regime into the large rotations (but small strains) regime.

5.2 Literature review: finite strain SMA constitu-

tive models

Finite deformation SMA constitutive models available in the literature (Arghavani et al.,

2010b,d; Auricchio, 2001; Auricchio and Taylor, 1997; Christ and Reese, 2009; Evange-

lista et al., 2009; Helm, 2001; Müller and Bruhns, 2006; Pethö, 2001; Reese and Christ,

2008; Thamburaja, 2010; Ziolkowski, 2007) have been mainly developed by extending

small strain constitutive models. The approach in most of the cases is based on the

multiplicative decomposition of the deformation gradient into an elastic and an inelas-

tic or transformation part (Auricchio, 2001; Christ and Reese, 2009; Evangelista et al.,

2009; Helm, 2001; Pethö, 2001; Reese and Christ, 2008; Ziolkowski, 2007; ?), although

there are some models in the literature which have utilized an additive decomposition

of the strain rate tensor into an elastic and an inelastic part (Müller and Bruhns, 2006).

In the following, we mention some of the finite deformation SMA constitutive models

currently available in the literature.

The model by ? is apparently the first macroscopic SMA constitutive model taking

into account finite deformation pseudo-elasticity. Disregarding the first invariant of

stress, this model reduces to Raniecki and Lexcellent (1994) model (RL model) when

linearized. Pethö (2001) decomposes the total deformation gradient into elastic, plastic,

and phase transformation parts, describing elasticity using an integrable hypo-elastic

model based on the logarithmic rate. Ziolkowski (2007) extends a version of the RL

model (Raniecki and Lexcellent, 1994, 1998) to the large deformation regime, consid-

ering thermo-mechanical coupling effects. A multiplicative decomposition of the defor-

mation gradient is also proposed by Helm (Helm, 2001; Helm and Haupt, 2003) and
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Reese and Christ (Christ and Reese, 2009; Reese and Christ, 2008). Evangelista et al.

(2009) and Arghavani et al. (2010b) have extended the small strain model proposed by

Souza et al. (1998) and discussed in Auricchio and Petrini (2002, 2004a) to the finite

deformation regime. Recently, Thamburaja (2010) has developed a finite-deformation-

based, thermo-mechanically-coupled and non-local phenomenological SMA model which

is able to determine the position and motion of austenite-martensite interfaces during

phase transformations.

While all the above mentioned references use a multiplicative decomposition of the de-

formation gradient, Müller and Bruhns (2006) utilize an additive decomposition of the

strain rate tensor into an elastic and a phase transformation part. In particular, they

extend the RL small strain model (Raniecki and Lexcellent, 1998) to take into account

finite deformations and finally reach a rate constitutive model in terms of the logarithmic

spin tensor. Bernardini and Pence (2004) have also proposed a finite strain constitu-

tive model within the framework of multifield theories. Moreover, some large strain

non-phenomenological models have been proposed in the literature (see e.g., Idesman

et al. (1999); Levitas (1998); Pan et al. (2007); Stein and Sagar (2008); Stupkiewicz and

Petryk (2006); Thamburaja (2005); Thamburaja and Anand (2001)).

As stated above, finite strain constitutive models are often based on successful small

strain ones. Along this line, the model proposed by Souza et al. (1998) as well as the

recently proposed three-dimensional model by Panico and Brinson (2007), based on the

classical framework of thermodynamics of irreversible processes, represent suitable can-

didates to be extended to the finite strain regime. In particular, they are interesting

for their capability to model both pseudo-elasticity and shape memory effect, as well

as description of martensite reorientation under non-proportional loading conditions. d

can be an important In this chapter, we first present a finite strain extension of the

small strain model proposed by Panico and Brinson (2007). The small strain constitu-

tive model proposed by Souza et al. (1998) has a simple formulation compared with the

model proposed by Panico and Brinson which is a great advantage from computational

point of view. This features motivate us to develop the finite strain extension of the

model proposed by Souza et al. (1998).

5.3 Kinematics description

Following a well-established approach adopted in plasticity (Haupt, 2002; Lubarda,

2001) and already used for SMAs (Auricchio, 2001; Christ and Reese, 2009; Helm, 2001;

Pethö, 2001; Reese and Christ, 2008; Ziolkowski, 2007; ?), we assume a multiplicative

decomposition of the deformation gradient into an elastic part F e, defined with respect
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to an intermediate configuration, and an inelastic one F in, defined with respect to the

reference configuration. Accordingly:

F = F eF in (5.1)

Since experimental evidences indicate that the inelastic flow due to phase transforma-

tion is nearly isochoric, we have to impose det
(
F in
)

= 1, which after taking the time

derivative results in:

tr
(
din
)

= 0 (5.2)

where din = sym(Ḟ
in
F in). We define Ce = F eTF e and Cin = F inTF in as the elastic

and the inelastic right Cauchy-Green deformation tensors and using definition (5.1), we

obtain:

Ce = F in−TCF in−1
(5.3)

Taking the time derivative of equation (5.3) and using (3.26), the material time derivative

of the elastic right Cauchy-Green deformation tensor is obtained as:

Ċ
e

= −linTCe + F in−T ĊF in−1 −Celin (5.4)

The inelastic Green-Lagrange strain tensor is then defined as:

Ein =
Cin − 1

2
(5.5)

5.4 Finite strain extension of Panico and Brinson

model

We use the multiplicative decomposition of the deformation gradient into elastic and

inelastic parts, along with an additive decomposition of the inelastic strain rate tensor

into transformation and reorientation parts to derive the finite strain extension of con-

stitutive model proposed by Panico and Brinson (2007).

To this end, analogously to (4.18), we also define the stress-induced martensite fraction

as (Christ and Reese, 2009; Reese and Christ, 2008):

zσ =

∥∥Ein
∥∥

εL
(5.6)

we recall that εL =
√

3
2
γ is a material parameter.

In order to satisfy the principle of material objectivity, the Helmholtz free energy has

to depend on F e only through the elastic right Cauchy-Green deformation tensor; it is

moreover assumed to be a function of the stress- and temperature-induced martensite
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fractions and the temperature in the following form1 (Christ and Reese, 2009; Reese and

Christ, 2008):

Ψ = Ψ (Ce, zσ, zT , T ) =
1

ρ0

W (Ce) + ψ (zσ, zT , T ) (5.7)

where ρ0 is the reference density and W (Ce) is a hyperelastic strain energy function (per

unit undeformed volume). In addition, we assume W (Ce) to be an isotropic function of

Ce and to be the same for austenite and martensite phases; it can be therefore expressed

as:

W (Ce) = W (ICe , II Ce , III Ce ) (5.8)

where ICe , II Ce , III Ce are the invariants of Ce. We also define ψ (per unit mass) in the

following form (see also equation (4.23)):

ψ (zσ, zT , T ) = uA0 − TηA0 − zT (∆u0 − T∆η0) + zσ 〈T∆η0 −∆u0〉

+ cν

[
(T − T0)− T ln

(
T

T0

)]
+

1

2
Hσz

2
σ

(5.9)

where the meaning of the material parameters is the same as in Chapter 4.

According to (5.6), the time derivative of the stress-induced martensite fraction is given

as:

żσ =
Ein

εL
∥∥Ein

∥∥ : Ė
in

(5.10)

where Ė
in

is expressed as (see equation (3.29)):

Ė
in

= F inTdinF in (5.11)

Substituting (5.11) into (5.10) and using the relations Cin = F inTF in, bin = F inF inT

and (5.5), we obtain:

żσ =
F inEinF inT

εL
∥∥Ein

∥∥ : din =
bin

2 − bin

2εL
∥∥Ein

∥∥ : din (5.12)

We now decompose additively din into a component dtr coaxial with (bin
2 − bin)D and a

component dre normal to (bin
2 − bin)D, where the superscript D indicates the deviator

of a tensor (AD = A− 1
3
(trA)1), i.e.:

din = dtr + dre (5.13)

with

dtr =
(
din : n̄

)
n̄, dre = din −

(
din : n̄

)
n̄ (5.14)

1To be consistent with the small strain model (Panico and Brinson, 2007), we express the free energy

in terms of energy per unit mass.
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and

n̄ =

(
bin

2 − bin
)D∥∥∥∥(bin2 − bin
)D∥∥∥∥ (5.15)

Using (5.2) and (5.14) we may also conclude that

tr(dtr) = 0, tr(dre) = 0 (5.16)

which is consistent with the experimental evidences of (nearly) isochoric conditions

under forward and reverse transformation, as well as during reorientation.

Combining (5.12) and (5.13), we obtain

żσ =
bin

2 − bin

2εL
∥∥Ein

∥∥ :
(
dtr + dre

)
=

(
bin

2 − bin
)D

2εL
∥∥Ein

∥∥ :
(
dtr + dre

)
(5.17)

According to (5.14) the dre component does not contribute to the variation of martensite

fraction, but only produces a reorientation of the inelastic strain according to the local

stress state and consequently, it can be considered as the reorientation part of din, while

the component dtr can be considered as the transformation part2.

In this way, equation (5.17) reduces to

żσ =

(
bin

2 − bin
)D

2εL
∥∥Ein

∥∥ : dtr =
bin

2 − bin

2εL
∥∥Ein

∥∥ : dtr (5.18)

Now we use the Clausius-Duhem inequality form of the second law of thermodynamics:

1

ρ0

S : Ė −
(

Ψ̇ + ηṪ
)
≥ 0 (5.19)

Substituting (5.7) into (5.19), after multiplication by ρ0, we obtain

S :
1

2
Ċ −

∂W

∂Ce : Ċ
e − ρ0

∂ψ

∂zσ
żσ − ρ0

∂ψ

∂zT
żT − ρ0

η +
∂ψ

∂T

 Ṫ ≥ 0 (5.20)

Thus, substituting (5.4) and (5.18) into (5.20), after some mathematical manipulations,

we obtain:(
S − 2F in−1 ∂W

∂CeF
in−T

)
:

1

2
Ċ − ρ0

η +
∂ψ

∂T

 Ṫ+

(
∂W

∂CeC
e +Ce ∂W

∂Ce

)
: lin − ρ0

∂ψ

∂zσ

bin
2 − bin

2εL
∥∥Ein

∥∥ : dtr − ρ0

∂ψ

∂zT
żT ≥ 0

(5.21)

2This interpretation makes clear the reason for the name choice of the coaxial and normal components

as, respectively, dtr and dre.
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We now use the isotropic property of W (Ce), implying thatCe and
∂W

∂Ce are coaxial, i.e.:

∂W

∂CeC
e = Ce ∂W

∂Ce (5.22)

Substituting (5.22) into (5.21), we obtain:

(
S − 2F in−1 ∂W

∂CeF
in−T

)
:

1

2
Ċ − ρ0

η +
∂ψ

∂T

 Ṫ + 2Ce ∂W

∂Ce : lin

−ρ0
∂ψ

∂zσ

bin
2 − bin

2εL
∥∥Ein

∥∥ : dtr − ρ0

∂ψ

∂zT
żT ≥ 0

(5.23)

Following standard arguments, we finally conclude that:
S = 2F in−1 ∂W

∂CeF
in−T

η = −
∂ψ

∂T

(5.24)

and

M̃ : din − Ñ : dtr +XT żT ≥ 0 (5.25)

where

M̃ = 2Ce
∂W

∂Ce

Ñ = ρ0

∂ψ

∂zσ

bin
2 − bin

2εL
∥∥Ein

∥∥ = ρ0 [〈T∆η0 −∆u0〉+Hσzσ]
bin

2 − bin

2εL
∥∥Ein

∥∥
XT = −ρ0

∂ψ

∂zT
= −ρ0 (T∆η0 −∆u0)

(5.26)

Combining equations (5.13) and (5.25), the dissipation inequality can be written as:

M̃ : dre + (M̃ − Ñ ) : dtr +XT żT ≥ 0 (5.27)

Evolution equations and limit functions

In order to satisfy the second law of thermodynamics (5.27), we may define the following

evolution equations: 
dtr = λ̇tr(M̃ − Ñ )D

dre = λ̇re
˜̄I : M̃

D

żT = λ̇TXT

(5.28)

where the fourth order tensor ˜̄I is defined as:

˜̄I = I− n̄⊗ n̄ (5.29)
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We note that definition (5.28)2 toghether with (5.29) ensures that dre : n̄ = 0.

In order to describe phase transformation, reorientation and twinned martensite evolu-

tions, we choose three limit functions Ftr, Fre and FT as:

Ftr = ‖(M̃ − Ñ )D‖ − Ytr(zσ)

Fre = 1
2
M̃

D
: ˜̄I : M̃

D − Yre

FT =

{
XT − Y f

T (zT ) if żT > 0

−XT − Y r
T (zT ) if żT < 0

(5.30)

where Yre is a material parameter controlling the reorientation process, while Ytr(zσ)

is a function governing the kinetics of the phase transformation. We assume functions

Ytr(zσ) and Y f
T (zT ) to have the same form as in the small strain formulation (see (4.31)

and (4.321)). Moreover, we assume the following form for Y r
T :

Y r
T (zT ) = Y r

T0 + σ̃ + cr(1− zT ) (5.31)

with σ̃ =
√

3
2
(Js) : (Js).

Similarly to plasticity, the consistency parameters and the limit functions satisfy the

Kuhn-Tucker conditions:

Ftr ≤ 0, λ̇tr ≥ 0, λ̇trFtr = 0

Fre ≤ 0, λ̇re ≥ 0, λ̇reFre = 0

FT ≤ 0, λ̇T ≥ 0, λ̇TFT = 0

(5.32)

5.4.1 Representation with respect to the reference configura-

tion

In the previous section, using a multiplicative decomposition of the deformation gradient

into elastic and inelastic parts, we derived a finite strain constitutive model for SMAs.

But while F and F in are related to the reference configuration, F e has been defined with

respect to an intermediate configuration. It is however necessary to recast all equations

in terms of quantities described with respect to the reference configuration, so that all

quantities are Lagrangian.

Since a hyperelastic strain energy function W (Ce) has been introduced in terms of Ce

(i.e. with respect to the intermediate configuration), we first investigate it.

As introduced in (5.8), W depends on Ce only through its invariants. But the invariants

of Ce are equal to those of CCin−1
, as we show for the first invariant (the same can be

shown also for the second and the third invariants in a similar way):

ICe = tr (Ce) = tr
(
F in−T

CF in−1
)

= tr
(
CF in−1

F in−T
)

= tr
(
CC in−1

)
= I

CCin−1

(5.33)

103



Since we assumed W to be an isotropic function of Ce, considering representation the-

orem it can be written in the following form (Ogden, 1984):

∂W

∂Ce = α11 + α2C
e + α3C

e2 (5.34)

where αi = αi(I
CCin−1 , II

CCin−1 , III
CCin−1 ). Substituting (5.34) into (5.24) and using

(5.3), we conclude that:

S = 2

(
α1C

in−1
+ α2C

in−1
CCin−1

+ α3C
in−1

(
CCin−1

)2
)

(5.35)

which expresses the second Piola-Kirchhoff stress tensor in terms of quantities computed

with respect to the reference configuration.

In order to find the Lagrangian form of the tensorial evolution equation, we combine

(5.28) with (5.13) and substituting it into (5.11), we obtain:

Ė
in

= F inT
(
λ̇tr

(
M̃ − Ñ

)D
+ λ̇re

˜̄I : M̃
D
)
F in (5.36)

or equivalently,

Ċ
in

= 2λ̇trF
inT
(
M̃ − Ñ

)D
F in + 2λ̇reF

inT ˜̄I : M̃
D
F in (5.37)

We now consider the first term in the definition of the tensorial internal variable in

(5.37), which is related to the transformation. To this end we compute:

F inTM̃F in = (F inCeF in)(F in−1
2
∂W

∂CeF
in−T )Cin = CSCin (5.38)

and

F inTÑF in = ρ0
∂ψ

∂zσ

Cin3 −Cin2

2εL
∥∥Ein

∥∥ = Cin

(
ρ0

εL

∂ψ

∂zσ

Ein∥∥Ein
∥∥
)
Cin = CinXCin (5.39)

where we have defined:

X =
ρ0

εL

∂ψ

∂zσ

Ein∥∥Ein
∥∥ (5.40)

We now define:

Y Cin = F inT (M̃ − Ñ )F in (5.41)

and obtain from (5.38)-(5.41) the asymmetric tensor Y as follows:

Y = CS −CinX (5.42)

Moreover, we have:

F inT (M̃ − Ñ )DF in = F inT (M̃ − Ñ − 1

3
tr(M̃ − Ñ )1)F in =

(CSCin −CinXCin − 1

3
tr(CS)Cin +

1

3
tr(CinX)Cin) = Y DCin

(5.43)
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yielding

(M̃ − Ñ )D = F in−TY DF inT (5.44)

and

‖Y D‖2
= (M̃ − Ñ )D : (M̃ − Ñ )D

T
= Y D : Y DT = ‖Y D‖2

(5.45)

where ‖ · ‖ is the norm operator, defined as3 ‖A‖ = (A : AT )
1
2

The second term in the evolution equation (5.37) can be rewritten in a similar way as:

F inT (˜̄I : M̃
D

)F in = (Ĩ : MD)Cin (5.46)

where

M = CS (5.47)

Ĩ = I− H̃ ⊗ H̃ (5.48)

H̃ =
(Cin2 −Cin)D

‖(Cin2 −Cin)D‖
(5.49)

It can also be shown that:

M̃
D

: ˜̄I : M̃
D

= MD : Ĩ : MD (5.50)

Finally using (3.55), we obtain

(Js) : (Js) = ‖(CS)D‖2
(5.51)

showing that in (5.31) we can express σ̃ in terms of quantities defined with respect to

the reference configuration.

Table 5.1 finally summarizes the finite deformation extension of Panico and Brinson

(2007) constitutive model, written in terms of Lagrangian quantities only.

3 We remark that the norm operator ‖ · ‖ is different from the Frobenius norm (defined as ‖A‖ =

(A : A)
1
2 ), but is an admissible operator and satisfies the objectivity requirement as it can be shown

by using the transformation rule of second order tensors, i.e., A∗ij = ΩikΩjlAkl (Ω being a proper

orthogonal tensor), to obtain:

A∗ : A∗
T

= A∗ijA
∗
ji = ΩikΩjlAklΩjmΩinAmn = (ΩikΩin)(ΩjlΩjm)(AklAmn) = δnkδmlAklAmn =

AklAlk = A : AT

Moreover, both norm definitions yield the same result for a symmetric tensor. Finally, the adopted

norm has already been used in several works (see, e.g., Christ and Reese (2009)).
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Remark: To be consistent with the small strain constitutive model development ap-

proach by Panico and Brinson, in this Section we used {Ce, T} and {zσ, zT} as control

and internal variables, respectively. But we prefer to consider {C, T} and {Cin, zT}
as control and internal variables, respectively, as the final form of constitutive model

confirms this. To this end, in Appendix A, we have developed finite strain constitutive

model considering {C, T} as control variables as well as {Cin, zT} as internal ones

showing that both approaches lead to the same constitutive equations.

5.4.2 Linearization of the finite deformation SMA model

In this section, we derive the linearized form of the constitutive equations proposed in

Section 5.7.3 and show that it reduces to the small strain constitutive model in Panico

and Brinson (2007). Since we have obtained the model by extending the small strain

model, this reduction is expected, however it is a very simple approach to check the

correctness of the developed finite strain model.

The infinitesimal strain tensor is defined as:

ε =
1

2

(
∇u + (∇u)T

)
(5.52)

According to the definition of displacement vector, u = x−X, we have:

∇u = F − 1 (5.53)

Substituting F from (5.53) into (5.52), we find the relation between the Green-Lagrange

strain tensor and the infinitesimal strain tensor as:

E = ε+
1

2
(∇u)T (∇u) (5.54)

Neglecting higher order terms, we then obtain the linearized form of kinematic quantities

as
E ' ε, C = 1 + 2E ' 1 + 2ε

Ein ' εin, Cin = 1 + 2Ein ' 1 + 2εin

Cin2 −Cin ' 2εin

(5.55)

Also, it can be shown that stress quantities have the following linearized form:

S ' tr (ε)σ =
ρ0

ρ
σ ' σ

CS ' σ

X ' ρ
1

εL

∂ψ

∂zσ

εin

‖εin‖
= x̄

Y D ' s− x̄ = xtr

MD ' s = xre

XT = −ρ0(T∆η0 −∆u0) ' xT

(5.56)
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In finite elasticity, it is usually supposed that for a hyperelastic material, the strain

energy function W (Ce) reduces to the strain energy of a Hookean elastic material in the

small strain regime (Ogden, 1984). Therefore, we may conclude that independently on

the functional form ofW (Ce) (e.g., Saint-Venant Kirchhoff type, Neo-Hookean, Mooney-

Rivlin, Ogden, etc.), the linearized form reads as:

W ' 1

2
λ(tr(εe))2 + µtr(εe2) (5.57)

where λ and µ are Lamè constants.

Applying the linearized forms in (5.55)-(5.57) to the finite deformation constitutive

model of Section 5.4.1 readily gives the same constitutive model proposed in Panico and

Brinson (2007).

5.5 Finite strain extension of Souza model

We use a multiplicative decomposition of the deformation gradient and present a ther-

modynamically consistent finite strain extension of Souza model. As stated before, to

satisfy the principle of material objectivity, the Helmholtz free energy has to depend

on F e only through the elastic right Cauchy-Green deformation tensor; it is moreover

assumed to be a function of the transformation right Cauchy-Green deformation tensor

and of the temperature, T , in the following form:

Ψ = Ψ
(
Ce,Cin, T

)
= W (Ce) + ψin(Ein, T ) (5.58)

We remark that in proposing decomposition (5.58), we have assumed the same material

behavior for the austenite and martensite phases. In addition, we assume W (Ce) to be

an isotropic function of Ce. We also define ψin in the following form (Auricchio and

Petrini, 2002; Souza et al., 1998):

ψin(Ein, T ) = τM(T )‖Ein‖+
1

2
h‖Ein‖2 + IεL(‖Ein‖) (5.59)

similarly to small strain model, τM(T ) = β 〈T − T0〉 and β, T0 and h are material

parameters. We also use the indicator function IεL defined as:

IεL(‖Ein‖) =

{
0 if ‖Ein‖ ≤ εL

+∞ otherwise
(5.60)

to satisfy the constraint on the transformation strain norm, i.e.:

‖Ein‖ ≤ εL (5.61)

107



We now use Clausius-Duhem inequality form of the second law of thermodynamics (per

unit undeformed volume):

S :
1

2
Ċ − (Ψ̇ + ηṪ ) ≥ 0 (5.62)

Substituting (5.58) into (5.62), we obtain:

S :
1

2
Ċ −

 ∂W

∂Ce : Ċ
e

+
∂ψin

∂Ein : Ė
in

+
∂ψin

∂T
Ṫ

− ηṪ ≥ 0 (5.63)

Now, substituting (5.4) into (5.63), after some mathematical manipulations, we obtain:(
S − 2F in−1 ∂W

∂CeF
in−T

)
:

1

2
Ċ+2Ce ∂W

∂Ce : lin−X : Ė
in−

η +
∂ψin

∂T

 Ṫ ≥ 0 (5.64)

where

X = hEin + (τM(T ) + γ)N (5.65)

and

N =
Ein

‖Ein‖
(5.66)

The positive variable γ results from the indicator function subdifferential ∂IεL(‖Ein‖)
and it is such that: {

γ ≥ 0 if ‖Ein‖ = εL

γ = 0 otherwise
(5.67)

In deriving (5.64) we have used the isotropic property of W (Ce), implying that Ce and

∂W

∂Ce are coaxial. Following standard arguments, we finally conclude:
S = 2F in−1 ∂W

∂CeF
in−T

η = −
∂ψin

∂T
,

(5.68)

Using a classical property of second-order tensor double contraction, i.e., A : (BC) =

B : (ACT ) = C : (BTA), we conclude:

X : Ė
in

=
(
F inXF inT

)
: din (5.69)

In deriving (5.69) we have used the following relation:

Ė
in

= F inTdinF in (5.70)

Substituting (5.68) and (5.69) into (5.64) and taking advantage of the symmetry of

Ce
∂W

∂Ce, the dissipation inequality can be written as:

(P −K) : din ≥ 0 (5.71)
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where  P = 2Ce
∂W

∂Ce

K = F inXF inT
(5.72)

To satisfy the second law of thermodynamics, (5.71), we define the following evolution

equation:

din = ζ̇
(P −K)D

‖(P −K)D‖
(5.73)

Moreover, we highlight that (5.73) satisfies the inelastic deformation incompressibility

condition (5.2).

To describe phase transformation, we choose the following limit function:

f = ‖(P −K)D‖ −R (5.74)

where the material parameter R is the elastic region radius. Similarly to plasticity, we

also introduce the consistency parameter and the limit function satisfying the Kuhn-

Tucker conditions:

f ≤ 0, ζ̇ ≥ 0, ζ̇f = 0 (5.75)

In conclusion, the constitutive model in the finite deformation regime can be finally

summarized as follows:

• Stress quantities:

S = 2F in−1 ∂W

∂CeF
in−T

P = 2Ce
∂W

∂Ce

X = hEin + (τM + γ)N

K = F inXF inT

• Evolution equation:

din = ζ̇
(P −K)D

‖(P −K)D‖

• Limit function:

f = ‖(P −K)D‖ −R

• Kuhn-Tucker conditions:

f ≤ 0, ζ̇ ≥ 0, ζ̇f = 0
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5.5.1 Representation with respect to the reference configura-

tion.

We now recast all equations in terms of C (control variable) and Ct (internal variable)

which are described with respect to the reference configuration.

As it has already been shown in 5.4.1, considering the isotropic property of W , we can

expresses the second Piola-Kirchhoff stress tensor in terms of quantities computed with

respect to the reference configuration as follows:

S = 2

(
α1C

in−1
+ α2C

in−1
CCin−1

+ α3C
in−1

(
CCin−1

)2
)

(5.76)

In order to find the Lagrangian form of the evolution equation, we follow an approach

similar to one we used in Section 5.4.1 and obtain:

F inT (P −K)F in = Y Cin (5.77)

where

Y = CS −CinX (5.78)

Now, we can express the limit function and the evolution equation as:

f = ‖Y D‖ −R (5.79)

and

Ċ
in

= 2ζ̇
Y D

‖Y D‖
Cin = ζ̇A = ζ̇A1C

in (5.80)

where

A = 2
Y D

‖Y D‖
Cin and A1 = 2

Y D

‖Y D‖
(5.81)

5.5.2 A singularity-free, continuous definition for N

We note that, according to (5.66), the variable N is not defined for the case of vanishing

transformation strain. Despite some discussions in the paper by Auricchio and Petrini

(2002) 4, regularization schemes have extensively been used in the literature to overcome

this problem. For example, Helm and Haupt (2003) propose the following regularization

scheme also used in (Auricchio et al., 2007, 2009c; Christ and Reese, 2009; Panico and

Brinson, 2007; Reese and Christ, 2008):

‖Ein‖ =

√
‖Ein‖2 + δ (5.82)

4 Auricchio and Petrini (2002) tried to define a non-singular equation in the small-strain regime.

However, the approach is completely different from the one followed herein which is based on a well-

defined N . In fact, in Auricchio and Petrini (2002) a non-singular variable corresponding to limit

function f (or, equivalently, the linearized form of ‖Y ‖) is presented.
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where δ is a user defined parameter (typical value: 10−7) and a bar over the norm oper-

ator denoted the regularization. In Auricchio and Petrini (2004a) and adopted also in

(Auricchio and Petrini, 2004b; Evangelista et al., 2009), another proposed regularization

scheme is as follows:

‖Ein‖ = ‖Ein‖ − d
d+1
d

d− 1

(
‖Ein‖+ d

) d−1
d (5.83)

where d is again a user defined parameter (typical value: 0.02). Regularization schemes

(5.82) and (5.83) are indeed equivalent, despite they have different forms.

While using a regularization scheme has some advantages in removing singularity in N

and in giving a smooth transition from austenitic to martensitic phase and vice versa

with a quite simple approach, it has however the disadvantage of transforming a large

part of the elastic region into a region of nonlinear material response. For example,

in the simple case of uniaxial loading, when the regularized scheme (5.82) is used, for

the (CSe)
D values in the interval of [0, τM − R] the limit function is positive and it is

assumed that material response is nonlinear; however, from physical point of view, its

response should be elastic and there is no need to solve a nonlinear system. We can

see that this interval increases with increasing temperatures and is zero for the case of

τM −R < 0 which occurs for the SME case.

This significantly increases the solution time and consequently decreases the numerical

efficiency, especially for boundary value problems in which considerable part of the

structure remains elastic (e.g., a stent structure). In the following, motivated by the

work by Arghavani et al. (2010c) in the small-strain regime, we suggest to avoid a

regularized form for ‖Ein‖ and to deal with the case of vanishing transformation strain

through a careful analytical study of the limiting conditions. We start investigating a

condition in which Ein starts to evolve from a zero value (indicated in the following

as Nucleation), i.e., Ein = 0 with
˙∥∥Ein
∥∥ > 0. Substituting Cin = 1 into (5.78) (also

see (5.65) and (5.76)) we conclude that Y D = (CSe)
D. We now consider (5.80) which

yields:

Ė
in

=
1

2
Ċ
in

= ζ̇
(CSe)

D

‖ (CSe)
D ‖

(5.84)

where Se = 2
(
α11 + α2C + α3C

2
)

is the stress obtained from (5.76) substituting 1

in place of Cin. According to (5.84), the transformation strain, Ein, nucleates in the

(CSe)
D direction.

We now investigate the case when transformation strain vanishes from a nonzero value

(indicated in the following as Completion), i.e., Ein = 0 (Cin = 1) with
˙∥∥Ein
∥∥ < 0.

Since ‖Ein‖ = 0, we conclude that adopting any arbitrary directionN leads to Ein = 0.

As stated in Arghavani et al. (2010c) (for a small-strain case), we select this direction as

the (CSe)
D direction which also guarantees continuity. Therefore, we revise the variable
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N in the following form:

N =


(CSe)

D

‖ (CSe)
D ‖

if ‖Ein‖ = 0

Ein

‖Ein‖
if ‖Ein‖ 6= 0

(5.85)

Equation (5.85) means that in the case of non-vanishing transformation strain, N is the

direction of the inelastic strain tensor while in the vanishing case, it is defined as the

direction of stress tensor (CSe)
D which still is definite for the case of (CSe)

D = 0, as

the direction of a tensor (or a vector) is independent from its value or norm. However,

it needs some consideration in numerical implementation which would be addressed in

Section 6.2.3.

We note that according to the above discussion, the tensor N and consequently the

tensor X are well-defined, non-singular and continuous.

Finally, Table 5.2 summarizes the time-continuous finite-strain constitutive model, writ-

ten only in terms of Lagrangian quantities.

5.6 An approach to fully symmetrize the derived

constitutive models

We observe that due to the asymmetry of CS, the quantity Y is not symmetric. The

asymmetric tensor Y also appears in the constitutive equations proposed in (Arghavani

et al., 2010b,d; Christ and Reese, 2009; Evangelista et al., 2009; Reese and Christ, 2008).

To this end, we present an alternative formulation which is in terms of symmetric tensors

only. According to (5.76), we may write:

CS = 2

(
α1CC

in−1
+ α2

(
CCin−1

)2

+ α3

(
CCin−1

)3
)

(5.86)

Equation (5.86) shows that the asymmetry inCS is due to the asymmetric termCCin−1

.

We now present the following identity

CCin−1

= U in
(
U in−1

CU in−1
)
U in−1

= U inC̃U in−1

(5.87)

where

C̃ = U in−1

CU in−1

(5.88)

Substituting (5.87) into (5.86), we obtain:

CS = U inC̃S̃U in−1

(5.89)
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where,

S̃ = 2
(
α11 + α2C̃ + α3C̃

2
)

(5.90)

Moreover, due to the coaxiality of Cin and X, we may write:

CinX = U inCinXU in−1

(5.91)

Substituting (5.89) and (5.91) into (5.78), we obtain:

Y = U inỸ U in−1

(5.92)

where Ỹ is defined as:

Ỹ = C̃S̃ −CinX (5.93)

Using the property tr
(
U inỸ U in−1

)
= tr(Ỹ ), we also obtain:

Y D = U inỸ
D
U in−1

(5.94)

We now substitute (5.94) into (5.79) and (5.80) and obtain (5.95) and (5.96), respec-

tively, as follows:

Y D : Y DT = Ỹ
D

: Ỹ
D
, or f = ‖Y D‖ −R = ‖Ỹ D‖ −R (5.95)

and

Ċ
in

= 2ζ̇U in Ỹ
D

‖Ỹ D‖
U in (5.96)

We remark that in the proposed formulation we can express S as:

S = U in−1

S̃U in−1

(5.97)

Finally, we summarize the proposed improved time-continuous finite-strain constitutive

models in Table 5.3.

We may compare the original and the proposed alternative time-continuous forms sum-

marized in Tables 5.2 and 5.3, respectively. It is clearly observed that, in the proposed

alternative constitutive model, all quantities are symmetric and the norm operator ar-

gument is also a symmetric tensor.

5.7 A kinematic hardening constitutive model based

on Hencky strain

5.7.1 Motivation

The logarithmic strain, sometimes referred to as true or natural strain, introduced by

Hencky (1928) and also called Hencky strain, is a favored measure of strain due to its
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remarkable properties at large deformations in solid mechanics, materials science and

metallurgy. A remarkable property is that among all finite strain measures, only the

spherical and the deviatoric parts of the Hencky strain can, in an additive manner,

separate the volumetric deformation and the isochoric deformation from the total de-

formation, whereas the just-mentioned two deformation modes are inseparably coupled

with each other in either of the spherical part and the deviatoric part of any other strain

measure (Xiao et al., 2004).

Moreover, the logarithmic strain possesses certain intrinsic far-reaching properties that

establish its favored position in all possible strain measures. One reason of such proper-

ties was clarified by disclosing an important relation, i.e., the Eulerian logarithmic strain

is the unique strain measure that its corotational rate (associated with the so-called log-

arithmic spin) is the strain rate tensor. In other words, the strain rate tensor, d, is

the corotational rate of the Hencky strain tensor associated with the logarithmic spin

tensor. Such a result has been introduced by Reinhardt and Dubey (1995) as D-rate

and by Xiao et al. (1997) as log-rate. The work-conjugate pair of Eulerian Hencky strain

and Cauchy stress, being natural or true strain and stress measures, respectively, are

of most interest in constitutive modeling beyond the small strain regime (Xiao et al.,

2006).

For its considerable advantages, logarithmic strain has been used in constitutive mod-

eling of solids by many authors (see, e.g., Bruhns et al. (1999); Criscione et al. (2000);

Lin and Schomburg (2003); Miehe et al. (2002); Müller and Bruhns (2006); Naghdabadi

et al. (2005); Peric et al. (1992); Reinhardt and Dubey (1996); Xiao et al. (2000, 2001);

Xiao and Chen (2002); Yeganeh and Naghdabadi (2006)).

There has also been a lot of effort in the literature using Green-Lagrange strain and

the second Piola-Kirchhoff stress which are finite strain and stress as well as work-

conjugate measures in nonlinear solid mechanics. However, the physical meaning of

Green-Lagrange strain is not precise and direct unless the magnitude is small. Some-

times Green-Lagrange strain is called an energy-measure strain (Pai et al., 1998) to

emphasis that it is not a physical or true measure.

Recently, Darijani and Naghdabadi (2010) have reconsidered the strain measure defini-

tion to satisfy the consistency requirements: 1) strain should go to +∞ when stretch

goes to +∞, 2) strain should go to −∞ when stretch goes to zero. As discussed by

Darijani and Naghdabadi, the well known Seth-Hill strain measures do not satisfy the

both requirements simultaneously5. We emphasis that the Hencky strain, belonging to

both Seth-Hill and Darijani-Naghdabadi measures, is the only member of Seth-Hill class

that satisfies both requirements.

There are still more motivations to develop a Hencky-strain based constitutive model.

5For example, Green-Lagrange strain measure, E = 1
2 (U2 − 1)→ − 1

21 when U → 0
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For example, for a Hookean-type constitutive relation, only the Hencky-based one is

useful at moderately large elastic stretches (Anand, 1979, 1986). Another motivation

is related to the physical kinematical constraints, for example, in shape memory al-

loys (SMAs), to capture the transformation-induced strain saturation, it is necessary

to define a kinematical constraint on the inelastic true strain norm. This constraint

has yet been enforced through the Green–Lagrange strain norm, which is not physical;

however, it is reasonable for small strains, large rotation deformations. Moreover, the

incompressibility constraint takes a very simple form when Hencky strain is used (Xiao

et al., 2004).

To this end, based on the Hencky strain, we develop a finite strain constitutive model.

5.7.2 Constitutive model development

A multiplicative decomposition of F into dilatational and distortional parts is defined

as:

F =
(
J1/31

)
F̄ = J1/3F̄ (5.98)

where det(F̄ ) = 1. The terms J1/31 and F̄ are associated, respectively, with volume-

changing and volume-preserving deformations of the material (Holzapfel, 2000).

Then, the right and left Cauchy-Green deformation tensors are, respectively, defined as:

C = F TF = U 2 = J2/3F̄
T
F̄ = J2/3C̄ = J2/3Ū

2

b = FF T = V 2 = J2/3F̄ F̄
T

= J2/3b̄ = J2/3V̄
2 (5.99)

where det(C̄) = det(Ū) = 1 and det(b̄) = det(V̄ ) = 1.

The material and spatial Hencky (or logarithmic) strain tensors H and h read, respec-

tively, as (Lubarda, 2001)6

H = logU = 1
2

logC = H̄ + 1
3
θ1

h = logV = 1
2

log b = h̄+ 1
3
θ1

(5.100)

where

θ = log(J), H̄ = log Ū =
1

2
log C̄, h̄ = log V̄ =

1

2
log b̄ (5.101)

Moreover, the velocity gradient tensor l is given as:

l = Ḟ F−1 = l̄ +
1

3
θ̇1 (5.102)

6The material and spatial Hencky strains are computed through spectral decomposition, i.e.,

H =

3∑
i=1

log(λi)ei ⊗ ei and h =

3∑
i=1

log(λi)ẽi ⊗ ẽi

where λi are the three principal stretches (possibly repeated), while ei and ẽi are the corresponding

principal directions of the right and left stretch tensors, respectively.
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where

l̄ = ˙̄F F̄
−1

(5.103)

The symmetric and skew symmetric parts of l supply, respectively, the strain rate tensor

d and the vorticity tensor w, i.e.:

d = sym(l) = d̄+ 1
3
θ̇1

w = skew(l) = w̄
(5.104)

where d̄ = sym(̄l) and w̄ = skew(̄l), while sym(A) = (1/2)(A +AT ) and skew(A) =

(1/2)(A−AT ) compute the symmetric and skew symmetric parts of an arbitrary tensor

A, respectively.

As we introduced in Chapter 3, corotational rate of an Eulerian tensor A associated

with the rotating frame having spin Ω∗ is defined as (see (3.36)):
◦
A = Ȧ−Ω∗A + AΩ∗ (5.105)

where Ȧ is the material time derivative of A associated with the fixed frame and
◦
A is

the corotational rate of A (Ghavam and Naghdabadi, 2007; Xiao et al., 1997).

We now double contract both sides of (5.105) with an arbitrary second-order symmetric

tensor B; assuming A symmetric and after some mathematical manipulation, we obtain:
◦
A : B = Ȧ : B + 2Ω∗ : (AB) (5.106)

If A and B are coaxial (besides being symmetric), AB is also symmetric and its double

contraction with the skew-symmetric tensor Ω∗ vanishes. Therefore, we conclude the

following identity for any arbitrary spin tensor Ω∗:

if A and B are symmetric and coaxial ⇒ Ȧ : B =
◦
A : B (5.107)

The corotational rate of the Eulerian (or spatial) Hencky strain h associated with the

so-called logarithmic spin7 Ωlog is identical to the Eulerian stretching d, and h is the

only strain enjoying this property (Xiao et al., 1997). According to (5.105), this means:
◦
h log = ḣ−Ωlogh+ hΩlog = d (5.108)

We now use the multiplicative decomposition of the deformation gradient into elastic

and inelastic parts and, defining Helmholtz strain energy function in terms of elastic and

inelastic Hencky strains, we develop a thermodynamically-consistent finite strain kine-

matic hardening constitutive model. We utilize the deformation gradient decomposition

into volumetric and distortional parts, as follows:

F e = Je
1
3 F̄

e

F in = J in
1
3 F̄

in (5.109)

7In this study, only the existence of such spin is utilized and the explicit form of Ωlog is not needed;

however we refer to e.g., Ghavam and Naghdabadi (2007); Reinhardt and Dubey (1995); Xiao et al.

(1997) for more details.
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where Je = det(F e), J in = det(F in) and det(F̄ e) = det(F̄
in

) = 1.

Similarly, we may define the following tensors:

Ce = F eTF e, C̄
e

= F̄
eT
F̄
e
, be = F eF eT , b̄

e
= F̄

e
F̄
eT

Cin = F inTF in, C̄
in

= F̄
inT
F̄
in
, bin = F inF inT , b̄

in
= F̄

in
F̄
inT

U e = Ce1/2 , Ū
e

= C̄
e1/2

, V e = be
1/2

, V̄
e

= b̄
e1/2

U in = Cin1/2

, Ū
in

= C̄
in1/2

, V in = bin
1/2

, V̄
in

= b̄
in1/2

He = logU e, H̄
e

= log Ū
e
, H in = logU in, H̄

in
= log Ū

in

(5.110)

Combining (5.1) and (5.109), we obtain:

F = (JeJ in)
1
3 F̄

e
F̄
in

= J
1
3 F̄ (5.111)

where

J = JeJ in and F̄ = F̄
e
F̄
in (5.112)

Substituting (5.112) into (5.104)1, we obtain:

d̄ = ˙̄F F̄
−1

= d̄
e

+ sym
(
F̄
e
l̄
in
F̄
e−1
)

and θ = θe + θin (5.113)

where, d̄
e

= sym
(

˙̄F eF̄
e−1
)

, l̄
in

= ˙̄F inF̄
in−1

, θe = log(Je) and θin = log(J in).

In order to satisfy the principle of material objectivity, the Helmholtz free energy has to

depend on F e only through the elastic right stretch tensor; it is moreover assumed to be

a function of F in through the inelastic right stretch tensor and of the temperature8, T .

Finally, we express the Helmholtz free energy per unit undeformed volume, decomposed

additively in the following form:

Ψ = Ψ
(
θe, θin, H̄

e
, H̄

in
, T
)

= φe(θe) + ψe(H̄
e
) + φin(θin) + ψin(H̄

in
, T )

= W e(He) +W in(H in, T )
(5.114)

where W e(He) is a hyperelastic strain energy function decomposed into φe(θe) and

ψe(H̄
e
), representing the volumetric and distorsional elastic strain energies due to the

elastic material deformations, respectively. Similarly, the term W in(H in, T ) represents

the additional amount of stored energy due to inelastic hardening (e.g., phase transfor-

mation, plastic hardening and so on), decomposed into volumetric and isochoric parts

φin(θin) and ψin(H̄
in

), respectively. For simplicity we do not consider the isotropic

hardening effect, knowing that it can be easily included in the proposed constitutive

model.

In this study, we assume ψe(H̄
e
) and ψin(H̄

in
, T ) to be isotropic functions of H̄

e
and

8We remark that we do not consider a fully thermo-mechanical coupled model. In this way, the

Helmholtz free energy should be more properly referred to as a temperature-parameterized function.
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H̄
in

, respectively9. Therefore, ψe and ψin can be expressed as functions of their ar-

gument invariants. Since, the Lagrangian and Eulerian Hencky strains have the same

invariants, we can express the Helmholtz free energy as a function of the Eulerian Hencky

strains, i.e.,:

Ψ
(
θe, θin, H̄

e
, H̄

in
, T
)

= Ψ
(
θe, θin, h̄

e
, h̄

in
, T
)

= φe(θe) + ψe(h̄
e
) + φin(θin) + ψin(h̄

in
, T )

(5.115)

We now use Clausius-Duhem inequality form of the second law of thermodynamics:

Jσ : d− (Ψ̇ + ηṪ ) = τ : d− (Ψ̇ + ηṪ ) ≥ 0 (5.116)

where τ = Jσ is the Kirchhoff stress tensor.

Moreover, we make use of (5.104)1 and the additive decomposition of the Kirchhoff

stress tensor τ into a hydrostatic part p∗1 and a deviatoric part: s∗ = τ − p∗1, where

p∗ = tr(τ )/3, and rewrite (5.116) as:

p∗θ̇ + s∗ : d̄− (Ψ̇ + ηṪ ) ≥ 0 (5.117)

We now substitute (5.113) and (5.115) into (5.117) to obtain:

p∗
(
θ̇e + θ̇in

)
+ s∗ :

[
d̄
e

+ sym
(
F̄
e
l̄
in
F̄
e−1
)]

−

∂φe
∂θe

θ̇e +
∂ψe

∂h̄
e : ˙̄he +

∂φin

∂θin
θ̇in +

∂ψin

∂h̄
in : ˙̄hin +

∂ψin

∂T
Ṫ

− ηṪ ≥ 0

(5.118)

As a consequence of isotropy, the symmetric tensors h̄
e

and ∂ψe/∂h̄
e

as well as the

symmetric tensors h̄
in

and ∂ψin/∂h̄
in

are coaxial. According to (5.107), we can replace

the time derivative of elastic and inelastic Hencky strains appearing in (5.118) with any

corotational rate in the form of (5.105). We particularly make use of the corresponding

logarithmic spin tensors, i.e., Ωlog−e and Ωlog−in, which according to (5.108) result in10:

∂ψe

∂h̄
e : ˙̄he =

∂ψe

∂h̄
e :

◦
(h̄

e
) log−e =

∂ψe

∂h̄
e : d̄

e
(5.119)

9We refer to Henann and Anand (2009) and Gurtin and Anand (2005) for more details on objectivity

as well as isotropy requirements.
10 According to the work by Xiao et al. (1997), the logarithmic spin Ωlog is introduced as:

Ωlog(F ) = w +

m∑
i,j=1,i6=j

[(
1 + (bi/bj)

1− (bi/bj)
+

2

log(bi/bj)

)
P idP j

]
where bi = λ2i are the eigenvalues of the left Cauchy-Green deformation tensor and P i are the eigen-

projections subordinate to eigenvalues λi > 0. According to this relation, knowing the deformation

gradient F (t), the logarithmic spin Ωlog(F ) can be computed. We now consider the multiplicative

decomposition of the deformation gradient and introduce the logarithmic spins Ωlog−e and Ωlog−in as
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and
∂ψin

∂h̄
in : ˙̄hin =

∂ψin

∂h̄
in :

◦

(h̄
in

) log−in =
∂ψin

∂h̄
in : d̄

in
(5.120)

where superscripts ”log-e” and ”log-in” represent the corotational rate associated with

the logarithmic spins during the elastic and inelastic deformations, F̄
e

and F̄
in

, respec-

tively.

Substituting (5.119) and (5.120) into (5.118), after some mathematical manipulations,

we obtain:p∗ − ∂φe

∂θe

 θ̇e +

s∗ − ∂ψe

∂h̄
e

 : d̄
e

+

p∗ − ∂φin

∂θin

 θ̇in

+

F̄ eT
s∗F̄

e−T −
∂ψin

∂h̄
in

 : l̄
in −

η +
∂ψin

∂T

 Ṫ ≥ 0

(5.121)

In deriving (5.121) we have used the symmetric property of both s∗ and
∂ψin

∂h̄
in implying,

respectively:

s∗ : sym
(
F̄
e
l̄
in
F̄
e−1
)

= s∗ :
(
F̄
e
l̄
in
F̄
e−1
)

= l̄
in

:
(
F̄
eT
s∗F̄

e−T
)

(5.122)

and
∂ψin

∂h̄
in : d̄

in
=
∂ψin

∂h̄
in : l̄

in
(5.123)

Following standard arguments (Haupt, 2002; Ottosen and Ristinmaa, 2005), from (5.121)

we may conclude11

p∗ =
∂φe

∂θe
, s∗ =

∂ψe

∂h̄
e , η = −

∂ψin

∂T
(5.124)

leading to the following simplified Clausius-Duhem inequality:p∗ − ∂φin

∂θin

 θ̇in +

F̄ eT
s∗F̄

e−T −
∂ψin

∂h̄
in

 : l̄
in ≥ 0 (5.125)

follows:

Ωlog−e = Ωlog(F̄
e
) and Ωlog−in = Ωlog(F̄

in
)

The relations above confirm the existence of such spins. However, in this work, we do not need the

explicit forms of Ωlog−e and Ωlog−in.

11 In the work by Xiao et al. (2000), they use the hypoelastic constitutive model de =
◦

(∂Σ/∂π) log−e,

where Σ is a complementary hyperelastic potential and π = RΠRT is the Eulerian stress while Π is the

work-conjugate stress measure of the Lagrangean logarithmic strain H. However, the corresponding

hypoelastic constitutive model of this work, when written in the framework of Xiao et al. (2000) work,

takes the form de =
◦

(∂Σ/∂π) log−e. It is noted that regarding the fact that de =
◦
he log−e, we can

write
◦
he log−e =

◦
(∂Σ/∂π) log−e which can be integrated to yield he = ∂Σ/∂π. This shows that, the

hypoelastic form used in this work can be reduced to a hyperelastic constitutive model as observed in

(5.124)1,2.
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Considering (5.124)2 and the isotropic property of ψe, it can be shown that F̄
eT
s∗F̄

e−T

is a symmetric tensor (see equation (B.6) in the Appendix). Therefore, equation (5.125)

reads as:

qθ̇in +α : d̄
in ≥ 0 (5.126)

where the scalar and tensorial relative stresses, q and α, are defined as:

q = p∗ −
∂φin

∂θin
=
∂φe

∂θe
−
∂φin

∂θin

α = m− x
(5.127)

with

m = F̄
eT
s∗F̄

e−T
, x =

∂ψin

∂hin
(5.128)

To satisfy the second law of thermodynamics (5.126), following Ottosen and Ristinmaa

(2005), we introduce the convex potential G(α, q) and define the following evolution

equations:

d̄
in

= ζ̇
∂G(α, q)

∂α
and θ̇in = ζ̇

∂G(α, q)

∂q
(5.129)

where λ is the consistency parameter.

Moreover, we consider a yield or limit function as follows:

F = f(α, q)−R (5.130)

where the material parameter R is the elastic region radius.

Similarly to plasticity, the consistency parameter and the limit function (or yield func-

tion) satisfy the Kuhn-Tucker conditions:

F ≤ 0, ζ̇ ≥ 0, ζ̇F = 0 (5.131)

Accordingly, the finite strain, non-associative constitutive model can be summarized as:

• Stress-like quantities

p∗ =
∂φe

∂θe
, q =

∂φe

∂θe
−
∂φin

∂θin
, s∗ =

∂ψe

∂h̄
e ,

m = F̄
eT
sF̄

e−T
, x =

∂ψin

∂h̄
in , α = m− x

• Limit function

F = f(α, q)−R

• Potential function

G = G(α, q)
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• Evolution equations

d̄
in

= ζ̇
∂G(α, q)

∂α
and θ̇in = ζ̇

∂G(α, q)

∂q

• Kuhn-Tucker conditions

F ≤ 0, ζ̇ ≥ 0, ζ̇F = 0

5.7.3 Representation with respect to the reference configura-

tion

In the above formulation, F e is defined with respect to an intermediate configuration.

Accordingly, tensor s has been defined with respect to the current configuration, while

tensors m, x, α and d̄
in

have been defined with respect to the intermediate configura-

tion. Thus, we recast all equations in terms of quantities defined with respect to the

reference configuration, allowing to express all equations in a Lagrangian form.

As already stated, ψe depends on h̄
e

only through its invariants which are the same

as those of H̄
e
. Since H̄

e
= 1/2 log(C̄

e
), it is clear that the invariants of H̄

e
can be

expressed in terms of the invariants of C̄
e

which are equal to those of Ū
in−1

C̄Ū
in−1

. In

fact, for the first invariant, the following identity holds:

IC̄e = tr(C̄
e
) = tr

(
F̄

in−T

C̄F̄
in−1

)
= tr

(
Ū

in−1

C̄Ū
in−1

)
(5.132)

and similar relations hold for the second and the third invariants. Therefore, we conclude

that the invariants of h̄
e

are equal to those of an elastic-like strain tensor He defined

as:

He =
1

2
log
(
Ū
in−1

C̄Ū
in−1
)

(5.133)

Considering the isotropic property of ψe and according to the representation theorem,

we now write (Ogden, 1984; Ottosen and Ristinmaa, 2005):

∂ψe

∂h̄
e = α11 + 2α2h̄

e
+ 4α3h̄

e2
(5.134)

where

αi = αi(Ih̄e , II h̄
e , III h̄

e ) = αi(IHe , II He , III He ); (5.135)

It can be shown that (see equation (B.9) in the Appendix):

h̄
e

=
1

2
F̄
−T

log(C̄C̄
in−1

)F̄
T

(5.136)

We now substitute (5.136) into (5.134) and the result into (5.124)2 which leads to:

s∗ = F̄
−T
M ∗F̄

T
(5.137)
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where we have defined M ∗ = α11 + α2 log(C̄C̄
in−1

) + α3

(
log(C̄C̄

in−1

)
)2

.

We now pull back the quantitiesm and x, where they live in the intermediate configura-

tion, to the reference configuration. To this end, we use the identity F̄
eT
h̄
e
F̄
e−T

= H̄
e

(see equation (B.5) in the Appendix) as well as the following identity (see equation

(B.10) in the Appendix):

F̄
inT
H̄

e
F̄
in

=
1

2
log(C̄C̄

in−1

)C̄
in

(5.138)

and conclude:

F̄
inT
mF̄

in
= M ∗C̄

in
(5.139)

We observe that tensor M ∗ is unsymmetric. In order to obtain a constitutive model in

which all quantities are symmetric, we follow the proposed approach in Section 5.6 and

utilize the following identity (see equation (B.12) in the Appendix):

log(C̄C̄
in−1

) = Ū
in

log
(
Ū
in−1

C̄Ū
in−1
)
Ū
in−1

(5.140)

and express tensor M ∗ as:

M ∗ = Ū
in
QŪ

in−1

(5.141)

where the symmetric tensor Q is expressed as:

Q = α11 + 2α2He + 4α3He2 (5.142)

Comparing (5.142) and (5.134), and considering (5.135), we use the representation the-

orem and express (5.142) as:

Q =
∂ψe(He)

He (5.143)

We now substitute (5.141) into (5.139), which yields:

F̄
inT
mF̄

in
= Ū

in
QŪ

in
(5.144)

Using the isotropic property of ψin, following a similar approach, we obtain:

x =
∂ψin

∂h̄
in = β11 + β2h̄

in
+ β3h̄

in2

(5.145)

where

βi = βi(I
h̄
in , II

h̄
in , III

h̄
in ,T ) = βi(IH̄in , II H̄

in , III H̄
in ,T ) (5.146)

We now use the identity F̄
inT
h̄
in
F̄
in

= H̄
in
C̄
in

to obtain:

F̄
inT
xF̄

in
= XC̄

in
(5.147)

where

X = β11 + β2H̄
in

+ β3H̄
in2

(5.148)

122



Similarly, comparing (5.148) and (5.145) and considering (5.146), we can express (5.148)

as:

X =
∂ψin(H̄

in
)

∂H̄
in (5.149)

Since X and Ū
in

are coaxial, the following identity holds:

X = Ū
in
XŪ

in−1

(5.150)

Substituting (5.150) into (5.147), we obtain:

F̄
inT
xF̄

in
= Ū

in
XŪ

in
(5.151)

Combining (5.144) and (5.151), we finally conclude:

F̄
inT
αF̄

in
= F̄

inT
(m− x)F̄

in
= Ū

in
ZŪ

in
(5.152)

where

Z = Q−X (5.153)

Using (5.152), we obtain:

F̄
inT
αnF̄

in
= Ū

in
ZnŪ

in
and tr(αn) = tr(Zn) (5.154)

where n is a non-negative integer number. Equation (5.154)2 means that the invariants

of α and Z are the same.

We now assume G(α, q) and F (α, q) to be isotropic functions of α which means that

they are expressed only in terms of the invariants of α which are equal to those of

Z. Therefore, we present the Lagrangian form of the potential and limit functions,

respectively, as follows:

G = G(Z, q) and F = f(Z, q)−R (5.155)

In order to obtain the evolution equation in a Lagrangian form, we use relation ˙̄Cin =

2F̄
inT
d̄
in
F̄
in

and (5.129) to obtain:

˙̄Cin = 2ζ̇F̄
inT ∂G(α, q)

∂α
F̄
in

(5.156)

Considering the isotropic property of G(α, q), the following identity holds (see equation

(B.16) in the Appendix):

F̄
inT ∂G(α, q)

∂α
F̄
in

= Ū
in∂G(Z, q)

∂Z
Ū
in

(5.157)

Finally, substituting (5.157) into (5.156), we obtain the Lagrangian form of the tensorial

evolution equation as follows:

˙̄Cin = 2ζ̇Ū
in∂G(Z, q)

∂Z
Ū
in

(5.158)
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Moreover, the scalar internal variable evolution is stated as:

θ̇in = ζ̇
∂G(Z, q)

∂q
(5.159)

The second Piola-Kirchhoff stress tensor S is obtained from the Kirchhoff stress tensor

as:

S = F−1τF−T (5.160)

Substituting (5.111) and τ = s∗ + p∗1 into (5.160) yields:

S = J−2/3
(
pC̄
−1

+ F̄
−1
sF̄
−T
)

(5.161)

Substituting (5.124)1 and (5.137) into (5.161), we obtain:

S = J−2/3
(
φ́eC̄

−1
+ C̄

−1
M ∗

)
(5.162)

where, φ́e = ∂φe/∂θe.

We now substitute (5.141) into (5.162) and obtain the second Piola-Kirchhoff stress

tensor as follows12 :

S = J−2/3C̄
−1
(
φ́e1 + Ū

in
QŪ

in−1
)

(5.163)

We finally summarizes the time-continuous finite-strain constitutive model, written only

in terms of Lagrangian quantities in Table 5.4.

It is interesting that the proposed finite strain and the corresponding small strain (when

the proposed model is linearized) constitutive models have similar forms, thanks to the

Hencky strain. In particular, when linearized, the elastic-like strain tensor He is reduced

to small-strain elastic strain tensor, i.e.,

He ' ε− εin + higher order terms ' εe (5.164)

where ε, εe and εin are, respectively, the total, elastic and inelastic small strain tensors.

Equation (5.164) makes clear the reason for choosing the name ”elastic-like strain tensor”

for He.

5.7.4 Proposing a Hencky-based SMA constitutive model

We now particularize the inelastic model presented in Sections 5.4 to shape memory

alloys.

We remark that in the constitutive models based on the multiplicative decomposition

of the deformation gradient, Green-Lagrange strain has been used as a strain measure

12According to equation (5.163), the so-called Mandel stress is CS = φ́e1+Ū
in
QŪ

in−1

= Ū
in

(φ́e1+

Q)Ū
in−1

which is, in general, an asymmetric tensor.
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and in most cases the obtained constitutive models are in a Lagrangian form. In the

approaches based on the use of Green-Lagrange strain, one critical point is introducing

a relation between martensite volume fraction, z, and the norm of the Green-Lagrange

strain measure13 (since 0 ≤ z ≤ 1 it can be considered as a constraint on the inelastic

strain). While the martensite fraction is a physical quantity, the Green-Lagrange strain

is not a physical measure of strain. Considering this point, the proposed finite strain

model which is based on the true strain is preferred.

On the other hand, in the constitutive models in which logarithmic strain is used as a

(physical) strain measure, the additive decomposition of the strain rate tensor is adopted

and the final form of the constitutive equations are Eulerian and objective rates should

be used. For example, Müller and Bruhns (2004, 2006) have used a corotational rate

associated to the logarithmic spin in their formulations.

In this section, we use the logarithmic strain as a physical measure of strain and based

on the multiplicative decomposition of the deformation gradient we present a constitu-

tive model in a Lagrangian form. We develop a finite-strain SMA model by extending

the small-strain constitutive model proposed by Souza et al. (1998).

Strain energy function forms

We now assume the following forms for the elastic strain energy functions14:

φe(θe) =
1

2
Kθe

2

, ψe(h̄
e
) = µ ‖h̄e‖2 (5.165)

where K and µ are the material parameters.

Since experimental evidence indicates that phase transformation-induced deformations

in SMAs are nearly isochoric, we have to impose det(F in) = 1, which after taking the

time derivative results in:

tr(din) = 0 (5.166)

Therefore, J in = 1 (or θin = 0) is a known quantity. For this reason, without loss of

generality, we can assume φin(θin) = 0. In the following, for simplicity, we denote all

inelastic quantities without a bar symbol.

In order to describe SMAs behavior, we use the following form for ψin (Arghavani et al.,

2010b; Souza et al., 1998):

ψin = ψin(hin, T ) = τM‖hin‖+
1

2
hk‖hin‖2 + IεL(‖hin‖) (5.167)

13It has been defined in several works (Arghavani et al., 2010d; Christ and Reese, 2009; Evangelista

et al., 2009; Helm and Haupt, 2003; Reese and Christ, 2008) as z = ‖Ein‖
eL

, (see also equation (5.6))

where eL is a material parameter related to the maximum transformation strain.
14This is a Hookean-type strain energy function in terms of Hencky strain. It is also known as Hencky

model in the literature (see e.g., Xiao and Chen (2002)).
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where the material parameter hk is the kinematic hardening parameter. In equation

(5.167) we use the indicator function IεL defined as:

IεL(‖hin‖) =

{
0 if ‖hin‖ ≤ εL

+∞ otherwise
(5.168)

to satisfy the constraint on the transformation strain norm,i.e.:

‖hin‖ ≤ εL (5.169)

For a kinematic hardening plasticity, we can assume a quadratic form for ψin , denoted

by ψp:

ψin = ψp(hp, T ) =
1

2
hk‖hp‖2 (5.170)

Comparing the above equation and (5.167), we can conclude that a SMA constitutive

model is reduced to a kinematic hardening plasticity model, when τM(T ) = 0 (or T < T0)

and εL → ∞. To this reason, The proposed SMA constitutive model is capable to

describe associated von-Mises type kinematic hardening plasticity.

We assume an associated case (F = G) and consider a von-Mises type limit (yield)

function as:

F (Z, q) = ‖Z‖ −R (5.171)

We now compute the strain energy functions derivative as follows:

φ́e =
∂φe

∂θe
= Kθe ,

∂ψe

∂h̄
e = 2µ h̄

e
(5.172)

which yields

α1 = 0 , α2 = µ , α3 = 0 (5.173)

and accordingly:

Q = µ log
(
U in−1

C̄U in−1
)

= 2µHe (5.174)

In a similar approach, we obtain

∂ψin

∂hin
= hkh

in + (τM(T ) + γ)
hin

‖hin‖
(5.175)

The positive variable γ results from the indicator function subdifferential ∂IεL(hin) and

it is defined as: {
γ ≥ 0 if ‖H in‖ = εL

γ = 0 if ‖H in‖ < εL
(5.176)

We then conclude:

β1 = 0 , β2 = hk +
τM(T ) + γ

‖H in‖
, β3 = 0 (5.177)
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In equations (5.176) and (5.177), we have also used the property of ‖hin‖ = ‖H in‖.
Substituting (5.177) into (5.148), we obtain:

X = hkH
in + (τM(T ) + γ)N (5.178)

where N = H in/‖H in‖.

Presentation of a well-defined form

In an approach similar to 5.5.2, we start investigating a condition in which H in starts

to evolve from a zero value (indicated in the following as Nucleation), i.e., H in = 0

with
˙∥∥H in
∥∥ > 0. Substituting U in = 1 into (5.153) we conclude that Z = Qe. We now

consider the evolution equation which yields:

Ċ
in

= 2ζ̇
Qe

‖Qe‖
(5.179)

where Qe = µ log(C̄) = 2µH̄ is obtained from (5.174) substituting 1 in place of U in.

According to (5.179), the transformation strain, H in = 1
2

log(Cin) ' 1
2
(Cin− 1), nucle-

ates in the Qe direction.

We now investigate the case when transformation strain vanishes from a nonzero value

(indicated in the following as Completion), i.e., H in = 0 (U in = 1) with
˙∥∥H in
∥∥ < 0.

Since ‖H in‖ = 0, we conclude that adopting any arbitrary directionN leads toH in = 0.

We select this direction as the Qe direction which also guarantees continuity. Therefore,

we revise the variable N in the following form:

N =


Qe

‖Qe‖
if ‖H in‖ = 0

H in

‖H in‖
if ‖H in‖ 6= 0

(5.180)

We note that according to the above discussion, the tensor N and consequently the

tensor X are well-defined, non-singular and continuous.

We finally summarize the proposed finite strain constitutive model for shape memory

alloys in Table 5.5. We recall that, for simplicity, all inelastic quantities are denoted

without a bar symbol.
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5.8 Extension into large rotation, small strain regime

5.8.1 Introduction

In this section, we deal with the special case of large rotation but small strains. There

are several reasons for doing so, but the principal one is simplicity. Using the restrictions

of small strain it is possible to keep much of the classical theory. To this end, we develop

a constitutive model in the finite deformation regime and emphasize that its domain of

application is limited by a priori kinematic assumptions, i.e.:

Displacements and rotations may be arbitrarily large; but strains must be small.

5.8.2 Kinematics description

For the important case of large rotations and small strains, we can use the polar de-

composition as F = RU , where R is the rotation and U is the right stretch tensor

(the stretch written on the reference configuration). If we write the principal stretches

in terms of nominal principal strains,

λi = 1 + εi , (i = 1, 2, 3) (5.181)

The right stretch tensor can be written as:

U =
3∑
i=0

(1 + εi)N i ⊗N i = 1 + ε (5.182)

where ε is the (engineering) strain in the small deformation theory. The deformation

gradient can be then written as:

F = R(1 + ε) (5.183)

and the inverse deformation gradient can be approximated by:

F−1 = (1 + ε)−1RT = (1− ε)RT (5.184)

We note that, for the small strain case, all entries in ε are very much smaller than one.

In addition,

J = det(F ) = det(R)det(1 + ε) = 1 + tr(ε) +O(ε2) ≈ 1 + tr(ε) (5.185)

The relation between time derivative of strain tensor and stretching tensor can be ob-

tained in a similar approach. To this end, we first compute the velocity gradient tensor

as:

l = Ḟ F−1 ≈ ṘRT +Rε̇(1− ε)RT ≈ ṘRT +Rε̇RT (5.186)
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We now use the relation d = sym(l) and conclude:

d = Rε̇RT (5.187)

The relation between the time rate of Green-Lagrange strain and the stretching tensor

is simplified to:

Ė = F TdF = (1 + ε)RTdR(1 + ε) ≈ RTdR (5.188)

Comparing (5.187) and (5.188), we conclude:

Ė = ε̇ (5.189)

Which simply states that, for a small strain, large rotation case, the engineering strain

rate and the rate of Green-Lagrange strain are approximately the same.

Moreover, for the case of large rotations and small strains, we can decompose additively

the Green-Lagrange strain tensor (Crisfield, 1997):

E = Ee +Ein (5.190)

According to relations (5.188)-(5.190), we can conclude:

Ė
e

= RTdeR and Ė
in

= RTdinR (5.191)

The second Piola-Kirchhoff stress is then readily interpreted as a rotated stress:

S ≈ (1 +O(ε))(1− ε)RTσR(1− ε)T (5.192)

Neglecting terms of order strain compared to unity (since this is the small-strain ap-

proximation), we conclude that:

S = RTσR (5.193)

This result gives a very simple physical interpretation of the second Piola-Kirchhoff

stress for small strains but arbitrarily large rotations: the components of S are the

rotated components of σ. That is, the components of S are the stress components,

associated with directions in the reference configuration.

Finally, Table 5.6 summarizes the obtained results under the assumption of large rota-

tions and small strains.

5.8.3 Extension of Souza model to large rotation regime: La-

grangian formulation

According to the preliminaries presented in Section 5.8.2, we conclude that for the case

of small strains, large rotations, the Souza model is extended just using the Green-

Lagrange strain in place of ε and the second Piola-Kirchhoff stress (rotated stress) in

place of σ. Formulated in a Lagrangian framework, we then summarize the basic Souza

model extension for the case of large rotation, small strain in Table 5.7. We remark that

we denote with superscript D the deviatoric part of a tensor.
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5.8.4 Extension of Souza model to large rotation regime: Eu-

lerian formulation

In order to transform the constitutive model summarized in Table 5.7 to the current

configuration (i.e., Eulerian formulation), we use the standard approach introduced in

Chapter 3. However, we here use the approximation of strains being small and simplify

the final relations. To this end, we first address some preliminaries.

Equality of all strain measures under small strain assumption

We note that under the assumption of small strains, we can use the following approxi-

mation:
1

α
(λα − 1) ≈ λ− 1 ≈ log(λ) (5.194)

Applying the above approximation to (3.16) and then to (3.15), we obtain the following

results which are valid only under the assumption of small strains:

Eα ≈ log(U) = H and eα ≈ log(V ) = h (5.195)

Moreover, since V = RURT , we have:

eα = REαRT (5.196)

We now combine (5.195) and (5.196) to obtain:

REαRT = h (5.197)

Relation (5.197) means that under the assumption of strains being small, any rotated

Lagrangian strain approximately represents the Eulerian Hencky strain.

Equality of all spin tensors under small strain assumption

According to Xiao et al. (1998), any objective spin tensor can be written as:

Ω∗ = w + ν1skew(bd) + ν2skew(b2d) + ν3skew(bdb2) (5.198)

where ν1, ν2, ν3 are functions of principal invariants of b. Under the assumption of small

strains, we have:

b ≈ 1 + 2h and b2 ≈ 1 + 4h where ‖h‖ = O(ε) (5.199)

Substituting (5.199) into (5.198) and ignoring higher order terms, we observe that the

skew-symmetric terms in (5.198) vanish. Thus, we can conclude that under the assump-

tion of strains being small, all spins yield the same result. For example, the Jaumann,
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Green-Naghdi and logarithmic rates are approximately the same. We show this fact for

Green-Naghdi spin, knowing that the relation between w and Ω = ṘRT is given as:

w −Ω =
1

2
R(U̇U−1 −U−1U̇)RT (5.200)

According to (5.182), we can write:

U̇U−1 −U−1U̇ = ε̇(1− ε)− (1− ε)ε̇ ≈ ε̇− ε̇ = 0 (5.201)

Constitutive model development

We now use the above approximations and transform the constitutive equations of Sec-

tion 5.8.3 to the current configuration. To this end, we multiply all equations from left

and right by R and RT , respectively. We then use the following relations:

RSDRT = s, REinRT = hin, RXRT = x, RX inRT = xin (5.202)

where

x =
[
τM(T ) + h‖hin‖+ γ

] hin

‖hin‖
(5.203)

We now consider the evolution equation. Multiplying the evolution equation from left

and right by R and RT , respectively, we obtain:

RĖ
in
RT = ζ̇

xin

‖xin‖
(5.204)

According to (5.191)2, we now substitute din in place of RĖ
in
RT . However, we know

that din is the objective rate of Eulerian Hencky strain associated with the logarithmic

spin. Since the strains are assumed to be small, we can use any objective rate in place

of logarithmic spin. For simplicity, we use the Jaumann rate and finally obtain the

following evolution equation:

∆

h in = ζ̇
xin

‖xin‖
(5.205)

We now summarize in Table 5.8 the Eulerian extension of Souza model into large rota-

tion, small strain regime.

5.9 Summary

In this chapter, we used a multiplicative decomposition of the deformation gradient into

elastic and inelastic pars to extend two small strain constitutive models, i.e., the model

by Panico and Brinson (2007) and the model by Souza et al. (1998), into finite strain
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regime. We first extended the model by Panico and Brinson (2007) decomposing the

inelastic strain rate tensor into transformation and reorientation parts. Based on the

Green-Lagrange strain tensor, we then extended the Souza model. We observed that

in the final (Lagrangian) equations an asymmetric Mandel stress appears; however we

used a mathematical identity to recast all equations in a fully symmetric form. We then

extended the Souza model through use of Hencky strain. To this end, we first developed

a constitutive model in a general framework and then specialized it to the Souza model.

Following this approach, we simply showed that the finite extension of a small strain

model is not unique. We finally extended the original Souza model to the large rotation,

but small strain, regime.
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Table 5.1: Finite strain extension of Panico and Brinson (2007) constitutive model

External variables: C, T

Internal variable: Cin

Stress quantities:

S = 2
(
α1C

in−1
+ α2C

in−1
CCin−1

+ α3C
in−1

(CCin−1
)2
)

Y = CS −CinX

M = CS

X = ρ0 [〈T∆η0 −∆u0〉+Hσzσ]
Ein∥∥Ein
∥∥

XT = −ρ0 (T∆η0 −∆u0)

Evolution equations:

Ċ
in

=
(

2λ̇trY
D + 2λ̇reĨ : MD

)
Cin

żT = λ̇TX
T

Limit functions:

Ftr = ‖Y D‖ − Ytr(zσ)

Fre = 1
2
MD : Ĩ : MD − Yre

fT =

{
XT − Y f

T (zT ) if żT > 0

−XT − Y r
T (zT ) if żT < 0

Kuhn-Tucker conditions:

Ftr ≤ 0, λ̇tr ≥ 0, λ̇trFtr = 0

Fre ≤ 0, λ̇re ≥ 0, λ̇reFre = 0

FT ≤ 0, λ̇T ≥ 0, λ̇TFT = 0

Martensite volume fractions:

zσ =
‖Ein‖
εL

, 0 ≤ zσ ≤ 1, 0 ≤ zT ≤ 1, 0 ≤ zT + zσ ≤ 1
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Table 5.2: Finite-strain extension of Souza model.

External variables: C, T

Internal variable: Cin

Stress quantities:

S = 2

(
α1C

in−1
+ α2C

in−1
CCin−1

+ α3C
in−1

(
CCin−1

)2
)

Y = CS −CinX

X = hEin + (τM + γ)N

with{
γ ≥ 0 if ‖Ein‖ = εL

γ = 0 if ‖Ein‖ < εL

and

N =


(CSe)

D

‖ (CSe)
D ‖

if ‖Ein‖ = 0

Ein

‖Ein‖
if ‖Ein‖ 6= 0

where Ein =
(
Cin − 1

)
/2

Evolution equation:

Ċ
in

= 2ζ̇
Y D

‖Y D‖
Cin

Limit function:

f = ‖Y D‖ −R

Kuhn-Tucker conditions:

f ≤ 0, ζ̇ ≥ 0, ζ̇f = 0
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Table 5.3: Finite-strain extension of Souza model: proposed fully symmetric form.

External variables: C, T

Internal variable: Cin

Stress quantities:

S = U in−1

S̃U in−1

S̃ = 2
(
α11 + α2C̃ + α3C̃

2
)

Ỹ = C̃S̃ −CinX

X = hEin + (τM + γ)N

with{
γ ≥ 0 if ‖Et‖ = εL

γ = 0 otherwise

and

N =
Ein

‖Ein‖
, C̃ = U in−1

CU in−1

where Ein =
(
Cin − 1

)
/2

Evolution equation:

Ċ
in

= 2ζ̇U in
Ỹ

D

‖Ỹ D‖
U in

Limit function:

f = ‖Ỹ D‖ −R
Kuhn-Tucker conditions:

f ≤ 0, ζ̇ ≥ 0, ζ̇f = 0
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Table 5.4: Finite-strain Hencky-based kinematic hardening constitutive model

External variables: C̄, θ, T

Internal variables: Ū
in
, θin

Stress quantities:

Q =
∂ψe(He)

∂He X =
∂ψin(H̄

in
)

∂H̄
in Z = Q−X q = φ́e − φ́in

with

H̄
in

= log
(
Ū
in
)
, He = 1

2
log
(
Ū
in−1

C̄Ū
in−1
)

and

φ́e = ∂φe/∂θe , φ́in = ∂φin/∂θin and θe = θ − θin ,
Limit function:

F = f(Z, q)−R
Potential function:

G = G(Z, q)

Evolution equations:

˙̄Cin = 2ζ̇Ū
in∂G(Z, q)

∂Z
Ū
in

and θ̇in = ζ̇
∂G(Z, q)

∂q

Kuhn-Tucker conditions:

F ≤ 0, ζ̇ ≥ 0, ζ̇F = 0
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Table 5.5: Finite-strain Hencky-based extension of Souza model

External variables: C̄, J, T

Internal variable: U in

Stress quantities:

Q = µ log
(
U in−1

C̄U in−1
)

= 2µHe

X = hkH
in + (τM(T ) + γ)N

Z = Q−X
S = J−2/3C̄

−1
(
K log(J)1 +U inQU in−1

)
with

H in = log
(
U in

)
, He = 1

2
log
(
U in−1

C̄U in−1
)

N =


Qe

‖Qe‖
if ‖H in‖ = 0

H in

‖H in‖
if ‖H in‖ 6= 0

Qe = 2µH̄

Evolution equation:

Ċ
in

= 2ζ̇U in Z
‖Z‖U

in

Limit function:

F = ‖Z‖ −R
Kuhn-Tucker conditions:

F ≤ 0, ζ̇ ≥ 0, ζ̇F = 0

Table 5.6: Simplified relations under the assumption of large rotations and small strains

Kinematics:

deformation gradient: F = R(1 + ε)

Jacobian (determinant): J = 1 + tr(ε)

stretching tensor: d = Rε̇RT

vorticity tensor: w = ṘRT

additive decomposition: d = de + din

additive decomposition: E = Ee +Ein

elastic G-L strain rate: Ė
e

= RTdeR

inelastic G-L strain rate: Ė
in

= RTdinR

Stress:

second Piola-Kirchhoff stress: S = RTσR

Energy:

conjugate pairs: S : Ė = Jσ : d
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Table 5.7: Extension of Souza model to large rotation regime: Lagrangian formulation

External variables: E, T

Internal variable: Ein

Stress quantities:

S = 2G(ED −Ein) +Ktr(E)1

X =
[
τM(T ) + h‖Ein‖+ γ

] Ein

‖Ein‖
X in = SD −X

with{
γ ≥ 0 if ‖Ein‖ = εL

γ = 0 otherwise

Evolution equation:

Ė
in

= ζ̇
X in

‖X in‖
Limit function:

f = ‖X in‖ −R
Kuhn-Tucker conditions:

f ≤ 0, λ̇ ≥ 0, λ̇f = 0
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Table 5.8: Extension of Souza model to large rotation regime: Eulerian formulation

External variables: h, T

Internal variable: hin

Stress quantities:

s = 2G(h̄− hin)

x =
[
τM(T ) + h‖hin‖+ γ

] hin

‖hin‖
xin = s− x

with{
γ ≥ 0 if ‖hin‖ = εL

γ = 0 otherwise

Evolution equation:

∆

h in = ζ̇
xin

‖xin‖
Limit function:

f = ‖xin‖ −R
Kuhn-Tucker conditions:

f ≤ 0, λ̇ ≥ 0, λ̇f = 0
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Chapter 6

Numerical implementation:

time-discretization and solution

algorithms

6.1 Introduction

In chapters 4 and 5 we developed several SMA constitutive models at small and finite

deformation regimes, respectively. In this chapter, we present the numerical counterpart

and propose different time integration and solution algorithms. We mainly discuss the

numerical implementation of finite deformation extensions of Souza model developed in

Chapter 5 and avoid presenting too much details for small deformation part. This is

due to the fact that most part of the current discussion at finite deformation regime

can be applied to the small deformation regime as well. Moreover, details on small

deformation Souza model can be found in Souza et al. (1998) and Auricchio and Petrini

(2002, 2004a).

To this end, we first develop the time-discrete form of the constitutive equations. We

then develop solution algorithm and address construction of consistent tangent matrix.

We remark that due to similarity in discussions for different models, we first present a

detailed discussion for the finite strain extension of Souza model discussed in Section

5.5 and then present a concise discussion for fully symmetric Souza model (Section 5.6),

Hencky-based model in a general framework (Section 5.7) and Hencky-based Souza

model (Section 5.7.4).

With the aim of increasing computational efficiency, we also present a corotational

formulation which is able to compensate rigid body rotations and to use the codes

already developed for the small strain constitutive model. In this chapter, we will

extensively use abbreviations for different formulations which are summarized in Table
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6.1.

Table 6.1: Different formulations and their abbreviations
Model Abbreviation

Table 4.1 SSSR (Small Strain, Small Rotation)

Table 5.2 GLUS (Green-Lagrange based UnSymmetric)

Table 5.3 GLSY (Green-Lagrange based SYmmetric)

Table 5.4 HSGF (Hencky Strain based General Formulation)

Table 5.5 HSSY (Hencky Strain based SYmmetric)

Table 5.7 SSLR (Small Strain, Large Rotation)

Robustness study of different algorithms as well as comparison of their efficiency and

application to the simulation of SMA-based devices is the subject of Chapter 7.

6.2 Numerical implementation of GLUS model

In this section we investigate the numerical solution of the constitutive model derived in

Section 5.5 and summarized in Table 5.2, with the final goal of using it within a finite

element program. The main task is to apply an appropriate numerical time integration

scheme to the evolution equation of the internal variable. In general, implicit schemes are

preferred because of their stability at larger time step sizes. Moreover, the present section

provides some details about the stress update and the computation of the consistent

tangent matrix, which are the two points where the material model is directly connected

to the finite element solution procedure.

We now treat the nonlinear problem described in Section 5.5 as an implicit time-discrete

deformation-driven problem. Accordingly, we subdivide the time interval of interest

[0, t] in sub-increments and we solve the evolution problem over the generic interval

[tn, tn+1] with tn+1 > tn. To simplify the notation, we indicate with the subscript n a

quantity evaluated at time tn, and with no subscript a quantity evaluated at time tn+1.

Assuming to know the solution and the deformation gradient F n at time tn as well as

the deformation gradient F at time tn+1, the stress and the internal variable should be

updated from the deformation history.

Since, the constitutive model is in terms of Lagrangian quantities, from now on, we

assume as deformation driver the Green-Lagrange strain (instead of the deformation

gradient), and compute the second Piola-Kirchhoff stress tensor. Then, using (3.55),

the Cauchy stress is computed. We also derive the material consistent tangent matrix

and construct the spatial tangent matrix using the following relation (Wriggers, 2008):

Cmnkl =
1

J
FmMFnNFkKFlLDMNKL (6.1)
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where C and D are the fourth-order spatial and material consistent tangents, respec-

tively. We remark that the consistent tangent matrix correspond to the Jaumann rate

of stress can then be derived according to (3.104). Moreover, in ABAQUS/Standard,

for continuum elements, we should report this tangent in the user-defined subroutine

UMAT (ABAQUS/Standard, 2008).

6.2.1 Time integration.

Exponential-based integration schemes are frequently applied to problems in plasticity

and isotropic inelasticity (Eterovic and Bathe, 1990; Miehe, 1996). The use of the

exponential mapping enables to exactly conserve the inelastic volume. Thus, it allows

larger time step sizes than any other first-order accurate integration scheme.

Applying the exponential mapping scheme to the evolution equation (5.80), we obtain:

Cin = exp (∆ζA1)Cin
n (6.2)

In the above form of the exponential mapping, we need to compute the exponential of

an asymmetric tensor, which is a problematic computation due to impossibility of using

a spectral decomposition method1. Accordingly, using the strategy initially proposed

in (Christ and Reese, 2009; Reese and Christ, 2008; Vladimirov et al., 2008) and also

exploited in (Arghavani et al., 2010a; Evangelista et al., 2009; Vladimirov et al., 2010),

we can find an alternative expression where the argument of the exponential operator

is a symmetric tensor which can be computed through spectral decomposition. In fact,

we can write:

exp (∆ζA1) =1 + ∆ζA1 +
∆ζ2

2!
A2

1 + ...

=1 + ∆ζACin−1
+

∆ζ2

2!

(
ACin−1

)2

+ ...

=U in

(
1 + ∆ζU in−1

AU in−1
+

∆ζ2

2!

(
U in−1

AU in−1
)2

+ ...

)
U in−1

=U in exp
(

∆ζU in−1
AU in−1

)
U in−1

(6.3)

We now right- and left-multiply (6.2) by Cin
n

−1
and Cin−1

, respectively, to obtain:

Cin
n

−1
= Cin−1

exp (∆ζA1) (6.4)

Then, substituting (6.3) into (6.4), we can write the integration formula as (Reese and

Christ, 2008):

−Cin
n

−1
+U in−1

exp
(

∆ζU in−1
AU in−1

)
U in−1

= 0 (6.5)

1The exponential of an asymmetric tensor is computed by means of series expansion. However, the

exponential of a symmetric tensor can be computed in closed form by means of a spectral decomposition.
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which is the time-discrete form associated to (5.80) presented so far in the literature

(Christ and Reese, 2009; Evangelista et al., 2009; Reese and Christ, 2008; Vladimirov

et al., 2008, 2010).

We now introduce an alternative form of the time-discrete evolution equation (6.5) which

improves the numerical efficiency by decreasing the degree of equation nonlinearity. To

this end, we left- and right-multiply (6.5) by U in and obtain:

U inCin
n

−1
U in = exp

(
∆ζU in−1

AU in−1
)

(6.6)

We take the logarithm of both sides of (6.6) and after left- and right-multiplication by

U in, we obtain:

−U in log
(
U inCin

n

−1
U in

)
U in + ∆ζA = 0 (6.7)

which can be seen as an alternative form of the time-discrete evolution equation through

a logarithmic mapping.

While equations (6.5) and (6.7) are mathematically equivalent, equation (6.7) appears

to be less nonlinear and computationally more effective, as shown in Chapter 7 through

several numerical examples.

We remark that, to our knowledge, the logarithmic time-discrete form (6.7) (or loga-

rithmic mapping) is presented for the first time in this paper, while the exponential

form (6.5) has been extensively investigated in the literature (Christ and Reese, 2009;

Evangelista et al., 2009; Reese and Christ, 2008; Vladimirov et al., 2008, 2010). We

finally summarize the integration algorithms in Table 6.2.

Table 6.2: Exponential and logarithmic mappings.

Time-continuous form:

Ċ
in

= ζ̇A and det(Cin) = 1

Exponential mapping:

−Cin
n

−1
+U in−1

exp
(

∆ζU in−1
AU in−1

)
U in−1

= 0

Logarithmic mapping:

−U in log
(
U inCin

n

−1
U in

)
U in + ∆ζA = 0

6.2.2 Solution algorithm.

As usual in computational inelasticity problems, to solve the time-discrete constitutive

model we use an elastic predictor-inelastic corrector procedure. The algorithm consists

of evaluating an elastic trial state, in which the internal variable remains constant, and

of verifying the admissibility of the trial function. If the trial state is admissible, the

step is elastic; otherwise, the step is inelastic and the transformation internal variable
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has to be updated through integration of the evolution equation.

In order to solve the inelastic step, we use another predictor-corrector scheme, that

is, we assume γ = 0 (i.e., we predict an unsaturated transformation strain case with

‖Ein‖ ≤ εL) and we solve the following system of nonlinear equations (we refer to this

system as PT1 system): Rin = −U in log
(
U inCin

n

−1
U in

)
U in + ∆ζA = 0

Rζ = ‖Y D‖ −R = 0
(6.8)

If the solution is not admissible (i.e., ‖Ein‖PT1 > εL), we assume γ > 0 (i.e., we consider

a saturated transformation case with ‖Ein‖ = εL) and we solve the following system of

nonlinear equations (we refer to this system as PT2 system):
Rin = −U in log

(
U inCin

n

−1
U in

)
U in + ∆ζA = 0

Rζ = ‖Y D‖ −R = 0

Rγ = ‖Ein‖ − εL = 0

(6.9)

Solution of equations (6.8) and (6.9) is, in general, approached through a straightfor-

ward Newton-Raphson method and it is not characterized by special difficulties except

for the cases in which the transformation strain vanishes. Accordingly, in the following,

we specifically focus on the nucleation (Ein
n = 0) and completion (Ein = 0) cases and

construct the solution algorithm.

6.2.3 Considerations on nucleation-completion condition.

We first investigate the trial value of the limit function in the nucleation case, i.e., at

the beginning of forward phase transformation, expressed as:

fTR =
∣∣∣‖ (CSe)

D ‖ − τM(T )
∣∣∣−R = ‖ (CSe)

D ‖ − τM(T )−R > 0 (6.10)

where a superscript TR indicates a trial value. We may thus introduce the following as

nucleation condition:

‖ (CSe)
D ‖ > τM(T ) +R and ‖Ein

n ‖ = 0 (6.11)

In the solution procedure, when ‖Ein
n ‖ = 0 we check the nucleation condition and, if

not satisfied, we assume an elastic behavior.

We remark that, to avoid singularity in local system (6.8) for the nucleation case, it

is necessary to use a nonzero initial transformation strain. Since, we know the initial

transformation strain direction (as discussed in Section 5.5.2), the only unknown for
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constructing an initial guess is its norm; if we denote with q its value, we can use the

following initial guess for the nucleation case:

Cin
0 = 1 + 2qN , N =

(CSe)
D

‖ (CSe)
D ‖

(6.12)

where a subscript 0 denotes the initial guess. A value of 10−4 could be an appropriate

choice for q.

We now focus on the completion case, i.e., Ein
n 6= 0 but Ein = 0, occurring at the end

of reverse phase transformation. To this end, we consider equations (6.5) or (6.7) and

substitute Cin = 1 (as it happens for the completion case) to obtain:

∆ζA = log
(
Cin
n

−1
)

= − log
(
Cin
n

)
, A = 2

Y D∥∥Y D
∥∥ , Y D = (CSe)

D − τMN (6.13)

In deriving (6.13)3, we have used the deviatoric property of N , i.e., ND = N , in

accordance with (5.85). Assuming a very small time step size (or the time-continuous

form), we can assume Cin
n ' 1 and, considering (6.13) as well as the continuity of N ,

approximate NTR with (5.85)1 to obtain the following trial value for the limit function:

fTR =
∣∣∣‖ (CSe)

D ‖ − τM(T )
∣∣∣−R = −‖ (CSe)

D ‖+ τM(T )−R > 0 (6.14)

Similarly to the nucleation case, we may now define the following completion condition:

‖ (CSe)
D ‖ < τM(T )−R and ‖Ein

n ‖ 6= 0 (6.15)

Completion condition (6.15) is consistent with the time-continuous form of the evolution

equation; it is then necessary to derive a completion condition consistent with the time-

discrete form.

To this end, using equation (6.13)1,2 which define the Y D direction, and considering the

limit function (5.79), we conclude:

Y D = −R
log
(
Cin
n

)∥∥log
(
Cin
n

)∥∥ (6.16)

Substituting (6.16) in (6.13)3, we obtain:

(CSe)
D +R

log
(
Cin
n

)∥∥log
(
Cin
n

)∥∥ = τMN (6.17)

Finally, taking the norm of both sides of equation (6.17), we define the following con-

sistent completion condition:∥∥∥∥∥(CSe)
D +R

log
(
Cin
n

)∥∥log
(
Cin
n

)∥∥
∥∥∥∥∥ ≤ τM ,

∥∥Ein
n

∥∥ 6= 0 (6.18)
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Therefore, in the solution procedure we also should check the completion condition and,

if it is satisfied, we simply update the internal variable by setting Cin = 1.

We remark that in deriving (6.18), we started assuming Cin = 1, while in the solution

algorithm, we first check condition (6.18) and, if satisfied, we conclude Cin = 1. Though

from a mathematical point of view this is not proved, we will use condition (6.18) to

solve a variety of problems which also confirms its validity.

The last point we discuss in this section is the improvement of the time-integration

algorithm robustness by enhancing the Newton-Raphson (NR) method robustness. We

remind that, the NR method converges to the solution only when the initial guess is

good enough or, in other words, if the initial guess is inside the convergence area. Us-

ing a proper initial guess for the system of nonlinear equations, PT1 and PT2, has an

important role in the algorithm robustness.

The solution from the previous time-step is apparently a proper initial guess for the PT1

system. We now consider the case of non-admissible PT1 solution (‖Ein‖PT1 > εL) and

seek a proper initial guess for the PT2 system. It could seem that using the previous

time-step solution as the initial guess could be again a proper choice. We have done a

comprehensive study on the different initial guess effects on the PT2 solution robustness

under different loading conditions and the results show that, while using the previous

time-step solution as the initial guess, NR converges for proportional loading conditions

(usually with a large number of iterations), in most cases it diverges for large time-step

sizes and non-proportional loadings.

Another option we propose is to use PT1 solution as the initial guess for PT2. In fact,

our experience is that this choice improves the convergence behavior, dramatically re-

ducing the number of iterations.

We have however to remark that, though using the proposed initial guess improves the

convergence behavior, it fails in the case of severe non-proportional loading case and

large time-step size. To this end, it is necessary to use the well-known techniques for di-

vergence detection (maximum number of iterations, residual norm check, solution norm

check) and introduce automatic increment-cutting techniques to reduce the increment

size 2.

In case of diverging PT2 system, gradually applying the norm constraint (6.9)3 also

improves convergence. This consists of first applying constraint (6.9)3 and, if NR di-

2We assumeCn andCin
n as well asCn+1 to be given and try to computeCin

n+1. We start determining

En = (Cn − 1)/2 and En+1 = (Cn+1 − 1)/2 and defining ∆E = En+1 −En as the strain increment.

In the solution process we then assume E = En + t∆E (and compute C = 2E + 1) and we first solve

the equations assuming t = 1. If we find out that NR diverges, we half the increment size dividing t

by 2 and solve the equations; this process is iterated until NR converges. Then, we use this converged

solution as an improved initial guess for NR to solve the original problem. This process can be repeated

until solution converges.
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verges, halfing the projection length (‖Ein‖PT1−εL) and continuing this procedure until

partially-projected PT2 system solution converges. Then we use the converged solution

as the improved initial guess for the fully-projected PT2 system.

6.2.4 Consistent tangent matrix.

In the following, we linearize the nonlinear equations as it is required for the iterative

Newton-Raphson method. For brevity, we report the construction of the tangent ma-

trix only for the case of the saturated phase transformation, corresponding to (6.9).

Linearizing (6.9), we obtain:
Rin +Rin

,Cin : dCin +Rin
,∆ζ d∆ζ +Rin

,γ dγ = 0

Rζ +Rζ

,Cin : dCin +Rζ
,∆ζ d∆ζ +Rζ

,γ dγ = 0

Rγ +Rγ

,Cin : dCin +Rγ
,∆ζ d∆ζ +Rγ

,γ dγ = 0

(6.19)

where subscripts following a comma indicate differentiation with respect to that quantity.

The derivatives appearing in the above equation are detailed in Appendix C.

Utilizing the linearized form (6.19), after converting it to matrix form, a system of eight

nonlinear scalar equations is solved to obtain dCin, d∆ζ and dγ (we refer to this system

as the local system and to its solution as the local solution, to distinguish it from the

global system of equilibrium equations).

We now address the construction of the tangent tensor consistent with the time-discrete

constitutive model. The use of a consistent tensor preserves the quadratic convergence

of the Newton-Raphson method for the incremental solution of the global time-discrete

problem, as in the framework of a finite element scheme.

The consistent tangent is computed by linearizing the second Piola-Kirchhof tensor, i.e.:

dS = D : dE = D :
1

2
dC (6.20)

Recalling that S is a function of C and Cin, we can write:

dS =
∂S

∂C
: dC +

∂S

∂Cin : dCin (6.21)

Recasting (6.21) into a matrix form, we obtain:

[dS] =

[
∂S

∂C

]
[dC] +

[
∂S

∂Cin

] [
dCin

]
(6.22)

where we have used [·] to denote the matrix form of the tensorial argument.

We now consider equation (6.9) as a function of C, Cin, ∆ζ and γ, and then the

corresponding linearization gives:
Rin
,C : dC +Rin

,Cin : dCin +Rin
,∆ζ d∆ζ +Rin

,γ dγ = 0

Rζ
,C : dC +Rζ

,Cin : dCin +Rζ
,∆ζ d∆ζ +Rζ

,γ dγ = 0

Rγ
,C : dC +Rγ

,Cin : dCin +Rγ
,∆ζ d∆ζ +Rγ

,γ dγ = 0

(6.23)
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Recasting (6.23) into a matrix form, we obtain:
dCin

dζ

dγ

 = −


Rin
,Cin Rin

,∆ζ Rin
,γ

Rζ

,Cin Rζ
,∆ζ Rζ

,γ

Rγ

,Cin Rγ
,∆ζ Rγ

,γ


−1 

Rin
,C

Rζ
,C

Rγ
,C

 [dC] (6.24)

Now, using (6.24), we can compute the matrix [B] such that:[
dCin

]
= [B] [dC] (6.25)

We then substitute (6.25) into (6.22) to obtain the consistent tangent matrix as:

[D] = 2

[
∂S

∂C

]
+ 2

[
∂S

∂Cin

]
[B] (6.26)

Table 6.3 finally presents the proposed solution algorithm based on the logarithmic form

of the time-discrete evolution equation (6.7) and a Nucleation − Consistent Completion

(NC2 ) scheme.

Implementing the proposed solution procedure, we obtain a robust time integration al-

gorithm; in the next chapter we test its robustness for different complicated stress-strain

histories and various boundary value problems.

For comparison, in Table 6.4 we also provide the solution algorithm when a regulariza-

tion scheme (discussed in Section 5.5.2) is used. We remark that in this case the tensor

N is defined as:

N =
Ein

‖Ein‖
=

Ein√
‖Ein‖2 + δ

(6.27)

Remark. Up to now, the relations have been derived in a completely general manner

without specifying the form of the Helmholtz free energy W , apart from the fact that

it is an isotropic function of Ce. Despite the hyperelastic strain energy function W can

take any well-known form in finite elasticity, for the numerical examples to be discussed

in the next sections we use the commonly-used Saint-Venant Kirchhoff strain energy

function:

W =
λ

2
(trEe)2 + µtrEe2 (6.28)

which yields:

α1 =
λ

4

(
C : Cin−1 − 3

)
− 1

2
µ, α2 =

1

2
µ, α3 = 0 (6.29)

where λ and µ are the Lamè constants.

148



Table 6.3: Solution algorithm for GLUS model based on NC2 scheme

1. compute C = F TF

2. compute (CSe)
D

3. if (
∥∥∥(CSe)

D
∥∥∥ < τM +R and

∥∥Ein
n

∥∥ = 0) then

set Cin = 1

else

use (5.85) and set CinTR = Cin
n to compute fTR and trial solution

if
(
fTR < 0

)
then

set trial solution as the problem solution, i.e., Cin = CinTR

else if (completion condition (6.18)) then

set Cin = 1

else

set Cin
0 = Cin

n and ∆ζ0 = 0.

if
∥∥Ein

n

∥∥ = 0 then set Cin
0 value by (6.12)

solve PT1

if
(
‖Ein‖PT1 < εL

)
then

set PT1 solution as the solution: i.e., Cin = Cin
PT1

else

set Cin
0 = Cin

PT1, ∆ζ0 = ∆ζPT1 and γ0 = 0, then solve PT2

set Cin = Cin
PT2

end if

end if

end if

end if

4. compute second Piola-Kirchhoff stress using (5.76), then Cauchy stress using (3.55)

5. compute material tangent matrix and then spatial tangent matrix using (6.1)

6.3 Numerical implementation of GLSY model

In the above section, we used Cin as unknown in the solution procedure as it has already

been done in (Arghavani et al., 2010b; Evangelista et al., 2009; Reese and Christ, 2008).

However, according to the GLSY model it seems to be beneficial to use U in as unknown.

To this end, in this section we assumeU in, ∆ζ and γ as unknowns which also has already

been done in some works (Christ and Reese, 2009; Vladimirov et al., 2008). We then

will investigate the effect of the unknown selection on the computational efficiency in

Chapter 7.
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Table 6.4: Solution algorithm for GLUS model based on Reg scheme

1. compute C = F TF

2. set CinTR = Cin
n to compute fTR and trial solution

3. if
(
fTR < 0

)
then

Accept trial solution, i.e., Cin = CinTR

else

Solve PT1 system.

if
(
‖Ein‖PT1 < εL

)
then

Accept PT1 solution, i.e., Cin = (Cin)PT1

else

Set Cin
0 = Cin

PT1, ∆ζ0 = ∆ζPT1 and γ0 = 0

Solve PT2 system and set Cin = (Cin)PT2

end if

end if

Skipping the similar discussions with Section 6.2, we readily present the PT2 systems

for GLSY model, as follows:
Rin = −U inCin

n

−1
U in + exp

(
2∆ζW̃

)
= 0

Rζ = ‖Ỹ D‖ −R = 0

Rγ = ‖Ein‖ − εL = 0

(6.30)

where

W̃ =
Ỹ

D

‖Ỹ D‖
(6.31)

We now linearize the nonlinear equations (6.30) as it is required for the iterative Newton-

Raphson method. Linearizing (6.30), we obtain:
Rin +Rin

,U in : dU in +Rin
,∆ζ d∆ζ +Rin

,γ dγ = 0

Rζ +Rζ

,U in : dU in +Rζ
,∆ζ d∆ζ +Rζ

,γ dγ = 0

Rγ +Rγ

,U in : dU in +Rγ
,∆ζ d∆ζ +Rγ

,γ dγ = 0

(6.32)

Utilizing the linearized form (6.32), after converting it to matrix form, a system of eight

nonlinear scalar equations is obtained that is solved for dU in, d∆ζ and dγ.

The consistent tangent is computed by linearizing the second Piola-Kirchhof tensor, i.e.:

dS = D : dE = D :
1

2
dC (6.33)

Recalling that S is a function of C and U in, we can write:

dS =
∂S

∂C
: dC +

∂S

∂U in : dU in (6.34)
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Recasting (6.34) into a matrix form, we obtain:

[dS] =

[
∂S

∂C

]
[dC] +

[
∂S

∂U in

] [
dU in

]
(6.35)

We now consider equation (6.30) as a function of C, U in, ∆ζ and γ, and then the

corresponding linearization gives:
Rin
,C : dC +Rin

,U in : dU in +Rin
,∆ζ d∆ζ +Rin

,γ dγ = 0

Rζ
,C : dC +Rζ

,U in : dU in +Rζ
,∆ζ d∆ζ +Rζ

,γ dγ = 0

Rγ
,C : dC +Rγ

,U in : dU in +Rγ
,∆ζ d∆ζ +Rγ

,γ dγ = 0

(6.36)

Recasting (6.36) into a matrix form, we obtain:
dU in

dζ

dγ

 = −


Rin
,U in Rin

,∆ζ Rin
,γ

Rζ

,U in Rζ
,∆ζ Rζ

,γ

Rγ

,U in Rγ
,∆ζ Rγ

,γ


−1 

Rin
,C

Rζ
,C

Rγ
,C

 [dC] (6.37)

Now, using (6.37), we can compute the matrix [B] such that:[
dU in

]
= [B] [dC] (6.38)

We then substitute (6.38) into (6.35) to obtain the consistent tangent matrix as:

[D] = 2

[
∂S

∂C

]
+ 2

[
∂S

∂U in

]
[B] (6.39)

6.4 Numerical implementation of HSGF model

Since, the constitutive model is in terms of Lagrangian quantities, from now on, we

consider as deformation driver the right Cauchy-Green deformation tensor (instead of

the deformation gradient), assuming C̄ and θ are given (control variables).

6.4.1 Time integration.

We use a backward-Euler integration scheme for the scalar internal variable evolution

equation (5.159) and obtain:

θin = θinn + ∆ζ
∂G(Z, q)

∂q
(6.40)

where ∆ζ = ζ − ζ.

Considering Table 6.2 and the evolution equation (5.158), we conclude:

A = 2Ū
in∂G(Z, q)

∂Z
Ū
in

(6.41)
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We now substitute (6.41) into (6.5) to obtain the time-discrete form of the evolution

equation (5.158) based on the exponential mapping:

− C̄in−1

n + Ū
in−1

exp

(
2∆ζ

∂G(Z, q)

∂Z

)
Ū
in−1

= 0 (6.42)

Substituting (6.41) into (6.7), we obtain the time-discrete evolution equation based on

the logarithmic mapping:

− Ū in
log
(
Ū
in
C̄
in−1

n Ū
in
)
Ū
in

+ 2∆ζŪ
in∂G(Z, q)

∂Z
Ū
in

= 0 (6.43)

We now, left- and right- multiply (6.43) by Ū
in−1

and obtain the time-discrete form of

the evolution equation, based on the logarithmic mapping as follows:

− log
(
Ū
in
C̄
in−1

n Ū
in
)

+ 2∆ζ
∂G(Z, q)

∂Z
= 0 (6.44)

We finally remark that, since Z contains logarithmic terms, (6.44) includes only loga-

rithmic terms, while in (6.42) an exponential term exists. The time-discrete evolution

equations (6.40) and (6.44) together with the limit (yield) condition (5.155) construct a

system of nonlinear equations, i.e.:
− log

(
Ū
in
C̄
in−1

n Ū
in
)

+ 2∆ζ
∂G(Z, q)

∂Z
= 0

−θin + θinn + ∆ζ
∂G(Z, q)

∂q
= 0

F (Z, q) = 0

(6.45)

Solution of system of equations (6.45) is, in general, approached through a straightfor-

ward Newton-Raphson method to find Ū
in

, θin and ∆ζ.

6.5 Numerical implementation of HSSY model

6.5.1 Solution algorithm.

We substitute (5.171) into (6.7) and obtain the time-discrete tensorial evolution equation

as:

− log
(
Ū
in
C̄
in−1

n Ū
in
)

+ 2∆ζ
Z

‖Z‖
= 0 (6.46)

Accordingly, the PT2 system takes the following form:
Rin = − log

(
U inCin

n

−1
U in

)
+ 2∆ζW = 0

Rζ = ‖Z‖ −R = 0

Rγ = ‖H in‖ − εL = 0

(6.47)

where

W = Z/‖Z‖ (6.48)
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6.5.2 Considerations on nucleation-completion condition.

We first investigate the trial value of the limit function in the nucleation case as:

fTR = |‖Qe‖ − τM(T )| −R = ‖Qe‖ − τM(T )−R > 0 (6.49)

where a subscript TR indicates a trial value. We may thus introduce the following

nucleation condition:

‖Qe‖ > τM(T ) +R and ‖H in
n ‖ = 0 (6.50)

In the solution procedure, when ‖H in
n ‖ = 0 we check the nucleation condition and if

not satisfied, we assume an elastic behavior.

We remark that, to avoid singularity in system (6.47) for the nucleation case, it is

necessary to use a nonzero initial (guess) transformation strain. Since, we know the

initial transformation strain direction from (5.180), the only unknown for constructing

an initial guess is its norm; if we denote with q its value, we can use the following initial

guess for the nucleation case:

H in
0 = log(U in

0 ) ' U in
0 − 1 = qN =⇒ U in

0 = 1 + qN (6.51)

where a subscript 0 denotes the initial guess. A value of 10−4 could be an appropriate

choice for q.

We now focus on the completion case, i.e., H in
n 6= 0 but H in = 0. To this end,

we consider equations (6.42) or (6.44) and substitute U t = 1 (as it happens for the

completion case) to obtain:

∆ζA = log
(
Cin
n

−1
)

= −2H in
n , A = 2

Z

‖Z‖
, Z = Qe − τMN (6.52)

To this end, using (6.52)1,2 which define the Z direction and considering the limit

function (5.171), we conclude:

Z = −R H in
n

‖H in
n ‖

= −RNTR (6.53)

substituting (6.53) in (6.52)3, we obtain:

Qe +RNTR = τMN (6.54)

Finally taking the norm of both sides of equation (6.54), we define the following com-

pletion condition:

‖Qe +RNTR‖ ≤ τM ,
∥∥H in

n

∥∥ 6= 0 (6.55)

Therefore, in the solution procedure we also should check the completion condition and,

if it is satisfied, we simply update the internal variable by setting U in = 1.

Table 6.5 finally presents the branch detection and the solution algorithm.
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Table 6.5: Solution algorithm for HSSY model based on NC2 scheme.

1. compute C = F TF then J =
√

detC and C̄ = J−2/3C

2. compute Qe

3. if (‖Qe‖ < τM +R and
∥∥H in

n

∥∥ = 0) then

set U in = 1

else

use (5.180) and set U inTR = U in
n to compute fTR and trial solution

if
(
fTR < 0

)
then

set trial solution as the problem solution, i.e., U in = U inTR

else if (completion condition (6.55)) then

set U in = 1

else

set U in
0 = U in

n and ∆ζ0 = 0.

if
∥∥H in

n

∥∥ = 0 then set U in
0 value by (6.51)

solve PT1

if
(
‖H in‖PT1 < εL

)
then

set PT1 solution as the solution: i.e., U in = U in
PT1

else

set U in
0 = U in

PT1, ∆ζ0 = ∆ζPT1 and γ0 = 0, then solve PT2

set U t = U in
PT2

end if

end if

end if

end if

6.5.3 Consistent tangent matrix.

Linearizing (6.47), we obtain:
Rin +Rin

,U in : dU in +Rin
,∆ζ d∆ζ +Rin

,γ dγ = 0

Rζ +Rζ

,U in : dU in +Rζ
,∆ζ d∆ζ +Rζ

,γ dγ = 0

Rγ +Rγ

,U in : dU in +Rγ
,∆ζ d∆ζ +Rγ

,γ dγ = 0

(6.56)

Utilizing the linearized form (6.56), after converting it to a matrix form, a system of

eight nonlinear scalar equations is solved to obtain dU in, d∆ζ and dγ.

We now address the construction of the tangent tensor consistent with the time-discrete

constitutive model. The consistent tangent is computed by linearizing the second Piola-

Kirchhof tensor, i.e.:

dS = D : dE =
1

2
D : dC (6.57)
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Recalling that S is a function of J , C̄ and U in, we can write:

dS =
∂S

∂J
dJ +

∂S

∂C̄
: dC̄ +

∂S

∂U in : dU in (6.58)

The following relations express dJ and dC̄ in terms of dC (Holzapfel, 2000):

dJ =
J1/3

2
C̄
−1

: dC and dC̄ = J−2/3P : dC (6.59)

where,

P = I− 1

3
C̄ ⊗ C̄−1

(6.60)

We now consider equation (6.47) as a function of C̄, U in, ∆ζ and γ, and then the

corresponding linearization gives:
Rin
,C̄ : dC̄ +Rin

,U in : dU in +Rin
,∆ζ d∆ζ +Rin

,γ dγ = 0

Rζ

,C̄
: dC̄ +Rζ

,U in : dU in +Rζ
,∆ζ d∆ζ +Rζ

,γ dγ = 0

Rγ

,C̄
: dC̄ +Rγ

,U in : dU in +Rγ
,∆ζ d∆ζ +Rγ

,γ dγ = 0

(6.61)

Recasting (6.61) into a matrix form, we obtain:
dU in

dζ

dγ

 = −


Rin
,U in Rin

,∆ζ Rin
,γ

Rζ

,U in Rζ
,∆ζ Rζ

,γ

Rζ

,U in Rγ
,∆ζ Rγ

,γ


−1 

Rin
,C̄

Rζ

,C̄

Rγ

,C̄

 [dC̄] (6.62)

Now, using (6.62), we can compute the matrix [B] (the matrix form of the fourth-order

tensor B) such that: [
dU in

]
= [B]

[
dC̄
]

or dU in = B : dC̄ (6.63)

We then substitute (6.59) and (6.63)2 into (6.58) to obtain the consistent tangent as:

D = J1/3J ⊗ C̄−1
+ 2J−2/3 (S + T : B) : P (6.64)

where the second-order tensor ∂S/∂J as well as the fourth-order tensors ∂S/∂C̄ and

∂S/∂U in are denoted by J , S and T, respectively.

6.6 Numerical implementation of SSSR model

We now present concisely the numerical implementation of the original model proposed

by Souza et al. (1998) in the small deformation regime (both strain and rotation are

assumed to be small) as discussed in Section 4.2.1. The solution algorithm is the same

we presented for the GLUS model in Section 6.2. The algorithm, we present here, is
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different from that one already presented by Auricchio and Petrini (2002, 2004a) since

we use as unknown the inelastic strain in place of transformation strain in the model

equations.

We use a backward–Euler integration algorithm to discretized the evolution equation

(4.14) as:

ein = einn + ∆ζŴ (6.65)

where

Ŵ =
xin

‖xin‖
(6.66)

where the transformation stress xin has been defined in (4.10) as

xin = s− x = 2G(e− ein)−
[
τM(T ) + h‖ein‖+ γ

]
N (6.67)

where, we well-define the variable N as:

N =


s

‖s‖
if ‖ein‖ = 0

ein

‖ein‖
if ‖ein‖ 6= 0

(6.68)

The PT2 system for SSSR model takes then the following form:
Rin = −ein + einn + ∆ζŴ = 0

Rζ = ‖xin‖ −R = 0

Rγ = ‖ein‖ − εL = 0

(6.69)

6.6.1 Consistent tangent matrix.

We now linearize the nonlinear equations (6.69) to obtain:
Rin +Rin

,ein : dein +Rin
,∆ζ d∆ζ +Rin

,γ dγ = 0

Rζ +Rζ
,ein

: dein +Rζ
,∆ζ d∆ζ +Rζ

,γ dγ = 0

Rγ +Rγ
,ein

: dein +Rγ
,∆ζ d∆ζ +Rγ

,γ dγ = 0

(6.70)

Utilizing the linearized form (6.70), after converting it to matrix form, a system of eight

nonlinear scalar equations is obtained that is solved for dein, d∆ζ and dγ.

We now address the construction of the tangent tensor consistent with the time-discrete

constitutive model. The consistent tangent can be computed as a linearization of the

stress σ.

dσ = D : dε (6.71)

Recalling equations (4.8) and (4.9), the linearization of the elastic constitutive relation,

in its volumetric and deviatoric component, gives:

dp1 = K(1⊗ 1) : dε

ds = 2G(I− dein

de
)Idev : dε

(6.72)
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where
Idev = I− 1

3
1⊗ 1

de = Idev : dε
(6.73)

If we now consider equation (6.69) as function of e, ein, ∆ζ and γ, then the corresponding

linearization gives:
Rin
,e : de+Rin

,ein : dein +Rin
,∆ζ d∆ζ +Rin

,γ dγ = 0

Rζ
,e : de+Rζ

,ein
: dein +Rζ

,∆ζ d∆ζ +Rζ
,γ dγ = 0

Rγ
,e : de+Rγ

,ein
: dein +Rγ

,∆ζ d∆ζ +Rγ
,γ dγ = 0

(6.74)

Recasting (6.74) into a matrix form, we obtain:
dein

dζ

dγ

 = −


Rin
,U t Rin

,∆ζ Rin
,γ

Rζ
,ein

Rζ
,∆ζ Rζ

,γ

Rγ
,ein

Rγ
,∆ζ Rγ

,γ


−1 

Rin
,e

Rζ
,e

Rγ
,e

 [de] (6.75)

Now, using (6.75), we can compute the matrix [B] such that:[
dein

]
= [B] [de] (6.76)

We then substitute (6.75) into (6.72) to obtain the consistent tangent matrix as:

D = K(1⊗ 1) + 2G(I− B)Idev (6.77)

6.7 Numerical implementation of SSLR model

We now discuss the numerical implementation of SSLR model. The main goal in the

implementation is to use as much as possible the same code we already have developed

for SSSR model. To this end, based on the developed models in Lagrangian and Eulerian

formulations in Section 5.8, we present two methods for such a formulation. In method 1,

we first time-discretize the Lagrangian equations and then transform the time-discretized

equations to the current formulations. In method 2, we use the Eulerian formulation

(it means that we first transform the model equations to the current configuration) and

based on an incrementally objective integration algorithm, we develop time-discrete

model. We finally show that both methods yield the same result.

6.7.1 Method 1: Time-discretization based on Lagrangian for-

mulation

We use the constitutive model in the time-continuous frame as summarized in Table 5.7.

Comparing this model with the SSSR Souza model (summarized in Table 4.1) we find
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out that beside they use different stress and strain measures, they are exactly the same.

It means that we can use exactly the same code we developed for SSSR model but use as

input the Green-Lagrange strain (in place of infinitesimal strain) which gives as output

the second Piola-Kirchhoff stress and material tangent matrix (in place of Cauchy stress

and spatial tangent matrix). The only point we should clarify is that considering the

simplified kinematic assumptions (see Table 5.6) we can transform the material tangent

to the spatial one through the following relation:

Cmnkl = RmMRnNRkKRlLDMNKL (6.78)

However, in (6.78) we can use, as an approximate, the tensor F in place of R (also note

that J ≈ 1). Following this approach we don’t need to compute the rotation tensor R,

i.e.:

Cmnkl = FmMFnNFkKFlLDMNKL (6.79)

We summarize the SSLR model implementation based on the Lagrangian formulation

in Table 6.6.

Table 6.6: Solution algorithm for SSLR model based on Lagrangian formulation.

Inputs (given at a point): F , F n, Ein
n

Outputs (to be computed): σ, Ein, C

1. compute E = 1/2(F TF − 1) and En = 1/2(F T
nF n − 1)

2. use SSSR code: set as input ε = E, εn = En and einn = Ein
n

and obtain as outputs S, Ein and D
3. compute the Cauchy stress: σ = RSRT

4. use relation (6.78) or (6.79) and D to compute C
5. use relation (6.1) to compute spatial Jaumann tangent matrix.

6.7.2 Method 2: Time-discretization based on Eulerian formu-

lation

For a Lagrangean strain measure, the material time rate is objective. However, for an

Eulerian strain measure, to eliminate superimposed rigid rotating motion, the objective

corotational rates, such as the Zaremba-Jaumann rate etc., should be accounted for. We

then will need an integration algorithm which is, as called in the literature, incrementally

objective (Simo and Hughes, 1998). Since in this section we are going to time-discretize

an Eulerian constitutive model, we first present an appropriate time-integration algo-

rithm. Afterward, we present the time-discrete model as well as the spatial tangent

matrix.
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Time integration

We recall that we use subscript n to denote the quantities at time t and a quantity

without a subscript is computed at time t + ∆t. Moreover we denote with subscript

n+ 1
2

the quantities at time t+ 1
2
∆t. Integrating (3.35) in the time interval [t, t+ ∆t],

we obtain: ∫ t+∆t

t

˙
(Q̂(t)AQ̂(t)T )dt =

∫ t+∆t

t

Q̂(t)T
◦
A Q̂(t)dt (6.80)

We now use mid-point rule to compute the right-hand side integral and obtain:

Q̂
T
AQ̂− Q̂

T

nAnQ̂n = Q̂
T

n+ 1
2

◦
An+ 1

2
Q̂n+ 1

2
∆t (6.81)

Multiplying by Q̂ and Q̂
T

from left and right, respectively, we obtain:

A = Q̂Q̂
T

nAnQ̂nQ̂
T

+ Q̂Q̂
T

n+ 1
2

◦
An+ 1

2
Q̂n+ 1

2
Q̂
T

∆t (6.82)

Assuming an updated Lagrangian formulation, we set Q̂n = 1 and using the approxi-

mation Q̂Q̂
T

n+ 1
2
≈ Q̂n+ 1

2
Q̂
T
≈ 1 we obtain:

A = Q̂AnQ̂
T

+
◦
An+ 1

2
∆t (6.83)

We now define

∆A =
◦
An+ 1

2
∆t =

∫ t+∆t

t

◦
A dt (6.84)

Substituting (6.84) into (6.83), we obtain the time-integration formula as:

A = Q̂AnQ̂
T

+ ∆A (6.85)

Equation (6.85) coincides with the one already proposed by Hughes and Winget (1980)

and is known as Hughes-Winget integration algorithm in the literature. This algorithm

updates an Eulerian tensor by transforming (or rotating) its old value to the current

configuration and then adding its increment in the new configuration.

Application to the SSLR Eulerian Souza model

We now apply the time-integration algorithm (6.85) to (5.205) which yields:

hin = Q̂hinn Q̂
T

+ ∆ζ
xin

‖xin‖
(6.86)

Moreover, we can present a similar relation for the total (deviatoric) strain:

h̄ = Q̂h̄nQ̂
T

+ ∆h̄ (6.87)
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We now define the problem as: given h̄, θ, hn and Q̂ then compute the updated internal

variable hin (which is used to update stress) and the tangent matrix. Using (6.86) and

(6.87) (see also table 5.8), the stress also is given by:

s = 2G(h̄− hin) = Q̂
[
2G(h̄n − hinn )

]
Q̂
T

+ 2G∆h̄+ 2G∆ζ
xin

‖xin‖

=⇒ s = Q̂snQ̂
T

+ 2G∆h̄+ 2G∆ζ
xin

‖xin‖

(6.88)

Accordingly, the PT2 system can be presented as follows:
Rin = −hin + Q̂hinn Q̂

T
+ ∆ζ

xin

‖xin‖
= 0

Rζ = ‖xin‖ −R = 0

Rγ = ‖hin‖ − εL = 0

(6.89)

where the time-continuous variable xin = s − (τM(T ) + h‖hin‖ + γ)
hin

‖hin‖
takes the

following form in the time-discrete frame:

xin = Q̂snQ̂
T

+ 2G∆e+ 2G∆ζ
xin

‖xin‖
− (τM(T ) + h‖hin‖+ γ)

hin

‖hin‖
(6.90)

We observe that the time-discretized system (6.89) has exactly the same form that SSSR

has except one difference: the old variables at time tn should be rotated to the new con-

figuration. It means that, we can use the small deformation code for the corotational

formulation without any need to recoding. We just should rotate the old variables

through the rotation tensor Q̂. In the ABAQUS/Standard, this rotation matrix is

passed to the user defined subroutine UMAT through a 3 × 3 matrix Drot. Moreover,

the strain tensor h is provided by the software in the UMAT subroutine.

We remark that, to construct the tangent matrix, we follow exactly the same approach

we took for SSSR model. However, here we assume, during the linearization process,

the rotation tensor Q̂ remains constant. Table 6.7 summarizes the solution procedure.

Remark: It is a straightforward procedure to show that if we rotate the time-discrete

Lagrangian equations to the current configuration and pay attention that RRT
n = Q̂,

we obtain exactly the same time-discrete Eulerian equations.

6.8 Summary

In this chapter, we presented the time-discrete form of the constitutive models devel-

oped in the previous chapters. To this end, we investigated different time-integration
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Table 6.7: Solution algorithm for SSLR model based on Eulerian formulation.

Inputs (given at a point): h, hn, hinn

Outputs (to be computed): σ, hin, C

1. use SSSR code: set as input ε = h, εn = Q̂hnQ̂
T

and einn = Q̂hinn Q̂
T

and obtain as outputs σ, hin and C
2. compute spatial Jaumann tangent matrix with CJ

ijkl = Cijkl + δikσjl + δilσjk.

algorithms and introduced a logarithmic mapping. Proposing a nucleation-completion

condition, we discussed in detail different solution algorithms. Moreover, we discussed in

detail the proper initial guess in the Newton-Raphson method. Finally, we investigated

the SSLR formulation which has the advantage of using the previously developed codes

for the SSSR model.
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Chapter 7

Numerical examples and simulation

of SMA-based applications

7.1 Introduction

In this chapter, we study the solution algorithms developed in Chapter 6 from two

points of view. We first study the algorithm robustness through several numerical test

investigations at a gauss point level and then we compare the computational efficiency

of different constitutive models as well as solution algorithms by simulating several

boundary value problems. We investigate the simple shear test, uniaxial tension, torsion,

a butterfly-shaped strain-controlled path, a box-shaped strain-controlled path and a

box-shaped stress-controlled path. All examples are solved for two different time-step

sizes, four different integration algorithms and for three or two different temperatures.

Moreover, we simulate several boundary value problems, including a spring for three

cases of pseudo-elasticity, one-way and two-way shape memory effects, a medical stent

for two cases of pseudo-elasticity and shape memory effect, a cantilever beam and a

curved beam. We finally simulate an SMA micro-gripper as an interesting application

of SMAs.

7.2 Robustness study of different integration algo-

rithms for GLUS model

7.2.1 Numerical examples: Gauss point level investigations

To investigate the robustness and efficiency of the proposed integration algorithm as

well as of the solution procedure, we simulate some benchmark tests at the Gauss point
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level. Up to now, different benchmark tests have been introduced in the literature;

the paths are usually square-, butterfly-, triangle-, circle- or L-shaped (Auricchio and

Petrini, 2002, 2004a; Grabe and Bruhns, 2009; Helm, 2001; Lim and McDowell, 1999;

Sittner et al., 1995), while they can be either strain- or stress-controlled.

We first investigate the simple shear test, a well-known benchmark test for evaluat-

ing a finite strain model. Then, we simulate some uniaxial stress-controlled tension-

compression and torsion tests at three different temperatures, varying from pseudo-

elasticity to shape memory effect. Afterward, a (E11 −E22)-controlled butterfly-shaped

and a (E11 − E12)-controlled square-shaped path are simulated. In each simulation we

consider two different maximum values for controlling variables as well as two different

temperatures, one leading to pseudo-elasticity and the other to shape memory effect.

Finally, we present the response paths for stress-controlled butterfly- and square-shaped

paths1.

In order to investigate the algorithm robustness, two different time-step sizes are adopted

in each numerical test. Moreover, we report the average number of iterations in PT1

and PT2 for different selected cases to show the convergence behavior (as this infor-

mation can somehow be related to the algorithm robustness). Averages are computed

by dividing the total number of iterations in a test by the total number of calls to the

corresponding subroutine.

While we report the results for the logarithmic form of the evolution equation when a

NC2 scheme is adopted in the solution algorithm, we also investigate the convergence

behavior for both exponential and logarithmic forms of the evolution equation using

both regularized (Reg) and NC2 schemes in the solution algorithm. Following this pro-

cedure we consider four different cases: a regularized scheme with exponential mapping

(exp+Reg), a nucleation-completion scheme with exponential mapping (exp+NC2), a

regularized scheme with logarithmic mapping (log+Reg) and a nucleation-completion

scheme with logarithmic mapping (log+NC2). It is also possible to compare the local

convergence behavior as well as the robustness of different algorithms.

The material properties in Table 7.1, typical of NiTi2, are adopted in all the simulations

of this section. where E and ν are the elastic modulus and the Poisson ratio, respec-

tively. Details on the material parameters identification can be found in Auricchio et al.

(2009a).

1 We remark that, in this section, we use as a strain measure the Green-Lagrange strain tensor and as

a stress measure the second Piola-Kirchhoff stress tensor. Moreover, we highlight that reported results

are not physical as we know that the selected measures are not physical measures (see for example Pai

et al. (1998)).
2See, for example, www.shape-memory-alloys.com.
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Table 7.1: Material properties

E ν h β T0 εL R

[GPa] [-] [MPa] [MPaK−1] [◦C] [%] [MPa]

51.7 0.3 750 5.60 -25 7.5 140

Simple shear test

We start simulating a loading-unloading simple shear test at two different temperatures:

37◦C for pseudo-elasticity and −25◦C for shape memory effect (see Figure 7.1, left). The

deformation gradient and the Green-Lagrange strain tensors are expressed in terms of

the shear amount κ as follows:

F =


1 κ 0

0 1 0

0 0 1

 , E =
1

2


0 κ 0

κ κ2 0

0 0 0


Figure 7.1 (right) shows the results for two different time-step sizes (0.02s and 0.2s

denoted by the line and the circle symbols, respectively, while the total simulation time

is 2s). The results show the algorithm accuracy as well as the robustness for large time-

Figure 7.1: Simple shear test: shear deformation (left) and S12 component as a function

of the shear amount κ (right). Lines denote dt = 0.02s and the circles dt = 0.2s.

step sizes. We also observe the model capability of capturing pseudo-elasticity as well

as shape memory effect.

Uniaxial tests.

We now simulate tension-compression as well as torsion tests under stress control at

three different temperatures, and in particular for T > Af , Mf < T < Af , and T < Mf .

For the tests with T < Af we also investigate shape recovery under temperature control.

Moreover, we remark that since the term τM uses Macaulay brackets, the predictions of

any temperature equal to or below Mf would be the same.
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Figure 7.2 reports the stress-strain response with a solid line and for the tests with

T < Af , the strain recovery with a dashed line. The results show the model capability

of capturing pseudo-elasticity and shape memory effect as well as the intermediate be-

havior.

To check the algorithm robustness we perform the tests with two different stress incre-

ments per step: in particular we consider stress increments equal to 150 and 15 MPa in

tension-compression tests and equal to 100 and 10 MPa in torsion tests. Points A and

B in Figure 7.2, indicate that a load cutting is used in the global solution (equilibrium)

to prevent its divergence as the stiffness is abruptly changing3. Table 7.2 shows the con-

vergence results for different formulations in tension-compression tests. We use letters

f and c to distinguish the results for the fine and coarse increments, respectively. For

each case, a pair of numbers is reported corresponding to PT1 and PT2, respectively.

As it is expected, using a NC2 scheme reduces the average number of iterations. It is

interesting to note that using the logarithmic form reduces the number of iterations and

this can be interpreted as the result of the reduced nonlinearity of the equations. We do

not focus on the efficiency comparison in this section and postpone it to Section 7.2.2,

where we compare the CPU time for different boundary value problems (BVPs).

Table 7.2: Convergence results for tension-compression tests.

exp+Reg exp+NC2 log+Reg log+NC2

6 7 4 4
37◦C (f)

4 4 4 4

8 7 4 4
37◦C (c)

4 4 4 4

8 4 4 4
−5◦C (f)

5 4 4 4

6 6 4 4
−5◦C (c)

4 5 4 4

6 5 4 4
−25◦C (f)

4 4 4 4

5 4 4 4
−25◦C (c)

4 4 4 4

3Similarly to increment cutting technique, we can use load-cutting for a stress-controlled problem.
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Figure 7.2: Uniaxial tests: tension-compression tests (left) and torsion tests (right)

under stress control: T = 37◦C (upper); T = −5◦C (center); T = −25◦C (lower).

For T < Af strain recovery induced by heating is indicated with a dashed-dot line.

Stress increment per step during tension-compression tests: 15 MPa (line) and 150 MPa

(circles). Stress increment per step during torsion tests: 10 MPa (line) and 100 MPa

(circles).

Multiaxial tests.

We now investigate two types of strain-controlled biaxial tests, the first consisting of a

butterfly-shaped (E11−E22) input, and the second of a square-shaped (E11−E12) input.

Figure 7.3 shows the strain input as well as the stress output for the butterfly-shaped

test. The plots on the left refer to a strain value of 6%, while a 10% strain value is

used for plots on the right. The middle and lower plots show the results at T = 37◦C

(pseudo-elasticity) and T = −25◦C (shape memory effect), respectively. All series of

tests are performed using two different time step sizes (0.02s and 0.2s, corresponding to

the solid line and the circle symbols, respectively), while the total time is 8s.
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As we discussed in Section 6.2.2, the implemented algorithm, detects any divergence

during a solution process and automatically cuts the increment size. We use a label IC

to indicate an increment in which cutting takes place and emphasize that the increment

size is not the actual size. We avoid reporting intermediate increment results to keep

the figures as clear and simple as possible.

We repeat with a similar approach the squared-shape test and report the results in

Figure 7.3: Biaxial butterfly-shaped input under strain control up to 6% (upper-left)

and 10% (upper-right); stress output at T = 37◦C (center) and T = −25◦C (lower) for

two time step sizes: 0.02s (line) and 0.2s (circles).

Figure 7.4. Tables 7.3 and 7.4 show the convergence results for the stain-controlled

biaxial tests. For brevity, we only report the results for the most critical cases, i.e., for

10% strain. It is observed that in terms of convergence, the NC2 scheme is preferred

compared with the Reg scheme. As we expected, using a logarithmic form of the evolu-

tion equation improves the convergence behavior. Using the logarithmic form improves

both robustness and efficiency by decreasing the equation nonlinearity and the number

of increment cuttings, as well as the number of iterations.
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Table 7.3: Convergence results for the butterfly-shaped path: up to 10% strain.

exp+Reg exp+NC2 log+Reg log+NC2

8 8 6 6
37◦C (f)

11 11 10 10

11 8 10 7
37◦C (c)

9 10 9 10

7 7 6 6
−25◦C (f)

10 10 10 10

7 7 7 7
−25◦C (c)

10 9 10 9

We also repeat the above mentioned tests under stress control. The stress values vary

Figure 7.4: Biaxial squared-shaped input under strain control up to 6% (upper-left) and

10% (upper-right); stress output at T = 37◦C (center) and T = −25◦C (lower) for two

time step sizes: 0.02s (line) and 0.2s (circles).
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Table 7.4: Convergence results for the squared-shaped path: up to 10% strain.

exp+Reg exp+NC2 log+Reg log+NC2

9 9 8 8
37◦C (f)

12 12 12 12

9 9 8 8
37◦C (c)

8 7 7 7

13 13 9 9
−25◦C (f)

14 14 12 11

9 9 9 9
−25◦C (c)

12 13 13 13

between ±700 MPa. At T = −25◦C, after applying the stress path, we increase the

temperature up to Af , such that the residual strain recovery takes place as shown in

the lower part of Figure 7.5 (see the dotted line).

7.2.2 Numerical examples: Boundary value problems

In this section, we solve four boundary value problems to validate the adopted model as

well as the proposed integration algorithm and the solution procedure. A helical spring

and a medical stent are simulated at two different temperatures to show the model

capability of capturing both pseudo-elasticity and shape memory effect. Moreover, we

compare the CPU time for both exponential and logarithmic forms of the time-discrete

evolution equation, as well as for Reg and NC2 schemes. In all boundary value ex-

amples we use the same material properties as in Section 7.2.1. The temperature in

pseudo-elastic simulations is set to 37◦C while in shape memory effect simulations a

temperature of −25◦C is adopted.

For all simulations, we use the commercial nonlinear finite element software ABAQUS/Standard,

implementing the described algorithm within a user-defined subroutine UMAT.

Helical spring: pseudo-elastic test.

A helical spring (with a wire diameter of 4mm, a spring external diameter of 24mm,

a pitch size of 12mm and with two coils and an initial length of 28mm) is simulated

using 9453 quadratic tetrahedron (C3D10) elements and 15764 nodes. An axial force

of 1525N is applied to the one end while the other end is completely fixed. The force

is increased from zero to its maximum value and unloaded back to zero. Figure 7.6

shows the spring initial geometry, the adopted mesh and the deformed shape under the
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Figure 7.5: Biaxial butterfly-shaped input (upper-left) and squared-shaped input

(upper-right) under stress control; strain output at T = 37◦C (centre) and T = −25◦C

(lower); strain output (lower) with strain recovery (dotted line) under temperature in-

crement.

maximum force. After unloading, the spring recovers its original shape as it is expected

in the pseudo-elastic regime. Figure 7.7 (left) shows the force-displacement diagram. It

is observed that the spring shape is fully recovered after load removal.

Figure 7.6: Pseudo-elastic spring: comparison of initial geometry and deformed config-

uration.
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Helical spring: shape memory effect test.

We also simulate the same spring of Section 7.2.2 in the case of shape memory effect.

An axial force of 427N is applied at T = −25◦C (Figure 7.8, top) and, after unloading,

the spring does not recover its initial shape (Figure 7.8, bottom). After heating, up to

a temperature of 10◦C, the spring recovers its original shape. Figure 7.7 (right) shows

the force-displacement-temperature behavior. According to Figure 7.7 (right), heating

the spring leads to full recovery of the original shape at T = Af (0◦C) and subsequent

heating does not change any more its shape.

Figure 7.7: Force-displacement diagram for the SMA spring: pseudo-elasticity (left) and

shape memory effect (right).

Figure 7.8: Shape memory effect in the simulated spring: deformed shape under maxi-

mum load (top) and after unloading (bottom).

Crimping of a medical stent: pseudo-elastic test.

In this example, the crimping of a pseudo-elastic medical stent is simulated. To this

end a medical stent with 0.216mm thickness and an initial outer diameter of 6.3mm

(Figure 7.9, upper-left) is crimped to an outer diameter of 1.5mm. Utilizing the
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ABAQUS/Standard contact module, the contact between the catheter and the stent

is considered in the simulation. A radial displacement is applied to the catheter and is

then released to reach the initial diameter. In this process, the stent recovers its original

shape after unloading. Figure 7.9 (upper-right) shows the stent deformed shape when

crimped.

Figure 7.9: Stent crimping: initial geometry (upper-left), crimped shape in PE case

(upper-right), crimped shape in SME case (centre) and deformed shape in SME case

after uncrimping (lower).

Crimping of a medical stent: shape memory effect test.

In this example, the same stent is crimped at a temperature of −25◦C as it is shown

in Figure 7.9 (center). Due to the low temperature, while the catheter is expanded, the

stent remains in a deformed state as shown in Figure 7.9 (lower). The initial shape is

however recovered after heating.

7.2.3 Investigation of computational efficiency: comparison of

CPU times.

We now compare the CPU times in order to show the efficiency gained by using loga-

rithmic form as well as a nucleation-completion scheme. We remark that we normalize

all CPU times with respect to the CPU time for the case of exponential form with a

regularized scheme.
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We first consider the CPU times for the SME simulations to study the effect of different

time-discrete forms. Due to the small elastic regime than in the PE case, we expect

approximately the same CPU times for both Reg and NC2 schemes. Therefore, these

tests give us an approximation of the gained efficiency due to the use of the logarithmic

form of the time-discrete evolution equation. Comparing the simulation CPU times for

exponential and logarithmic forms for SME cases reported in Table 7.6, we conclude

that using the logarithmic form decreases CPU time of approximately 20% compared

with the exponential form.

We now consider the CPU times for PE simulations. As it can be observed in Table

7.6, in all cases, using the NC2 scheme decreases the CPU time compared with the Reg

scheme. This decrease depends on the problem and for the simulated problems it varies

from 6% (spring and log form) to 21% (stent and log form).

We finally compare the CPU time of the proposed integration algorithm (log + NC2 )

with the previously proposed one (exp + Reg). Considering the first and last columns

of Table 7.6, we observe that the gained efficiency varies from 19% up to 36%.

Table 7.5: CPU times comparison.

exp+Reg exp+NC2 log+Reg log+NC2

Stent (PE) 1.00 0.84 0.81 0.64

Spring (PE) 1.00 0.89 0.74 0.70

Stent (SME) 1.00 1.01 0.81 0.81

Spring (SME) 1.00 1.02 0.79 0.77

7.3 Comparison of GLUS and GLSY models in terms

of computational efficiency

We now compare the CPU times for three cases, i.e., original unsymmetric model in

which Cin is considered as unknown (Arghavani et al., 2010b; Evangelista et al., 2009),

the original unsymmetric model in which U in is considered as unknown and the pro-

posed symmetric model in which U in is considered as unknown. We denote them as

original-C, original-U and improved, respectively, in the following.

We remark that we normalize all CPU times with respect to those for the case original-

C (Arghavani et al., 2010b; Evangelista et al., 2009). Moreover, the models have been

programmed in a consistent manner so that reliable comparisons concerning the speed

of computation could be obtained.

The simulation CPU times are reported in Table 7.6. From such results we may con-
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clude that using U in instead of Cin, decreases the CPU time of approximately one third

compared with that adopted in (Arghavani et al., 2010b; Evangelista et al., 2009).

Moreover, comparing original-U and improved CPU times, we observe a slightly in-

creased efficiency for the proposed symmetric model.

We finally, conclude that using the proposed symmetric constitutive model and solution

algorithm can improve the numerical efficiency in the order of one third when compared

with the previously adopted ones in (Arghavani et al., 2010b; Evangelista et al., 2009).

Table 7.6: Normalized CPU time comparison (exp+Reg).

Spring Spring Stent Stent

(PE) (SME) (PE) (SME)

original-C 1.00 1.00 1.00 1.00

original-U 0.68 0.72 0.65 0.72

improved 0.64 0.69 0.63 0.73

7.4 Simulation of some BVPs using HSSY formula-

tion

In this section, we solve some boundary value problems to show the proposed model

capabilities as well as the proposed integration algorithm and the solution procedure. A

uniaxial test on a cube, crimping of a pseudo-elastic medical stent and a helical spring

actuator are simulated to show the model capability of capturing both pseudo-elasticity

and shape memory effect.

For all simulations, we use the commercial nonlinear FE software ABAQUS/Standard,

implementing the described algorithm within a user-defined subroutine UMAT.

The material properties reported in Table 7.7 are adopted in all the simulations of this

section.

Table 7.7: Material properties

E ν h β T0 εL R

[GPa] [-] [MPa] [MPaK−1] [◦C] [%] [MPa]

51.7 0.3 1000 5.60 -25 10 140
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7.4.1 Uniaxial test

We simulate a single element unit cube under an applied force on one face while the

opposite face is fixed. The applied force is increased from zero to a maximum value of

1500N and subsequently decreased to zero and increased in the opposite direction to a

value of 1500 N and finally decreased back to zero. Figures 7.10a and 7.10b show the

SMA behavior at 37◦C and −25◦C, respectively. We observe the pseudo-elastic behavior

in Figure 7.10a where the temperature is above the austenite finish temperature while in

Figure 7.10b the material does not recover the original shape after unloading; however

it can be recovered by heating above the austenite finish temperature (shape memory

effect).

Figure 7.10: Illustration of the material behavior under uni-axial force-controlled test:

a) pseudo-elasticity at T = 37◦C; b) shape memory effect at T = −25◦C.
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Figure 7.11: Pseudo-elastic stent crimping: a) initial geometry; b) crimped shape

Figure 7.12: von-Mises stress versus percentage of catheter diameter reduction (at point

A shown in Figure 7.9b).

7.4.2 Pseudo-elastic stent

In this example, the crimping of the pseudo-elastic medical stent described in Section

7.2.2 is simulated at a temperature of 37◦C. Figures 7.11a, b show the stent unde-

formed and deformed shape when fully crimped, respectively. In this simulation, the

stent recovers its original shape after unloading as expected for the pseudo-elastic case.

Moreover, Figure 7.12 reports the von-Mises stress at the critical point A (shown in

Figure 7.11b) versus the reduction percentage in catheter diameter.

7.4.3 Spring actuator

In order to investigate the shape memory effect, the helical spring described in Section

7.2.2 and shown in Figure 7.13A is simulated. The spring is loaded by a weight W =
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Figure 7.13: Spring actuator: A) initial geometry and mesh; B) deformed shape due to

the weight application at T = −25◦C; C) spring shape recovery and weight lifting due

to heating to T = 75◦C; D) spring stretching due to cooling to T = −25◦C.

Figure 7.14: a) Loading history during simulation; b) vertical displacement of the lower

loaded end of spring versus temperature variation.

244 N in martensite state at T = −25◦C (Figure 7.13B), If the stress applied by the

weight is less than the alloy recovery stress, heating the material above Af induces the

inverse phase transformation and the spring lifts the weight (Figure 7.13C). Moreover,

cooling below Mf the transformation from austenite to martensite takes place and the

weight stretches again the spring (Figure 7.13D); accordingly, a repeatable two-way

motion takes place.

We remark that in the analysis, we assume that during each time step the temperature

is uniform in the material body, i.e., we neglect the thermo-mechanical coupling.

Figure 7.14a shows the loading history during the simulation. In Figure 7.14b, we plot

the vertical displacement versus temperature. It is observed that applying a temperature

cycle between −25◦C and 75◦C, the spring actuator traverse a length of 37mm.
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7.5 Comparison of SSSR, SSLR and GLUS models

In this section, we are interested to study the large rotation effects. To this end, we

simulate several beam bending problems which exhibit very large rotations. We use the

material properties in Table 7.8 in all simulations of this section.

Table 7.8: Material properties

E ν h β T0 εL R

[GPa] [-] [MPa] [MPaK−1] [◦C] [%] [MPa]

50.0 0.33 3000 3.23 -25 5 100

7.5.1 Simple tension test

We first simulate a simple tension test for a rod with L = 100mm, h = 6mm and

b = 8mm (Figure 7.15, top) and with an applied displacement at one end (up to 7mm

which is unloaded to the initial configuration), while another end is fixed (we will then

use this geometry as a beam in the next example). Figure 7.15 (down) presents the

simulation results as well as different formulation comparisons. According to Figure 7.15

(down), we conclude that all formulations result in approximately the same behavior.

For displacements larger than 4mm, there is a small difference between small-strain and

finite-strain formulation results which is due to the cross-sectional area reduction.

7.5.2 Bending of a straight beam

We now simulate a cantilever beam which is loaded at the end by a force F = 2000N

and then is unloaded. Figure 7.16 (top) shows the deformed shape when a finite-strain

formulation (GLUS) is used. Figure 7.16 (down) shows the force-displacement (compo-

nent in the direction of the force) curve as well as different formulation comparisons,

highlighting the big difference between the small-deformation formulation SSSR and the

finite deformation ones (SSLR, GLUS).

7.5.3 Out-of-plane bending of a curved beam

We finally simulate the arc-shaped beam shown in Figure 7.17 (top) with an outer

radius of 20mm, an inner radius of 15mm and a thickness of 2mm subjected to an
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Figure 7.15: Geometry and mesh of the beam(top); force-displacement diagram and

comparison of different formulations under tension test (down).

out-of-plane force of 500N . Figure 7.17 (top) also shows the deformed shape under

the maximum force of 500N . In Figure 7.17 (down), we report the force-displacement

diagrams (displacement vector magnitude). We observe that the simulation result of

small-deformation formulation SSSR deviates considerably and for this simulation it

diverges. However, we stress that this deviation is not surprising, since the small-

deformation constitutive model is based on the assumption that the reference and current

configurations are approximately the same, while at large deformations this assumption

is not valid any more.

This example simply shows the nonlinear geometry effects and highlights the necessity of

using a finite deformation constitutive model for SMA-based structures in which usually

large rotations are present. In addition, according to the simulation results we conclude

that using a small-strain formulation without considering rotation effects, may lead to

highly unsatisfactory results. Moreover, using a corotational formulation can improve

the results in the same way a full finite-strain formulation can do. While both SSLR

and GLUS formulations yield approximately the same results, the computational cost in

terms of CPU time is much lower for the corotational formulation. This is an important
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Figure 7.16: The cantilever beam under tip force, deformed shape when GLUS formu-

lation is used (top); comparison of force-tip displacement diagram for different formu-

lations (down).

issue from a computational cost point of view. These findings are in agreement with the

results reported by Christ and Reese (2008) where they compare a small-deformation

formulation with a finite-strain one; however, the difference (or the error) is mainly due

to large rotations.

7.6 Simulation of SMA-based devices: an SMA micro-

gripper

The developed computational tool can be used in analysis of SMA micro-actuators and

biomedical stent devices. Application of the developed computational tool in simulation

of several SMA devices motivates it as an effective tool that can be successfully used in

the design, analysis and optimization procedures of SMA devices.
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Figure 7.17: Geometry and mesh description of the arc-shaped beam under an out

of plane force (top); force-displacement diagram comparison for different formulations

(down)

To this end, adopting the material properties reported in Table 7.9, we simulate the

SMA micro-gripper shown in Figure 7.18. The micro-gripper geometry is similar to

that reported by Kohl (2004) and it has two parts: the upper part (gear actuator) and

the lower part (linear actuator). After laser cutting (Figure 7.18a), a pre-deformation of

2mm is applied to the linear actuator, while heating the gear one (Figure 7.18b). From

now on, at each time, one actuator is martensitic while another one is austenitic. We

now heat the linear actuator to a temperature of T = 30◦C while cooling the gear one

to a temperature of T = −25◦C which closes the gripper (Figure 7.18c). If we then heat

the gear actuator and cool down the linear one, the gripper would open again (Figure

7.18d). Figure 7.19 shows the micro-gripper when it grips a micro-sample.
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Figure 7.18: An SMA micro-gripper: a) starting configuration; b) memorization step

of linear actuator; c) heating of linear actuator and consequent actuation of the gear

one; d) heating of gear actuator with consequent re-opening. Contour plot of maximum

principal logarithmic strain is reported.
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Figure 7.19: Simulation of micro-gripper with a sample: a) starting configuration; b)

memorization step; c) heating of linear actuator and sample gripping; d) heating of

rotary actuator with consequent re-opening. von Mises stress [MPa] distribution in the

micro-gripper are depicted in the contour plot.
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Table 7.9: Material properties

E ν h β T0 εL R

[GPa] [-] [MPa] [MPaK−1] [◦C] [%] [MPa]

53 0.3 1000 2.5 -25 4 60

7.7 Summary

In this chapter, we presented several numerical examples to study the robustness and

efficiency of the developed integration algorithms in Chapter 6. We performed sev-

eral numerical simulations at the gauss point level to study the robustness of different

algorithms. We then simulated several boundary value problems to compare different

algorithms efficiency. We also compared different model formulations and simulated sev-

eral SMA-based devices. The results show that the developed algorithms can be used

as a proper and efficient computational tool in design and analysis of SMA structures.
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Chapter 8

Summary and conclusions

8.1 Summary

Increasing number of SMA applications calls for developing proper constitutive models

as well as computational tools to be used in engineering design, analysis and optimization

of SMA structures. However, SMAs exhibit very complicated behavior under different

loading conditions. Thus, it is advantageous to know the importance of different phe-

nomena in the simulation of real engineering applications.

To this end, in Chapter 1 we studied the SMA behavior and classified them in two cat-

egories: 1. primary effects which include the pseudo-elasticity and shape memory effect

under general multiaxial (non-proportional) thermo-mechanical loadings and specifically

the variant reorientation under loading non-proportionality; 2. secondary effects which

cover other behaviors, being important in the specific applications. A model that can

capture only the primary effects is called a basic model. It is usual to add secondary

effects into a successful basic model, following straightforward approaches. This fact

motivated us to focus only on primary effects in the constitutive modeling, i.e. basic

model.

We investigated different SMA constitutive modeling approaches in Chapter 2 and con-

cluded that the approach based on continuum thermodynamics with internal variables

is more appropriate for developing phenomenological constitutive models. We then pre-

sented a literature review on phenomenological models. We highlighted that appearance

of experimental data and the increasing interest in biomedical applications motivated

the research toward 3D phenomenological modeling as well as corresponding computa-

tional part.

In Chapter 3, we briefly reviewed some preliminaries in nonlinear continuum mechanics

and finite element (FE) analysis. We highlighted that, in FE analysis, the material be-

havior is evaluated at a point (Gauss point); consequently, to implement a constitutive
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model into a finite element program, we should supply the stress and the tangent matrix

at a point level.

The rest of the research devoted to constitutive modeling at small and finite strain

regimes and numerical implementation in FEM. To this end, in Chapter 4, after review-

ing some small strain formulations available in the literature, we presented a class of

small strain SMA models and showed that several available models can be identified as

members of the proposed class of models. With emphasis on non-proportional loading

and reorientation, we specifically introduced a model which had the property of decou-

pling pure reorientation from pure phase transformation.

In Chapter 5, we extended the small strain constitutive models proposed by Panico and

Brinson (2007) and Souza et al. (1998) into finite strain regime. The approach was based

on the use of a multiplicative decomposition of the deformation gradient into elastic and

inelastic parts. We then improved the finite strain extension of Souza model in several

aspects, e.g.: well-defining the variables, presenting a fully-symmetric formulation and

developing a model based on the Hencky strain measure.

Chapter 6 was totally devoted to numerical implementation of the developed constitu-

tive models. We gave details on time-discretization, integration algorithm and solution

schemes. Proposing a nucleation-completion condition, we discussed in detail different

solution algorithms. Finally, we investigated a formulation in the large rotation, small

strain regime (SSLR) which had the advantage of using the previously developed codes

for the infinitesimal model (SSSR).

In chapter 7, we solved several numerical examples to study the robustness of different

integration algorithms. In addition, we simulated several SMA applications and com-

pared the computational efficiency of different algorithms. To this end, we compared

the finite strain, small strain and finite rotation formulations. For all simulations, we

implemented the developed algorithms into a user-defined subroutine UMAT in the non-

linear finite element software ABAQUS. The results highlighted that the corotational

formulation can yield satisfactory results while it is considerably faster than fully finite

strain formulation.

8.2 Conclusions

To incorporate the growth, orientation and reorientation of variants, we introduced an

appropriate set of internal variables. This set of internal variables was able to represent

a scalar and a directional information. In most of the previously proposed models, in-

elastic strain had been considered as a unique internal variable. In general, the norm of
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the inelastic strain represents the scalar martensite amount and its direction represents

the preferred direction of the variants. However, in this work, a measure of the amount

of stress-induced martensite was chosen as a scalar internal variable, being related to the

amount of the inelastic strain due to the stress-induced phase transformation, while the

average direction of different variants (or preferred direction of variants) was chosen as

a tensorial internal variable, representing the inelastic strain direction. So, using a stan-

dard literature terminology (Bouvet et al., 2004; Panico and Brinson, 2007) the internal

variables may be clearly interpreted as phase transformation and variant reorientation.

We remarked that from a physical point of view, the application of a thermo-mechanical

load activates the phase transformation and the preferred martensite variants start to

nucleate or shrink (Otsuka and Wayman, 1998). Changing the load direction, another

set of variants, that are in the new preferred direction with respect to the applied stress,

starts to nucleate and previous variants may grow or shrink depending on the available

stress for that direction (this phenomenon is known in the literature as simultaneous

forward and reverse transformation under non-proportional loading (see, e.g., Bouvet

et al. (2004) and Lim and McDowell (1999)). In the phenomenological framework, we

considered the average behavior of variants as the behavior of an equivalent single vari-

ant. So when the load direction changes, this equivalent single variant rotates to a new

preferred direction.

We concluded that the component of stress in the preferred direction of variants af-

fects the evolution of phase transformation and variant preferred direction changes only

through the component of stress orthogonal to its direction. Based on the introduced

set of internal variables, we proposed a class of SMA constitutive models in the small

strain regime. We proved that different basic constitutive models predict the same be-

havior under proportional loading conditions and the differences are highlighted under

non-proportional loadings. A good correlation between the proposed model predictions

and the experimental data was observed for the case of equal transformation and reori-

entation region radius (Rre = Rtr). We concluded that this equality can be interpreted

as the macroscopic consequence of microscopic simultaneous forward and reverse trans-

formation, which can link the phase transformation parameter to the reorientation one.

According to all the test results reported, we also concluded that the results of the

proposed had a good qualitative description of the reorientation phenomenon in SMAs

under non-proportional loading, however the model needs some improvements. Since

the internal variables were somehow related to micro-mechanical phenomena, we saw

similar concepts when compared with micro-mechanics-based studies.

Moreover, we showed that using a multiplicative decomposition of the deformation gra-

dient into elastic and inelastic parts together with the isotropic property of energy

functions, it is possible to extend small strain constitutive models into finite deforma-
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tion regime. In addition, for a complicated model (e.g., model proposed by Panico

and Brinson (2007)), we showed that in the finite deformation model development, we

should decompose additively the inelastic strain rate tensor into transformation and re-

orientation parts, besides the multiplicative decomposition of the deformation gradient

into elastic and inelastic parts. We also derived a Hencky-based constitutive model and

showed that it has a similar form to the small model. In particular, under proportional

loadings, it takes the full similarity, while under non-proportional loadings, the intro-

duced elastic-like strain differs from that in the small strain formulation. Moreover, we

extended small strain models into large rotation, small strain regime.

We also presented the time-discrete form of the constitutive equations and introduced

different solution algorithms. It was observed that in terms of convergence, the Nucleation-

Consistent Completion (NC2 ) scheme is preferred compared with the Regularization

(Reg) scheme. We also concluded that use of a logarithmic form of the evolution equation

improves the convergence behavior. It was shown that the logarithmic form improves

both robustness and efficiency by decreasing the equation nonlinearity and the number

of increment cuttings as well as the number of iterations. Comparing the simulation

CPU times for exponential and logarithmic forms, we concluded that the logarithmic

form decreases CPU time of about 20% compared with the exponential form. Also,

using the NC2 scheme decreased the CPU time compared with the Reg scheme. This

decrease depends on the problem as well as temperature. For the simulated problems it

varied from 6% to 21%. We also compared the CPU time of the proposed integration

algorithm (log + NC2 ) with the previously proposed one (exp + Reg) and observed that

the gained efficiency varied from 19% up to 36%. In another study, we concluded that

use of U in instead of Cin, as an unknown in the solution procedure, decreases the CPU

time of about one third.

Solving several problems, we highlighted the necessity of using a finite deformation con-

stitutive model for SMA-based structures in which usually large rotations are present.

We concluded that using a small-strain formulation without considering rotation effects,

may lead to highly unsatisfactory results. Moreover, it was shown that using a large

rotation formulation can improve the results in the same way a full finite-strain formu-

lation can do. We stress that while both SSLR (small strain, large rotation) and GLUS

(finite strain and large rotation) formulations yielded approximately the same results,

the computational cost in terms of CPU time was much lower for the SSLR formulation

which is an important issue from a computational cost point of view. We presented

several numerical examples to study the robustness and efficiency of the developed in-

tegration algorithms. The results showed that the developed algorithms can be used as

a proper and efficient computational tool in design and analysis of SMA structures.
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8.3 Future research directions

In this research, we studied three subjects: Constitutive modeling under non-proportional

loading and variant reorientation, extension of small strain models into finite deforma-

tion regime and numerical implementation in FEM. However, additional research and

developments are needed in order to obtain a general reliable constitutive model as

well as an effective computational tool. From the modeling point of view the suggested

extensions and improvements for future research are as follows:

• More investigation of the proposed general class of models and specially the limit

functions and evolution equations and comparison with more experimental data.

• Modeling of temperature-induced phase transformation to develop more accurate

models for description of the shape memory effect.

• According to the ever increasing number of SMA applications, modeling of sec-

ondary effects can be an interesting subject. Different material properties for

austenite and martensite, different limit functions in forward and reverse trans-

formations and asymmetric behavior under tension and compression as well as

thermo-mechanical coupling can be important in specific applications. Thus, these

issues should be addressed in future studies.

All the proposed developments have to be followed with experimental data. Moreover,

there are still more works to be carefully studied to develop robust, computationally

efficient 3-D models.
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Fremond, M., 1987. Matériaux à mèmoire de forme. CR Acad Sc Paris Tome 304 (7),

239 244.

Fremond, M., 1996. Shape Memory Alloysalloy: A thermomechanical macroscopic the-

ory. Springer Vienna.

Funakubo, H., 1987. Shape Memory Alloys. Gordon and Breach Science Publishers, New

York.

Gall, K., Sehitoglu, H., Maier, H., 1997. Asymmetric stress–strain response in shape

memory alloys. In: Khan, A. S. (Ed.), Physics and Mechanics of Finite Plastic and

194



Viscoplastic Deformation, Proceedings of Plasticity 97: Sixth International Sympo-

sium on Plasticity and Its Current Applications. Neat Press, Fulton, Maryland. pp.

153 – 154.

Gall, K., Sehitoglu, H., Maier, H., Jacobus, K., 1998. Stress-induced martensitic phase

transformations in polycrystalline CuZnAl shape memory alloys under different stress

states. Metall. Mater. Trans. A 29A (7), 65 – 773.

Gandhi, M., Thompson, B. D., 1992. Smart materials and structures. Springer.

Gao, X., Brinson, L., 2002. A simplified multivariant sma model based on invariant

plane nature of martensitic transformation. Journal of Intelligent Material Systems

and Structures 13, 795 – 810.

Gao, X., Huang, M., Brinson, L. C., 2000. A multivariant micromechanical model for

smas part 1. crystallographic issues for single crystal model. International Journal of

Plasticity 16 (10-11), 1345 – 1369.

Ghavam, K., Naghdabadi, R., 2007. Spin tensors associated with corotational rates

and corotational integrals in continua. International Journal of Solids and Structures

44 (16), 5222 – 5235.

Grabe, C., Bruhns, O., 2008a. On the viscous and strain rate dependent behavior of

polycrystalline niti. International Journal of Solids and Structures 45 (7-8), 1876 –

1895.

Grabe, C., Bruhns, O., 2008b. Tension/torsion tests of pseudoelastic, polycrystalline niti

shape memory alloys under temperature control. Materials Science and Engineering:

A 481-482, 109 – 113.

Grabe, C., Bruhns, O., 2009. Path dependence and multiaxial behavior of a polycrys-

talline niti alloy within the pseudoelastic and pseudoplastic temperature regimes.

International Journal of Plasticity 25, 513 – 545.

Grasser, E. J., Cozzarelli, F. A., 1994. A proposed three-dimensional constitutive model

for shape memory alloys. Journal of Intelligent Material Systems and Structures 5, 78

– 89.

Gurtin, M. E., Anand, L., 2005. The decomposition f=fefp, material symmetry, and

plastic irrotationality for solids that are isotropic-viscoplastic or amorphous. Interna-

tional Journal of Plasticity 21 (9), 1686 – 1719.

Haupt, P., 2002. Continuum Mechanics and Theory of Materials. Springer Publication

House.

195



Helm, D., 2001. Formgedachtnislegierungen - experimentelle untersuchung, phanome-

nologische modellierung und numerische simulation der thermomechanischen materi-

aleigenschaften. Ph.D. thesis, Universitat Gesamthochschule Kassel.

Helm, D., Haupt, P., 2003. Shape memory behaviour: modelling within continuum

thermomechanics. International Journal of Solids and Structures 40 (4), 827 – 849.

Henann, D. L., Anand, L., 2009. A large deformation theory for rate-dependent elastic-

plastic materials with combined isotropic and kinematic hardening. International

Journal of Plasticity 25 (10), 1833 – 1878.
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Appendix A

Finite strain constitutive model

derivation considering C and T as

control variables and Cin and zT as

internal ones

In Section 5.4, we considered {Ce, T} and {zσ, zT} as control and internal variables,

respectively. Here, we assume C and T as control variables as well as Cin and zT as

internal ones, which seems more realistic.

A hyperelastic strain energy function depends only on elastic deformation through Ce

or according to (5.3) on F in−TCF in−1
. Now, applying the principle of objectivity, we

obtain:

W (Ce) = W
(
F in−TCF in−1

)
= W

(
U in−1

CU in−1
)

(A.1)

An isotropic strain energy function depends onU in−1
CU in−1

only through its invariants

which are equal to those of CCin−1
. Therefore, we assume W as a function of Ĉ =

CCin−1
and define the Helmholtz free energy function in the following form:

Ψ
(
C, T,Cin, zT

)
=

1

ρ0

W (CCin−1
) + ψ(Cin, zT , T ) (A.2)

where ψ is defined as (5.9) while zσ substituted by
‖Cin − 1‖

2εL
(see equation (??)).

Substituting (A.2) in Clausius-Duhem inequality (5.19) we obtain:(
S − 2

∂W

∂C

)
:

1

2
Ċ − ∂W

∂Cin : Ċ
in − ρ0

∂ψ

∂Cin : Ċ
in − ρ0

∂ψ

∂zT
żT − ρ0

(
η +

∂ψ

∂T

)
Ṫ ≥ 0

(A.3)
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Using some mathematical manipulations, we also obtain following relations:

∂W

∂C
= Cin−1

∂W
∂Ĉ

T

∂W

∂Cin = Cin

∂W
∂Ĉ

T

CCin−1

(A.4)

Substituting (A.4) into (A.3), using (5.11) and following standard arguments, we obtain:
S = 2Cin−1

∂W
∂Ĉ

T

η = −
∂ψ

∂T

(A.5)

and

M̄ : din − N̄ : dtr +XT żT ≥ 0 (A.6)

where 
M̄ = 2F in−TC

∂W

∂Ĉ
F in−1

N̄ = 2F inρ0

∂ψ

∂CinF
inT

(A.7)

and XT has already been defined in (5.26)3.

We may now write:

∂W

∂Ĉ
= α11 + α2Ĉ

T
+ α3

(
Ĉ

2
)T

(A.8)

where αi = αi(I
CCin−1 , II

CCin−1 , III
CCin−1 ). Substituting (A.8) into (A.5) and (A.7)

and following a similar approach used in Chapter 5, we obtain the same constitutive

equations as summarized in Section 5.4.
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Appendix B

Details of derivations for

Hencky-based model

In this appendix, we present details of the relations we used in the previous sections.

The logarithm of a tensor B can be expanded as follows:

logB = (B − 1)− 1

2
(B − 1)2 +

1

3
(B − 1)3 − 1

4
(B − 1)4 + ... (B.1)

which is absolutely convergent if ‖B − 1‖ ≤ 1, but B 6= 0 1.

We substitute b̄
e

for B in (B.1) to obtain:

log b̄
e

= 2h̄
e

= (b̄
e − 1)− 1

2
(b̄
e − 1)2 +

1

3
(b̄
e − 1)3 − 1

4
(b̄
e − 1)4 + ... (B.2)

We now show that F̄
eT
s∗F̄

e−T
is a symmetric tensor. To this end we substitute (5.134)

into (5.124)2 to obtain:

s =
∂ψe

∂h̄
e = α11 + 2α2h̄

e
+ 4α3h̄

e2
(B.3)

We then observe that:

F̄
eT (
b̄
e − 1

)n
F̄
e−T

=
(
C̄
e − 1

)n
(B.4)

where n is a positive integer number. Substituting (B.4) into (B.2), we conclude:

F̄
eT
h̄
e
F̄
e−T

= H̄
e

and F̄
eT
h̄
e2
F̄
e−T

= H̄
e2

(B.5)

We now combine (B.5) and (B.3) to obtain:

F̄
eT
s∗F̄

e−T
= α11 + 2α2H̄

e
+ 4α3H̄

e2
(B.6)

1Similar expansion can be considered if ‖B − 1‖ > 1, for example if ‖B − 21‖ ≤ 1, we use:

logB = log(2)1 + (B − 21)− 1
2 (B − 21)2 + 1

3 (B − 21)3 − 1
4 (B − 21)4 + ...
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According to (B.6), we conclude that F̄
eT
sF̄

e−T
is a symmetric tensor.

We now show that h̄
e

= 1
2
F̄
−T

log(C̄C̄
in−1

)F̄
T

. To this end, we observe that:

b̄
e

= F̄ C̄
in−1

F̄
T

= F̄
−T
C̄C̄

in−1

F̄
T

(B.7)

According to (B.7), we conclude:(
b̄
e − 1

)n
= F̄

−T
(
C̄C̄

in−1

− 1
)n
F̄
T

(B.8)

We now substitute (B.8) into (B.2) and obtain:

h̄
e

=
1

2
F̄
−T

log(C̄C̄
in−1

)F̄
T

(B.9)

Substituting (B.9) into (B.5) we also obtain:

F̄
inT
H̄

e
F̄
in

=
1

2
log(C̄C̄

in−1

)C̄
in

(B.10)

We now mention the following properties:

C̄C̄
in−1

− 1 = Ū
in
(
Ū
in−1

C̄Ū
in−1

− 1
)
Ū
in−1(

C̄C̄
in−1

− 1
)n

= Ū
in
(
Ū
in−1

C̄Ū
in−1

− 1
)n
Ū
in−1 (B.11)

Finally, substitution of (B.11) into logarithmic expansion (B.1) yields:

log(C̄C̄
in−1

) = Ū
in

log
(
Ū
in−1

C̄Ū
in−1
)
Ū
in−1

(B.12)

We assumed G(α, q) to be an isotropic function of its argument, therefore, considering

representation theorem, we may write:

∂G(α, q)

∂α
= c11 + c2α+ c3α

2 (B.13)

where the coefficients c1, c2 and c3 are functions of the invariants of α and q. We now

multiply (B.13) from left and right by F̄
inT

and F̄
in

, respectively:

F̄
inT ∂G(α, q)

∂α
F̄
in

= c1F̄
inT
F̄
in

+ c2F̄
inT
αF̄

in
+ c3F̄

inT
α2F̄

in
(B.14)

We now use (5.154) in (B.14) to obtain:

F̄
inT ∂G(α, q)

∂α
F̄
in

= c1Ū
in2

+c2Ū
in
ZŪ

in
+c3Ū

in
Z2Ū

in
= Ū

in (
c11 + c2Z + c3Z

2
)
Ū
in

(B.15)

In equation (5.154) we showed that the invariants of α are equal to those of Z. Thus, we

conclude that the terms inside the parenthesis in (B.15) represent
∂G(Z, q)

∂Z
. Therefore,

we can write:

F̄
inT ∂G(α, q)

∂α
F̄
in

= Ū
in∂G(Z, q)

∂Z
Ū
in

(B.16)
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Appendix C

Linearization of the asymmetric

finite strain Souza model

In this appendix, we present the linearized form of equation (6.9). To this end, we define

the following second order tensors1:

Ū = U in−1
, C̄ = Cin−1

, Q = ∆ζŪAŪ , G = exp(Q) , W = UC̄nU , H = log(W )

(C.1)

and the following fourth-order tensors:

U =
∂U

∂Cin , Ū =
∂Ū

∂Cin , C̄ =
∂C̄

∂Cin , S =
∂S

∂Cin , X =
∂X

∂Cin

Y =
∂Y

∂Cin , A =
∂A

∂Cin , Q =
∂Q

∂Cin , W =
∂W

∂Cin , G =
∂G

∂Q

H =
∂H

∂W
, S̃ =

∂S

∂C
, Ỹ =

∂Y

∂C
, Ã =

∂A

∂C

(C.2)

with components:

Xijkl = 1
2
hIijkl + 1

2
(τM + γ)Nijkl

Sijkl = 1
2
λC̄mnklCmnC̄ij + 2α1C̄ijkl + 2α2C̄imklCmnC̄nj + 2α2C̄imCmnC̄njkl

Yijkl = CimSmjkl − IimklXmj − Cin
imXmjkl

Aijkl = 2Zimpq
(
Ypqkl − 1

3
Ynnklδpq

)
Cin

mj + 2ZimImjkl
Qijkl = ∆ζŪimklAmnŪnj + ∆ζŪimAmnŪnjkl + ∆ζŪimAmnklŪnj

Wijkl = Uirkl

(
C̄n
)
rs
Usm + Uir

(
C̄n
)
rs
Usjkl

S̃ijkl = 1
2
λC̄ijC̄kl + 2α2C̄imImnklC̄nj

Ỹijkl = CimS̃mjkl + IimklSmj
Ãijkl = 2Zimpq

(
Ỹpqkl − 1

3
Ỹnnklδpq

)
Cin

mj

(C.3)

1We note that, the notation in this appendix is independent from those we have used in different

chapters and it should not me confused.
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where,

N =
1

‖Ein‖
(I−N ⊗N ) , Z =

1

‖Y D‖
(
I−Z ⊗ZT

)
(C.4)

and

N =
Ein

‖Ein‖
, Z =

Y D

‖Y D‖
(C.5)

We compute the components of tensors U , Ū , C̄, G, H as well as U, Ū, C̄, G and H
through spectral decomposition (de Souza Neto, 2004). The components of the forth-

order identity tensor I are defined as:

Iijkl =
1

2
δikδjl +

1

2
δilδjk (C.6)

We now present the linearized form of equations (6.5) as:

(R11)ijkl = ∆ζÃijkl

(R12)ijkl = UimklHmnUnj + UimHmnUnjkl + UimHmnklUnj + ∆ζAijkl

(R13)ij = Aij

(R14)ij = −2∆ζZimpqCin
mj

(
Cin

pnNnq − 1
3
Cin

klNklδpq
)

(R21)ij = ZnmỸmnij , (R22)ij = ZnmYmnij , R23 = 0 , R24 = −ZijCin
imNmj

(R31)ij = 0 , (R32)ij = 1
2
Nij , R33 = 0 , R34 = 0

(C.7)

where
R11 = Rin

,C , R12 = Rin
,Cin , R13 = Rin

,∆ζ , R14 = Rin
,γ

R21 = Rζ
,C , R22 = Rζ

,Cin , R23 = Rζ
,∆ζ , R24 = Rζ

,γ

R31 = Rγ
,C , R32 = Rγ

,Cin , R33 = Rγ
,∆ζ , R34 = Rγ

,γ

(C.8)

In order to linearize the time-discrete evolution equation in the exponential form, we

derive the linearized form of equation (6.5) as follows:

(R11)ijkl = ∆ζŪimGmnpqÃrsklŪnjŪprŪsq

(R12)ijkl = ŪimklGmnŪnj + ŪimGmnklŪnj + ŪimGmnŪnjkl

(R13)ij = ŪimŪmnŪpqŪrjAnpGqr

(R14)ij = −2∆ζŪimŪnjGmnpqŪprŪsqZrmpqCin
ms

(
Cin

pnNnq − 1
3
Cin

klNklδpq
)
(C.9)
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