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Introduction

Objective: FEM code for Variational Fracture

Basic Ref’s on VF: Braides 92, Del Piero 97, Francfort & Marigo 98 (ask
Ref’s to speaker)

What is Variational Fracture?

... Energy is the sum of bulk and interface terms: Energy convenience
determines not only the when (early idea of Griffith) but also the how.

Energy depends not only on displacements but also on the “jump set” K:

F(K;u) = / ;[:5](‘1)(+/ J([u])ds .

O\K K
Complex mathematical question: regularity of K
Solved with the Direct Method of the Calculus of Variations -> Global
Minima:
...K'is regular if the interface energy has nice properties...
necessary ingredient:
Concavity



Introduction

Difficulties in using Variational Fracture
Non interpenetration: fracture has a definite sign ... inequalities.

Permanence of fracture ..... Irreversibility > evolutionary global minimization
(Francfort & Marigo)

In reality evolution follows local not global minima ...... sensitivity to energy
barriers.

Numerical implementation of Variational Fracture
Standard numerical strategy (Bourdin et al, Del Piero et al): regularization.

Ambrosio-Tortorelli approach (kind of damage: fractures appear smeared,
by tuning the damage parameter ¢ get possible discontinuity in the limit).

Other approaches (similar):
phase fields (physics community), eigenstrains (Ortiz et al).....

No strong discontinuities: Fractures are smeared over strips
Extremely fine meshes required to locate cracks



Introduction

Our code:
Modelling quasi-static nucleation and propagation of cracks through FE with

gaps .... Strong discontinuities

Numerical procedure:
Descent Minimization .... local minima

The VF model requires the ability to locate and approximate the crack. On
adopting the “strong discontinuity” approach cracks cannot be restricted to
the skeleton of a fixed FE mesh.

... our mesh is variable: mesh nodes are taken as further unknowns
(minimization over variable triangulations).

With a Griffith type interface energy fracture nucleation is always brutal:
descent directions for the energy do not exist in absence of singularities
(such as a pre-existing crack).

To reach more energetically convenient local minima the system must have
the ability to surmount small energy barriers ...

... energy relaxation (does not always work).



Relaxation of the interface energy
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Fracture Nucleation in 1d bar.

W+ Al
A+ 2 7 s W
H % —= é—»
Z| ' V >
| | |
L/2 L/2
Fixed Mesh :
’E:'A——"j lEA<"‘4"“')1 o= o
—i L/1+ 2 L/2 ’ - .
.g ] 2 ) Y-~ )1
(w,a) =4 tgaw 4 2gale a a>o
2 /2 A L/a !
+e0 , & <O
Variable Mesh:
2
} w ! (& -w)
~-EATE ¥ 3EA o= o
=T x4 L= (R) ’
’ 2 ey T A —_—

L~ () ! ’
+ <o , a < 0O

... but here changing mesh is useless. Preminimizing with respectto u ...

A
A .
E(uz=w, o, x@)= iEA<g”“) .y . a>o, -.independentof x(2)
__L - s

L + co . a < 0



To make the movement of the interface “useful” ...
... bar with weakened toughness y at a given point ...
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VALIDATION WITH CLASSICAL LINEAR FRACTURE MECHANICS (CLFM):
PROPAGATION OF A STRAIGHT CRACK IN MODE |

M'(’z.l). ™ 2 t {see Figure 15}
o
H Ry J
Rg
H Ri 4..6.%
L BejL X
Height Length Thickness Young Mod.  Poisson rat. Thoughness
H (cm) 5L (cm) t (cm) E (Nem??) v Gc (Neme?)
1.0 15.0 1.0 30105 0.0 1.0

Tablel: Geometric and material constants.
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PROPAGATION: CONVERGENCE ANALYSIS IN MIXED MODE I&lI.

2 X6 X 6 =72 elements, Structured mesh
3 X72=216 nodes
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PROPAGATION: CONVERGENCE ANALYSIS IN MIXED MODE I&lI.

2 X 8 X 8 =128 elements, Structured mesh
3 X 128 = 384 nodes
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PROPAGATION: CONVERGENCE ANALYSIS IN MIXED MODE I&lI.

2 X 10 X 10 =200 elements, Structured mesh
3 X 200 = 600 nodes
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PROPAGATION: CONVERGENCE ANALYSIS IN MIXED MODE I&lI.

Structured mesh, refined at the crack tip.

134 elements, 402 nodes
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RADICAL MESH

Example 2.6.6 Radical meshes are meshes that are refined toward a boundary
point can be constructed by mapping uniform meshes. This is illustrated in
Fig. 2.6.12 where a radical mesh on (0,1)? is obtained as the image of a uniform
mesh under the map z — 2:||:z:||§°1+1/(1_“); the exponent p is chosen as u = 2/3
in Fig. 2.6.12. =

Fig. 2.6.12. (see Example 2.6.6) Radical meshes obtained by mapping uniform

meshes: points of uniform mesh (left) are mapped under = + z||z||%, (right).

Rate of convergence at reentrant corners
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FIGURE 1. The L-shaped domain. (a) Quasiuniform mesh: 5 =1.  (b) Radical mesh: & = 2.



|lu—un||L.

|lu — up|| g

l|lu — uh”vl2

1/8

1.971099e-01

3.863963e-01

8.896923e-01

|lu—un||L.,

llw — up||m

llu — unllvz

1/8

1.232961e-02

2.758312e-02

6.814436e-02

1/16

1.259240e-01

2.471421e-01

5.768890e-01

1/16

3.083882¢-03

6.907536e-03

1.709652e-02

1/32

7.984653e-02

1.572064e-01

3.704272e-01

1/32

7.710008e-04

1.727198e-03

4.275973e-03

1/64

5.045257e-02

9.906064e-02

2.361241e-01

1/64

1.927508e-04

4.318093e-04

1.069047e-03

Error [%]

10°

10°

101 L

10%

TABLE 1. Errors: quasiuniform mesh.

Error Convergence
T T T

=—a error exact adapt
=—a error exact uniform

10° 10t 10* 10° 104

Degrees of freedom

10° 10°

TABLE 3. Errors: radical mesh, § = 3.

h

|lu —un||L.,

[ — un|| g

|l — unllvz

1/8

6.147282e-03

1.402917e-02

3.958289e-02

1/16

7.713058e-04

1.765369e-03

5.183194e-03

1/32

9.641922e-05

2.207031e-04

6.562081e-04

1/64

1.205262e-05

2.759403e-05

8.231771e-05

TABLE 4. Errors: radical mesh, § = 4.5.

|lu—un||L.,

llu — un|| g

llu — unllyz

1/8

1.042903e-02

2.480339e-02

7.415254e-02

1/16

7.010578e-04

1.704769e-03

6.410035e-03

1/32

4.384548e-05

1.067936e-04

5.021341e-04

1/64

2.740699¢-06

6.838039¢-06

3.744369e-05

TABLE 5. Errors: radical mesh, 6 = 6.




Error estimates

- . Ta—unly 2
h | logs it | logs it | 0% ootz
1/16 | 2.9946 2.9904 2.9330
1/32]  2.9999 2.9998 2.0816
/64| 3.0000 3.9907 9.9949

TABLE 7. Convergence rates: radical mesh, § = 4.5.

_ Uu—1u Tu—up Hvz
B |loms it | loma puartfi | 08 uw alie
1/16 3.8949 3.8629 3.56321
1/32 3.9991 3.9967 3.6742
1/64 3.9998 3.9651 3.7453

TABLE 8. Convergence rates: radical mesh, § = 6.

Error estimates: radical mesh, f=1, §=4.5

—em = [l gt
TN

lu—unllr. ., llu—unl| 12 llu—unllva
h log, lu—th/2llLo0 log, lu—up 2l 2 log, llu—un/2lly2
1/16 0.6464 0.6447 0.6251
1/32 0.6573 0.6527 0.6391
1/64 0.6623 0.6583 0.6496
TABLE 2. Convergence rates: quasiuniform mesh.
lu—un L lu—unll 2 lu—unllvz
he | loge = ol | 1982 Tumwy ol r | 1982 o a2
1/16 1.9993 1.9975 1.9949
1/32 1.9999 1.9997 1.9994
1/64 2.0000 2.0000 1.9999
TABLE 6. Convergence rates: radical mesh, § = 3.
10 Error estimates: fadicalmMESh. B=1, 8=1 o Error estimates: radi'cal mesh, B=1, §=3
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FIGURE 2. Convergence rates: quasiuniform mesh.
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FIGURE 4. Convergence rates: radical mesh, § = 3.
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Fi1GURE 5. Convergence rates: radical mesh, § = 4.5.




NUCLEATION IN 2d. RUPTURE OF A STRETCHED AND SHEARED STRIP.

Given displacement: at right end:
u=0.01cm (i +j)

E=3000 MPa , y=1N/cm
(e.g. Polycarbonate)
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NUCLEATION IN 2d. RUPTURE OF A STRETCHED AND SHEARED STRIP.

“Elastic evolution of the mesh”

Minimal
fractured state

For c°=100 MPa
t°=10 MPa




NUCLEATION IN 2d. RUPTURE OF A STRETCHED AND SHEARED STRIP.

(1MPa).

Same value of 1°, vy, low value of ¢°




NUCLEATION IN 2d. RUPTURE OF A STRIP IN SIMPLE SHEARING.

1 N/cm, high value of t° (100 MPa)

100MPa, y
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NUCLEATION IN 2d. RUPTURE OF A STRIP IN SIMPLE SHEARING.

.... lowering t° (0.1 MPa)




PROPAGATION: KINKING OF A STRAIGHT CRACK IN MIXED MODE I&ll.
Experiment and predictions of CLFM
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PROPAGATION: KINKING OF A STRAIGHT CRACK IN MIXED MODE I&ll.
Results of numerical simulation

ATy
u W%
J,JL
B e
Original mesh Final (optimized) mesh
%, (iom)
K=1.3176, K,=0.4288 . . |
6,100 MPa.
. e
L /
P o0 ool 0002 60ss 006 ;i(""\-)
MTS GMax Numerical
30.84° 30.48° 30.46°

Table 2. Kinking angle with MTS, GMax cuteria and from FEM analysis.



PROPAGATION: KINKING OF A STRAIGHT CRACK IN MIXED MODE I&ll.
Results of numerical simulation
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PROPAGATION: KINKING OF A STRAIGHT CRACK IN MIXED MODE I&ll.
Results of numerical simulation

1_9; (N/owm)




CONCLUDING REMARKS

A FE approximation of Griffith type fracture in 2d VF has been
presented.

The way we propose to approximate cracks in variational fracture is
different from regularization methods : the displ. jumps occur on the
skeleton of the mesh ... mesh is variable.

Local minima of the energy with respect both to displacements and
jump sets are searched through descent methods.

To overcome small energy barriers (either physical or artifacts of the
FE approximation) the interface energy is relaxed.

To follow the evolution of cracks the real quasi-static trajectory is
approximated with a sequence of states (step by step approx.)

The closeness of the approximate trajectory to the real one depends
on a sensible choise of the parameters (c°, t°, ..)



CONCLUDING REMARKS

Joys: The results we show are encouraging (but much has to be done)

We could reproduce the results of CL Fracture Mechanics
We got good indications of convergence as the mesh is refined
The mesh is self adapting to singularities and curved crack paths

Though the approach is necessarily restricted to triangular elements,
mesh minimality produces efficient geometries (radical meshes)

Variable mesh seems to have the potentiality to describe branching
with a coarse mesh - dynamics

Sorrows:

Parameters are “mesh dependent” and “path dependent”

A part from very rough bounds on the parameters we were not able
to identify any simple rule to set 6°, t°, ... case by case ... look for
more efficient ways to get out of energy wells.

Reproducing kinking in mixed mode required a great effort.

The descent method is still numerically too inefficient to be pushed

at the refinement levels required by the singularities (reduce
unknowns)



