Pavia, 25 Marzo 2011

Joys and sorrows of FEM with strong discontinuities for the variational approximation of free-disc. problems

Maurizio Angelillo*, joint work with Enrico Babilio[#], Antonio Fortunato*

* Università di Salerno# Università di Napoli Federico II

Introduction

- Objective: FEM code for Variational Fracture
- Basic Ref's on VF: Braides 92, Del Piero 97, Francfort & Marigo 98 (ask Ref's to speaker)
- What is Variational Fracture?
 - ... Energy is the sum of bulk and interface terms: Energy convenience determines not only the when (early idea of Griffith) but also the how.
- Energy depends not only on displacements but also on the "jump set" K:

$$F(K;\mathbf{u}) = \int_{\Omega \setminus K} \varphi(\varepsilon) d\mathbf{x} + \int_{K} \vartheta(\llbracket \mathbf{u} \rrbracket) ds ,$$

- Complex mathematical question: regularity of K
- Solved with the Direct Method of the Calculus of Variations -> Global Minima:

...K is regular if the interface energy has nice properties...

necessary ingredient:

Concavity

Introduction

Difficulties in using Variational Fracture

- Non interpenetration: fracture has a definite sign ... inequalities.
- Permanence of fracture Irreversibility → evolutionary global minimization (Francfort & Marigo)
- In reality evolution follows local not global minima sensitivity to energy barriers.

Numerical implementation of Variational Fracture

- Standard numerical strategy (Bourdin et al, Del Piero et al): regularization.
 Ambrosio-Tortorelli approach (kind of damage: fractures appear smeared, by tuning the damage parameter ε get possible discontinuity in the limit).
- Other approaches (similar): phase fields (physics community), eigenstrains (Ortiz et al).....

No strong discontinuities: Fractures are smeared over strips Extremely fine meshes required to locate cracks

Introduction

Our code:

• Modelling quasi-static nucleation and propagation of cracks through FE with

gaps Strong discontinuities

Numerical procedure:

- Descent Minimization local minima
- The VF model requires the ability to locate and approximate the crack. On adopting the "strong discontinuity" approach cracks cannot be restricted to the skeleton of a fixed FE mesh.
- ... our mesh is variable: mesh nodes are taken as further unknowns (minimization over variable triangulations).
- With a Griffith type interface energy fracture nucleation is always brutal: descent directions for the energy do not exist in absence of singularities (such as a pre-existing crack).
- To reach more energetically convenient local minima the system must have the ability to surmount small energy barriers ...
 - ... energy relaxation (does not always work).

Relaxation of the interface energy

Fracture Nucleation in 1d bar.

Fixed Mesh :

$$\mathcal{E}(\mathbf{u}, \mathbf{a}) = \begin{cases} \frac{1}{2} \mathbb{E} A \frac{\mathbf{u}^{2}}{\mathbf{L}/2} + \frac{1}{2} \mathbb{E} A \frac{(\mathbf{u} - \mathbf{u})^{2}}{\mathbf{L}/2}, \quad \mathbf{a} = 0, \\ \frac{1}{2} \mathbb{E} A \frac{\mathbf{u}^{2}}{\mathbf{L}/2} + \frac{1}{2} \mathbb{E} A \frac{(\mathbf{u} - \mathbf{u} - \mathbf{a})^{2}}{\mathbf{L}/2}, \quad \mathbf{a} > 0, \\ +\infty, \quad \mathbf{a} < 0. \end{cases}$$

Variable Mesh:

$$\mathcal{E}(u, a, x(a)) = \begin{cases} \frac{1}{2} E A \frac{u^2}{x(a)} + \frac{1}{2} E A \frac{(u-u)^2}{1-x(a)}, & a = 0, \\ \frac{1}{2} E A \frac{u^2}{x(a)} + \frac{1}{2} E A \frac{(u-u-a)^2}{1-x(a)}, & a > 0, \\ \frac{1}{2} E A \frac{u^2}{x(a)} + \frac{1}{2} E A \frac{(u-u-a)^2}{1-x(a)}, & a > 0, \\ +\infty, & a < 0. \end{cases}$$

... but here changing mesh is useless. Preminimizing with respect to u ...

$$\mathcal{E}(\mathbf{u} = \mathbf{u}^{\circ}, \mathbf{a}, \mathbf{x}^{(2)}) = \begin{cases} \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} = \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} = \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} > \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} > \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} > \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{a} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{u} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{u} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{u} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{u} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{u} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{u} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{u} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{u} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{u} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{u} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{u} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{u} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{u} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{u} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{u} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u}^{2}}{=} , & \mathbf{u} < \circ \\ \frac{1}{2} \mathbb{E} A \stackrel{\mathbf{u$$

To make the movement of the interface "useful" ... bar with weakened toughness γ at a given point ...

VALIDATION WITH CLASSICAL LINEAR FRACTURE MECHANICS (CLFM): PROPAGATION OF A STRAIGHT CRACK IN MODE I

Table1: Geometric and material constants.

2 X 6 X 6 =72 elements, Structured mesh 3 X 72 = 216 nodes

2 X 8 X 8 =128 elements, Structured mesh 3 X 128 = 384 nodes

2 X 10 X 10 =200 elements, Structured mesh 3 X 200 = 600 nodes

Structured mesh, refined at the crack tip.

134 elements, 402 nodes

RADICAL MESH

Example 2.6.6 Radical meshes are meshes that are refined toward a boundary point can be constructed by mapping uniform meshes. This is illustrated in Fig. 2.6.12 where a radical mesh on $(0, 1)^2$ is obtained as the image of a uniform mesh under the map $x \mapsto x ||x||_{\infty}^{-1+1/(1-\mu)}$; the exponent μ is chosen as $\mu = 2/3$ in Fig. 2.6.12.

Fig. 2.6.12. (see Example 2.6.6) Radical meshes obtained by mapping uniform meshes: points of uniform mesh (left) are mapped under $x \mapsto x ||x||_{\infty}^2$ (right).

Rate of convergence at reentrant corners

FIGURE 1. The L-shaped domain.

ANA MARIA SOANE, MANIL SURI, AND ROUBEN ROSTAMIAN

h	$\ u-u_h\ _{L_\infty}$	$\ u-u_h\ _{H^1}$	$\ u-u_h\ _{V_1^2}$
1/8	1.971099e-01	3.863963e-01	8.896923e-01
1/16	1.259240e-01	2.471421e-01	5.768890e-01
1/32	7.984653e-02	1.572064e-01	3.704272e-01
1/64	5.045257e-02	9.906064e-02	2.361241e-01

TABLE 1. Errors: quasiuniform mesh.

h	$\ u-u_h\ _{L_\infty}$	$\ u-u_h\ _{H^1}$	$\ u-u_h\ _{V_1^2}$
1/8	1.232961e-02	2.758312e-02	6.814436e-02
1/16	3.083882e-03	6.907536e-03	1.709652e-02
1/32	7.710008e-04	1.727198e-03	4.275973e-03
1/64	1.927508e-04	4.318093e-04	1.069047e-03

TABLE 3. Errors: radical mesh, $\delta = 3$.

h	$\ u-u_h\ _{L_\infty}$	$\ u-u_h\ _{H^1}$	$\ u-u_h\ _{V_1^2}$
1/8	6.147282e-03	1.402917e-02	3.958289e-02
1/16	7.713058e-04	1.765369e-03	5.183194e-03
1/32	9.641922e-05	2.207031e-04	6.562081e-04
1/64	1.205262e-05	2.759403e-05	8.231771e-05

TABLE 4. Errors: radical mesh, $\delta = 4.5$.

h	$\ u-u_h\ _{L_\infty}$	$\ u-u_h\ _{H^1}$	$\ u-u_h\ _{V_1^2}$
1/8	1.042903e-02	2.480339e-02	7.415254e-02
1/16	7.010578e-04	1.704769e-03	6.410035e-03
1/32	4.384548e-05	1.067936e-04	5.021341e-04
1/64	2.740699e-06	6.838039e-06	3.744369e-05

TABLE 5. Errors: radical mesh, $\delta = 6$.

Error estimates

h	$\log_2 \frac{\ u - u_h\ _{L_{\infty}}}{\ u - u_{h/2}\ _{L_{\infty}}}$	$\log_2 \frac{\ u - u_h\ _{H^1}}{\ u - u_{h/2}\ _{H^1}}$	$\log_2 \frac{\ u - u_h\ _{V_1^2}}{\ u - u_{h/2}\ _{V_1^2}}$
1/16	0.6464	0.6447	0.6251
1/32	0.6573	0.6527	0.6391
1/64	0.6623	0.6583	0.6496

TABLE 2. Convergence rates: quasiuniform mesh.

h	$\log_2 \frac{\ u - u_h\ _{L_{\infty}}}{\ u - u_{h/2}\ _{L_{\infty}}}$	$\log_2 \frac{\ u - u_h\ _{H^1}}{\ u - u_{h/2}\ _{H^1}}$	$\log_2 \frac{\ u - u_h\ _{V_1^2}}{\ u - u_{h/2}\ _{V_1^2}}$
1/16	1.9993	1.9975	1.9949
1/32	1.9999	1.9997	1.9994
1/64	2.0000	2.0000	1.9999

TABLE 6. Convergence rates: radical mesh, $\delta = 3$.

h	$\log_2 \frac{\ u - u_h\ _{L_{\infty}}}{\ u - u_{h/2}\ _{L_{\infty}}}$	$\log_2 \frac{\ u - u_h\ _{H^1}}{\ u - u_{h/2}\ _{H^1}}$	$\log_2 \frac{\ u - u_h\ _{V_1^2}}{\ u - u_{h/2}\ _{V_1^2}}$
1/16	2.9946	2.9904	2.9330
1/32	2.9999	2.9998	2.9816
1/64	3.0000	2.9997	2.9949

TABLE 7. Convergence rates: radical mesh, $\delta = 4.5$.

h	$\log_2 \frac{\ u - u_h\ _{L_{\infty}}}{\ u - u_{h/2}\ _{L_{\infty}}}$	$\log_2 \frac{\ u - u_h\ _{H^1}}{\ u - u_{h/2}\ _{H^1}}$	$\log_2 \frac{\ u - u_h\ _{V_1^2}}{\ u - u_{h/2}\ _{V_1^2}}$
1/16	3.8949	3.8629	3.5321
1/32	3.9991	3.9967	3.6742
1/64	3.9998	3.9651	3.7453

TABLE 8. Convergence rates: radical mesh, $\delta = 6$.

Error estimates: radical mesh, β=1, δ=3

FIGURE 2. Convergence rates: quasiuniform mesh.

FIGURE 4. Convergence rates: radical mesh, $\delta = 3$.

FIGURE 5. Convergence rates: radical mesh, $\delta = 4.5$.

NUCLEATION IN 2d. RUPTURE OF A STRETCHED AND SHEARED STRIP.

Given displacement: at right end: $\underline{u} = 0.01 \text{ cm} (\mathbf{i} + \mathbf{j})$

E=3000 MPa , $\gamma = 1$ N/cm (e.g. Polycarbonate)

NUCLEATION IN 2d. RUPTURE OF A STRETCHED AND SHEARED STRIP.

"Elastic evolution of the mesh"

NUCLEATION IN 2d. RUPTURE OF A STRETCHED AND SHEARED STRIP.

Same value of τ° , γ , low value of σ° (1MPa).

NUCLEATION IN 2d. RUPTURE OF A STRIP IN SIMPLE SHEARING.

 σ° =100MPa, γ = 1 N/cm, high value of τ° (100 MPa)

NUCLEATION IN 2d. RUPTURE OF A STRIP IN SIMPLE SHEARING.

.... lowering τ° (0.1 MPa)

PROPAGATION: KINKING OF A STRAIGHT CRACK IN MIXED MODE I&II. Experiment and predictions of CLFM

PROPAGATION: KINKING OF A STRAIGHT CRACK IN MIXED MODE I&II. Results of numerical simulation

Table 2. Kinking angle with MTS, GMax criteria and from FEM analysis.

PROPAGATION: KINKING OF A STRAIGHT CRACK IN MIXED MODE I&II. Results of numerical simulation

PROPAGATION: KINKING OF A STRAIGHT CRACK IN MIXED MODE I&II. Results of numerical simulation

CONCLUDING REMARKS

- A FE approximation of Griffith type fracture in 2d VF has been presented.
- The way we propose to approximate cracks in variational fracture is different from regularization methods : the displ. jumps occur on the skeleton of the mesh ... mesh is variable.
- Local minima of the energy with respect both to displacements and jump sets are searched through descent methods.
- To overcome small energy barriers (either physical or artifacts of the FE approximation) the interface energy is relaxed.
- To follow the evolution of cracks the real quasi-static trajectory is approximated with a sequence of states (step by step approx.)
- The closeness of the approximate trajectory to the real one depends on a sensible choise of the parameters (σ° , τ° , ..)

CONCLUDING REMARKS

Joys: The results we show are encouraging (but much has to be done)

- We could reproduce the results of CL Fracture Mechanics
- We got good indications of convergence as the mesh is refined
- The mesh is self adapting to singularities and curved crack paths
- Though the approach is necessarily restricted to triangular elements, mesh minimality produces efficient geometries (radical meshes)
- Variable mesh seems to have the potentiality to describe branching with a coarse mesh → dynamics

Sorrows:

- Parameters are "mesh dependent" and "path dependent"
- A part from very rough bounds on the parameters we were not able to identify any simple rule to set σ°, τ°, ... case by case ... look for more efficient ways to get out of energy wells.
- Reproducing kinking in mixed mode required a great effort.
- The descent method is still numerically too inefficient to be pushed at the refinement levels required by the singularities (reduce unknowns)