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Abstract
This thesis investigates material behavior and advanced manufacturing so-

lutions, with specific focuses ranging from computational optimization tools to
effective component production through 3D printing technologies. The devel-
oped tools are mainly applied to biomedical field as a promising area for the use
of sophisticated computational mechanics tools. In more details, the specific con-
tributions range from the mechanical investigation of biological tissue response,
in the case of a cardiovascular intervention, to the design and optimization of a
medical device (Part I), including the study and the solution of rate dependent
thermo-mechanical phenomena of interest in biomedical investigation (Part II).
Mechanical properties of polymer-based 3D-printed components are investigated
(Part III), given the new, and still not fully exploited opportunities that additive
manufacturing processes may offer in terms of customization, materials and pro-
duction time of dedicated patient-specific medical devices.

In particular, in Part I the impact of thoracic endovascular aortic repair (TEV
- AR) on longitudinal strain and aortic tensile properties is investigated in order
to better understand complications associated with TEVAR. Attention has subse-
quently been devoted to the problem of fatigue life in Nitinol stents. It is proposed
a numerical optimization framework aiming at increasing the fatigue life reduc-
ing the maximum strut strain along the structure through a local modification of
the strut profile. The adopted computational framework relies on nonlinear struc-
tural finite element analysis combined with a Multi Objective Genetic Algorithm,
based on Kriging response surfaces. In particular, such an approach is used to in-
vestigate the design optimization of planar stent cell. The results of the strut pro-
file optimization confirm the key role of a tapered strut design to enhance the stent
fatigue strength, suggesting that it is possible to achieve a marked improvement
of both the fatigue safety factor and the scaffolding capability simultaneously.

In Part II heat conduction in non-Fourierian conductors, as some classes of bi-
ological tissue and biomedical materials, is studied. Indeed, recent applications of
physics and bio-engineering showed several unpredicted and “anomalous” effects
in heat transport. An attempt to capture these effects have been reported in a paper
by Cattaneo that introduced, in the well-know Fourier relation, a first order time
derivative of the the heat flux and an appropriate relaxation time. We extended
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the Fourier conduction equation, introducing a Caputo fractional derivative with
order β ∈ [0,1]. The distribution and the temperature raising in simple rigid con-
ductors have been also reported to investigate the influence of the derivation order
in the temperature field. Then the coupled behavior of slightly deformable bod-
ies, in which the strain is additively decomposed in an elastic contribution, and in
a thermal part, is studied.

In Part III the mechanical behavior of 3D-printed FDM structural compo-
nents is studied. More in detail, the influence of the extruded filament dimen-
sions and chemical composition on mechanical behavior are investigated through
experimental campaigns. We showed that FDM specimens exhibit anisotropic
mechanical properties since they vary with filament extrusion direction. Accord-
ingly, Classical Lamination Theory (CLT) and Tsai-Hill yielding criterion were
found to be well capable of predicting in-plane stiffness and strength of FDM
specimens. We assessed that, varying chemical composition and filament di-
mensions, it is possible to tune fiber properties and fiber-to-fiber bonding and,
consequently, the overall mechanical properties at macro-scale, in particular the
yielding strength and the strain at failure. The experimentally obtained data may
be used to calibrate mechanical models to be used with computational tools as
finite element analyses.
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Introduction and outline of the
Thesis

This thesis investigates both biological tissues and bio-compatible materials with
the aim of contributing to the design and the manufacturing of optimized biomed-
ical devices with particular attention to their thermo-mechanical performance.
For this purpose, we conducted experimental campaigns, numerical optimiza-
tions and theoretical formulation. The proposed methodologies and the related
results can be applied to other several engineering research fields. Biological tis-
sues have been studied in terms of changes in tensile properties associated with
the interaction with medical devices and in terms of non conventional heat con-
duction, relying on non-integer order differential operators. Biomaterials have
been investigated in terms of bio-mechanical performance of Nitinol stents and
in terms of polymer mechanical properties, resulting from Additive Manufactur-
ing (AM) processes. Most of the investigations resulted in specific publications
which are listed at the end of the present introduction.

Part I is devoted to the understating of the interaction between medical de-
vices such as stent grafts and the vessel in which they are inserted and on me-
chanical performances of Nitinol stents. Chapter 1 investigates the impact of
Thoracic Endovascular Aortic Repair (TEVAR) on longitudinal strain along with
aortic tensile properties in order to better understand complications associated
with TEVAR. Our experimental study found that TEVAR acutely stiffened the
thoracic aorta in the longitudinal direction. This resulted in a longitudinal strain
mismatch between stented and non-stented segments. Uniaxial tensile testing



2

demonstrated that thoracic aortic tissue is more prone to rupture in the longi-
tudinal than the circumferential direction, in particular close to the aortic arch.
Such an acute strain mismatch of potentially vulnerable tissue might play a role
in TEVAR-related complications, including retrograde dissection and aneurysm
formation. The finding that TEVAR stiffens the aorta longitudinally may shed
light on systemic complications following TEVAR, such as hypertension and
cardiac remodeling. This initial study on the impact of TEVAR on longitudi-
nal strain may serve as a base for future investigation on the interaction between
aortic stent-grafts and cardiovascular biomechanics and might contribute to future
stent-graft design.

Chapter 2 deals with the problem of the redesign of self-expanding nitinol
stents that, nowadays, are widely used as part of percutaneous minimally-invasive
techniques aimed at treating occluded vessels. Indeed, several mechanical fail-
ures of such a class of devices have been observed; this drawback often results in
a loss of scaffolding capabilities of the stent, thrombus formation, and restenosis.
The majority of the mentioned out-of-service, that depend on anatomical position
and the load history, occurs for cyclic loadings that induce fatigue failures.

Performing a thorough engineering analysis, we identified several relations
between the stent geometry and its structural performance. Moreover, a further
literature analysis showed that: i) it is possible to enhance fatigue strength acting
on the stent cell design but such an improvement has its counterpart in a loss of
stiffness; in other words, fatigue life and scaffolding capability of the stent are,
usually, conflicting objectives ii) a tapered strut profile may enhance the stent fa-
tigue strength, being thus an ideal starting point for the stent design optimization.
Relying on the previous observations, we noted that it would have been possi-
ble to optimize stent design increasing the fatigue strength without penalizing
other bio-mechanical design requirements. We then proposed a multi-objective

optimization procedure, acting on stent cell geometry and based on the introduc-
tion of tapered strut profile. In particular, the optimization framework accounts
for non-linear structural Finite Element Analisys (FEA) combined with a Multi
Objective Genetic Algorithm (MOGA) based on Kriging response surfaces. Re-
sponse surfaces have been used to reduce the computational effort required by
the optimization procedure.
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The study results confirm that the use of tapered strut profile should be a
primary key factor to enhance the fatigue life of the whole stent. The selection of
one design from the Pareto optimal set, that is the outcome of the multi-objective
optimization, can be done selecting the trade-off point, i.e. the Pareto point that
is the most appropriated with respect to the given design requirements.

As illustrative example we compared a commercial reference design with an
optimized design, chosen from the obtained Pareto set, under the requirement of
leaving scaffolding capability unchanged. The proposed approach suggests that
the enhancement of stent fatigue life can be achieved combining tapered strut
profile with an increase of the strut length and of the strut width at extremities.

Moreover, the results suggest that the width narrowing at the middle of the
strut, due to the profile tapering, should be stay among 35%−50%. Under such
indications, it is possible to achieve a marked improvement of the fatigue safety
factor, i.e., about 2.4 times, compared to the typical design (strut with constant
section), without any loss of scaffolding capabilities. The present study under-
lines the value of advanced engineering tools to optimize the design of medical
devices.

Part II is devoted to the study of heat conduction in non-Fourierian conduc-
tors as biological tissues and biomedical materials employed in medical applica-
tions. This is a key point for the assessment of suitable models able to predict
thermal and thermo-mechanical response of such class of materials. The conven-
tional theory of heat transfer is based on the classical Fourier law that involves a
contemporaneous cause effect relation among the heat flux and the temperature
gradient. In some recent applications of physics and bio-engineering however,
experimental measures showed several unpredicted effects in heat transport. An
attempt to capture these effects have been reported in a paper by Cattaneo that
generalized the well-know Fourier relation with the introduction of a first order
time derivative of the the heat flux and an appropriate relaxation time. In this
setting the propagation of temperature waves has been related to the presence of
phonon’s scattering across the materials.

When the phononic propagation has a mean free path similar to the geometri-
cal dimensions of the conductor, then a ballistic motion, related by the Cattaneo
equation, may be expected. On the other hand, if the mean free path is of the order
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of the inter-atomic distance, a pure diffusion, ruled by Fourier equation, may be
expected. The abrupt separation among the ballistic and the diffusive propagation
is, however, an anomalous condition seldom encountered in applications.

Beside Cattaneo generalization of transport equation, an integral formulation
has been introduced by Biot and Lord and Schulman yielding the so-called mem-
ory formalism of the heat transport equation.

Very recently the memory formalism has been specialized in a fractional-
order diffusion equation and non-local contribution of fractional order have been
also introduced. Fractional-order calculus is usually referred as the generalization
of the well-known ordinary differential calculus introducing real - order integrals
and derivatives. It traces back to the basic definitions by Riemann as well as
to successive memories of famous mathematicians as Liouville, Cauchy, Abel,
Leibniz.

Chapter 3 shows that fractional order heat transfer may be obtained intro-
ducing a self-similar, fractal type mass clustering at the micro-scale. In this
setting the resulting conduction equation at the macro-scale yields a Caputo’s
fractional derivative with order β ∈ [0,1] of temperature gradient that generalizes
the Fourier conduction equation. The order of the fractional-derivative has been
related to the fractal assembly of the micro-structure. The distribution and the
temperature raising in simple rigid conductors have been also reported to inves-
tigate the influence of the derivation order in the temperature field. Essentially,
this is equivalent to having a distribution of masses characterized by a function-
ally graded hierarchy of thermal conductivities and heat capacities, scaling with
a certain power law.

Results show that the solution of the fractional heat equation (0 < β < 1),
governed by Mittag-Leffler functions, exhibits for small times a much faster ris-
ing, and for large times, a much slower decay. Accordingly, the main property of
the considered anomalous heat transfer is that the time-rate of change at which
the resulting temperature field reaches a steady state, becomes higher as the dis-
crepancy from the Fourier law increases: the thermal steadiness is consequently
achieved, by anomalous conductors, employing longer times than Fourier ones.
Such particular behavior represents the “long-tail memory effect”, due to the
power law thermal memory of such materials.
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Chapter 4 focuses on the “thermally-anomalous” coupled behavior of slightly
deformable bodies, in which the strain is additively decomposed in an elastic
contribution and in a thermal part. The macroscopic heat flux turns out to de-
pend upon the time history of the corresponding temperature gradient, and this
is the result of the multi-scale rheological model developed in chapter 3, thereby
resembling a “long-tail” memory behavior governed by a Caputo’s fractional op-
erator. The macroscopic constitutive equation between the heat flux and the time
history of the temperature gradient does involve a power law kernel, resulting in
the “anomaly” mentioned above. The interplay between such thermal flux and
the elastic and thermal deformabilities is investigated for a pinned-pinned truss.

While the anomalous thermal behavior in time has been extensively studied
from the phenomenological and mathematical point of view, starting from the late
sixties to these days, anomalous thermoelastic coupling in engineering and bio-
medical applications still requires thorough investigations. To this end, for the
sake of illustration, a one dimensional anomalous thermoelastic truss subject to
thermal loading and pinned at both ends is examined. The full analytical solution
of the problem is provided obtaining the resulting displacement and tempera-
ture fields along with the internal axial force. The anomalous thermal behavior
of such slightly deformable system is then investigated, thereby exploring not
only the transient behavior due to its deviation from the Fourier law, but also by
studying a resulting overall measure of energy rate and the interplay between the
thermal flux and the elastic and the thermal deformability. Results show that the
interactions, in such simply geometry, are fully coupled as the temperature and
the displacement fields mutually influence one another.

The higher is the deviation from the Fourier-like behavior for the heat flux,
the steeper is the resulting time-transient of each mode. The influence of the
deformability on the one hand, and of the discrepancy from the Fourier behavior
on the other hand, are thoroughly analyzed for the three fields mentioned above.

Measures of the overall “thermal work”, and of the associate available and
dissipation energy rates are evaluated, both mode-by-mode and globally, enabling
the characterization of the coupled response of anomalous thermoelastic trusses.
Besides determining the range of admissible discrepancies from the Fourier be-
havior, such quantities are shown to fully reveal the manifestation of the thermal
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anomaly together with the effects of the elastic and thermal deformabilities.
Part III deals with the manufacturing of functional components, to be em-

ployed in a very wide class of applications, with particular attention to medical
ones. We focused on AM technologies, also known as 3D printing (3DP). 3DP
is a disruptive technology that is changing design paradigms, distribution good
chains, economical business models, paving the way to new, and even futuristic,
applications. Among the many available 3D printing processes, we concentrate
on direct deposition technologies, and in particular on FDM (Fused Deposition
Modeling), the latter being the most widespread, flexible and economic one.

In FDM printers the material is drawn through a nozzle, where it is heated
and then deposited on a building tray through a layer by layer process. In general,
the nozzle can move on the horizontal plane and a platform moves down on the
vertical direction after each new layer is deposited. The printing head movements,
the extrusion system and all the other printing parameters are controlled by an
electronic board, relying on a set of instructions known as g-code. The g-code is
produced by a devoted software commonly called slicer or slicing software, that
takes into account the virtual geometry, the characteristics of the printing material
and the features of the specific 3D printer.

The ingredients which may boost FDM technology are the ability to process
and combine large classes of materials, possibly locally changing infill patterns
and density, with the final goal of producing multi-material components, eventu-
ally also characterized by spatial gradient properties. Moreover, the completely
open-source nature of the FDM process, from the electronic, mechanics and soft-
ware point of view, allows the user to intervene directly on the machine code
controlling all the process parameters.

Besides being an open technology, FDM offers many advantages in terms of
available materials, not common to other 3DP technologies. Indeed, FDM cov-
ers a wide class of thermoplastic polymers, ranging from common Acrylonitrile
Butadiene Styrene (ABS) and Poly-lactic Acid (PLA) to biocompatible materials
like Polycaprolactone, to high-performance materials like PEEK (Polyether ether
ketone) and Ultem©, known for their recent “metal replacement” application, to
high-deformable materials as TPU (Thermoplastic Polyurethane). For example,
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with respect to the elastic modulus FDM materials cover about 4 orders of mag-
nitude, from 6 MPa of TPU to 3600 MPa of PEEK.

However, FDM process is still mainly focused to non-functional components,
due to the lack of knowledge on mechanical behavior, systematic design ap-
proaches and tools able to fully exploit the production methodology features for
the manufacturing of parts with known and predictable characteristics.

Chapter 5 investigates, through experimental campaigns, the influence of
the mesostructure and chemical composition on structural components made of
Acrylonitrile Butadiene Styrene (ABS) and obtained through FDM process.

Mesostructure is the inner geometrical structure, at a submillimeter scale,
resulting from the filament deposition: it may be essentially defined through
fiber thickness and width. We considered several configurations, differing in the
mesostructure and in the material chemical composition. Tensile tests have been
conducted varying fiber orientation with respect to the loading direction: meso-
structure influence is tested on the same material, while chemical composition
impact is tested using the same mesostructure. In fact, at the present day, there
are no approved specific standards dedicated to the evaluation of 3D-printed ob-
jects tensile mechanical properties. Because of their pronounced anisotropy, the
selection of the specimen shape is a fundamental issue.

For specimen manufacturing, first 3D models are created through a CAD soft-
ware. They are then exported as STereoLithography (STL) files and subsequently
loaded in the slicing software. In order to produce unidirectional specimens, g-
code manipulation is mandatory, since, currently, there are no slicing programs
able to directly produce them. We preliminarily used two different slicing soft-
ware to produce g-codes for the single layer and for the support interface, re-
spectively. Subsequently, we developed a custom made routine in a dedicated
software environment to assembly the final g-code with the desired features.

Result confirms that FDM ABS specimens posses anisotropic mechanical
properties since their response vary with filament extrusion direction. Accord-
ingly, Classical Lamination Theory (CLT) and Tsai-Hill yielding criterion were
found to be well capable of predicting in-plane stiffness and strength of FDM
specimens. We assessed that, varying chemical composition and filament di-
mensions, it is possible to tune fiber properties and fiber-to-fiber bonding and,
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consequently, the overall mechanical properties at macro-scale, in particular the
yielding strength and the strain at failure.

Relying on the good consistency between experimental and estimated data,
we strongly suggest the adoption of suitable standard test methods tailored on
anisotropic materials in order to experimentally evaluate mechanical properties
of FDM 3D-printed parts. The experimentally obtained data are useful to cali-
brate mechanical and yielding models to be used with numerical simulations as
finite element analyses. Such computational tools would be used along with op-
timization techniques to design structural-optimized functional parts.

As mentioned before, this thesis presents the work done during the Ph.D.
course and constitutes the compendium of the main results.
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ABSTRACT

Objectives: To investigate the impact of thoracic endovascular aortic repair
(TEVAR) on longitudinal strain and assess aortic tensile properties in order to
better understand complications associated with TEVAR.

Methods: Twenty fresh thoracic porcine aortas were harvested and connected
to a mock circulatory loop driven by a centrifugal flow pump at body tempera-
ture. Length measurements were conducted before and after TEVAR through
aortic marking, high-definition imaging and custom-developed software under
physiological pressure conditions (i.e. between 100 and 180 mmHg with 20
mmHg increments). Longitudinal strain was derived from length amplitude di-
vided by the baseline length at 100 mmHg . Three groups of stent-graft oversiz-
ing were created (0−9, 10−19 and 20−29%). Finally, elastic properties of the
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aortic samples were assessed in both longitudinal and circumferential directions
through uniaxial tensile testing. Longitudinal strain was compared before and af-
ter TEVAR, and stress-to-rupture was compared among specimens and locations.

Results: TEVAR induced a longitudinal strain decrease from 11.9 to 5.6%
(P < 0.001) in the stented segments and a longitudinal strain mismatch between
stented (5.6%) and non-stented segments (9.1%, P < 0.001). Stent-graft oversiz-
ing did not affect the magnitude of strain reduction (P = 0.77). Tensile testing
showed that peak stress-to-rupture was lower for longitudinal (1.4± 0.4 MPa)
than for circumferential fragments (2.3±0.4 MPa, P< 0.001). In addition, longi-
tudinal fragments were more prone to rupture proximally than distally (P= 0.01).

Conclusions: This experimental study showed that TEVAR acutely stiffens
the aorta in the longitudinal direction and thereby induces a strain mismatch,
while tensile testing confirmed that longitudinal aortic fragments are most prone
to rupture, particularly close to the arch. Such an acute strain mismatch of po-
tentially vulnerable tissue might play a role in TEVAR-related complications, in-
cluding retrograde dissection and aneurysm formation. The finding that TEVAR
stiffens the aorta longitudinally may also shed light on systemic complications
following TEVAR, such as hypertension and cardiac remodelling. These obser-
vations may imply the need for further improvement of stent-graft designs.

Introduction

The use of thoracic endovascular aortic repair (TEVAR) is increasing rapidly,
even in younger patients [1, 2]. However, this procedure is associated with seri-
ous complications such as retrograde dissection (with a mortality of about 40%),
aneurysm formation, stentgraft induced new entry tears and rupture [3–5]. These
complications might be related to different physical properties of the stentgrafts
when compared with blood vessels. Current stent-grafts are several orders of
magnitude stiffer than the native aorta [6, 7], most notably in the longitudinal
axis. Their impact on the cardiovascular system remains unclear. Locally, seg-
mental aortic stiffening seems to increase wall stress in segments adjacent to the
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stent-graft due to a compliance mismatch [3]. This has been associated with re-
duced wall strength and subsequent complications [3–5]. Stent-graft oversizing
reduces aortic wall strength even further [8].

In addition to a local impact, TEVAR might affect the cardiovascular sys-
tem on a systemic level. In this setting, aortic elasticity serves a critical function
in damping the highly pulsatile flow coming from the left ventricle [9], known
as the “Windkessel effect” [10]. Stiffening of the thoracic aorta diminishes this
effect with major implications for cardiovascular disease development as it in-
creases cardiac afterload and decreases coronary perfusion [11, 12]. It has been
reported that TEVAR stiffens the aorta acutely, resulting in hypertension and car-
diac remodelling in the early and late phase [2, 13]. This phenomenon may be re-
ferred to as cardiovascular remodelling and might determine long-term outcomes
of TEVAR.

Aortic strain is an established measure of aortic elasticity and is traditionally
reported as deformation in the circumferential direction during a cardiac cycle.
This seems to diminish after abdominal endovascular repair [14]. However, aortic
tissue is more prone to rupture in the longitudinal axis [15] and most intimal tears
are circumferentially orientated due to the increased longitudinal stress [16].

The aim of this study was, therefore, to assess the impact of TEVAR on longi-
tudinal strain in a controlled experimental setting, with also attention to the role
of stent-graft oversizing. For this purpose, we used an ex vivo porcine aortic
model connected to a mock circulatory loop driven by a centrifugal flow pump,
quantifying changes of longitudinal strain for increasing pressure, before and af-
ter TEVAR. In addition, we used uniaxial tensile testing to study stress-to-rupture
mechanical properties of the aortic specimens, in both circumferential and longi-
tudinal directions, to potentially identify vulnerable aortic segments.

Materials and methods

Preparation of aortas

Twenty fresh porcine aortas were harvested at a local slaughterhouse from young
healthy Goland pigs (commercial hybrid, 10−12 months, 160−180 kg). No pigs
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were sacrificed solely for this study. The thoracic aortas were transported on iced
0.9% saline solution and all experiments were conducted within 12 h from death.
The aortas were procured from the origin of the left subclavian artery (LSA) to
the origin of the coeliac trunk and all side branches were ligated. Subsequently,
the aortas were bathed in 0.9% saline of room temperature for 15 min.

Experimental setup

The prepared aortas were connected to a mock circulatory loop driven by a cen-
trifugal flow pump (Medtronic Bioconsole BIOMEDICUS 550, Minneapolis,
MN, USA), which allowed for controlled intraluminal pressurization. Water was
used that was constantly heated at body temperature using a liquid heater (Nova
Powerstat Protonic®, Boise, ID, USA) to preserve the biomechanical character-
istics of the nitinol stents [17]. A pressure sensor (Micro Switch Pressure Sensor
40PC Series Chart, Honeywell, Freeport, IL, USA) was coupled to a 1/2-inch
silicon tube just proximal to the connection with the aorta. The distal end of the
aorta was connected to a 3/8-3/8-inch tube, which could move against low re-
sistance in the longitudinal direction through a guiding half-pipe (Fig. 1). The
distal 3/8-inch silicon tube was fixed at a standard appointed location to ensure
similar resistance and prestretch for all aortas. A prestress of 100 mmHg was ap-
plied for all aortas prior to diameter and length measurements, which simulates
mean aortic blood pressure in pigs [18].

Measurements of aortic dimensions and longitudinal strain

Baseline diameters and lengths were measured manually, using an electronic cal-
liper and were repeated twice by the principal investigator and twice by a second
investigator, to allow for intra and interobserver variability analysis. Medtronic
Valiant stent-grafts (Medtronic Vascular, Santa Rosa, CA, USA) were used and
therefore aortic diameter was based on the distance from adventitia to adventitia,
as advised by the manufacturer. To capture longitudinal strain, black rubber dots
with a diameter of 5 mm were sutured to the superficial adventitia along the an-
terior side of the aorta, starting at the origin of the LSA followed by every 5 cm
distally (Levels L1−L8, Fig. 1). Levels L1 and L8 were excluded from further
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FIGURE 1: Illustration of the mock circulatory loop connected to a porcine aorta. (A)
The CFP propels the water through a soft silicon tube into the porcine aorta, with the
blue arrow illustrating the direction of flow. “Fixed” marks the locations where the tube
is fixed. “Pressure” shows the location of the pressure sensor. “Camera” illustrates the
location of the HD-camera. The “Output Reservoir” is the water reservoir that supplies
the CFP. (B) “Pre-TEVAR” shows the situation before TEVAR with the Levels L1–L8
marked accordingly. “Post-TEVAR” illustrates the situation after TEVAR with “Stent”
marking the stented segments and “Total Aorta” the total aortic length. The proximal
segment adjacent to the stent-graft is marked with “Prox”, while “Dist” represents the
distal adjacent segment. CFP: centrifugal flow pump; TEVAR: thoracic endovascular
aortic repair.
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analysis because they were partly covered by the tube connectors. The segment
between L2 and L7 was considered the total aortic length. A high-definition we-
bcam (Logitech HD Pro Webcam C920, Lausanne, Switzerland) was installed
and fixed above the aorta and snapshots were conducted at five different pressure
moments (i.e. 100, 120, 140, 160 and 180 mmHg). All measurements were con-
ducted in threefold and means were calculated for further analysis. Snapshots
were taken at a resolution of 1920 × 1080 pixels. These photos were elaborated
by a custom-made program developed with Matlab (The MathWorks©, Inc., Nat-
ick, MA, USA) that computed the distance between two consecutive dots through
a semiautomatic procedure. The program showed the user each image of the
dataset and allowed to select each dot and crop the image. The cropped area was
then converted from Red–Green–Blue format to black-and-white format using a
fixed threshold. A more precise detection of the centre was then performed using
an automatic algorithm, which computed the centre of mass of a black region on
a white background. All distances and mean values were exported into a .txt file
for analysis. Longitudinal aortic strain was then calculated as

Longitudinal strain =
L−L0

L0

where L is the final length at given pressure and L0 is the length at baseline (100
mmHg).

Stent-graft implantation

The size of the stent-graft was based on the diameter at the level 10 cm distal
to the LSA (Level L3, Fig. 1). To study the impact of circumferential stent-
graft oversizing, the aortas were divided into three groups of 0− 9% (n = 7),
10−19% (n = 7) and 20−29% (n = 6) of oversizing. Mean longitudinal strains
per oversizing group were compared before TEVAR to ensure homogeneity be-
tween groups. Medtronic valiant stent-grafts were loaded and deployed by a
custom-developed loading and deployment system, directly following the pre-
TEVAR measurements. Stent-grafts were implanted with sizes 22− 22− 150,
24−24−150 or 26−26−150 mm, according to the appointed oversizing rates.
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FIGURE 2: Specimen and results of uniaxial tensile testing. (A) Specimen location and
orientation. (B) Bone-shaped specimens. (C) Bar diagrams of aortic mean peak stress-to-
rupture as function of zone and orientation. (D) Top panel shows aortic specimen under
stress. Bottom panel shows rupture of the specimen. Circ: circumferential aortic wall
orientation; long: longitudinal aortic wall orientation.

The implanted stent-graft extended from the segments between L3 and L6 (Fig.
1). Proximal and distal landing zones were confirmed manually.

Tensile testing

Uniaxial tensile testing was conducted after the experiment to study elastic prop-
erties of the porcine aortas. The specimens were preserved in a refrigerator at∼ 7
°C prior to the tensile testing (time of delay1.5±0.8 days). Three zones of in-
terest were distinguished in the excised descending thoracic aorta, i.e. proximal,
central and distal (Fig. 2A). Both circumferential and longitudinal bone-shaped
fragments were cut with a standardized specimen cutter. Tensile tests were per-
formed with the MTS Insight Testing System 10 kN (MTS System Corporation,
Eden Prairie, MN, USA) equipped with a 250 N load-cell, and by the ME-46
Video Extensometer (Messphysik, Fürstenfeld, Austria). Peak values of both
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stress and strain were computed from stress–strain curves recorded during the
mechanical testing.

Statistical analysis

Statistical analysis was performed with SPSS statistical analysis software (SPSS
22, Inc., Chicago, IL, USA). Data are shown as frequencies, percentages, mean
± standard deviation, as appropriate. Values identified as outliers by Grubb test
(α = 0.05) were excluded from the analysis. Shapiro–Wilk test was conducted to
test the normality of data distribution. Statistical significance was evaluated with
two-tailed paired t-tests, Pearson product-moment correlation or one-way analy-
sis of variance. Repeatability of aortic diameter measurements was analyzed with
Bland and Altman’s difference against mean analysis. Statistical significance was
set at the level of P < 0.05.

Results

Pre- and post-TEVAR longitudinal strains are presented in Table 1. Time between
pre-TEVAR and post-TEVAR measurements was 0.6±0.2 h.

Prethoracic endovascular aortic repair longitudinal strain

The mean thoracic aortic length from the LSA to the coeliac trunk was 325.5±
29.1 mm and the mean aortic diameter at the level of the proximal landing zone
was 20.5±0.9 mm. More detailed aortic dimensions can be found in Supplemen-
tary Table 1. Time of delay between harvesting of the aorta and the initiation of
the experiment was 7.1±2.6 h and the water temperature was 37.2±0.2°C. Be-
fore TEVAR, we observed a significant positive linear correlation between pres-
sure and longitudinal strain (r = 0.91, P < 0.001). Maximum strains were 11.9%
in the prestented segments and 11.4% in the total aorta, observed at 180 mmHg
(Fig. 3).
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TABLE 1: Longitudinal strain as function of pressure per aortic segment

Aortic segment
Pressure
(mmHg)

Pre-TEVAR,
longitudinal
strain (%)

Post-TEVAR,
longitudinal
strain (%)

P-value

Total aorta
100 0.0 ± 0.0 0.0 ± 0.0 -
120 2.0 ± 0.9 1.4 ± 0.5 0.002
140 5.1 ± 1.8 3.3 ± 1.2 <0.001
160 8.5 ± 2.3 5.2 ± 1.9 <0.001
180 11.4 ± 3.0 7.0 ± 2.6 <0.001

Stented Segments
100 0.0 ± 0.0 0.0 ± 0.0 -
120 2.0 ± 0.9 0.9 ± 0.5 <0.001
140 5.3 ± 1.7 2.2 ± 1.2 <0.001
160 8.9 ± 2.3 3.8 ± 1.9 <0.001
180 11.9 ± 3.1 5.6 ± 2.7 <0.001

Proximal segment
180 9.1 ± 3.9 8.3 ± 3.4 0.02

Distal Segment
180 11.8 ± 3.4 10.2 ± 3.6 0.06

Continuous data are presented as the means ± standard deviation.
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FIGURE 3: Longitudinal strain as function of pressure. (A) Longitudinal strain of the
stented segments as function of pressure, pre- and post-TEVAR. (B) Longitudinal strain
of the total aorta as function of pressure, pre- and post-TEVAR. TEVAR: thoracic en-
dovascular aortic repair.
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FIGURE 4: Longitudinal strain per aortic segment, pre- and post-TEVAR. Mean peak
longitudinal strain at 180 mmHg per aortic segment. The location of the stent-graft is
marked accordingly. Dist: distal segment; Prox: proximal segment; TEVAR: thoracic
endovascular aortic repair.

Post-thoracic endovascular aortic repair longitudinal strain

After TEVAR, longitudinal strain between 100 and 180 mmHg decreased in both
the stented segments (11.9 vs 5.6%, P < 0.001) and the total aorta (11.4 vs 7.0%,
P < 0.001, Figs 3 and 4). Maximum longitudinal strain of the segment proximal
to the stent-graft decreased after TEVAR, while this did not change in the distal
segment (Fig. 4). After TEVAR, a mismatch in longitudinal strain was observed
between the stented (5.6%) and non-stented adjacent (i.e. proximal plus distal)
segments (9.1%, P < 0.001, Fig. 5). In addition, the positive linear correlation
between longitudinal strain and pressure was reduced after TEVAR at 120 mmHg
(r = 0.86, P< 0.001), and continued to be significant for all higher pressures (Fig.
3).

Oversizing and longitudinal strain

Before TEVAR, homogeneity of longitudinal strain was confirmed between the
three stent-graft oversizing groups in the total aorta (P = 0.60) and in the stented
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FIGURE 5: Longitudinal strain mismatch. Post-TEVAR, a mismatch in longitudinal aortic
strain is observed between the aortic segments adjacent to the stent-graft compared with
the stented segments. TEVAR: thoracic endovascular aortic repair.

segments (P = 0.55). Post-TEVAR, longitudinal strain did not differ significantly
between oversizing groups in both the total aorta (P = 0.77) and the stented seg-
ments (P = 0.57, Table 2).

Tensile testing

Following the strain experiments, the aortas were incised along the posterior wall
so that the stent-graft could be removed without damaging the aortic tissue of the
anterior side. Anterior aortic specimen was then used for uniaxial tensile test-
ing since these fragments were not interrupted by spinal side branches. Figure 2
demonstrates the results of the tensile testing. These data confirmed homogene-
ity of the aortic mechanical responses among all aortas, with longitudinal and
circumferential peak stress-to-rupture of 1.4±0.4 MPa (coefficient of variation =
31.0%) and 2.3±0.4 MPa (coefficient of variation = 16.2%), respectively. Peak
stress-to-rupture was significantly lower for the longitudinal than for the circum-
ferential fragments in all three zones (Fig. 2C). Additionally, we found lower
stress-to-rupture in proximal longitudinal fragments compared with distal lon-
gitudinal fragments (P = 0.01), while circumferential fragments showed equal
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TABLE 2: Longitudinal strain per oversizing group

Aortic segment
Oversizing
Group

Pre-TEVAR,
longitudinal
strain (%)

Post-TEVAR,
longitudinal
strain (%)

P-value

Total aorta
0-9% 12.3 ± 3.5 7.6 ± 3.3 0.002
10-19% 11.0 ± 2.7 6.7 ± 2.6 0.001
20-29% 10.7 ± 3.0 6.7 ± 1.9 0.001

Stented Segments
0-9% 12.8 ± 3.5 6.5 ± 3.5 <0.001
10-19% 11.9 ± 2.6 5.4 ± 2.6 <0.001
20-29% 10.9 ± 3.2 4.9 ± 1.8 0.001

Continuous data are presented as the means ± standard deviation.

stress-to-rupture in all three zones (P = 0.61).

Intra- and interobserver variability

The intraobserver repeatability coefficient (RC) for diameter measurements of
observer 1 was 2.45, and 2.01 mm for Observer 2. Differences of the mea-
surements were smaller than the RCs and linear regression analysis was non-
significant (P = 0.46 and P = 0.32, respectively), indicating good intraobserver
agreement. The interobserver RC was 1.35 mm. Differences of the measurements
between both observers were smaller than the RCs and linear regression analysis
was non-significant (P = 0.06), indicating acceptable interobserver agreement.

Discussion

This experimental study investigated the impact of TEVAR on longitudinal strain
through an ex vivo porcine model and assessed stress-to-rupture with uniaxial
tensile testing. The experiments were conducted in a controlled environment
using fresh porcine thoracic aortas connected to a mock circulatory loop, while
creating different groups of stent-graft oversizing.

We observed a significant decrease in longitudinal strain after TEVAR in the
stented segments (from 11.7 to 5.6%, P< 0.001). As a result, a longitudinal strain
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mismatch was observed between the stented and non-stented aortic segments.
Our observed longitudinal strain before TEVAR was 11.4% between 100 and 180
mmHg. This agrees with a recent study by Krüger et al. [19] who found length
changes of ∼ 10% using a similar set-up and with in vivo data of Bell et al. [20]
that showed longitudinal strain ranging from 7 to 9% in the proximal aorta of the
adult. However, these studies did not evaluate longitudinal strain after TEVAR.
To our knowledge, the impact of TEVAR on longitudinal strain has not yet been
reported.

Another main finding was that the thoracic porcine aortas were most prone
to rupture in the longitudinal axis (P < 0.001), in particular in the proximal zone
close to the arch (P = 0.01). This new finding may yield insight into the patho-
genesis of TEVAR-related complications, such as retrograde dissection that typi-
cally occurs at the proximal end of a stent-graft.

Our observations are clinically relevant as they suggest that TEVAR causes
acute segmental stiffening, which may increase wall stress in the adjacent seg-
ments [3]. Several authors proposed that such locally altered stress between
the stent-graft and the aortic wall may be responsible for severe TEVAR-related
complications such as retrograde dissection, stent-graft induced new entry-tear,
aneurysm formation, rupture, endoleaks and stent-graft fractures and infolding
[3–5, 21]. Our results showed a significant mismatch of longitudinal strain be-
tween the stented and non-stented aortic segments after TEVAR (Fig. 5). Such a
mismatch may lead to the following mechanisms:

(i) Repetitive pulsatile friction between the stent-graft and the aortic wall, at
both the proximal and distal end, which may cause traumatic lesions to the
aortic wall or the stent-graft [21].

(ii) Increased wall stress along aortic segments adjacent to the stent-graft, at
both the proximal and distal end, because of an increased impedance due
to the stiffened stented segments [3].

Furthermore, we found that the strain mismatch between the stented and non-
stented segments enlarged with rising pressure, potentially increasing the risk of
aortic dissection and aneurysmal dilatation. This finding might have implications
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for clinical practice as it stresses the importance of strict blood pressure control in
patients treated with TEVAR to minimize the strain mismatch. This supports the
suggestion of others that perioperative hypertensive episodes might increase the
risk of retrograde dissection after TEVAR [22], in particular in dissected aortas
due to a weakened aortic wall.

During each cardiac cycle, the heart pulls the proximal aorta downwards, forc-
ing it to stretch longitudinally [16, 20]. Stiffening of the descending thoracic aorta
after TEVAR seems to limit this stretch, causing an increase in in vivo longitudi-
nal strain in the segments proximal to the device (unpublished data). In vivo, the
thoraco-abdominal aorta is proximally fixed to the heart, the supra-aortic vessels
and the ligamentum arteriosum, and distally to the visceral arteries and the il-
iac bifurcation. Such a double-ended fixation forces the total thoraco-abdominal
aorta to extend similarly before and after TEVAR. In our experimental set-up,
the aortas were also double-ended fixed and prestretched; however, the distal end
was allowed some freedom to be able to extend. As a result, we observed a
shorter total aortic length after TEVAR when compared with before TEVAR (at
180 mmHg: 268.2 vs 280.3 mm, P < 0.001). This might explain why we did not
observe an increase of longitudinal strain in the adjacent segments in this study.
Further in vivo imaging studies are warranted to investigate changes in strain in
segments adjacent to stent-grafts.

Uniaxial tensile testing showed that peak stress-to-rupture was lower for the
longitudinal than for the circumferential fragments. These data support the study
of Khanafer et al. [15]. But surprisingly, we also observed that longitudinal aortic
tissue was more prone to rupture in the proximal zone than distally, while this
was not the case for circumferential tissue (Fig. 2). This new finding implies that
thoracic aortic tissue is more vulnerable for an acute increase of longitudinal wall
stress than circumferential wall stress, in particular in proximal segments. This
observation may clarify why most intimal tears are circumferentially orientated,
as this is most likely the result of longitudinal intima failure [15, 16], and might
indicate vulnerability of the proximal descending aorta.

Stent-graft oversizing did not determine the magnitude of longitudinal strain
reduction, in our set-up. Nevertheless, we did observe a trend of increased lon-
gitudinal stiffening and severe oversizing (Table 2). Such aortic stiffening after
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severe oversizing might support the observation of Sincos et al. [8] who showed
that device oversizing increased the risk of rupture. However, further studies are
warranted to investigate the association between oversizing, longitudinal stiffen-
ing and rupture.

Stent-graft induced aortic stiffening as demonstrated by our experiments, is
likely to have negative systemic effects since aortic stiffness is an established
predictor of cardiovascular mortality [9, 11]. Acute aortic stiffening is also as-
sociated with important histological vascular wall changes, such as increased
collagen-toelastin ratio, with elevated risk of cardiovascular disease [3, 10]. There-
fore, stent-graft induced stiffening may actually be considered as extremely accel-
erated ageing of the cardiovascular system, leading to acute aortic stiffening and
increased cardiac afterload. These findings suggest that current stiff stent-grafts
might be more harmful on the long-term than currently realized. In particular
extensive stent-graft coverage might, hypothetically, have a profound impact. It
may therefore be advisable to minimize the length of stent-graft coverage, if pos-
sible, to decrease adverse cardiovascular effects. However, this remains to be
elucidated.

To improve long-term outcomes of aortic disease, we suggest that future stud-
ies should focus on the pathophysiology of TEVAR associated complications as
well as on development of more elastic stent-grafts. Large in vivo studies us-
ing dynamic imaging, such as electrocardiogram-gated computed tomography
or magnetic resonance imaging, are required to clarify the association between
TEVAR and cardiovascular remodelling. However, such in vivo imaging studies
on the highly pulsatile thoracic aorta are associated with out-of-plane motions
and cardiac/respiratory artefacts [20, 23]. Therefore, we aimed to first assess
the impact of TEVAR on longitudinal strain in a controlled experimental set-up,
avoiding artefacts and allowing for aortic tissue marking to overcome out-of-
plane motions.

It is reasonable to assume that more elastic stent-grafts might reduce aortic
stiffening, adverse cardiovascular remodelling and strain mismatches, with po-
tential favorable long-term outcomes. Currently, stent-grafts with longitudinal
connection bars are designed to be stiff in the longitudinal axis to offer better fix-
ation through the spring-back effect. However, it is exactly this springback force
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that might induce bird-beaking and the formation of intimal tears [4, 5]. Longi-
tudinally, more elastic stent-graft designs with less spring-back force, dedicated
to aortic dissection, should be considered. A first modification of the Medtronic
stent-grafts was the elimination of the longitudinal connecting bar from the earlier
design (Medtronic Talent), which was thought to be responsible for longitudinal
stiffness and the spring-back effect. However, on the basis of this study, further
longitudinal elasticity might be advised for future stent-graft designs to better
fit the compliant aorta, with the aim of improving clinical outcomes in patients
managed with TEVAR.

Study limitations

We acknowledge that the use of porcine aortas is an important limitation of this
study. Nonetheless, porcine aortas are regularly used in cardiovascular research
[19, 24], since their mechanical properties are comparable with those of young
humans, and because they are much more widely available than human cadav-
eric samples. But, a porcine aorta is certainly more elastic than a diseased, often
atherosclerotic, adult human aorta. However, we were not able to find data on
longitudinal strain in diseased, degenerative, calcified human aortas. Moreover,
we have so far not found a reproducible technique to modify the mechanical
properties of aortic specimens that addresses the in vivo elastic modulus of aged
diseased human aortas properly. Therefore, care should be taken when translating
our results to the clinical practice. Further research focused on in vivo imaging
studies of diseased adult aortas is necessary to make the step from the laboratory
to clinic. Second, we used a non-pulsatile mock circulatory system, which al-
lowed for a highly controllable experimental setting for our study purpose. How-
ever, we acknowledge that with this non-pulsatile set-up, we neglected inertial
effects of pulse waves, which might have led to underestimation of in vivo strain.
Nevertheless, experimental non-pulsatile mock circulatory models have widely
shown to provide a valid strategy for the initial investigation of novel concepts
regarding aortic elasticity [25]. Moreover, our observed strain rates were compa-
rable with pulsatile ex vivo experimental data and in vivo patient data [19, 20].
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Another drawback in this experimental study was the use of non - thrombotic
blood analogue. Circulating a thrombotic agent, however, rapidly leads to clotting
since there are no epithelial cells to inhibit this. Therefore, just like other ex vivo
haemodynamic studies [19, 24], we used water, which sufficed for our main goal;
imposing a stable intraluminal pressure. In addition, nonthrombotic fluid does
not have relevant influence on the highspeed condition of the aorta [26].

It must also be noted that our findings only apply for Medtronic Valiant stent-
grafts, which have interrupted stents. Other stentgraft designs, such as those with
continuous stents, might show different rates of longitudinal strain. However, this
was out of scope for this study, which primarily focused on a first quantification
of the impact of TEVAR on longitudinal strain. Lastly, our data on longitudinal
strain in the segments adjacent to the stent-graft may not totally represent the
in vivo condition. After all, the in vivo aortas are fixed by multiple elastic side
branches, which most likely have a different impact on the adjacent segments than
the fixations in our ex vivo set-up. Future in vivo studies are therefore warranted
to further elucidate dynamic changes of the total thoracic aorta following TEVAR.

Conclusion

Our experimental study found that TEVAR acutely stiffened the thoracic aorta
in the longitudinal direction. This resulted in a longitudinal strain mismatch be-
tween stented and non-stented segments. Uniaxial tensile testing demonstrated
that thoracic aortic tissue is more prone to rupture in the longitudinal than the
circumferential direction, in particular close to the arch. Such an acute strain mis-
match of potentially vulnerable tissue might play a role in TEVAR-related com-
plications, including retrograde dissection and aneurysm formation. The finding
that TEVAR stiffens the aorta longitudinally may shed light on systemic compli-
cations following TEVAR, such as hypertension and cardiac remodelling. This
initial study on the impact of TEVAR on longitudinal strain may serve as a base
for future investigation on the interaction between aortic stent-grafts and cardio-
vascular biomechanics and might contribute to future stent-graft design.
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Multi-objective optimization of
Nitinol stent design*
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ABSTRACT

Objectives: Nitinol stents continuously experience loadings due to pulsatile
pressure, thus a given stent design should possess an adequate fatigue strength
and, at the same time, it should guarantee a sufficient vessel scaffolding. The
present study proposes an optimization framework aiming at increasing the fa-
tigue life reducing the maximum strut strain along the structure through a local
modification of the strut profile.

Methods: The adopted computational framework relies on nonlinear struc-
tural finite element analysis combined with a Multi Objective Genetic Algorithm,
based on Kriging response surfaces. In particular, such an approach is used to
investigate the design optimization of planar stent cell, introducing the concept
of the tapered strut.

Results: The results of the strut profile optimization confirm the key role of
a tapered strut design to enhance the stent fatigue strength, suggesting that it is
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possible to achieve a marked improvement of both the fatigue safety factor and
the scaffolding capability simultaneously. The present study underlines the value
of advanced engineering tools to optimize the design of medical devices.

Conclusions: The study results confirm that the use of tapered strut profile
should be a primary key factor to reduce and uniform the strain field along the
strut and thus to enhance the fatigue life of the whole stent. The obtained Pareto
set allows the designer for the selection of optimized solution, according to the
specific design requirements. As illustrative example we compared a commercial
reference design with the optimized counterpart: increasing the strut length and
the strut width at the strut extremities, it is possible to achieve a marked improve-
ment of the fatigue safety factor, i.e., about 2.4 times, compared to the typical
design (strut with constant section), without any loss of scaffolding capabilities.

Introduction

Nowadays, self-expanding nitinol stents are widely used as part of percutaneous
minimally-invasive techniques aimed at treating occluded vessels. Unfortunately,
several mechanical failures of such a class of devices have been observed [1]; this
drawback often results in loss of scaffolding capabilities of the stent, thrombus
formation, and restenosis [2, 3]. In particular, partial or total stent fractures have
been found in aortic [4], renal [5], and pulmonary [6] implants, as well as in
lower limb arteries, i.e., superficial femoral artery (SFA) and popliteal artery [7–
10]. Therefore, the long-term structural integrity of a given stent model should
be one of the principal design parameter to be taken into account.

Given such considerations, it is necessary to optimize stent design performing
a thorough engineering analysis, able to assess the relation between the stent
geometry and its structural performance. Such an optimization should increase
the fatigue strength without penalizing other biomechanical design requirements,
such as the vessel scaffolding.

Despite several studies already addressed the analysis of Nitinol stents [11–
13] and the literature provides some example of stent design optimization anal-
ysis [14–19], to the best of our knowledge, only two studies deal with fatigue
strength enhancement of Nitinol stents [20, 21]. In [20] a planar lattice for the



37

realization of a stent with smooth cell shapes is proposed in order to reduce peaks
of strain induced by abrupt changes in the stent geometry. The study proposes
a single-objective optimization process to minimize the curvature of the elemen-
tary unit defining the stent design, i.e., stent cell. In [21] a single-objective op-
timization approach, based on Kriging response surfaces, is presented; such an
approach has been used to improve the fatigue strength of the stent by minimizing
the strut volume without decreasing the stiffness of the stent. The algorithm con-
siders the strut geometry (width, length, and thickness) as the design variables to
be optimized. Both studies combine single-objective optimization methods with
structural Finite Element Analysis (FEA).

Moreover, a further literature analysis suggests that: i) it is possible to en-
hance fatigue strength acting on the stent cell design but such an improvement
has its counterpart in a loss of stiffness [22, 23]; ii) a tapered strut profile en-
hances the stent fatigue strength, being thus an ideal starting point for the stent
design optimization [24, 25].

Relying on the previous observations, in the present study we propose a multi-

objective optimization procedure acting on both stent cell geometry and strut
shape to enhance the fatigue strength of a Nitinol stent and its scaffolding capabil-
ities. In particular, the optimization framework accounts for non-linear structural
FEA combined with a Multi Objective Genetic Algorithm (MOGA) [26] based
on Kriging response surfaces.

Materials and methods

Fatigue strength analysis

For the purposes of our study we adopt a strain-based approach, which is the most
suitable method to deal with fatigue of Nitinol stent, as suggested by Pelton and
Robertson [27]. In particular, in case of time-varying cyclic loads, it is possible to
define the mean and the alternating value of the first principal strain, respectively
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FIGURE 6: Constant fatigue life diagram [23, 28]: shaded area represents specimens
conditions that survived 107 cycles while the dashed line represents the value of εa, i.e.,
0.4%, that we adopt in the present paper as conservative threshold.

εm and εa, as:

εm =
εmax + εmin

2
(1a)

εa =
|εmax− εmin|

2
(1b)

where εmax and εmin are respectively the maximum and the minimum principal
strain values in a loading cycle.

As demonstrated by Pelton et al. [23, 28], who tested to failure planar diamond-
shape specimens under various combinations of εm and εa, the fatigue strength
mainly depends on the alternating value of the first principal strain εa. As shown
by the diagram depicted in fig. 6, it is possible to define a conservative threshold
of 0.4% for the alternating value of the first principal strain εa for any value of
mean strain εm. It is worth noting that the Damage Tolerance Analysis (DTA)
is the alternative method commonly used for the study of fatigue. Such an ap-
proach essentially relies on fracture mechanics and Paris-Erdogan law [29]. As
concerns Nitinol stents, very few studies have been conducted in order to evaluate
the fracture strength and other parameters typical of DTA. One reason is that it
holds for values of the flaw size larger than a threshold value below which there
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FIGURE 7: Planar projection of a typical "v-shaped" stent obtained by a virtual unrolling
of the grid: the x axis represents the axial direction, the y axis represents the circumfer-
ential direction while the z axis, orthogonal to the xy plane, is the radial direction. Global
dimensions of a the stent and the elements of the cell are shown.

is no propagation of the fracture: as reported in [30] this critical flaw size is about
15− 50 µm. Medical devices such as stents have geometric dimensions that are
comparable with this threshold value, making DTA useless: it is therefore more
useful to focus on prevention rather than on control of the growth of flaws.

For these reasons it can be assumed that the DTA is more appropriate when
the typical dimensions of the device are large enough to support the flaw growth
or when, for example, the production-process is not sufficiently established to
ensure the absence of flaws of critical dimensions [27].

Stent geometry

In order to define the link between the overall size of a typical "v-shaped" stent
and the size of the single cell, it is appropriate to refer to the planar projection of
the stent obtained from a virtual unrolling, as illustrated in fig. 7. In this way,
the whole stent design can be thought as a repetition of N cells along the circum-
ference (y axis) and M cells in the axial direction (x axis). For the optimization
procedure, we adopt such a simplified planar model. Accordingly, it is possible
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to define the following geometrical relation:

lc =
πD
N

(2)

where D is the outer diameter of the stent and lc is the length of the unrolled cell
in the circumferential direction. Similarly, we have:

lz =
L
M

(3)

where L and lz are the lengths of the whole stent and of the cell in the axial
direction, respectively.

A change, ∆D, of the stent diameter D leads to a variation of the cell height,
∆lc, (see figs. 7 and 8) that, according to eq. (2), reads:

∆lc =
π∆D

N
= 2δ (4)

being δ the displacement, along y-direction, experienced by the single strut and
due to a given variation of the stent diameter ∆D. Each cell is made up of three
basic elements: strut, link, and crown. Two struts and the crown that connects
them constitute the v-shape portion of the planar stent cell [31] as shown in fig.
7. Fatigue strength and scaffolding do not depend only on the cell geometry but
also on strut dimensions (width w, length l, and thickness t) and on its shape
(constant cross-sectional profile versus variable one). Thus, we restrict our atten-
tion in relating fatigue strength and scaffolding capabilities to such geometrical
quantities: lower will be the alternating value of the first principal strain, higher
would be the fatigue strength, while higher will be in-plane cell stiffness (ratio
F/δ as shown in fig. 8), higher would be stent scaffolding capability.

To this aim, let us consider a v-shape portion of the planar stent cell as shown
in fig. 8, subjected to a total displacement δtot = 2δ in y-direction resulting from
the application of a load F . We consider the strut as a cantilever beam having
rectangular cross-section: from simple beam mechanics, under the assumptions
of small strain approximation and linear elastic constitutive behavior [22, 23],
the maximum elongation in the strut is experienced at the outer curvature. The
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FIGURE 8: Stent cell "v-shape" portion with dimensions and applied loads. Axes in x and
y directions are parallel to those of fig. 7.

corresponding first principal strain is:

ε = Z
wδtot

l2 (5)

having the value of Z = 3/2 for rectangular cross-section. Eq. (5) shows that the
principal strain ε is proportional to the strut width w and inversely proportional
to the strut length l.

We also consider the opening radial force that a Nitinol stent applies to the
vessel wall after the deployment, namely the Chronic Outward Force (COF)
which, in case of "v-shaped" stents, can be evaluated considering the geome-
try and the mechanics of the single "v-shape" portion [22, 23]. Stent and vessel
interact with radial forces, acting along the z-axis in fig 7, through the external
surface of the stent and the internal wall of the vessel. However, forces applied
on the vessel wall by a Nitinol stent originates from its circumferential stiffness
[22, 23] and, in the same way, vessel recoil is contrasted by stent internal circum-
ferential forces (y-axis in fig 7). By analogy, pressure acting on a pipe tend to
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FIGURE 9: Force - diameter curve for Nitinol stent design R. The force is referred to the
single cell. Dashed line: loading path A-B, continuous line: unloading path B-A, dotted
line: reloading path C-D

change its diameter: such changes are opposed by the circumferential stiffness
of the pipe. According to such considerations, in the present work, we evaluated
COF as the force (F in fig 8), in the circumferential direction, resulting from a
given "v-shape" displacement δ .

A typical Nitinol stent force (per unit cell)-diameter curve is reported in fig.
9, illustrating the concept of biased stiffness. The stent is crimped at diameter of
3 mm into the delivery system following the loading curve (path A-B). After the
release inside the vessel, the stent expands following the unloading path of the
curve (path B-A). When the stent reaches the vessel diameter, i.e. 8.3mm (point
C), it continues to push outward against the vessel wall with the equilibrium force
COF equal to 0.3N. On the other hand, vessel recoil is resisted through the force
dictated by the reloading curve (path C-D) which is stiffer than the unloading
path: the force generated by the stent to resist radial compression (point D) is the
Radial Resistive Force (RRF). If the stent is unloaded, it returns to the unloading
path, passing through the point C, but with a hysteresis cycle (not shown in fig-
ure). From the analysis of fig. 9 we can conclude that RRF increases rapidly with
diameter changes, while COF is nearly constant at 0.3N in the neighborhood of
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point C. Indeed, COF varies from 0.28N at a diameter of 8.7mm to 0.31N at a
diameter of 7.9mm showing a variation less than∓5% in this range of diameters.
COF is proportional to the cell circumferential stiffness [23] as described by the
following equation:

COF ∝
tw3

l3 (6)

Eq. (6) shows that COF is proportional to w3 and inversely proportional to the
strut length l. Ideally, we would like to increase COF reducing, at the same
time, the maximum principal strain: thus, the considered problem involve two
objectives that should be simultaneously optimized. Accordingly, we focus our
attention to the class of multi-objective optimization problem.

Remark The considerations reported in this section are valid only for qualita-
tively showing the influence of the considered geometrical quantities (t,w, l) on
fatigue strength and stiffness of the cell. Indeed, eqs. (5) and (6) are valid only
under the assumption of linear elastic mechanical behavior and small strains ap-
proximation. Otherwise, the quantity Z in eq. (5) becomes a function of material
and geometry non-linearities. Similar considerations are valid for eq. (6).

Multi-objective Optimization

In classical optimization problems only one objective function is considered.
However, real problems often involve several objectives that should be simul-
taneously optimized. We consider, without loss of generality, a multi-objective
minimization problem whose formulation is:min{ f1(x), f2(x), ... , fk(x)}

s.t. x ∈ Σ
(7)

where components fi : Σ−→R, i= 1,2, . . . ,k are the objective functions and Σ⊂
Rn is the feasible design domain. Furthermore, we define the objective space Ω⊂
Rk as the image of Σ, under the mapping function f = [ f1(x), f2(x), . . . , fk(x)];
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the elements ω ∈ Ω are the objective vectors. A design vector x̂ and the corre-
sponding solution ω̂ = f(x̂) of problem (7) are defined trivial if:

ω̂ j = f j(x̂) = min
x∈Σ

{
f j(x)

}
, ∀ j = 1,2, . . . ,k (8)

according to definition (8), the design vector x̂ is defined trivial if it minimizes
simultaneously all objective functions f j, j = 1,2, . . . ,k. Problem (7) is defined
nontrivial if does not exist a trivial solution and, in this case, the objective func-
tions are said to be conflicting. When problem (7) is nontrivial, there exists a
(possibly infinite) number of optimal solutions that can be identified introducing
the definition of dominance.

A design vector x̂1 dominates another design vector x̂2 if both the following
conditions are true:

fi(x̂1) ≤ fi(x̂2), ∀ i = 1,2, . . . ,k (9a)

∃ j such that f j(x̂1) < f j(x̂2) (9b)

eq. (9a) states that the design vector x̂1 is no worse than x̂2 for all objectives
and eq. (9b) states that design vector x̂1 is strictly better than x̂2 in at least one
objective.

Relying on the concept of dominance, the Pareto set is defined as the set
of non-dominated solutions of problem (7). From a mathematical point of view,
every design in the Pareto set is an equally optimal solution of the multi-objective
optimization problem. We conclude noting that we would like to increase COF
reducing, at the same time, the maximum principal strain, but the analysis of
eq. (5) and eq. (6) reveals that such objectives are conflicting. Accordingly, we
search for optimal solutions within the Pareto set. The selection of one design
from the Pareto optimal set can be done selecting the trade-off point, i.e. the
Pareto optimal point that is the most appropriated to the design context [32].

Alternative design

In this section we introduce an alternative design, characterized by the use of a
tapered strut, in order to reduce the maximum value of the first principal strain
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FIGURE 10: Cantilever beam with symmetric parabolic profile.

and preserving COF, at the same time. Although it has been observed that the
use of tapered profile strut may improve fatigue strength of Nitinol stent [25] and
such an idea is even covered by patent copyright [24], we note that in literature,
to the best of our knowledge, there are not i) any specific information about the
optimal geometry with respect to the fatigue strength and COF and ii) available
experimental data concerning this type of design.

As an illustrative example we consider the cantilever parabolic-profile, as
shown in fig. (10), whose width w(x) is function of the abscissa x, as described
by the following relation:

w(x) = w1

[√
1− x

l
H
(

l
2
− x
)
+

√
x
l

H
(

x− l
2

)]
(10)

where w1 is the height of the tips, l the beam length and H(x) is the Heaviside
unit step function defined as:

H(z) =

1 if z > 0

0 if z≤ 0
(11)

The selected parabolic-profile has been chosen to obtain a constant value of
the first principal strain (and stress) along the first half of the beam, i.e. for
0 < x < l/2. Relation (10) shows that w1/w2 =

√
2, where w2 = w(l/2) is the

width at the center of the beam.
In order to capture the impact of the design on the strut principal strain, we

compare its maximum value for the tapered and for the uniform profiles. The
comparison is provided assuming the same length l and stiffness k = F/δ for
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both solutions, namely kc for uniform profile and kp for the tapered one, being F

and δ the force and the displacement at the free end, respectively.
The analysis is performed relying on the methodology proposed in [33]. Most

recent works [34, 35] highlight that such an approach must be carefully consid-
ered because tapered beams could show a very different mechanical behavior with
respect to prismatic ones. However, given the qualitative nature of the present ex-
ample and considering that we are examining beam exhibiting slow cross-section
variations (

∣∣d w
d x

∣∣ < 0.1 ∀x ∈ [0, l]), the adopted approach may be considered
sufficiently accurate. Summing up, for the constant-section beam of width w, the
stiffness is:

kc =
tEw3

4l3 (12)

while, for the parabolic profile, the beam stiffness is:

kp =
tEw3

1
8l3 (13)

where t and E are the thickness and the Young modulus of the beam, respectively.
The same stiffness for both designs can be obtained imposing the equality of eq.
(13) and eq. (12), yielding w1 =

3
√

2w' 1.26w.
The expression of the principal strain εc(x) for the uniform profile reads:

εc(x) =
3wδ

2l3 (l− x) (14)

while, for the parabolic one, we obtain the following relation:

εp(x) =


3wδ

2l2
1
3
√

4
if 0≤ x≤ l

2

3wδ

2l2
1
3
√

4

(
l
x
−1
)

if
l
2
< x≤ l

(15)

The expressions of the normalized principal strain along the non-dimensional
coordinate x/l are shown in fig. 11. Both solutions have their maximum for
x = 0 and their ratio is:

εp(0)
εc(0)

=
1
3
√

4
' 0.63 (16)
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FIGURE 11: Graph of the deformation along the x axis normalized with respect to the
maximum that occurs in the constant-section beam εc(0).

Eq. (16) shows that, keeping the same stiffness, length l, and thickness t, the
considered parabolic-profile beam (10) has a maximum value of strain which is
substantially lower than the one experienced by the constant-section beam. Ad-
ditionally, fig. 11 shows that, in case of constant section, the principal strain εc

varies linearly along the beam axis while the parabolic profile (10) exhibits a con-
stant distribution of the first principal strain along the first half of the beam and
then ramps down to zero with a hyperbolic law. Clearly, when considering pro-
files different to (10), strain distribution along the beam x−axis will be different
but, from a qualitative point of view, well-designed tapered profiles contribute
to uniform strain field and exhibit lower values of the maximum first principal
strain, compared to prismatic ones. Consequently, we conclude that acting on
geometrical quantities such as l, w1, w2, it is possible to define enhanced geome-
tries that may provide long-term fatigue strength when considered in a structural
optimization context.
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Remark Parabolic profile (10) only depends on two independent parameters:
we choose the width w and the length l of the beam. Accordingly, the corre-
sponding beam stiffness (13) does not depend on w2. The ratio w1/w2 can be
varied only changing the functional relationship (10).

Finite element model

The considerations reported in previous sections are used to generate a virtual
model of the stent-cell to be used in the structural FEA. Numerical simulations are
performed using the commercial software Ansys. The optimization of the stent
cell is obtained in terms of control variables corresponding to the geometrical
features of the tapered profile, collected in the vector x defined as (see fig. 12):

x = [w1, l,a,b,c]T (17)

where l is the length of the strut, w1 the width at the ends of the strut, and a, b

and c dimensionless variables defined as:

a =
w2

w1
(18a)

b =
r

w1
(18b)

c =
wk

w1
(18c)

being w2 the width at the midpoint of the strut, r the crown outer radius and wk

the width of the link. Nitinol stents are usually laser-cut from a standard tube
using a crimped design and then expanded and heat-treated to reach the final
diameter. In crimped design, the thickness of the strut is usually constant for the
convenience of the laser-cutting process and the saving of expensive materials.
If the thickness is changed, the diameter of the compact design has to be also
changed, thus the original tube will not be compatible. For the mentioned reason,
during the optimization process, the thickness t is kept fixed, i.e. t = 200 µm.

The overall cell dimensions lc and lz are assumed constant during the opti-
mization procedure because they depend on the number of cells in the circumfer-
ential and the longitudinal directions, namely N and M, as defined by eqs. (2) and
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FIGURE 12: Parametric model of the stent-cell.

(3) respectively. Indeed, variations of these dimensions may result in an excessive
variation of the cell surface that is an important feature for the stent performance.

Cell geometry is also defined by the angle φ and the length of the link lk (see
fig. 12) that are related to the chosen values of lc and lz and to the input variables
(eq. (17)) as:

lc = 2l cosφ + 2(2b−1)w1 sinφ (19a)

lz = 2lk + 2l sinφ + 4
[

bw1−w1

(
b− 1

2

)
cosφ

]
(19b)

that resolved with respect to φ and lk yield:

φ = arctan
[

l (lcw1 (2b−1)+A)
l2lc +(1−2b)w1A

]
(20a)

lk =
lz
2
− l sinφ −2

[
bw1−w1

(
b− 1

2

)
cosφ

]
(20b)

where A = l
(

4l2− l2
c + 4 (1−2b)2 w2

1

)1/2
. From eqs. (20a) and (20b), it can be

observed that the parameters a and c do not affect the overall geometry of the cell,
but they only have a local effect, in particular on widths w2 and wk, respectively.
The strut profile is represented by a spline curve.
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FIGURE 13: Curve σ − ε for an ideal super-elastic material.

Nitinol super-elastic behavior is simulated by the Shape Memory Alloy (SMA)
model available in Ansys [36]; the SMA characteristics have been assumed coin-
cident with those reported in [37] and shown in fig. 13. More in detail, σAS

s

and σAS
f are the values of stress at the start and at the end of the Austenite-

Martensite (AM) transformation, σSA
s and σSA

f are the initial and final stress in
the Martensite-Austenite (MA) transformation, Ea and Em are the moduli of elas-
ticity of austenite and martensite, ν is the Poisson’s ratio and εL is the maximum
equivalent strain at the end of the AM transformation. The parameter α takes into
account the different behavior in tension and compression and it is defined by the
following equation:

α =

(
σAS

s
)

c−
(
σAS

s
)

t
(σAS

s )c +(σAS
s )t

(21)

where
(
σAS

s
)

c and
(
σAS

s
)

t are respectively the compressive and tensile stress at
the start of the AM transformation.

The cell model is discretized with the 8-node brick element Solid185 avail-
able in Ansys element library, with full integration. A convergence analysis was
performed to ensure a suitable mesh refinement. The quantity selected during
the convergence analysis was the maximum value of the first principal strain on
the whole strut, after the crimping inside the delivery system (end of step 1. ).
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(A) (B)

FIGURE 14: Finite element model. a) Planes of symmetry α ,β and γ for the unit cell. b)
FE-model with boundary conditions and some detail of the mesh.

The analysis was performed decreasing the average element size in step of 1 µm

in the range 20 µm− 10 µm and using several geometries of the strut. The best
trade-off between solution accuracy and efficiency was obtained using an element
size of 12 µm. The adopted mesh involves a number of elements which varies,
approximately, between 30000 and 40000 according to the considered design.

In fig. 14a are shown the whole cell and its geometrical planes of symmetry
α ,β and γ . We simulated only the strut imposing symmetry boundary conditions
on the surfaces resulting from the intersection of the cell with such planes. In
particular (see fig. 14b), on the surface F parallel to the xy plane, displacements
δ along z, due to the changes in diameter D, are imposed. On the surface A⊂ β

parallel to the xy plane, displacements in the z direction are prevented, on the
surface B ⊂ γ parallel to the xz plane, displacements in the y direction are pre-
vented, while on the surface C ⊂ α parallel to the yz plane, displacements in the
x direction are prevented.

The stent under investigation is characterized by a diameter D = 10.5mm

and a length L = 42mm; then, considering a number of cells equal to N = 14 and
M = 7 in the circumferential and axial directions respectively, by the relations (2)
and (3) we obtain the circumferential length lc and the axial length lz of the cell
as lc = 2.4mm and lz = 7mm. The considered loading history (fig. 15) involves
four distinct steps:
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FIGURE 15: Displacement history imposed on strut free end. Step 1: stent crimping, step
2: stent deployment, step 3 and step 4: stent contraction and expansion, respectively, due
to blood pressure variation.

Step 1. Stent crimping: the stent diameter goes from diameter D0 = 10.5mm to
diameter D1 = 3mm. It follows (eq. (4)) that the displacement in the z

direction of the surface F (fig. 14b) reads δ1 = 841 µm.

Step 2. Stent deployment into the vessel (femoral artery): the stent diameter goes
from diameter D1 = 3mm to diameter D2 = Ds = 9.6mm which coincides
with the diameter of the stent at the end of the systolic phase [23]. The
resulting displacement, in agreement with the eq. (4), is equal to δ2 =

101 µm.

Step 3. Contraction of the stent due to the diastolic blood pressure: the stent di-
ameter goes from D2 = 9.6mm to diameter D3 = Dd = 9.3mm coincident
with the diameter at the end of the diastolic phase; the displacement at the
end of this step is equal to δ3 = 135 µm.

Step 4. Expansion of the stent: return to systolic diameter D4 = Ds = 9.6mm, cor-
responding to the cycle end.

In order to evaluate the change in diameter ∆D = Ds−Dd in step 3 and 4,
resulting from a pressure variation ∆p, we set the arterial compliance as [38]:

C = 100
Ds−Dd

Dd
= 3.26% (22)
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corresponding to a variation in the blood pressure ∆p = 100mmHg; similar com-
pliance values are obtained in [39]. According to [38], the corresponding cross
sectional arterial stiffness KA, i.e. the inverse of the compliance per unit of length
of the vessel is:

KA =
d p
dA

=

(
1
l

dV
d p

)−1

= 12.1
mmHg
mm2 (23)

where A, l and V are the cross sectional area, the length and the volume of the
vessel, respectively.

The quantities of interest are the alternating maximum value of the first prin-
cipal strain εa and the chronic outward force COF. In order to evaluate them ,
we coded an Ansys Parametric Design Language (APDL) script. More in detail,
at the end of step 3 and 4 for each element of the model the values of the first
principal strain are evaluated, and then the mean values εm and the alternating
value εa are calculated: the maximum value of εa is stored for each design point
x. Similarly, a quantity proportional to COF, represented by the force acting on
the surface F (indicated in fig. 14b) at the end of step 2 and necessary to keep the
displacement δ2, is computed and stored.

Remark As observed in section I, COF is the opening force that the Nitinol
stent applies to the vessel wall after the deployment. It can be indifferently eval-
uated at the end of step 2 or step 4, but not at the end of step 3, because of the
biased stiffness of Nitinol stents.

Kriging response surfaces

For completeness, a brief description of Kriging Surfaces (KS) [40–42] is given.
KS predict the response z(x) of a function f (x) at unobserved design points
x ∈ Σ ⊂ Rn relying on the known values f (x̃i) at all the sampled points x̃i,
i = 1,2, . . . ,M.

We define f̃ as the vector of dimension M, that contains the values of the
function f (x) at each sampled point, namely f̃ = [ f (x̃1), f (x̃2), . . . , f (x̃M)]T . The
general expression of KS is:

z(x) = d(x)+ r(x) (24)
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where d(x) is a polynomial function of x, and r(x) is the realization of a normally
distributed Gaussian random process with zero mean, variance σ2

r and non-zero
covariance. The term d(x) in eq. (24) is usually termed as "trend" as it glob-
ally approximates the unknown function z(x) over the feasible design space Σ,
while the term r(x) allows for local deviations, enabling KS to interpolate the M

sampled points. The term d(x) is defined as:

d(x) = qT (x)v (25)

where q(x) = [q1(x),q2(x), . . . ,qm(x)]T is the polynomial basis vector, which
dimension m depends on the degree of d(x) -2 in the present work- and on the
dimension n of the design space Σ; v = [v1,v2, . . . ,vm]T is a vector of unknown
coefficients. The covariance matrix C of r(x) is a M x M matrix, whose elements
are given by:

Ci j = σ
2
r Ri j (26)

where Ri j are the elements of R representing the spatial correlation functions
between each pair (x̃i, x̃ j) of the sampled points. The spatial correlation function
used in the present work is a Gaussian correlation function defined as:

Ri j = R(x̃i, x̃ j) = exp

(
−

n

∑
k=1

λk

∣∣∣x̃i
k− x̃ j

k

∣∣∣2) (27)

where λk, k = 1,2, . . . ,n, are unknown correlation parameters and the quantities x̃i
k

and x̃ j
k are the kth components of the sampled points x̃i and x̃ j, respectively. Given

such assumptions, the vector of unknown coefficients v in eq. (25) is obtained by
least square regression, obtaining:

ṽ =
(
QT R−1 Q

)−1 QT R−1 f̃ (28)
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where Q is the M x m matrix defined as:

Q =


qT (x̃1)

qT (x̃2)

:
qT (x̃M)

 (29)

KS in eq. (24) is thus obtained as:

z(x) = qT (x) ṽ+ gT (x)R−1 (f̃−Qṽ
)

(30)

where g(x) is the correlation vector between the point x and the sampled data
points, namely:

g(x) = [R(x, x̃1),R(x, x̃2), . . . ,R(x, x̃M)]T (31)

Correlation parameters λk in eq. (27) are to be determined before the KS can be
computed. They are evaluated maximizing, over λk, k = 1,2, . . . ,n, the following
functional Φ:

Φ (λ1,λ2, . . . ,λn) = M ln(σ2)+ ln(det R) (32)

where σ2 is the estimate of variance σ2
r in eq. (26), that is given by:

σ
2 =

(
f̃−Qṽ

)
R−1 (f̃−Qṽ

)
M

(33)

The predicted deviation of the KS from the actual response, for each point x ∈ Σ,
is statistically represented by the root mean squared error E(x), that is defined as:

E(x) =

√√√√σ2

[
1−
[
qT (x) gT (x)

][0 QT

Q R

][
q(x)
g(x)

]]
(34)

Typical steps in defining KS are: the evaluation of correlation parameters λk by
maximizing non-linear functional (32), determination of the correlation matrix R
by (27), evaluation of KS (30) through (28) and (31), error estimation (34).
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Optimization

We assume that the domain Σ⊂R5 of the multi-objective optimization is bounded
within the following intervals:

w1 ∈ [80,200] (35a)

l ∈ [1500,2500] (35b)

a ∈ [0.35,1] (35c)

b ∈ [1.2,1.5] (35d)

c ∈ [0.5,1.5] (35e)

where w1 and l are expressed in µm and a, b and c are dimensionless. The
range of variation of the input variables, has been chosen considering the typical
dimensions of the strut composing commercial Nitinol stents. In particular, we
chose as reference design xR the Smart stent by Cordis [43], analyzed in [23,
37], having a constant cross section strut (a = 1) with length l, height w1 and
thickness t equal to 2000 µm, 120 µm and 200 µm, respectively; other parameters
b and c are equal to 1.25 and 1 respectively. Accordingly, the reference design xR

is obtained with our parametric model, employing the following design variables:

xR = [w1, l,a,b,c]T = [120,2000,1,1.25,1]T (36)

The array of the objective functions is defined as:

f(x) = [εa(x),COF(x)]T (37)

We preliminarily run a FEA to simulate the reference design xR, obtaining an
alternating strain εa equal to 0.19% with COF = 0.24N (point R in fig. 18).
Assuming a fatigue limit of εL = 0.4% as discussed in previous sections, for the
reference design the safety factor yields:

SR =
εL

εa
=

0.4
0.19

= 2.1 (38)

The multi-objective optimization aims at minimizing εa(x) and, at the same
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FIGURE 16: Graph of the maximum expected relative error E% vs number of refinement
points relative to the Kriging surfaces. It is shown that 45 additional refinement points
were needed to reach the selected value of 3% for the maximum predicted relative error.
Red dashed line represents the convergence value.

time, maximizing COF(x), with x ∈ Σ. Furthermore, the additional constraint
εa≤ 0.2% is imposed to admit only x (i.e. designs) corresponding to a value of the
fatigue safety factor S ≥ 2: in this way we consider only solutions having safety
factor comparable with or higher than the reference design xR. The mathematical
formulation of the considered optimization problem reads:

Ob jectives :


min{εa(x)}

max{COF(x)}
(39)

Constraints :


εa(x) ≤ 0.2

x ∈ Σ
(40)

The goal of the multi-objective optimization is to evaluate the Pareto set: to
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FIGURE 17: Flow chart of the optimization process. A single cycle is described by the fol-
lowing steps: generation of the geometry (CAD) obtained by design variable (x), finite el-
ements analysis (FEA), assessment of the objectives f(x). Both Design of Experiment and
Kriging surfaces refinement steps generate design points x and evaluate the corresponding
values of the objective function f(x) by FEA, while the optimization process,performed
by MOGA, is based on Kriging surfaces.

obtain it we use a MOGA [26, 44] based on KS. In the present work we use KS
for each component of the objective vector f(x). KS are preliminarily built during
the domain mapping phase (see fig. 17), which is essentially the selection of a set
of points x in which f(x) is evaluated by FEA. Such initial set is obtained with the
Central Composite Design (CCD) method [44]. According to this approach, the
objective vector f(x) is evaluated for H design points, with H = 2m +2m+nc =

54 where m is the number of input variables (m = 5), and nc = 12 is the number
of auxiliary points that allow for estimation of second-order effects.

Once the initial mapping of f(x) is completed (Design of experiment step in
fig. 17), a first KS interpolation of the sampled points is performed, for each
objective function. The greater is the number of points used to construct the
surface, the lower will be its deviation from the exact value. An error estimator
of KS is obtained introducing the maximum predicted relative error Ei%, defined
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as:

Ei% =
100

f max
i − f min

i
max
x∈Σ

[Ei(x)] =
100

f max
i − f min

i
Ei(x̆i), i = εa,COF (41)

where f max
i and f min

i are the maximum and the minimum known values (on de-
sign points x) of the objective fi under study, respectively, Ei(x) is the root mean
square error defined in eq. (34) and x̆i is the design point for which the error Ei(x)
is maximum. Clearly, the error Ei% is not the same for both the objective func-
tions: we define the error E% = maxi [Ei%] and x̆ the point in which E% occurs.
We opt for a value of the maximum predicted relative error of 3% as best trade-
off between computational time needed for solving KS and accuracy. In order to
obtain the requested value of E%, for each response surface refinement step, we
generate the additional refinement points x̆, and we use the corresponding f(x̆),
calculated by FEA, to update KS.

This iterative process is concluded when the convergence is reached, as shown
in fig. 16. As depicted in fig. 17, once the refinement of KS is obtained, i.e., the
response surface phase is completed, the optimization step can be performed.

Results

The obtained Pareto front, reported in fig. 18, shows two branches, namely A and
C, characterized by different trends of input variables; in particular, the part A is
generated by the set of arrays xA such that:

xA = [w1, l,a,b,c]T = [w1,2500,0.5−0.6,1.5,1.5]T (42)

with w1 varying from 80 µm to 200 µm for increasing values of COF . Relation
(42) states that branch A is only function of the width of the strut w1, that may
be increased when more scaffolding capabilities are requested. As concerns the
length of the strut l, the crown radius b (eq. (18b)) and the width of the link c

(eq. (18c)), their optimal values are obtained increasing them as much as possi-
ble, i.e. choosing their maximum allowed in the considered range (see eqs. (35)).
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FIGURE 18: Set of Pareto optimal-points: two main different zone are present: branch A
and branch C. Point R represents the constant-section strut design, point B represents the
optimized tapered strut and point I represents the same geometry of the design R but with
tapered profile.
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Moreover, we observe that the optimal value of the input parameter a, that repre-
sents the ratio between the width at the center and at the end of the strut (see eq.
(18a)), varies among 0.5− 0.6; consequently, the optimal solutions are obtained
when the strut profile is not constant.

The branch C is generated by the the set of arrays xC such that:

xC = [w1, l,a,b,c]T = [200, l,0.6−0.64,1.5,1.5]T (43)

with the length l decreasing from 2500 µm to about 1700 µm for increasing values
of COF . Relation (43) states that branch C is only function of the length of the
strut l, that may be decreased when higher scaffolding is required. Similarly
to the case of branch A, optimal design in branch C are obtained by increasing
the width of the strut w1, the crown radius b and the width of the link c up to
their maximum value. The optimal value of the parameter a varies in the range
0.6−0.64.

Better results should be obtained allowing the optimization for higher value of
the input variables l, w1, b and c in the design space Σ. However, such extension
will involve the change of the length and of the height of the unit cell, that are
fundamental parameters in stent design. The parameter a for the Pareto set shows
small oscillations in the reported ranges for branches A and C, without a well-
defined trend. Accordingly, we considered a nearly constant. It is also important
to note that the Pareto optimal set is always represented by tapered strut profiles
with a ratio between the width at the center and at the end of the strut ranging in
the interval 0.5-0.65.

Discussion

In order to highlight the improvements in stent fatigue strength achieved by the
proposed optimization analysis, we compare the performance of our resulting
stent design with the reference design xR.

We note that all the points falling within the area BRRc, depicted in fig. 18,
are represented by design parameters that improve, compared to the reference de-
sign, the fatigue strength or the scaffolding, or both simultaneously. Moreover,
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all the points that are on the portion of the Pareto front delimited by points B

and Rc, represent, by definition, the solutions for which it is not possible to fur-
ther improve the fatigue strength without decreasing scaffolding capabilities and
vice-versa. Accordingly, such solutions are equivalent and all of them are opti-
mal designs (in Pareto sense) in the domain Σ: the best design trade-off can be
selected by restricting the attention to the Pareto set.

As explanatory case study, we show how we maximize fatigue strength, se-
lecting an optimal solution from the Pareto set, under the requirement of leaving
COF unchanged with respect to the design xR. Such optimal solution (fig. 18) is
represented by the point B defined as:

xB = [w1, l,a,b,c]T = [163,2493,0.57,1.49,1.4]T (44)

for which we obtain an alternate strain εa = 0.079% and, consequently, the fa-
tigue safety factor yields:

SB =
εL

εa
=

0.4
0.079

= 5.1 (45)

Comparing eqs. (38) and (45) we observe that, with the same scaffolding
capabilities, introducing the optimized tapered profile (in this case w1 = 163 µm,
w2 = 93 µm, l = 2493 µm), it is possible to increase the fatigue safety factor
under pulsatile loads of approximately 2.4 times.

The effect induced by the introduction of the tapered profile only in the refer-
ence design xR is investigated considering the design resulting from the following
input parameters:

xI = [w1, l,a,b,c]T = [120,2000,0.57,1.25,1]T (46)

The design xI differs from the reference design xR (eq. (36)) only for the value
of the parameter a = 0.57 selected in correspondence with the absolute minimum
point for the alternating strain εa. Therefore, the corresponding geometries are
equal, except for the strut profile, which is tapered in the design xI . For such
design (fig. 18) we find an alternating strain εa = 0.11% and a value of the COF

equal to = 0.19N. Assuming a fatigue limit of εL = 0.4% the fatigue safety factor
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Design w1 l a b c εa COF
[µm] [µm] [%] [N]

xR 120 2000 1 1.25 1 0.19 0.24
xB 163 2493 0.57 1.49 1.4 0.079 0.24
xI 120 2000 0.57 1.25 1 0.11 0.19

TABLE 3: Geometrical features and value of the objectives for the typical (xR), optimized
(xB) and tapered (xI) design.

reads:
SI =

εL

εa
=

0.4
0.11

= 3.6 (47)

whereas the ratio between the COF corresponding to design points xI and xR

is 0.19/0.24 = 0.79. Then, we conclude that only considering the tapered pro-
file allows to increase significantly the fatigue strength but, at the same time, it
involves a relative loss of scaffolding capabilities, approximately equal to 20%.
Furthermore, as observed as regard to the design xR, the design xI does not belong
to the Pareto set and then it is not a optimal solution in the domain Σ: indeed with
the same scaffolding of xI it can be obtained a design with better fatigue strength
(point IE in fig. 18) or, with the same fatigue strength, better scaffolding capabil-
ities may be reached (point IC in fig. 18). The designs considered in this section
are reported in table 3.

From an analysis of fig. 19 it is evident that the parts of the cell with higher
risk of failure are near to the external part of the crown, as confirmed by other
authors [45]. Moreover, the tapered profile allows to redistribute the strain along
a wider part of the strut yielding a decrease of its maximum value as discussed in
previous sections.

In fig (20) we show the resulting stent unit cell for both designs xR and xB.
The length and the height of the unit cell are the same for both designs, while the
corresponding geometries differ for the strut profile, crown radius and link width.

Limitations

The major limitation of this study lies in the execution of numerical simulations
considering the entire cell in a planar configuration. As already highlighted by
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(A) (B)

FIGURE 19: a) Contour plot of the alternating strain εa for different designs of the cell:
design B represents the optimized profile, design R represents typical (

¯
constant section)

profile while design I is equal to R except for the tapered profile. b) Details of the proposed
designs. From top to bottom: design B, R and I



65

(A) (B)

FIGURE 20: Stent cell geometries. A) Typical design R. B) Optimized design B

other authors [19, 46, 47], it may be considered sufficiently accurate although
i) the actual complete 3D model has curved shape and ii) stents interact with
vessels, resulting in a mechanical response influenced by contact phenomena.
Results much closer to the in vivo conditions may be obtained by optimizing
complete models of stents. In this regard, experimental tests aimed at validate the
proposed optimized design may be useful.

It is worth noting that, in addition to the time needed to implement the opti-
mization process (parametric model, boundary and load conditions, post-processing
of results), the considered problem requires non-trivial computation times; then,
more realistic study require computational platforms such supercomputing.

Conclusions

The present study discusses the use of multi-objective stent design optimization
to enhance fatigue life of self-expanding Nitinol stent and vessel scaffolding ca-
pability. The results obtained through the proposed optimization study are related
to a vessel with assigned compliance and blood pressure variation. The method-
ology introduced is still valid and can be applied also to different pressure cycles
and anatomical positions. The study results confirm that the use of tapered strut
profile should be a primary key factor to reduce and uniform the strain field along
the strut and thus to enhance the fatigue life of the whole stent. The obtained
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Pareto set allows the designer for the selection of optimized solution, according
to the specific design requirements.

As illustrative example we compared a commercial reference design with an
optimized design, chosen from the obtained Pareto set, under the requirement
of leaving COF unchanged. The proposed approach suggests that the enhance-
ment of stent fatigue life can be achieved combining tapered strut profile with the
following changes in the design of the cell:

• an increase of 25% of the strut length;

• an increase of 40% of the strut width at the strut extremities.

Moreover, the results suggest that the width narrowing at the middle of the strut,
due to the profile tapering, should be stay among 35%−50%.

Under such indications, it is possible to achieve a marked improvement of the
fatigue safety factor, i.e., about 2.4 times, compared to the typical design (strut
with constant section), without any loss of scaffolding capabilities.

The present study may be used as a starting point for further optimization
analyses addressing the design of brand-new peripheral stent models. Further
developments can address extension approach to a full 3D case or experimen-
tal validation of the achieved results by the performance of fatigue tests for the
proposed stent strut design.
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Anomalous thermomechanical
behavior
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Fractional-order theory of thermo -
elasticity I: generalization of the
Fourier equation*
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ABSTRACT

Objectives: The paper deals with the generalization of the Fourier-type re-
lations in the context of fractional-order calculus. Fractional-order calculus has
been also used in the theory of heat conduction to generalize the classical Fourier
and Cattaneo transport equations. However, no physical ground in the formu-
lation of neither anomalous heat transfer nor thermo-elasticity theory has been
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provided, leading to a non-physical representation of the thermoelastic phenom-
ena reported in such studies. In the present work, a physical description of the
fractional-order Fourier diffusion equation is proposed.

Methods: We obtain a fractional-order Fourier diffusion law from a multi-
scale rheological model. Indeed, the instantaneous temperature - flux equation
of the Fourier-type diffusion is generalized introducing a self-similar, fractal type
mass clustering at the micro-scale.

Results: The resulting conduction equation at the macro-scale yields a Ca-
puto’s fractional derivative with order β ∈ [0,1] of temperature gradient. The
order of the fractional-derivative is found to be related to the fractal assembly of
the micro-structure. The distribution and the temperature raising in simple rigid
conductors have been also reported to investigate the influence of the derivation
order on the temperature field.

Conclusions: The solution of the fractional heat equation (0 < β < 1), gov-
erned by Mittag-Leffler functions, exhibits for small times a much faster rising,
and for large times, a much slower decay, compared with the solution of clas-
sical heat equation, governed by exponential functions. Accordingly, the main
property of the anomalous heat transfer is that the time-rate of change at which
the resulting temperature field reaches a steady state, becomes higher as the dis-
crepancy from the Fourier law increases: the thermal steadiness is consequently
achieved, by anomalous conductors, employing longer times than Fourier ones.
Such particular behavior represents the “long-tail memory effect”, due to the
power law thermal memory of such materials.

Introduction

Fractional-order calculus is usually referred as the generalization of the well-
known ordinary differential calculus introducing real - order integrals and deriva-
tives. It traces back to the basic definitions by Riemann as well as to successive
memories of famous mathematicians, among the others (see e.g. [1]), while, more
recently, other scientists focused on the feasibility of integral measures involved
in fractional-order operators [2–4].
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After definitions and feasibility of fractional-order operators, their introduc-
tion into continuum field theories has received significant interests worldwide
[5–10]. Indeed the replacement of classical operators with their real-order coun-

terparts

(
d
dx
→ dα

dtα
and

d
dt
→ dβ

dtβ

)
with α ,β ∈ℜ has proved to be valuable in

several engineering and physical contexts predicting phenomena with great accu-
racy [5, 11–13]. The use of fractional-order operators has been also reported in
non-local continuum field theories of mechanics [14–20], non-local heat transfer
[21–24] stochastic analysis [25–28], diffusive transport [1, 29–31], biophysics
[32], rheology and many others.

Despite the wider and wider use of fractional-order operators an important
question has not been answered:“What is the physics beyond the use of fractional-
order derivatives?” The answer to this fundamental issue would be of great stim-
ulus for worldwide researchers to re-derive the classical continuum field theories
in terms of fractional-order operators.

On that subject, a strong effort has been profused during last years to provide
a solid physical ground in the use of fractional-order derivative in the transport
equations. Cases involving polymer viscoelasticity, anomalous fluid diffusion, as
well as laminar flow across fractal sets have been recently provided [33–36].

Fractional-order calculus has been also used in the theory of thermo-elasticity
to generalize the classical Fourier and Cattaneo transport equations [37–40]. How-
ever, no physical ground in the formulation of neither anomalous heat transfer nor
thermo-elasticity theory has been provided, leading to a non-physical representa-
tion of the thermoelastic phenomena reported in such studies.

In the present work, the authors obtain a fractional-order Fourier diffusion
law from a multi-scale rheological model. This is done by means of the intro-
duction of an inhomogeneous conductor leading to an anomalous time evolution
as tβ with 0 ≤ β ≤ 1 [41]. Such consideration is used in the paper to provide a
physical exact description of the fractional-order Fourier diffusion equation that
is also thermodynamically consistent. Numerical experiments have been reported
to show the evolution of the temperature field in different domains with different
boundary conditions. Anomalous thermo-elasticity is analyzed in Part II of this
paper [42], where a measure of the signature of the anomaly based on a measure
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of the energy rate is explored.

The thermodynamical model of power-law
temperature evolution

In this section the authors show that anomalous rising of temperature in the form
of power-law tβ is obtained using arguments presented extensively in [42].

It is assumed a distribution of n+1 masses m j = A j∆z with j = 1,2, ...,n+1,
where A j represents the cross-sectional area of the jth mass and ∆z = l/(n+ 1)
its length, being l = (n+ 1)∆z the overall length of the conductor as in Fig. 21
a). The masses, located at abscissas z j = j∆z and separated by adiabatic walls
from the external environment, are connected each other by a perfect conductor,
so that thermal energy exchange may occur only along the z direction. The ther-
modynamic state variables describing the system are assumed as the macroscopic
temperatures Tj(t) of the masses m j for j = 1,2, ...,n+ 1.

The energy balance of the jth mass m j involves the rate of the internal energy
U j and the energy flux along the conductors m j, namely, q j(t) and q j−1(t) that
can be written as:

dU j(t)
dt

= m j
du j(t)

dt
= m jC

(V )
j

dTj(t)
dt

= A j−1q j−1(t)−A jq j(t) (48)

where with C(V )
j =

(
∂u j

∂T

)
T0

is denoted the specific thermal capacity at constant

volume that is assumed to be uniform for the considered temperature interval;
u j(t) is the internal energy function density of the mass m j.

Given the assumption that only diffusive phonon-phonon interaction yields
thermal energy transport, the thermal energy flux q j (t) of the mass located at
abscissa z j may be expressed as:

q j(t) = −χ
(T )
j

Tj+1(t)−Tj(t)
z j+1− z j

= −χ
(T )
j

Tj+1(t)−Tj(t)
∆z

(49)
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where with χ
(T )
j the thermal conductivity of the jth conductor is denoted. Substi-

tution of (49) in (48) yields the thermal energy balance as an ordinary differential
equation system in the temperatures Tj(t).

ρ∆zC(V )
j Ṫj(t) =

1
∆z

[
χ
(T )
j+1Tj+1(t)−

(
χ
(V )
j + χ

(V )
j+1

)
Tj(t)+ χ

(T )
j−1Tj−1(t)

]
(50)

where it is assumed that A = A j for j = 1,2, ...,n+ 1 and that the masses m j =

ρA∆z (see fig. (21)) where ρ is the mass density. The energy balance equations
reported in eq. (50) involve masses m j with j = 2,3, .....,n as the temperature
of the mn+1 mass of the system has been set to the value Tn+1 = 0 without loss
of generality. Energy balance of mass m1 of the thermodynamical system in fig.
(21) b) involves an external thermal energy flux, denoted in the following formula
as q̄(t), yielding:

C(V )
1 ∆zρṪ1(t)+ χ

(T )
1

T2(t)−T1(t)
∆z

= q̄(t) (51)

The anomalous time-scaling of the temperature field is achieved assuming that
the spatial distribution of the thermal conductivity χ

(V )
j and the specific thermal

capacity C(V )
j varies along the masses m j with the relations:

C(V )
j =

C(V )
α ( j∆z)−α

Γ(1−α)
(52a)

χ
(T )
j =

χ
(T )
α ( j∆z)−α Γ

(1+α

2

)
Γ(1−α)

(52b)

where Γ(•) is the Euler-Gamma function and the real exponent α belongs to the
interval −1 ≤ α < 1 for diffusion-type phenomena. It must be remarked that
the assumption of a power law variation of the thermal properties of the non-
homogeneous rigid conductor is the fundamental hypothesis from which comes
out the fractional constitutive relation between the heat flux and the temperature
gradient. Indeed, for the case α = 0, an homogeneous conductor and, conse-
quently, the classical Fourier transport equation is obtained.
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Coefficients C(V )
α and χ

(T )
α are the thermal capacity and the thermal conduc-

tivity, respectively, with anomalous physical dimensions in the International Sys-
tem of Units (SI) as:[

C(V )
α

]
= m2+αK−1s−2 ;

[
χ
(T )
α

]
= kgm1+αK−1s−3 (53)

In order to show that the discrete mass system yields a power-law time rising
of the temperature field it is supposed that, at the same time, n→ ∞, ∆z→ 0 and
l→∞. In this framework the functions Tj (t) and q j (t) represents local values of
the fields Tj (t)→ T (z j, t) and q j (t)→ q (z j, t).

Under these circumstances the balance equation reported in (48) becomes:

ρC(V )(z)
∂T (z, t)

∂ t
= −∂q(z, t)

∂ z
(54)

Eq. (54) describes the balance at location z between the rate of the thermal energy

U̇ = ρ
∂u
∂ t

and the difference of the outgoing thermal energy q(z+ dz, t) and the
incoming one q(z, t) in unit time. Introducing the following Fourier transport
equation, obtained for ∆z→ 0

q(z, t) = −χ
(T )(z)

∂T (z, t)
∂ z

(55)

in eq.(54), the heat equation is obtained as:

ρC(V )(z)
∂T (z, t)

∂ t
=

∂

∂ z

[
χ
(T )(z)

∂T (z, t)
∂ z

]
(56)

In eq.(56) the thermodynamical properties of the distributed mass system are de-
scribed through the continuous counterparts of eqs. (52 a,b), i.e. C(V )

j →C(V )(z j)

and χ
(T )
j → χ (T )(z j) that read:

C(V )(z) =
C(V )

α z−α

Γ (1−α)
; χ

(T )(z) =
χ
(T )
α z−α Γ

(1+α

2

)
Γ (1−α)

(57)

Accordingly, the boundary conditions associated to the heat equation (56) are
obtained as the continuous conditions on the first mass m1 and the last mass mn+1
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of the discrete system (see fig. 21) under consideration as:

q̄(t) = lim
z→0
−χ

(T )(z)
∂T (z, t)

∂ z
; lim

z→∞
T (z, t) = 0 (58)

The temperature field T (z, t) may be obtained introducing the Laplace trans-
form of (56), yielding to an ordinary differential equation in Laplace domain as:

d
dz

[
χ
(T ) (z)

dT̂ (z,s)
dz

]
= sρC(V ) (z) T̂ (z,s) (59)

where T̂ (z,s) represents the Laplace transform of the temperature field T (z, t).
Relation (59) can be cast, after some straightforward manipulation, as:

d2T̂ (s,z)
dz2 +

[
χ (T ) (z)

]′
χ (T ) (z)

dT̂ (s,z)
dz

−C(V ) (z)
χ (T ) (z)

sρT̂ (s,z) = 0 (60)

Substituting for the thermal conductivity coefficient χ (T ) (z) and the specific heat
C(V ) (z) with the corresponding power-laws reported in eqs. (57), the differential
equation ruling the temperature field becomes:

d2T̂ (z,s)
dz2 − α

z
dT̂ (z,s)

dz
− τsT̂ (z,s) = 0 (61)

where

τ = ρ
C(V )

α

χ
(T )
α

1
Γ
(1+α

2

) (62)

is constant with respect to space z and time t and its value changes with α as
shown in (62). However, physical dimensions of τ are [τ ] = sm−2, consequently
they do not depend on the exponent α . A canonical Bessel equation of second
kind may be obtained from eq. (62) introducing the auxiliary function T (z,s) by
means of the mapping T̂ (z,s) = zαT (z,s) yielding:

z2 d2T (z,s)
dz2 +αz

dT (z,s)
dz

−
(
z2

τs+α
)

T (z,s) = 0 (63)
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Solution of eq. (63) involves modified Bessel functions denoted Yβ (z
√

τs) and
Kβ (z

√
τs), respectively (see [41] for details), where β is related to the scaling

exponent α as:

β =
1+α

2
(64)

Boundary conditions in Laplace domain yield the integration constants, namely,
B1 and B2 as:

B1 = 0 ; B2 =
2β Γ(2−2β ) sin(πβ ) (sτ)−

β

2

πχ
(T )
α

̂̄q (s) (65)

with [B2] = K sm−β , so that the temperature field of the distributed mass systems
reads:

T̂ (z,s) =
2β Γ(2−2β ) sin(πβ ) (sτ)−

β

2

πχ
(T )
α

̂̄q(s)zβ Kβ

(
z
√

τs
)

(66)

Power-law time rising of the temperature field is obtained evaluating the temper-
ature at z = 0 as:

T̂0 (s) = lim
z→0

T̂ (z,s) =
1

Rβ

s−β ̂̄q(s) (67)

where the anomalous thermal diffusivity coefficient, Rβ reads:

Rβ =
21−2β πχ

(T )
α csc(πβ )τβ

Γ(2−2β )Γ(β )
(68)

and
[
Rβ

]
= kgK−1 sβ−3. Special cases of eq. (68) can be obtained looking at

some representative values of β ans α as follows:

lim
β→0

α→−1

Rβ =
2χ

(T )
−1

π
(69a)

lim
β→ 1

2
α→0

Rβ = 4
√

π

√
ρχ

(T )
0 C(V )

0 (69b)

lim
β→1
α→1

Rβ = ρC(V )
1 (69c)
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Under the assumption of stationary thermal energy flux q̄(t) = q̄0U(t), the time-
varying temperature function T0(t) is obtained applying the inverse Laplace trans-
form to eq. (67), yielding:

T0(t) =
q̄0

Rβ Γ(1+β )
tβ

∝ tβ (70)

that is the power-law temperature time scaling observed in fig. (21) for the dis-
cretized mass system considered in the analysis with β ∈ [0,1] (see e.g.[41] for
details).

The fractional-order generalization of Fourier heat
transport equation

In this section the authors introduce a fractional-order generalization of the Fourier
transport equation according to the physical model of the power-law described in
previous section. To this aim, the basic framework of fractional-order calculus
is first provided followed by the physical model used to generalize the Fourier
equation and its compatibility with the second law of thermodynamics.

Preliminary remarks on fractional-order calculus

Fractional calculus may be considered the extension of the ordinary differential
calculus to non-integer powers of derivation orders (e.g. see [29, 43]). In this
section the authors address some basic notions about this mathematical tool.

The Euler-Gamma function Γ(z) may be considered as the generalization of
the factorial function because, when z assumes integer values, it follows that
Γ(z+1) = z!. The Euler-Gamma is defined as the result of the integral as follows:

Γ(z) =
∫

∞

0
e−xxz−1dx. (71)
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The Riemann-Liouville fractional integrals and derivatives with 0 < β < 1 of
functions defined on the entire real axis have the following forms:

(
Iβ

+ f
)
(t) =

1
Γ(β )

∫ t

−∞

f (τ)
(t− τ)1−β

dτ (72a)(
Dβ

+ f
)
(t) =

1
Γ(1−β )

d
dt

∫ t

−∞

f (τ)
(t− τ)β

dτ . (72b)

The Riemann-Liouville fractional integrals and derivatives with 0 < β < 1 of
functions defined over intervals of the real axis, namely f (t) such that t ∈ [a,b]⊂
R, have the following forms:

(
Iβ
a f
)
(t) =

1
Γ(β )

∫ t

a

f (τ)
(t− τ)1−β

dτ (73)

(
Dβ

a f
)
(t) =

f (a)
Γ(1−β )(t−a)β

+
1

Γ(1−β )

∫ t

a

f ′(τ)
(t− τ)β

dτ (74)

Beside Riemann-Liouville fractional operators defined above, another class of
fractional derivative that is often used in the context of fractional calculus is rep-
resented by Caputo fractional derivatives defined as:(

CDβ

a+ f
)
(t) := Im−β

a+
(
Dm

a+ f
)
(t) m−1 < β < m (75)

and whenever 0 < β < 1 it reads as follows:

(
CDβ

a+ f
)
(t) =

1
Γ(1−β )

∫ t

a

f ′(τ)
(t− τ)β

dτ (76)

A closer analysis of eq. (75) and eq. (76) shows that Caputo fractional derivative
coincides with the integral part of the Riemann-Liouville fractional derivative in
bounded domain. Moreover, the definition in eq. (75) implies that the function
f (t) has to be absolutely integrable of order m (e.g. in eq. (76) the order is
m= 1). Whenever f (a) = 0 Caputo and Riemann-Liouville fractional derivatives
coalesce.

Similar considerations hold true also for Caputo and Riemann-Liouville frac-
tional derivatives defined on the entire real axis. Caputo fractional derivative may
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be considered as the interpolation among the well-known integer-order deriva-
tives, operating over functions f (◦) that belong to the class of Lebesgue inte-
grable functions ( f (◦) ∈ L1); consequently it is very useful in the mathematical
description of complex system evolution. It is worth noting that the Laplace and
Fourier integral transforms are defined as follows:

L [ f (t)] =
∫

∞

0
f (t)e−stdt (77a)

F [ f (t)] =
∫ +∞

−∞

f (t)eiωtdt (77b)

It is worth introducing integral transforms for fractional operators and, simi-
larly to classical calculus, the Laplace integral transform L (◦) is defined in the
following forms:

L
[(

Dβ

0 f
)
(t)
]
= sβ L [ f (t)]−

[(
Dβ−1

0 f
)
(t)
]

t=0
if 0 < β ≤ 1 (78a)

L
[(

CDβ

0 f
)
(t)
]
= sβ L [ f (t)]− sβ−1 f (0) if 0 < β ≤ 1 (78b)

L
[(

Iβ

0+ f
)
(t)
]
= s−β L [ f (t)] (78c)

In the same way, the Fourier integral transform F (◦) assumes the following
forms:

F
[(

Dβ

+ f
)
(t)
]
= (−iω)β F [ f (t)] = (−iω)β f̂ (ω) (79a)

F
[(

Iβ

+ f
)
(t)
]
= (−iω)−β F [ f (t)] = (−iω)−β f̂ (ω) (79b)

The fractional-order generalization of the Fourier equation

Power-law rising of temperature field described in previous sections corresponds,
in the context of a linear-order heat transport to a fractional-order relation among
thermal flux and temperature. Indeed, assuming that the thermal energy flux
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across the x= 0 cross-section is a time-dependent function, inverse Laplace trans-
form of (67) yields:

T0(t) =
1

Rβ

1
Γ(β )

∫ t

0
(t− τ)β−1q̄(τ)dτ =

1
Rβ

(
Iβ

0+ q̄
)
(t) (80)

that is a Riemann-Liouville fractional-order integral of order β ∈ [0,1] as in (73).
The inverse relation of eq.(80) could be obtained introducing the β−order

fractional derivative of both sides of (80) yielding:

q̄(t) = Rβ

(
Dβ

0+T0

)
(t) (81)

that is a fractional-order description of the temperature-flux in terms of Caputos’
fractional-order derivatives analogous to fractional-order generalization of the
Darcy equation ([35]).

A close observation of eq. (81) reveals that it does not correspond to the
fractional-order generalization of the Fourier heat transport equation in terms of
fractional derivatives, because no spatial gradient of the temperature field is in-
volved, in spite of what occurs in Fourier equation rewritten with fractional cal-
culus formalism, as:

q̄(t) = −K0

[(
D0

0+
∂T
∂x

)
(t)
]

(82)

where
(
D0

0+ f (t)
)
(t) =

d0 f (t)
dt0 = f (t) is the 0th-order derivative of the function

f (t) with respect to t. Fractional-order generalization of the Fourier equation will
involve the presence of the real-order derivative D0 −→ Dβ with 0 ≤ β < 1 that
is not present in eq. (81).

In order to provide a generalization of eq. (81) in terms of fractional-order
derivative of order β , the authors introduce a self-similar conductor micro-structure
(see, for example, [44]). In this framework, an 1D conductor with macroscopic
thermal conductivity χT , mass density ρ and specific heat C(V ) is considered.
The conductor is referred to an one-dimensional abscissa x and it occupies the in-
terval [0, l] of the real line (see fig. (22a) for further details) where A is the cross-
sectional area of the conductor. A spatial discretization of the conductor with
interval ∆x = x j+1− x j is considered along with a spatial thermal energy flux
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Tj

xj xj+1

x

0 l
Tj+1

Dx

(A)

Tj=T(xj) Tj+1=T(xj+1)

qj qj+1
x

(B)

FIGURE 22: a) Macroscopic thermal conductor, b) Thermal energy flux

along the positive direction of the x-axis (Fig. (22b). For an homogeneous con-
ductor, the thermal energy across the cross-section at abscissa x j, namely q j(t),

depends only on the thermal conductivity χT and on the temperature gradient
∂T
∂x

as in classical Fourier equation:

q j(t) = −χ lim
∆x→0

∆T
∆x

= −χ lim
∆x→0

Tj+1−Tj

∆x
(83)

According to eq. (83), the study of thermal energy flux across the cross-section
at abscissa x j can be conducted, without any loss of generality, assuming that
Tj(t) = −∆T and Tj+1(t) = 0. The latter assumption is equivalent to the choice
of the zero-temperature condition, coincident with the temperature of the cross-
section Tj+1(t) as in Fig. (22)a.

In the following the authors assume that the mass density within the ele-
ment of length ∆x is not uniformly distributed at any resolution scale. Given
such assumption and introducing a scale factor z, a self-similar cluster of mass-
distribution is observed as in Fig. 23(b-e). The longitudinal cross-sections of the
conductor along the x-axis is shown in Fig. 23(a) assuming a Sierpinski-like mass
clustering with the observation scale zk for illustrative’ sake. In passing, the au-
thors observe that the proposed self-similar micro-structure organization is very
different from the fractal mass curdling. Indeed, in the considered self-similar
clustering, all the masses observed at resolution scales z0,z1, . . . ,zk−1 are present
examining the mass condensation at resolution zk.

Thermal energy exchange across the mass micro-structure is assumed in the
form of phononic-phononic diffusion, ruled by the Fourier relation, in a material
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FIGURE 23: Scheme of the self similar mass-distribution
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with uniform thermal conductivity χ0. Under these circumstances, masses mk

and distances lk at resolution scale zk read:

mk = ρAklk = ρ ak
(

b0

zk

)2

∆zk ∆x (84)

where ∆zk = zk−1− zk, b0 is the edge of the conductor cross-section assumed
squared at resolution z0 = 1 and ak is the number of self-similar elements at
resolution zk; for the proposed fractal scheme a = 2. The equivalent measure
condition is achieved incrementing the resolution factor of a quantity zk and in-
troducing an anomalous dimension-dependent density ρd in eq. (84) yielding:

m̄k = ρd ak bd
0 z1−d

k ∆zk ∆x = ρd ak bd
0 z−α

k ∆zk ∆x (85)

where d =
log2

2log3
for the considered mass assembly at the microscale and it

represents the Housdorff dimension of the geometric self-similar set describing
mass curdling. Thermal energy balance of mass m̄k involves a dynamic equilib-
rium among the rate of internal energy and the net thermal flux across the generic
mass m̄k/ak yielding:

m̄k

ak u̇(k)j = ρd bd
0 z−α

k ∆zk ∆xC(V )
θ̇
(k)
j (t) = −q(k−1)

j (t)Ak−1 + q(k)j (t)Ak =

= −
χT A(c)

k−1

∆zk−1 ∆x

(
θ
(k)
j (t)−θ

(k−1)
j (t)

)
+

χT A(c)
k

∆zk ∆x

(
θ
(k−1)
j (t)−θ

(k)
j (t)

) (86)

where the relative temperature θ
(k)
j (t) of the mass m̄k at the kth resolution scale

(corresponding to the volume element located at the macroscopic abscissa x j) is
introduced; moreover, A(c)

k = Ak/ak is the cross-sectional area of the conductor
at the resolution zk. Bearing in mind that A(c)

k = bd
0 z−α

k , eq. (86) can be rewritten
as:

z−α

k θ̇
(k)
j (t) =

χT

ρd C(V ) (∆x)2 ×

×

z−α

k θ
(k+1)
j (t)

∆zk
−

(
z−α

k
∆zk

+
z−α

k−1

∆zk−1

)
θ
(k)
j (t)+

z−α

k−1θ
(k−1)
j

∆zk−1
(t)

 (87)
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With some straightforward manipulations and letting ∆zk −→ 0, so that a contin-
uous resolution scale is achieved, eq. (87) becomes:

z−α

k θ̇
(k)
j (z, t) =

1

τd (∆x)2
∂

∂ z

(
z−α ∂ θ (z, t)

∂ z

)
(88)

Eq. (88) is formally analogous to eq. (59) for inhomogeneous conductor pre-
sented in previous section but, it is formulated for the micro-structure observed
at abscissa x j. The boundary conditions associated with the temperature equation
(88) read:

q j(t) = q j(t) =
1

∆x
lim
z→0

∂ θ j (z, t)
∂ z

(89a)

lim
z→∞

θ j (z, t) = θ j−1 (z, t) = 0 (89b)

Solution of eq. (88), accounting for boundary the conditions (89a) and (89b) can
be obtained relying on similar arguments as in previous sections, yielding:

θ̂ j (z,s) =
2β Γ(2−2β ) sin(πβ ) (sτ)−

β

2

πχT
q̂ j(s)zβ Kβ (z

√
τds) (90)

where β = (α + 1)/2 = (2−d)/2.
Letting z−→ 0, the temperature θ̂ j (z,s) tends to θ̂ j (s) = θ̂ j (x j,s) =−∆T̂ (x j,s)

yielding:

−∆T̂ (x j,s) = lim
z→0

θ̂ j (z,s) =
1

Rβ

s−β ∆x q̂ j(s) (91)

where

Rβ =
21−2β πχT csc(πβ )τβ

d
Γ(2−2β )Γ(β )

(92)

Recasting relation (91) the fractional-order generalization of the Fourier equation
is obtained as:

q (x, t) = − lim
∆z→0

Rβ sβ ∆T̂
∆x

= −Rβ

(
Dβ

0+
∂T
∂x

(x, t)
)
(t) (93)

that has the formal structure of eq. (82) but also involves derivative of order
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β = (2−d)/2 that depends on the fractal-like clustering of mass micro-structure.
When d = 2, β = 0 and the classical Fourier equation is obtained.

Summing up in this section the authors observe that an approach based on
a self-similar clustering of micro-scale masses in a macroscopically homoge-
neous conductor yields, at the macro-scale, to a fractional-order generalization
of the Fourier equation in terms of Caputo fractional derivatives. The order of
the derivative is related to the topological features of the microscopic set of mass

clustering as β =
2−d

2
.

The analysis has been obtained for an 1D case and it may be generalized,
straightforwardly to more complete case, repeating the analysis for an isotropic
conductor in a three dimensional domain V of the Euclidean space R referred
to a three dimensional coordinate system (O,x1,x2,x3). In this case identical
micro-structure is observed along any direction and, therefore, the fractional-
order Fourier equation may be generalized in term of the spatial gradient of the

temperature field, namely, ∇ [•] =
∂

∂xk
[•] ik (ik the unit vector of the coordinate

system) as:

q(x, t) = −Rβ I·
(

Dβ

0+∇T
)
(x, t) = −Rβ ·

(
Dβ

0+∇T
)
(x, t) (94)

where IRβ = Rβ is the isotropic second-order tensor of the anomalous conduc-
tivities.

Thermodynamical consistency of the fractional-order Fourier
conduction

Thermodynamical assessment of eq.(93) must be formulated in terms of the irre-
versible entropy production rate ṡu(x, t) for unit volume, must be satisfied for any
thermodynamical process at the macro-scale T (x, t). In this section the authors
report some basic considerations that correspond to the thermodynamical consis-
tency of the model with a bottom-up approach from the self-similar micro-scale
considered. In this circumstances the Gibbs inequality yields ṡu(x, t) ≥ 0 that
must be fulfilled for any t ≥ 0 and at any location of the conductor x j ∈V and for
any micro-scale location z j.



93

To this aim, the second principle of thermodynamics, written for the observa-
tion scale z, reads:

ρ (z j) ṡ(z j, t) ≥−
1

θ (z j, t)
∂q (z j, t)

∂ z j
(95)

where ṡ represents the entropy rate. Introducing the irreversible specific entropy
rate ṡu(z j, t), relation (95) is rewritten as:

ρ (z j) ṡ(z j, t)+
1

θ (z j, t)
∂q (z j, t)

∂ z j
= ρ (z j) ṡu(z j, t) ≥ 0 (96)

The entropy rate ṡ (z j, t) could be cast in terms of the balance among the
incoming and outcoming entropy flux, namely J (z j, t), as:

ṡ(z j, t) = −
1

ρ (z j)

∂J (z j, t)
∂ z j

+ ṡu(z j, t) (97)

Introducing eq. (97) into eq. (96), the relevant inequality among the balance of
the entropy flux and the the balance of the heat flux, at location z, is obtained in
the form:

∂J (z j, t)
∂ z j

≥ 1
θ (z j)

∂q (z j, t)
∂ z j

(98)

In the context of classical irreversible thermodynamics it is assumed that the en-
tropy flux is a function of a state variable u(z j, t) that corresponds to the specific
internal energy of the conductor at location z as:

J (z j, t) = ϕ (u)q (z j, t) (99)

that, after substitution in eq.(98) (omitting arguments) it leads to:[
ϕ (u)−

1
θ

]
∂q
∂ z j

+
∂ϕ

∂ z j
q (z j, t) ≥ 0 (100)
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Since relation (100) must be fulfilled for any thermodynamic transformation, for

the linear term ϕ(u) equal to
1
θ

, it is obtained:

(
∂ϕ(u)

∂ z j

)
q =

1
θ 2

∂θ

∂ z j
q≤ 0 (101)

Introducing the Fourier relation in (101) gives:

ṡu (z j, t) =
χT

θ 2

(
∂θ (z j, t)

∂ z j

)2

≥ 0 (102)

Relation (102) must be verified for any thermodynamical process, for any loca-
tion along the conductor, at any micro-scale resolution and for any temperature
field θ (z j, t) yielding the thermodynamical restriction on the thermal conductiv-
ity χT ≥ 0 so that Rβ ≥ 0.

It may be shown that the fractional-order generalization of the Fourier trans-
port equation, reported in eq. (94), involves a state function of the form:

ψ(x, t) =
∫ t

−∞

∫ t

−∞

K (t− τ1, t− τ2)
∂ [∇T (τ1,x)]

∂τ1

∂ [∇T (τ2,x)]
∂τ2

dτ1dτ2 (103)

where the kernel function K(t− τ1, t− τ2) may be written in the form:

K(t− τ1, t− τ2) =
1
2

G(2t− τ1− τ2) =
1
2

Kβ

Γ (β )
1

(2t− τ1− τ2)
β

(104)

that, after a Frechèt differentiation, it takes back the fractional-order Fourier equa-
tion reported in eq.(94). It may be observed that the expression for the free energy
function in eq.(103) is obtained from the evaluation of the overall dissipation rate
associated to the inhomogeneous conductor in fig.(21) (see e.g. [16] and [44] for
details.
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Numerical experiments

In the present section the authors report some numerical experiments regarding
the temperature field of anomalous conductors in presence of different boundary
and initial conditions. In particular, in the next subsection the heat conduction
problem in a one-dimensional (1D) slab with imposed initial temperature field
and fixed temperature at the extremities, over time, is studied. The aim of the
presented analysis is to show how the solution of the fractional heat conduction
equation, i.e. the diffusion-wave equation, is influenced by the introduction of
the Caputo’s fractional derivative in the heat flux constitutive relation by means
of problems defined in simple spatial domain.

The solution of the heat equation is obtained using the method of separa-
tion of variables: an equivalent approach has already been proposed in bounded
space domains by means of the finite sine transform and the Laplace transform
techniques [45]. Moreover, the Green’s function approach has been thoroughly
studied for the Cauchy and the Signalling problem [12, 46, 47] .

In case of isotropic transport of the thermal energy across the conductor, the
constitutive equation reported in eq. (94) becomes:

q(x, t) = Rβ I·
(

Dβ

0+∇T
)
(x, t) (105)

where I is the identity matrix and Rβ is the “fractional” thermal conductivity
with dimension

[
Rβ

]
= kgmK−1sβ−3. Introducing relation (105) in the energy

balance equation, the three-dimensional (3D) fractional heat equation is obtained
as:

∇
2T (x, t) =

1
γβ

(
CD1−β

0 T
)
(x, t) (106)

Coefficients γβ =
Rβ

ρC(V )
, ρ and C(V ) are the “fractional” thermal diffusivity, the

density and the specific thermal capacity respectively, with physical dimensions
reported below:

[
γβ

]
= m2sβ−1 ; [ρ ] = kgm−3 ;

[
C(V )

]
= mK−1s−2 (107)
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FIGURE 24: Initial parabolic temperature distribution for problem (109a)

The last part of this section is devoted to the solution of heat problem in cylindri-
cal coordinates {O,r,θ ,z}; in such a case the 3D heat conduction equation (106)
is rewritten as:

∂ 2T
∂ r2 +

1
r

∂T
∂ r

+
1
r2

∂ 2T
∂ψ2 +

∂ 2T
∂ z2 + =

1
γβ

(
CD1−β

0 T
)
(t) . (108)

Transient heat 1D problem in cartesian coordinates.

A transient boundary value problem of heat conduction for a 1D slab is consid-
ered; the initial parabolic distribution of temperature T (x,0) = F(x) is shown in
Fig. (24): T0 and TM represent, the initial temperature at the ends (x = 0 and
x = L) and at the center of the slab, respectively. Moreover, the faces at coordi-
nates x = 0 and x = L are kept, over time, at temperature T0 and there is not heat
flux at the boundary lateral surfaces. The problem is to find the corresponding
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temperature field T (x, t): its mathematical formulation is given as:

∂ 2T
∂x2 =

1
γβ

(
CD1−β

0 T
)
(t) with 0≤ x < L, t > 0, 0≤ β < 1 (109a)

|T |x=0 = T0, ∀t > 0 (109b)

|T |x=L = T0, ∀t > 0 (109c)

|T |t=0 = F(x) = T0 + 4(T0−TM)

[( x
L

)2
− x

L

]
, 0 < x < L (109d)

The problem (109a) with boundary conditions (109b) and (109c) and initial con-
dition (109d) can be solved shifting the temperature scale, namely defining the
relative temperature as below:

Ψ(x, t) = T (x, t)−T0 (110)

Considering equation (110), the problem (49) could be reformulated as follows:

∂ 2Ψ
∂x2 =

1
γβ

(
CD1−β

0 Ψ
)
(t) with 0≤ x < L, t > 0, 0≤ β < 1 (111a)

|Ψ|x=0 = 0, ∀t > 0 (111b)

|Ψ|x=L = 0, ∀t > 0 (111c)

|Ψ|t=0 = F(x)−T0 = Q(x) = 4(T0−TM)

[( x
L

)2
− x

L

]
, 0 < x < L (111d)

The solution is found using the method of separation of variables, namely sep-
arating Ψ(x, t) into space-dependent and time-dependent functions as reported
below:

Ψ(x, t) = φ (t)ψ(x) (112)

substituting (112) into (111a) and introducing the separation constant λ , give:

1
ψ

d2 ψ

dx2 =
1

γβ φ

(
CD1−β

0 φ

)
(t) = −λ

2. (113)
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Relation (113) is equivalent to the two following differential equations:

d2 ψ(x)
d x2 +λ

2
ψ(x) = 0 (114a)

|ψ|x=0 = 0 (114b)

|ψ|x=L = 0 (114c)

and (
CD1−β

0 φ

)
(t)+λ

2
γβ φ = 0 (115)

The general solution of eq. (114a) is

ψ(x) = D1 cos(λx)+D2 sin(λx) (116)

where boundary condition (114b) yields D1 = 0, while boundary condition (114c)
yields

sin(λL) = 0 ⇒ λn =
nπ

L
,with n = 1,2,3, .. (117)

The roots λn of relation (117) are the eigenvalues of the associated Sturm-Liouville
problem [48]. As a consequence, the eigenfunctions of the problem are:

ψn(x) = D2 sin(λnx) = D2 sin
(nπx

L

)
(118)

After solving the problem corresponding to the space dimension, the solution for
the time-dimensional problem, namely the fractional differential equation (115),
is requested. Taking the Laplace transform of (115), using formula (78b), gives:

φ̂ (s)s1−β −φ (0)s−β +λ
2
γβ φ̂ (s) = 0 (119)

and then the solution in Laplace domain is:

φ̂ (s) =
φ (0)s−β

s1−β +λ 2γβ

(120)
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the inverse Laplace transform of relation (120) is [7]:

φ (t) = φ (0)E1−β ,1

[
−λ

2
γβ t1−β

]
U(t) (121)

where Eζ ,η(z) is the Mittag Leffler function defined as [49]:

Eζ ,η(z) =
∞

∑
n=0

(z)n

Γ(ζ n+η)
(122)

and U(t) is the Heaviside unit-step function. Relations (118) and (121) can be
combined introducing the constant Dn = D2φ (0) yielding, considering relation
(112), the general solution:

Ψ(x, t) =U(t)
∞

∑
n=1

Dn sin(λnx)E1−β ,1

[
−λ

2
n γβ t1−β

]
(123)

where the constant Dn is defined utilizing the initial condition (111d) and noting
that Eζ ,1 [0] = 1 if 0 < ζ < 1, namely:

Ψ(x,0) = Q(x) =
∞

∑
n=1

Dn sin(λnx) (124)

Relation (124) is the Fourier series expansion of the function Q(x) then, multi-
plying both sides of such relation by sin(λmx) and integrating over the interval
0 < x < L give:

∫ L

0
Q(ξ ) sin(λmξ )dξ =

Dm
∫ L

0 sin2(λmξ )dξ = Dm
L
2 if m = n

0 if m 6= n
(125)

where the property of orthogonality of the eigenfunctions sin(λmx) for arbitrary
eigenvalues λm has been used. Summing up, eq. (125) gives:

Dn =
2
L

∫ L

0
Q(ξ ) sin(λnξ )dξ (126)
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and finally, using relations (110) and (123), the temperature field is obtained as:

T (x, t) = T0 +
∞

∑
n=1

Dn sin(λnx)E1−β ,1

[
−λ

2
n γβ t1−β

]
(127)

Relation (127) can be converted into non-dimensional form by defining the non-
dimensional independent variables, through the dimensional parameters of the
thermal problem, as reported below:

x =
x
L

(128a)

t1−β =
γβ t1−β

L2 (128b)

T =
T −T0

T0−TM
(128c)

λn = nπ (128d)

Some examples of the non-dimensional temperature field are shown in Fig. (25).
Compared to the time-solution exp

[
−λ 2

n γ t
]

of the Fourier heat conduction equa-
tion (β = 0), the solution E1−β ,1

[
−λ 2

n γβ t1−β

]
of the fractional equation (0 <

β < 1) exhibits for small times a much faster rising, and for large times, a much
slower decay. In view of its slow decay, the fractional thermal conduction is
usually referred to as a super-slow process. Accordingly, in Fig. (25) it is seen
that the main feature characterizing the anomalous heat transfer is that the time-
rate of change at which the resulting temperature field reaches a steady behavior
gets higher as the discrepancy from the Fourier law increases. When it comes
to considering how long does it take for the body to achieve thermal steadiness,
the trend shown by anomalous conductors is to employ longer times than Fourier
ones. Indeed, this is exactly the “long-tail memory effect”, due to the power law
thermal memory of such materials.

Transient heat problem in cylindrical coordinates.

In this example a long solid cylinder of radius b, with initial temperature F(r) is
considered. For t > 0, the boundary surface at r = b is insulated; in this case the
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(A) Fourier solution β = 0. (B) β = 0.2

(C) β = 0.4

β=0.2

β=0.4

β=0

0.05 0.10 0.15 0.20 0.25
t

-0.8

-0.6

-0.4

-0.2

T

(D)

FIGURE 25: A), B) and C) Non-dimensional temperature field T−T0
T0−TM

for different value
of the exponent β . All the surfaces have been obtained with n = 10. d) Non-dimensional
temperature field at x= 0.5
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temperature field depends only on the position along the radius r of the cylinder.
The mathematical formulation of the problem is

∂ 2T
∂ r2 +

1
r

∂T
∂ r

=
1
γβ

(
CD1−β

0 T
)
(t) with 0≤ r < b, t > 0, 0≤ β < 1

(129a)

|T |r=0 bounded, ∀t > 0 (129b)∣∣∣∣(CDβ

0
∂T
∂ r

)
(t)
∣∣∣∣
r=b

= 0, ∀t > 0 (129c)

|T |t=0 = F(r), 0 < r < b (129d)

The solution of the problem (129a) with boundary conditions (129b) and (129c)
and initial condition (129d) may be obtained using the method of separation of
variables as in the previous example, namely by assuming a separation of T (r, t)
into space-dependent and time-dependent functions as

T (r, t) = φ (t)ψ(r) (130)

substituting (130) into (129a) and introducing the separation constant λ give:

1
ψ

(
d2 ψ

dr2 +
1
r

d ψ

dr

)
=

1
γβ φ

(
CD1−β

0 φ

)
(t) = −λ

2 (131)

relation (131) is equivalent to the two following differential equations:

d2 θ (r)
d r2 +

1
r

d θ (r)
dr

+λ
2
θ (r) = 0 (132a)

|θ |r=0 bounded (132b)∣∣∣∣d θ

dr

∣∣∣∣
r=b

= 0 (132c)

and (
CD1−β

0 φ

)
(t)+λ

2
γβ φ = 0 (133)
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The general solution of eq. (132a) is:

ψ(r) = M1J0(λ r)+M2I0(λ r) (134)

where Jm is the Bessel functions of the first kind of order m defined as:

Jm(z) =
( z

2

)m ∞

∑
n=0

(−1)n
( z

2

)2n

n! Γ(m+ n+ 1)
(135)

and I0 the Bessel function of the second kind of order zero. Boundary condition
(132b) yields M2 = 0, while boundary condition (132c) produces eigenvalues
from the corresponding transcendental equation:

−M1λJ1(λb) = 0 ⇒ λn with n = 0,1,2, .. (136)

with λ0 = 0. The roots λn of relation (136) are the eigenvalues of the associated
Sturm-Liouville problem [48]. The eigenfunctions of the problem are, conse-
quently:

ψn(r) = M1J0(λnr). (137)

The solution for the time-dimensional problem, namely the fractional differential
equation (133), is given by relation (121). Relations (137) and (121) can be com-
bined introducing the constant Mn = M1φ (0) yielding, and taking into account
relation (130), this leads to:

T (r, t) =U(t)
∞

∑
n=0

MnJ0(λnr)E1−β ,1

[
−λ

2
n γβ t1−β

]
(138)

the constant Mn is defined utilizing the initial condition (129d) and noting that
Eζ ,1 [0] = 1 if 0 < ζ < 1, namely

T (r,0) = F(r) =
∞

∑
n=0

MnJ0(λnr) (139)

Relation (139) is the Fourier series expansion of the function F(r) then, multi-
plying both sides of such relation by J0(λmr) and integrating over the interval
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0 < r < b give:

∫ b

0
F(ξ )J0(λmξ )ξ dξ =

Mm
∫ b

0 J2
0 (λmξ )ξ dξ if m = n

0 if m 6= n
(140)

where the property of orthogonality of the eigenfunctions J0(λmr) for arbitrary
eigenvalues λm has been used. Summing up, eq. (140) gives:

Mn =

∫ b
0 F(ξ )J0(λnξ )ξ dξ∫ b

0 J2
0 (λnξ )ξ dξ

(141)

and finally, inserting relation (141) in (138) the temperature field is obtained as:

T (r, t) =
∞

∑
n=0

MnJ0(λnr)E1−β ,1

[
−λ

2
n γβ t1−β

]
(142)

The non-dimensional temperature field at t = 0 is a linear distribution as:

F(r) = 20r+ 1 (143)

As in the previous numerical example, in Fig. (26) it is shown the non-dimensional
temperature field T (r,t)

F(0) as a function of non-dimensional time t (eq. (128b)) and
non-dimensional radius r = r

b , for different value of the exponent β . Like in the
case of the uniaxial thermal rigid conductor of Fig. (25), the discrepancy from
Fourier’s law manifests itself with higher time-rates and slower time-transients.

Conclusions

In this paper the authors showed that the analysis of the temperature field in an
inhomogeneous rigid conductor with power-law grading of the thermodynamical
parameters yields a power-law time rising of the temperature at the insulated
boundary of the conductor. The order of the power-law is related to the grading
exponent of the physical properties of the conductor and the use of Boltzmann
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(A) Fourier solution β = 0 (B) β = 0.2

(C) β = 0.4
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β=0.2

β=0.4
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FIGURE 26: A), B) and C) Non-dimensional temperature field T (r,t)
F(0) for different value

of the exponent β . All the surfaces have been obtained with n = 10. d) Non-dimensional
temperature field at r= 0.5
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superposition principle for generic histories of the incoming heat flux yields a
temperature-flux relation involving fractional-order operators.

The main idea that a power-law rising appears as a non-homogeneous, non-
stationary flux is established in the conductor has been further expanded in the
paper to yield a fractional-order generalization of the Fourier transport equation.
Indeed, under the assumption of a non-homogeneous, self-similar distribution of
mass micro-structure in any generic volume element of the conductor, a non-
stationary flux at micro-structure level is experienced. In this setting, the as-
sumption of a fractal mass clustering at micro-structural level with an Hausdorff
dimension d yields the same kind of thermal flux, at micro-structural level, as
those experienced with the non-homogeneous macroscopic conductor. As a con-
sequence, the resulting macroscopic relation provides the heat flux by means of
the fractional-order, Caputo’ type, derivative of spatial gradient of the tempera-
ture field with derivation order related to the fractal dimension of the self-similar
assembly as β =

2−d
2

.
The thermodynamic assessment of the introduced fractional-order general-

ization of the Fourier equation has been exploited with the same micro-structure
arguments and more details are reported in a forthcoming paper. The numerical
examples provided show the influence of anomalous conductivity and differen-
tiation order for temperature fields in simple 1D and 2D domains. Indeed the
obtained non-dimensional temperature fields have been compared to the time-
solution of the Fourier heat conduction equation (β = 0).

Results show that the solution of the fractional heat equation (0 < β < 1),
governed by Mittag-Leffler functions, exhibits for small times a much faster ris-
ing, and for large times, a much slower decay. Accordingly, the main property
of the anomalous heat transfer is that the time-rate of change at which the result-
ing temperature field reaches a steady state, becomes higher as the discrepancy
from the Fourier law increases: the thermal steadiness is consequently achieved,
by anomalous conductors, employing longer times than Fourier ones. Such par-
ticular behavior represents the “long-tail memory effect”, due to the power law
thermal memory of such materials.

The proposed fractional-order generalization of the Fourier heat transport
equation is used in the companion paper to formulate the fractional-order linear
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thermoelastic problem.
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ABSTRACT

Objectives: This work aims to shed light to the “thermally-anomalous” cou-
pled behavior of slightly deformable bodies, in which the strain is additively de-
composed in an elastic contribution and in a thermal part. The macroscopic heat
flux turns out to depend upon the time history of the corresponding temperature
gradient, and this is the result of a multi-scale rheological model developed in
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Part 1 of the present study, thereby resembling a “long-tail” memory behavior
governed by a Caputo’s fractional operator. The macroscopic constitutive equa-
tion between the heat flux and the time history of the temperature gradient does
involve a power law kernel, resulting in the “anomaly” mentioned above.

Methods: The interplay between the thermal flux and the elastic and thermal
deformability are investigated for a pinned-pinned truss. This allows for focus-
ing on the effects of the deviation from the Fourier’s law on the thermoelastic
coupling. The full analytical solution of the problem is provided obtaining the
resulting displacement, temperature, and internal axial force. The anomalous
thermal behavior of such slightly deformable system is then investigated, thereby
exploring not only the transient behavior due to its deviation from the Fourier
law, but also by studying a resulting overall measure of energy rate.

Results: All the resulting fields, namely the axial stress, the displacement,
and the temperature are influenced by the thermal and elastic deformability of the
bar. The higher is the deviation from the Fourier-like behavior, the more rapid
becomes the rise in time. This is an intrinsic feature of the anomalous heat trans-
fer, now coupled with an elastic and thermally deformable bar. Another effect
of the deviation from the Fourier behavior is the tendency to reach steady values
in longer times. The higher the value of the anomaly exponent β in [0,1/2) the
slower this becomes.

Conclusions: The space-time modal analysis performed on the fractional-
order system, relying on the balance of linear momentum and on the balance of
energy rate, provides the explicit solutions of the problem. The time evolution
of each spatial mode, for the temperature, for the displacement and for the axial
force, turn out to be characterized by modulated Mittag-Leffler functions. The
higher is the deviation from the Fourier-like behavior for the heat flux, the steeper
is the resulting time-transient of each mode.

Introduction

In [1] the authors raised the most natural question about the physical grounds on
which the fractional-order behavior arises in various contexts (see e.g. [2, 3] etc.).
In particular, it was studied the case of rigid thermal conductors characterized by
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anomalous heat transfer, in which the relationship between the macroscopic heat
flux and the corresponding temperature gradient inherits a power law memory in
time. This has been explained in [1] through a hierarchy of Fourierian rigid heat
conductors across infinite observation scales, thereby resembling a fractal mate-
rial. Essentially, this is equivalent to having a distribution of masses characterized
by a functionally graded hierarchy of thermal conductivities and heat capacity
scaling with a certain power. The latter can be related to the porosity of hierar-
chical media, where the thermal transport encounters obstacles (such as voids and
a rigid solid matrix) that can heavily influence the overall heat diffusion. This is
consistent with the findings in [4], where anomalous time scaling of the thermal
energy has been explained through a statistical approach, thereby characterizing
the evolution of its non-equilibrium excess in a one dimensional conductor. There
the transient behavior of the heat flux has been found to be originated by small
initial excess perturbations of the thermal energy away from equilibrium, thereby
leading to an anomalous diffusion scaling in time like tβ , being β a real number.
Anomalous heat transfer is essentially an averaged, hence macroscopic, transient
phenomenon affected by the scaling discussed above. Anomalous behavior has
been detected in certain materials [5] although often times such materials are
treated as if both their thermal conductivity and specific heat behave non-linearly
with the temperature [6].

Other works have been explaining anomalous heat transfer in rigid bodies
with “billiard-like” models, quantum mechanics (see e.g. [7]), etc. It is worth
noting that what is found about a connection between such methods and the hier-
archical structure of the media exhibiting anomalous behavior, does not bring into
play the scalings of the thermal conductivities and heat capacities at the various
observation scales.

The most natural generalization of the findings in [1] is to allow for a cou-
pled linear thermo-elastic behavior of the material under external actions. This
is surely an approximate way to account for the deformability of bodies whose
macroscopic thermal behavior is not Fourierian. The justification for this ap-
proach resides on the modeling of what happens at each observation scale. As
a first approximation, the chain of rheological systems employed in [1] can be
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thought to be generalized as if associated elastic stiffness present at each obser-
vation scale would generate internal forces entering the energy balance (see e.g.
eqn. (3) in [1]). If, unlike the thermal conductivities and heat capacities, such
stiffnesses would not change with such scales, the overall macroscopic equations
would boil down to linear thermo-elasticity with thermal memory. In physical
terms this may happen whenever the time scales of thermal and mechanical ex-
changes significantly differ at the various observation scales. In a hierarchical
porous material this can be envisioned if stress re-distributions are much slower
than the effects causing the impact between thermally excited particles and gener-
ating the anomalous spread of thermal energy in the solid matrix, as found in [4].
Small deformabilities of hierarchical solids undergoing heat exchanges are then
based on a multi-scale ground. This is missing in all of the known approaches
present in the literature.

Nonetheless, in [8, 9] recent phenomenological fractional-order theories for
three dimensional thermo-elasticity with no such multi-scale origins were formu-
lated and applied. Although in the present treatment the authors will focus on the
space-time evolution of the system by neglecting inertia, a useful and comprehen-
sive review about propagating waves with finite speed in thermoelastic media can
be found in [10]. Here, upon removing the paradox of thermal waves propagat-
ing with infinite speed in Fourier type deformable conductors, the main focus is
about the dynamics of spatially anomalous thermal response of fractal materials.
To the best of authors’ knowledge, a multi-scale rheological explanation analog
to the one given in [1] is not yet available for such a case.

While the anomalous thermal behavior in time has been extensively studied
from the phenomenological and mathematical viewpoint starting from the late
sixties to these days (see e.g. [11–15]), anomalous thermoelastic coupling in
engineering applications still requires thorough investigations. To this end, for
the sake of illustration, a one dimensional anomalous thermoelastic truss subject
to thermal loading and pinned at both ends is examined in the sequel. The full
analytical solution of the problem is provided obtaining the resulting displace-
ment, temperature, and internal axial force. The anomalous thermal behavior
of such slightly deformable system is then investigated, thereby exploring not
only the transient behavior due to its deviation from the Fourier law, but also
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by studying a resulting overall measure of energy rate. The obtained quantity
corresponds to the “thermal work” introduced in [12] and studied later in sev-
eral papers (see e.g.[13–15]), for the first time for rigid conductors with memory.
A more extensive study of a theory for trusses and beams would have to entail
a Saint Venant-type of argument, analog to the one developed in [16] for small
strain viscoelasticity. Future developments of the proposed approach accounting
for material hierarchies within three dimensional geometries in the presence of
coupled multi-physics phenomena (such as in [3, 17], and ref.s cited therein), are
envisioned in a combination between the current approach and the methodologies
developed in [18–20], [21, 22], [23] and [24].

Thermoelastic trusses and anomalous behavior

Anomalous heat conduction and its impact on evolutionary thermoelastic pro-
cesses arising in one dimensional deformable solids are studied in this section.
Wherever it will be not needed, the dependence on x and t in all the fields in-
volved in the treatment will be omitted.

The constitutive equations governing the problem relate to the internal axial
force (N)-strain (ε) response and to the heat flux (q) and temperature gradient
(T,x) behavior. The former entails the usual coupling between the axial internal
force N arising at each cross section of the solid at the current time and the elastic
strain, namely

N = EA(ε−α(T −T0)), (144)

where E is the Young modulus of the material, A is the area of the cross section
of the bar, α is the linear thermal expansion coefficient of the solid, T0 is a ref-
erence temperature and T is the current value of the temperature field. The latter
constitutive equation for the heat flux has been obtained in [1], i.e.:

q = −Kβ

(
CDβ

0+

)
T,x. (145)
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In eq. (2) it is involved the time-fractional Caputo’s derivative of order β ∈ [0,1]
defined as: (

CDβ

0+

)
f =

1
Γ(1−β )

∫ t

0

f ′(τ)
(t− τ)β

dτ (146)

where Γ(z) is the Euler-Gamma function that may be considered as the general-
ization of the factorial function because, when z assumes integer values, it yields
that Γ(z+ 1) = z!.

A general framework for the definition of fractional-order integrals in Sobolev
metric space has been provided in recent mathematical literature [2, 3]. The use
of fractional-order calculus to handle functions defined on fractal subsets has
been reported in terms of the fundamental theorem of integral calculus involving
a corrective series beside values of the primitives at the borders of the integrals
[4].

The fractional operator in eq. (146) is the result of the multi-scale rheological
model developed in Part 1 of the present study, thereby accounting for a “long-
tail” memory behavior.

In eq. (146) it is considered the definition of the Caputo’s left fractional
derivative (following [25]), for which the integral lower terminal 0 is kept fixed,
and the upper terminal t is varied, with 0 < t. However, it is also possible to
consider Caputo’s right fractional derivatives with moving lower terminal t and
fixed upper terminal 0.

From a physical point of view, if the function f (t) represents the present
state of a time-evolving dynamical process started at the instant t = 0, then the
left derivative is an operator performed on the “past” states f (τ) of the process
being τ < t, while the right derivative relies on its “future” states f (τ) being
τ > t. Given such considerations, causality principle is satisfied by left derivative
definition.

In this section the authors are interested in analyzing the impact of the anoma-
lous heat transfer and of the deformability in the quasi-static thermo-mechanics
evolution of the system. This is characterized by the main unknown fields u and
T , namely the axial displacement of cross sections of the truss and the tempera-
ture, respectively.
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Standard compatibility between strain and displacement reads as follows

ε = u,x , (147)

and it will be accounted for in the sequel. In the absence of accelerations, balance
of linear momentum implies:

N,x +ρ p = 0 (148)

where ρ is the density of the material per unit length and p is the (distributed)
axial external load. Balance of energy must further be imposed, namely:

q,x = Q− (ρcvT,t +T0αEAε,t), (149)

where Q is the heat flux source term, cv is the thermal capacity of the material at
constant volume. The whole term included in the brackets on the right hand side
of such equation represents a specific enthalpy per unit length of the system. Re-
lation (149) has been obtained in the paper by [9]. In that work, the authors start
from the first law of thermodynamics (eq. 2.6) and from the balance equation of
entropy density (eq. 2.7) subsequently linearized (eq. 2.27). The authors com-
bine them and, after some manipulations, they obtain eq. 2.28 that is equivalent
to eq. (149).

Thermo-mechanical coupling arises only through (144), namely the constitu-
tive equation for N, and through (145), the balance of energy rate. Indeed, the
employed constitutive equation for the anomalous heat conduction (145) does not
involve any contribution coming from the mechanics. Substitution of (147) into
(144) and then in (148) yields

EA(u,xx−αT,x)+ρ p = 0, (150)

while (145) into (149) delivers

Kβ

(
CDβ

0+

)
T,xx−ρcvT,t−αEAT0u,tx +Q = 0. (151)
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The obtained coupled system of nonstandard linear Partial Differential Equations
(PDE) will be studied in the sequel for the case in which no sources terms ρ p and
Q are present.

In order to illustrate the outcomes of the anomalous thermo-elasticity, the
same initial temperature profile assumed in [1] is considered, namely:

T (x,0) = T0 + 4(T0−Tm)
x
L

( x
L
−1
)

. (152)

The corresponding displacement u(x,0) is then reconstructed through the balance
of linear momentum (150). Indeed, if p = 0, upon integrating (150) twice with
respect to x, the initial displacement profile takes the following form:

u(x,0) =C0 +C1x+ 4α
T0−Tm

L

(
x3

3L
− x2

2

)
, (153)

where C0 and C1 are arbitrary constants.
It is not difficult to show that one way to solve the problem is to eliminate

one of the two fields, thereby obtaining a higher order on the remaining function
equation. To this end, T will be eliminated and a resulting governing equation for
u will be found.

On obviously integrating (150) with respect to x, the axial internal force N

turns out to depend on t alone. Hence N = N̂(t) takes the following expression

N̂(t) = EA (u,x(x, t)−α (T (x, t)−T0)) (154)

thereby implying that there will be cancellation on the x-dependence of u,x and T .
For the sake of illustration, the following boundary conditions will be assumed
for the temperature:

T (0, t) = T (L, t) = T0 (155)

which are the same as in [1], eq.s (49b,c).
Various sets of boundary conditions can be explored. Here the pinned-pinned

case and the pinned-free case will be considered.
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Pinned-pinned case. This case arises when both ends are fixed in time, namely
when

u(0, t) = u(L, t) = 0. (156)

Obviously this is a (quasi) statically undetermined problem, i.e. the time evolving
internal normal force is not known a-priori and it must be determined through
the full solution of the governing equations. The corresponding values of the
constants appearing in (153) are the following:

C0 = 0 and C1 =
2
3

T0−Tm

EA
L (157)

Pinned-free. In this case one end of the bar is set free. This is a (quasi) static
determinate problem and, if no external force is applied, then there is no normal
force arising in any of the cross sections of the bar. The evolution of the “stress-
free” movements and heat flux of the system can be determined by imposing
N = 0 and either of one of the two conditions (156), e.g.

u(0, t) = 0, and N̂(t) = 0. (158)

Hence, by (153) and substituting (152) into (154) and imposing (158) give:

C0 = 0 C1 = 0 (159)

By substituting the results in the balance of energy rate (149), it is found that
the following PDE must be verified:

Kβ

1
α

(
CDβ

0+

)
u,xxx−

(
ρcv

α
+α E AT0

)
u,tx = ρcv N,t(t). (160)

For the pinned-free case it is obtained that the right-hand side is zero and (160)
already represents the governing field equation for the displacement. Further
differentiation of the latter relationship with respect to x allows for finding the
governing PDE for the displacement in general, including the case of (quasi)
static undetermined bar. This is the equation that will be studied in the sequel.
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For this purpose, the auxiliary function ν , defined as follows, is introduced:

ν := u,xx (161)

and hence the corresponding resulting field equation becomes:(
CDβ

0+

)
ν,xx−δ ν,t = 0, (162)

after setting
δ
−1 =

γβ

1+
α2 E AT0

ρcv

. (163)

where γβ :=
Kβ

ρcv
has been introduced in [1] Sect.4.1.

The behavior of rigid thermal conductors can be retrieved by simultaneously
letting α (the linear dilation factor) and E A (the axial rigidity) to tend to zero and
to infinity respectively, and by requiring that lim α→0

E A→∞

α2 E A = 0.
Relation (162) is formally analogous to the governing equation of the anoma-

lous heat conduction obtained in [1] eqn. (49a), namely(
CDβ

0+

)
T,xx−δ T,t = 0. (164)

Nevertheless the solution for such PDE obtained there is not suitable for the
case under investigation, as neither the boundary conditions nor the initial ones
(49b,c,d) are directly applicable to the function ν = u,xx. Nonetheless, the tech-
nique used to solve the above mentioned problem is obviously applicable in this
case. This is based on space-time eigenmodes series expansions for both T and
u in the separated variables form for solving the original coupled system (150),
(151), namely:

T (x, t) = T0 +
+∞

∑
m=1

fm(t)gm(x) (165)

u(x, t) =
+∞

∑
m=1

vm(t)wm(x). (166)
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Henceforth, an ansatz for ν in agreement with (165) and (166) is assumed as
follows

ν(x, t) =
+∞

∑
m=1

vm(t)zm(x), (167)

where zm(x) := w
′′
m(x), where

′′
indicates double differentiation with respect to

x. Substituting such expression in (162) and imposing its validity term-by-term,
does lead to the following set of two ordinary differential equations:

1
δ

z
′′
m(x)

zm(x)
=

v̇m(t)(
CDβ

0+

)
vm(t)

= −K−2
m , (168)

where ˙ denotes differentiation with respect to time, and K2
m is arbitrary, to be

determined by solving the associated eigenvalue problem. To this end, eq. (168)
leads to the following expression for zm:

zm(x) = am cos(ωmx)+ bm sin(ωmx), (169)

where
ω

2
m := δ K−2

m (170)

and hence, because w
′′
m = zm, the following expression for the spatial m-mode of

u is obtained:

wm(x) = cm cos(ωmx)+ dm sin(ωmx)+ hmx+ lm. (171)

It is worth noting that this function carries the dimension of length, hence vm is
dimensionless. The second equation in (168), namely(

CDβ

0+

)
vm(t)+K2

mv̇m(t) = 0, (172)

represents the associated fractional-order homogeneous initial value problem for
vm. Of course ωm appearing in (169), (170) and (171) can be determined through
the boundary conditions on the displacement and, hence, Km will follow accord-
ing to relation (169).
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Although eqn. (172) is nonstandard, it can be solved as in the case of anoma-
lous heat transfer in rigid conductors, treated in [1]. There such equation has been
recast in the following form:(

CD1−β

0+

)
vm(t)+K−2

m vm(t) = 0. (173)

Its solution has been shown to be represented as follows:

vm(t) = E1−β ,1

(
−K−2

m t1−β

)
, (174)

where E1−β ,1 is the Mittag-Leffler function of order (1−β ,1). Without loss of
generality the time amplitude in (174) is set equal to 1, as the coefficient modulat-
ing each mode will be computed through a Fourier expansion technique starting
from the initial data (153).

A sufficient condition for (154) is that such relation is verified term-by-term,
namely:

EA (w
′
m(x)vm(t)−α gm(x) fm(t)) = N̂m(t), (175)

where N̂m(t) represents the contribution of the mth-mode of the axial force. Upon
differentiating the last relation with respect to x it is found that:

w”
m(x)vm(t)−α g

′
m(x) fm(t) = 0, (176)

and hence the following two equations are obtained

w”
m(x)

α g′m(x)
=

fm(t)
vm(t)

= λm, (177)

where λm are real constants. It is worth nothing that such relations do force the
spatial modes for the strain gradient u,xx and for the temperature gradient T,x to
be the same.

Because of (171) and (177) the spatial form of the temperature takes the form:

gm(x) =
1

α λm
ωm [−cmsin(ωm x)+ dmcos(ωm x)+

hm + pm

ωm
]. (178)
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This comes from the balance of linear momentum (150), bearing in mind (166)
and (171), and also the fact that

g′m(x) =
1

α λm
w”m(x). (179)

Integration of the last equation yields:

gm(x) =
1

α λm
(w′m(x) + pm) , (180)

where pm has the meaning of a constant modal elastic strain. Indeed, revisiting
(175) and knowing (180) and (171) give:

N̂m(t) = EA(w
′
m(x) − α λm gm(x))vm(t) = −EA pm vm(t). (181)

Because of (174), at the beginning of the evolution of the system it yields that

N̂m(0) = −EA pm, (182)

which explains why pm is a constant elastic modal strain. Obviously, no axial
force could develop in the bar if either each pm would be identically zero or if

∑
∞
m=0 pmvm(t) = 0.

As it was previously pointed out, the path for determining the eigenvalues
ωm is based on the boundary conditions. The system is mechanically over-
constrained. The problem is then treated in a standard way, by first removing
the extra constraint and by studying a pinned-free truss undergoing the same ini-
tial conditions of the original problem. Then two cases will be considered with
the idea of eventually superimposing their effects.

Case (0) The initial distribution of temperature and its corresponding initial
displacement field will be taken to act on the pinned-free bar: here it is expected
the modal strains p(m)

0 are zero as there is no axial force.
Case (1) Because of the extra constraint, an unknown axial force arises within

the bar: this is the only thermo-mechanical load acting in this case.
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Once the separate effects of those two cases will be worked out, the require-
ment for which the displacement at both ends is inhibited by the original con-
straint will be enforced, thereby owing the value of the axial force and the com-
plete solution of the problem. The two cases are now examined in details.

Case zero: Pinned-free system undergoing the initial
distributions of temperature and displacement

This corresponds to the boundary conditions (158). All the quantities relative
to this case are re-labeled with the superscript (0). Upon applying (158) term
by term to the functions w(0)

m and g(0)m introduced above, the following set of
equations to be satisfied is obtained:

w(0)
m (0) = 0 w(0)′

m (L) =
1
α

g(0)m (L)

(183)

g(0)m (0) = 0 g(0)m (L) = 0,

from (158), (155), and (165) respectively. From (171) and (183) the following
relations hold:

c(0)m = −l(0)m d(0)
m +

h(0)m + p(0)m

ω
(0)
m

= 0 (184)

and hence (183)2 and (183)3 become:

−c(0)m sin(ω (0)
m L)+ d(0)

m cos(ω (0)
m L)+

h(0)m + p(0)m

ω
(0)
m

= 0

−c(0)m sin(ω (0)
m L)+ d(0)

m cos(ω (0)
m L)+

h(0)m

ω
(0)
m

= 0. (185)

The last two equations imply that the modal strains p(0)m must vanish, i.e.

p(0)m = 0, (186)
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and, hence, (184)2 yields
h(0)m = −ω

(0)
m d(0)

m . (187)

Back substitution of (184)1, (186) and (187) on either of the (185) yields an ho-
mogeneous problem which is verified if either of the following three conditions
hold:

sin(ω (0)
m L) = 0andcos(ω (0)

m L) = 1, ∀c(0)m , d(0)
m =⇒ ω

(0)
m L = 2(m−1)π (188)

c(0)m = 0 and hence cos(ω (0)
m L) = 1 hence ω

(0)
m L = 2(m−1)π (189)

d(0)
m = 0 and hence sin(ω (0)

m L) = 0 hence ω
(0)
m L = (m−1)π (190)

for all integers m. In order to determine which of the three possibilities itemized
above occurs, one need to appeal to the initial data of the problem. Indeed, upon
applying the standard Fourier procedure, and by taking into account relations
(186), (187) and (184)2, together with the initial data (152) and (153) yields:

c(0)m = 0, (191)

while d(0)
m is certainly non-zero. Henceforth, the mth-mode for the temperature

takes the following form

g(0)m (x) = T (0)
m (cos(ω (0)

m x)−1), (192)

where ω
(0)
m = 2(m−1)π

L and after setting

T (0)
m =

ω
(0)
m d(0)

m

α λm
. (193)

Summing up the pinned-free case, the displacement and temperature fields
take the following forms:

u(0)(x, t) =
∞

∑
m

d(0)
m

(
sin(ω (0)

m x)−ω
(0)
m x

)
E1−β ,1

(
−ω

(0)2
m

δ
t1−β

)
(194)
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T (0)(x, t) = T0 +
∞

∑
m

λmT (0)
m

(
cos(ω (0)

m x)−1
)

E1−β ,1

(
−ω

(0)2
m

δ
t1−β

)
, (195)

after making use of (177)2, relating the time dependence of the mth-mode of the
temperature and the one of the displacement.

The coefficients T (0)
m are determined, again, by standard Fourier procedure.

Upon integrating both sides of T (0)(x, t)−T0 multiplied against cos(ω (0)
m x) over

the length of the bar, it is found that:

λmT (0)
m =

2(T0−TM)

π2(m−1)2 , m≥ 2. (196)

As expected, the higher is the order of the spatial mode the lower is its contribu-
tion to the temperature. The amplitudes of the modal displacements are evaluated,
in an analogous way, through relation (194), to get:

d(0)
m =

α(T0−Tm)L
(π(m−1))3 , (197)

Again, it is obtained that the higher is the order of the spatial mode the lower is
its contribution to the total displacement field.

Case one: Pinned-free system undergoing boundary axial
forces only

The pinned-free body is now analyzed as if it would be subject to the sole un-
known axial forces arising at the boundary because of the extra constraint present
in the original system. Each mode contributes to such a force with its component,
denoted by Xm. The initial conditions for Case 1 are then the following:

T (1)
m (x,0) = 0 and N(1)

m (x,0) = Xm, (198)

where the suffix (1) emphasizes the fact that Boundary conditions(183)1 are re-
placed as follows:

w(1)
m (0) = 0 and w(1) ′

m (L) =
Xm

E A
, (199)
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while (183)2 still remain valid as they are. It is straightforward to show that the
boundary conditions, the initial conditions and the usual Fourier procedure yield
the following results:

ω
(1)
m L = ω

(0)
m L = 2(m−1)π , l(1)m = c(1)m = d(1)

m = 0 , h(1)m = −p(1)m =
Xm

E A
.

(200)

The pinned-pinned case

Per each index m, the overall spatial mode is the result of the superposition of
w(0)

m (x) and w(1)
m (x), namely

wm(x) = d(0)
m sin(ω (0)

m x) +
(

Xm

E A
− d(0)

m ω
(0)
m

)
x. (201)

By imposing the requirement due to the pinning at x = L at all times, namely
wm(L) = 0, and by recalling that sin(ω (0)

m L) = 0, the value of the modal axial
force Xm is obtained as follows:

Xm = E Aω
(0)
m d(0)

m =
2α E A (T0−TM)

π2(m−1)2 , m≥ 2. (202)

It is worth noting that, as expected, the series of the normal force amplitudes does
converge as ∑

∞
2 (m−1)−2 = π2/6 and, hence, at t = 0 it holds that

N̂(0) =
α E A (T0−TM)

3
. (203)

Because of the fact that time-decaying functions multiply of each term of both
the temperature and of the displacement, relations (181) reads as follows:

N̂(t) = 2α E A (T0−TM)
∞

∑
m=2

1
π2(m−1)2 E1−β ,1

(
−4π2(m−1)2

δ
t1−β

)
,

(204)
after making use of (202), (200) and (174). This does imply that the axial force is
certainly decaying in time, thereby keeping its value always bounded and even-
tually fully relaxing.



132

Relations (201) and (202) imply that the mth mode for u is purely sinusoidal,
and hence the final displacement takes the following form:

u(x, t) = α(T0−Tm)L
∞

∑
m=2

1
π3(m−1)3 sin

(
2(m−1)πx

L

)
×

× E1−β ,1

(
−4(m−1)2π2

L2δ
t1−β

)
.

(205)

For the spatial modes of T , (192) and the results above are considered to yield
the following expressions for the temperature:

T (x, t) = T0 + 4(T0−TM)
∞

∑
m=2

1
π2(m−1)2

(
cos
(

2(m−1)π x
L

)
−1
)
×

× E1−β ,1

(
−4(m−1)2π2

L2 δ
t1−β

)
.

(206)

Here, eq. (193) is used along with the fact that, actually, the λm arising in
(177) do not depend on the circumstance that either of the cases 0 or 1 are exam-
ined.

It is worth noting that a non-anomalous behavior can be achieved by letting
β → 0. The result does not affect the spatial modes of neither the displacement
nor of the temperature.

Thermal “work” and measures of available energy
rate and dissipation

The localized form of the balance of energy rate (149) can be used for further
investigating the sources of dissipation and recovery of such rate. This can be
done by multiplying both sides of such equation by the rate of change of tem-
perature at which the line density q,x of heat flux arises, and by integrating over
time and over the length of the bar. This gives an instantaneous measure of how
much thermal “work” is done on the bar thanks to heat transfer and mechanical
actions. Indeed, integration by parts in space and boundary conditions yields the
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following expression of the overall balance equation:

∫ t

0

∫ L

0
qT ,t x dxdt = −

∫ t

0

∫ L

0
(ρcv +(αEA)2T0)T 2

,t dxdt +

−
∫ t

0

∫ L

0

N,t
E A

T ,t dxdt.
(207)

The interpretation of such quantity is that this is a space-time global measure of
the direct expenditure of the heat flux against the gradient of the temperature rate.
The dimension of such a quantity is F Lt−1 T , hence it represents a power times
a temperature.

The quantity on the left-hand side generalizes an idea of [11, 26] for rigid
thermal conductors, specialized by [12] in the presence of thermal memory. This
also corresponds to eq.n (4.3) obtained in [14]. Nonetheless, in the present treat-
ment the elastic deformability of the bar explicitly manifests itself in the second
term on the right-hand side of (207), besides having an effect on the expressions
of T and N, as it has been highlighted in the previous section.

The case under study has a very special form of memory in time, regulated
by the power law t−β . One can show that in the absence of a heat source within
the bulk (so that the first term in (6.3) in [12] vanishes), the thermal “work” done
by the heat flux given by (145) can be defined as follows:

wT (t) := −
∫ t

0

∫ L

0
q (T,x),τ dxdτ . (208)

By appealing to Fubini’s theorem to interchange the order of integration, and
substituting (145) in the expression above, after some calculations the following
expression for the thermal work are obtained

wT (t) =
Kβ

Γ(1−β )

∫ L

0

∫ t

0

∫
τ

0

T,x(x,τ),τ T,x(x,ρ),ρ
(τ−ρ)β

dρ dτ dx. (209)

It is worth remarking that (208) is a general notion and its definition (easily gener-
alizable to three dimensions) does not depend on the specific solution of the Initial
Boundary Value Problem under consideration. Of course neither from (207) nor
from this latter expression of the overall balance of energy rates clearly appears
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which fraction of wT (t) gets dissipated and which one is actually at the disposal
of the thermoelastic processes available for the system.

Indeed, the direct inspection of the right-hand side of (207), which only de-
pends on the fact that it is considered a thermoelastic truss with thermal memory
coming from the multi-scale procedure derived in [1], does not directly enable
one to understand if part of this global energy rate gets dissipated. In order to
shed light on this issue, the authors note the formal analogy of the integrand in
(208) (or (209)) and with the product σ ε̇ in relation (22) of [27]. Indeed, by
setting

G(t) := −
Kβ

Γ(1−β )
t−β , (210)

upon formally identifying q with σ and T ,x with ε in such a relation, it holds

q (T ,x ),t = ψt(x, t) + D(x, t), (211)

where

ψ(x, t) = − 1
2

∫ t

0

∫ t

0
G(2t−τ1−τ2) (T ,x ),t(x,τ1) (T ,x ),t(x,τ2)dτ1 dτ2. (212)

After some calculations, it is possible to show that the rate of change of such ψ

takes the following form:

ψ ,t (x, t) = q (T ,x ),t+

+
1
2

∫ t

0

∫ t

0
Ġ(2t− τ1− τ2) (T ,x ),t(x,τ1) (T ,x ),t(x,τ2)dτ1 dτ2.

(213)

Finally, by making use of (210), the associated specific measure of “dissipation
rate” (per unit length and per unit time) turns out to read as follows

D(x, t) = −
β Kβ

2Γ(1−β )

∫ t

0

∫ t

0
(2t− τ1− τ2)

−(β+1)×

× (T ,x ),t(x,τ1) (T ,x ),t(x,τ2)dτ1 dτ2.
(214)

It is worth nothing that ψ(x, t) is the analog of the free energy (21) in [27], which
turns out to be in the form of Stavermal and Schwarzl. The rate of change of this
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last quantity represents the part of the thermal work that can be at the disposal
of the body, while (214) gives the measure of the rate of dissipation during the
thermo-mechanical loading of the bar. This is of particular interest as its overall
value

DT (t) :=
∫ t

0

∫ L

0
D(x,τ)dxdτ (215)

will tell us how much of wT (t) gets dissipated. Indeed, upon integrating (211) on
space and time the following equation arises:

wT (t) = ψT (t)+DT (t), (216)

where the overall measure of energy rate ψT takes the form:

ψT (t) =
∫ L

0
ψ(x, t)dx =

=
256π2Kβ (T0−TM)2

L5 δ 2 Γ(1−β )

∞

∑
m=2

(m−1)2
∫ t

0

∫ t

0

(τ1τ2)−β

(2t− τ1− τ2)β
×

× E1−β ,1−β

(
−4(m−1)2π2

L2 δ
τ

1−β

1

)
×

× E1−β ,1−β

(
−4(m−1)2π2

L2 δ
τ

1−β

2

)
dτ1dτ2.

(217)

This global measure has been evaluated in analogy with the definition (215).
Interchanging the order of integration can be done thanks to Fubini’s theorem,
which requires enough smoothness to do so. The correspondent measure of the
overall thermal work is evaluate in full analogy with ψT , to get

wT (t) =
512π2Kβ (T0−TM)2

L5 δ 2 Γ(1−β )

∞

∑
m=2

(m−1)2
∫ t

0

∫ t

0

(τ1τ2)−β

(t− τ2)β
×

× E1−β ,1−β

(
−4(m−1)2π2

L2 δ
τ

1−β

1

)
×

× E1−β ,1−β

(
−4(m−1)2π2

L2 δ
τ

1−β

2

)
dτ1dτ2.

(218)

A direct inspection of the series expansion of each term of the integrand in the
latter expression shows that wT (t) has a finite value only for β < 1/2 (this agrees
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with the fact that the original range for β is [0,1) and with the convergence of the
resulting singular integral). The finiteness of the global thermal work limits the
degree anomaly that the heat flux can exhibit. In terms of multi-scale rheological
models, there is a purely mechanical analog in [27] - Sect. 4.1, although there the
value 1/2 can be achieved. This result has a direct consequence on the partition
of the thermal work, thereby ensuring that both DT (t) and ψT (t) are finite in the
same range.

Discussion

The detailed analysis performed above and the related investigation about the
global measures of the thermo-mechanical work, energy and dissipation rates
allow one for comparing the consequences of anomalous heat transfer in (one
dimensional) deformable bodies.

All the resulting fields, namely the axial stress (204), the displacement (205),
and the temperature (206) are influenced by the thermal and elastic deformabil-
ity of the bar. Two effects, namely (i) the deformability and (ii) the emerging
deviation for the Fourier behavior, can be analyzed separately in the sequel.

• (i) Once β = 0 is considered, namely the latter case, and the temperature
distributions (206) and (65) in [1] are compared (see Figure 27) a notice-
able difference in their time behavior is reported. The non-dimensional
times with respect which the fields for deformable versus rigid conductors

are plotted are td := δ−1t1−β

L2 and tr :=
γβ t1−β

L2 , respectively. In particular, a
very significant influence on the thermal and elastic deformability on the
time-rise of the temperature is detected. Indeed, from (163), because of the
thermal and of the mechanical deformability, it is seen that the time depen-
dence of the temperature (206) gains a scaling factor always less than or
equal than 1, thereby reducing the value of the argument of the time modu-
lating function E1−β ,1

(
−4(m−1)2π2

L2 δ
t1−β

)
|β=0 = exp−( 4(m−1)2π2γ0

L2 (1+α2EAT0/ρcv)
)t

for each mode. These then leads to a higher magnitudes of such modulating
functions relative to the case of rigid conductors. For the only sake of illus-
tration, numerical data such as ρ = 7860 Kg

m3 , CV = 502 J
Kg◦C , K = 30 W

m◦C ,
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(A) deformable conductor (B) rigid conductor

FIGURE 27: Non dimensional temperature fields T−T0
T0−TM

for β = 0. All the surfaces have been
obtained with n = 20

α = 12 · 10−6 1
◦C , E = 220GPa , T0 = 125◦C and TM = 25◦C have been

implemented to investigate the effects of the deformability.

An interpretation of this outcome can simply be related to the fact that in
the current study the bar is fully thermoelastic, which implies that there is
a continuous feedback between the temperature gradient and its rates and
the strain rate itself. The redistribution of temperature and displacement is
indeed due to the interplay between the balance of energy rate and the one
of linear momentum. Within the former, (149), the heat flux (line) density
has an extra forcing supply term, which is driven by the total strain rate,
given by the sum of its elastic and thermal parts (e.g. (148)). This extra
supply rate then triggers a faster temperature raise with respect to the case
of rigid conductors, where neither the thermal nor the elastic dilatation can
take place.

• (ii) The influence of the deviation from the Fourier behavior of deformable
conductors is summarized by comparing Figures 28a and 28b with the out-
comes of Figure 27a. While the rapid rise in time to a regime value it is
still seen here, the higher is the deviation from a Fourier-like behavior, the
more rapid that rise gets. This is indeed an intrinsic feature of the anoma-
lous heat transfer, now coupled with an elastic and thermally deformable
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FIGURE 28: a) and b) Non dimensional temperature fields T−T0
T0−TM

for deformable conduc-
tors with different values of β , equal to β = 0.2 and β = 0.4 respectively; all the sur-
faces have been obtained with n = 20 c) Time evolution of non-dimensional axial force

N̂
αE A(T0−TM)

d) Time evolution of non-dimensional temperature fields at x= 0.5
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bar. Another effect of the deviation from the Fourier behavior is the ten-
dency to reach steady values in longer times. The higher the value of the
anomaly exponent β in [0,1/2) the faster this becomes. In particular, for
higher values of β the temperature tends to reach T0. This effect is more
visible in the time evolution of the associate axial force, namely in Fig-
ure 28c and it is a consequence of the “long-tail memory” effect, a feature
of a power law behavior given by (210). Indeed, as it is well known, the
constitutive relation (145) for the heat flux can be recast as

q(x, t) =
∫ t

0
G(t− τ)(T ,x ),τ (x,τ)dτ , (219)

where the “relaxation function” G is given by (210).

A comparison among the different landscapes obtained for the displacement
field for the three values of β mentioned above suggests a similar trend in terms
of its time evolution (see Fig (29)). In fact, the higher is the discrepancy against
the Fourier behavior the more pronounced is the long-tail effect on settling to a
stationary value, which in this case is actually zero. Spatially, the resulting odd
fluctuations relative to the midpoint of the span is essentially governed by the
initial condition on u, a result of the balance of linear momentum.

The most interesting features of the anomalous thermoelastic coupling for
bars comes from the comparison of the global measures of the “thermal work”
wT , of the available energy rate ψT and the dissipation rate DT , (209), (217) and
(215) respectively. Both for the rigid and for the deformable Fourier-like cases,
a smooth monotonically increase of (non-dimensional) thermal work W , defined
in Figures 30 and 31a respectively, is noted. For rigid conductors there is a
smoother increase with respect to deformable ones with no appreciable asymptote
before t ' 0.5 and with the corresponding value of W ' 2 ·10−3. On the contrary,
for deformable conductors a steady value (circa 0.7) is achieved at t ' 0.10 (see
Figure 31), where t := td = δ−1t1−β

L2 . The higher values and the sharper time rise
of W , a quadratic operator involving the rate of change of temperature gradients,
is primarily due to the fact that much higher rates of temperature gradient are de-
tected in the deformable case, as Figure 27 shows. In both cases there is a perfect
equi-partition of the quotas of ψT and DT (which in the figures are replaced by
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(A) β = 0 (B) β = 0.2

(C) β = 0.4 (D) Displacement time evolution at x = 0.25

FIGURE 29: Displacement fields for deformable conductors with different values of β .
All the surfaces have been obtained with n = 20

W

Ψ

D

0.1 0.2 0.3 0.4 0.5
t

0.0005

0.0010

0.0015

0.0020

FIGURE 30: Rigid conductors: non-dimensional thermal work W , non-dimensional en-
ergy rate Ψ and non-dimensional dissipation rate D=W -Ψ along with non-dimensional
time t, for β = 0
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FIGURE 31: Deformable conductors: non - dimensional thermal work W , non - dimen-
sional energy rate Ψ and non - dimensional dissipation rate D=W -Ψ along with non-
dimensional time t, for different values of β
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their corresponding non-dimensional counterparts Ψ and D) in which the thermal
work is decomposed.

This fits in a striking formal analogy with linear elasticity, as β = 0 implies
q =−K0T ,x like N = EAε for the latter case. In [28] it is seen as this results from
a smart re-visitation of Clapeyron’s theorem for three dimensional linear elastic-
ity. This has been rendered free of the paradox that no dissipation would have
occurred even if the total work is twice the value of the strain energy at the final
values of the strain in an underlying loading process. A (rate-type) viscoelastic
term allowed there to consider the effect of slow loading processes, thereby re-
trieving the asymptotic value of the overall dissipation and matching the other
missing half of the work.

Signatures of the thermal anomaly are seen in the thermal work and in the
available energy and dissipation rates. First of all, it is noticeable that the higher
the value of β the more the thermal work exhibit a discrepancy with respect to
the Fourierian case. Furthermore, a deviation from equipartition between ψT and
DT is also detected, thereby indicating that this global measure of rate dissipation
rises due to the deviation from the Fourier behavior. Anomaly then introduces a
further source of dissipation, most likely due to the fact that the scaling of q like
t−β resembles an hierarchy of thermal properties, as explained in [1], enhancing
the possibilities of dissipating energy at the various scales. A change in signature
is noticeable for β = 0.2, for which a softening is exhibited by W after t ' 0.025,
while a plateau is then reached at W ' 0.95. The rising of the thermal work in
time is analog to what it has been discussed above to the temperature, essentially
characterizing the response of the anomalous thermo-mechanics evolution of the
system under study.

A further extreme behavior for all the quantities W , Ψ and D is recorded for
β = 0.4. Here the time rise becomes almost immediate, as for the corresponding
temperature (see Figure 28b), and the softening behavior essentially dominates
their trend. The discrepancy between the global dissipation rate D and the cor-
responding Ψ becomes more pronounced, thereby confirming the trend noticed
before. Henceforth, the more the heat flux deviates from the standard Fourier
behavior the higher is the likelihood of having further dissipation during the ther-
moelastic evolution of the system.
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A modal decomposition of the global measures of energy rates is reported in
Figure 32. As expected, the global measures of work, energy and dissipation rates
are heavily guided by the first mode, given by m = 2, which hence gives a qual-
itative idea about the global measures of energy rate response of the anomalous
thermoelastic system. Given the importance of the conclusions drawn above, a
comprehensive thermodynamic analysis should be performed to investigate how
the deviation from the standard Fourier behavior influences the performances of
such systems. This is the subject for further thorough investigations involving re-
fined measures of the actual entropy rate, that should be calculated starting from
the multi-scale rheological scheme introduced in [1].

Conclusions

In the present work the “fractional thermally-anomalous” coupled behavior of
slightly deformable bodies is studied. The mentioned “anomaly” originates from
the relation among the macroscopic heat flux and the time history of the tem-
perature gradient, that involves a “long-tail” memory behavior, governed by a
Caputo’s fractional operator. Indeed, the macroscopic constitutive equation be-
tween the heat flux and the time history of the temperature gradient does involve a
power law kernel, and it is the result of a multi-scale rheological model developed
in Part 1 of the present study.

For the sake of illustration, the interplay between the thermal flux and the
elastic and the thermal deformability are investigated for a pinned-pinned truss.
Given the simplicity of the system geometry, together with the richness of the
arising axial stress, this allows for focusing on the effects of the deviation from the
Fourier’s law on the thermoelastic coupling. Results show that the interactions, in
such simply geometry, are fully coupled as the temperature and the displacement
fields mutually influence one another.

A space-time modal analysis performed on the fractional-order system, rely-
ing on the balance of linear momentum and on the balance of energy rate, pro-
vides the explicit solutions of the problem. The time evolution of each spatial
mode, for the temperature, for the displacement and for the axial force, turn out
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to be characterized by modulated Mittag-Leffler functions. The higher is the de-
viation from the Fourier-like behavior for the heat flux, the steeper is the resulting
time-transient of each mode. The influence of the deformability on the one hand,
and of the discrepancy from the Fourier behavior on the other hand, are thor-
oughly analyzed for the three fields mentioned above.

Measures of the overall “thermal work”, and of the associate available and
dissipation energy rates are evaluated, both mode-by-mode and globally, enabling
the characterization of the coupled response of anomalous thermoelastic trusses.
Besides determining the range of admissible discrepancies from the Fourier be-
havior, such quantities are shown to fully reveal the manifestation of the thermal
anomaly together with the effects of the elastic and thermal deformabilities.
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components
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Influence of meso-structure and
chemical composition on FDM
3D-printed parts *

G. Alaimo1, S. Marconi1, L. Costato1, F. Auricchio 1

ABSTRACT

Objectives: In this study we focus on mechanical properties of Fused Depo-
sition Modeling (FDM) 3D-printed objects. We studied the influence of extruded
filament dimensions and chemical composition on mechanical behavior of FDM
objects made of Acrylonitrile Butadiene Styrene (ABS) polymer.

Methods: The influence of filament dimension and chemical composition
on mechanical behavior is studied varying fiber orientation with respect to the
loading direction. All aspects are investigated through experimental campaigns:
meso-structure influence, i.e. fiber thickness and width is tested on the same
material, while chemical composition impact is tested using the same meso-
structure.

Results: We verified that FDM ABS specimens show anisotropic mechanical
properties since they vary with filament extrusion direction. Accordingly, Clas-
sical Lamination Theory (CLT) and Tsai-Hill yielding criterion were found to be
well capable of predicting in-plane stiffness and strength of FDM specimens.

*Published on Composites Part B: Engineering, 2017, Vol. 113, pp 371-380
1Dept. of Civil Engineering and Architecture, University of Pavia, Via A. Ferrata 3, 27100

Pavia, Italy
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Conclusions: We assessed that, varying chemical composition and filament
dimensions, it is possible to tune fiber properties and fiber-to-fiber bonding and,
consequently, the overall mechanical properties at macro-scale, in particular the
yielding strength and the strain at failure. The experimentally obtained data are
useful to calibrate mechanical models to be used with computational tools as fi-
nite element analyses. Relying on the good consistency between experimental
and estimated data, we strongly suggest the adoption of suitable standard test
methods tailored on anisotropic materials in order to experimentally evaluate me-
chanical properties of FDM 3D-printed parts.

Introduction

Additive Manufacturing (AM) processes form three-dimensional (3D) objects
from virtual models, obtained from a Computer Aided Design (CAD) software,
digital scanning systems or medical imaging systems, such as computer tomog-
raphy or magnetic resonance imaging. In recent years, AM processes have be-
gun to progress from rapid prototyping techniques towards rapid manufacturing
methods, where the objective is now to produce finished components [1]. AM
technologies are ready to be used for industrial production and, due to a growing
competition between service furnishers, they are becoming economically feasible
for a great number of end-user applications [2]. In the last decade the maturity
of these processes was largely increased thanks to the research on materials, the
development of new equipments and the better understanding of the processes
[3].

From an industrial point of view, technologies capable of producing robust
parts with high strength and long-term stability are the most relevant, because
they allow the direct production of end-user parts. The use of AM solutions for
direct production would be possible only if mechanical properties are well known
and taken into account in the design stage, depending on the process parameters.
However, one of the most important open issues in rapid manufacturing is the
prediction of 3D-printed parts behavior under real working conditions.
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In this study we focus on mechanical properties of Fused Deposition Mod-
eling (FDM ®) 3D-printed objects. Such process belongs to the material ex-
trusion subfamilies of Solid Freeform Fabrication (SFF) technologies. In FDM
processes a thermoplastic filament is heated and extruded through a robotically
controlled head: the material is deployed layer by layer on a printing surface in
a temperature controlled environment. Each printed layer is made of filaments
known as fibers (also called “beads” or “roads”) deposited in a plane parallel to
the printing surface. The printing head movements, the extrusion system and all
the other printing parameters are controlled by an electronic board, relying on a
set of instructions (G-Code) listed in a file. The G-Code is produced by a dedi-
cated software commonly called slicer or slicing software, that takes into account
the virtual geometry, the characteristics of the printing material and the specific
features of the 3D-printer.

The FDM 3D-printed object is composed by two main parts, the internal

raster (infill) and its outer shell, made by perimeters and solid top/bottom lay-
ers; the direction of the deposited material is known as fiber orientation angle.
The bonding between neighboring fibers occurs by a thermally-driven diffusion
process during solidification of the semi-molten extruded fiber [4, 5].

The inner structure at a sub-millimeter scale, i.e. the meso-structure, is de-
termined by the filament path deposition and process parameters. Among these,
the most important are: fiber thickness and width, fiber-to-fiber overlap, fiber ori-
entation and extrusion temperature. Figure 33 shows a schematic representation
of the ideal meso-structure resulting from the FDM process. Research efforts
in FDM technology have been directed towards the evaluation of the mechani-
cal properties of the resulting part as a function of process parameters. Ahn et
al. [6] showed that both fiber-to-fiber overlap and fiber orientation had a signif-
icant effect on the resulting tensile strength, while compressive strength was not
affected by these parameters. Sood et al. [7, 8] investigated the functional rela-
tionship between fiber dimensions, overlap and orientation and specimen strength
using response surface methodology; results show that such parameters influence
fiber bonding capabilities and distortion of the printed part and, consequently, the
compressive strength of test samples. Moreover, Lee at al. [9, 10] studied the
influence of fiber thickness, orientation and fiber-to-fiber overlap on the strength
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FIGURE 33: Scheme of the ideal meso-structure resulting from the filament extrusion
process

of FDM 3D-printed Acrylonitrile Butadiene Styrene (ABS) samples; the authors
determined that the compressive strength for an axial FDM specimen is greater
than for a transverse one. Rodríguez et al. [11, 12] compared elastic modulus
and tensile strength of FDM printed samples with the same properties of the ABS
filament feedstock; the authors concluded that parts with fibers aligned with the
axis of the tension force have the greatest tensile strength.Es-Said et al. [13]
investigated the influence of fiber orientation and polymer molecules alignment
along the extrusion direction.

Concerning the mechanical modeling of 3D-printed parts, Classical Lamina-
tion Theory (CLT) and Tsai-Hill yield criterion have already been considered in
few studies. Kulkarni and Dutta [14] applied CLT to describe the elastic moduli
of FDM printed laminates. Bertoldi et al. [15] and Rodríguez et al. [4] assumed
orthotropic material symmetry and obtained elastic moduli and strength values
for different fiber orientations. Li et al. [16] studied the fabrication process and
the mechanical properties of FDM specimens, using CLT to determine the elastic
constants as a function of raster angle; experimental data were in good agreement
with the results of the laminate modeling.

Literature evidence proves that CLT and Tsai-Hill yielding criterion are valu-
able instruments to describe the mechanical properties of FDM 3D - printed com-
ponents. Accordingly, in the present work, we use both instruments to investigate
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FIGURE 34: Reference coordinate system {O,x,y,z} for the laminate and material coor-
dinate systems {O′,1,2,3} for the laminas

how the mechanical properties of ABS 3D-printed FDM parts are influenced i) by
the chemical composition of the filament and ii) by fiber cross-sectional dimen-
sions, maintaining the thickness/width ratio constant. The influence of filament
dimension and chemical composition on mechanical behavior is studied varying
fiber orientation with respect to the loading direction. All aspects are investigated
through experimental campaigns: meso-structure influence, i.e. fiber thickness
and width is tested on the same material, while chemical composition impact is
tested using the same meso-structure.

Mechanical modeling

Elastic behavior modeling

In this study, FDM 3D-printed objects are considered as composite laminates con-
sisting of orthotropic laminas; each lamina corresponds to a layer made of ABS
parallel filaments. We consider two right-handed coordinate systems, namely
{O,x,y,z} and {O′,1,2,3} as in fig. 34: axis 1 is aligned to the filament extru-
sion direction and represents the longitudinal direction of the lamina, while axis
2 is perpendicular to fiber extrusion direction and represents its transverse direc-
tion. Axes x and y represent the loading directions of the laminate. The angle
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θ , formed by axis 1 with respect to axis x in a counter-clockwise rotation, is the
fiber orientation angle.

For a linear elastic orthotropic material, the constitutive relations relating
stresses and strains are:

σ11

σ22

σ33

τ12

τ13

τ23


=



Q11 Q12 Q13 0 0 0
Q12 Q22 Q23 0 0 0
Q13 Q23 Q33 0 0 0

0 0 0 Q14 0 0
0 0 0 0 Q15 0
0 0 0 0 0 Q16





ε11

ε22

ε33

γ12

γ13

γ23


(220)

As classically done for the printed fiber [12, 16], we may assume the same me-
chanical behavior in direction 2 and 3, obtaining an orthotropic, transversely
isotropic (in plane 2-3) material; accordingly eq. (220) becomes:



σ11

σ22

σ33

τ12

τ13

τ23


=



Q11 Q12 Q12 0 0 0
Q12 Q22 Q23 0 0 0
Q12 Q23 Q22 0 0 0

0 0 0 Q14 0 0
0 0 0 0 Q14 0

0 0 0 0 0
Q22−Q23

2





ε11

ε22

ε33

γ12

γ13

γ23


(221)

In case of plane stress state (σ33 = τ13 = τ23 = 0), relation (221) may be reduced
as follows: σ11

σ22

τ12

=

Q̂11 Q̂12 0
Q̂12 Q̂22 0

0 0 Q̂33


ε11

ε22

γ12

 (222)

and the quantity ε33 can be computed from the condition σ33 = 0. Relation (222)
relates in-plane stresses and strains through the matrix

[
Q̂
]

that involves four
independent elastic constants, namely Q̂11, Q̂12, Q̂22 and Q̂33. Such constants
may be expressed as a function of longitudinal Young’s modulus E1, transverse
Young’s modulus E2, Poisson’s ratio ν12, and shear modulus G12 as shown below:
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Q̂11 =
E2

1
E1−ν2

12E2
(223a)

Q̂22 =
E1E2

E1−ν2
12E2

(223b)

Q̂12 =
ν12E1E2

E1−ν2
12E2

(223c)

Q̂33 = G12 (223d)

The constitutive relations (222) can be expressed in the reference coordinate sys-
tem {O,x,y,z} as: σxx

σyy

τxy

=

Q̄11 Q̄12 Q̄13

Q̄12 Q̄22 Q̄23

Q̄13 Q̄23 Q̄33


εxx

εyy

γxy

 (224)

where the matrix [Q̄] is

[Q̄] = [T ][Q̂][M]−1[T ]−1[M] (225)

In eq. (225) matrix [M] is defined as:

[M] =

1 0 0
0 1 0
0 0 1/2

 (226)

and [T ] is the rotation matrix:

[T ] =

 cos2(θ ) sin2(θ ) −2cos(θ ) sin(θ )
sin2(θ ) cos2(θ ) 2cos(θ ) sin(θ )

cos(θ ) sin(θ ) −cos(θ ) sin(θ ) cos2(θ )− sin2(θ )

 (227)

Stacking N laminas along the z-axis a laminate is obtained. In this paper CLT has
been used to model the mechanical behavior of thin 3D-printed structures. CLT
assumes that the generic straight segment perpendicular to the mid-plane of the
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laminate remains straight and perpendicular to the mid-plane after its deforma-
tion. From this hypothesis it is possible to obtain the following expressions for
in-plane strains: εxx

εyy

γxy

=

ε0
xx

ε0
yy

γ0
xy

+ z

κ0
x

κ0
y

κ0
xy

 (228)

where z is the distance from the mid-plane in the direction perpendicular to the
mid-plane itself, ε0

xx, ε0
yy and γ0

xy are the mid-plane strains and κ0
x , κ0

y and κ0
xy

are the mid-plane curvatures. Laminate normal and shear forces, namely Nx, Ny

and Nxy respectively, are related to mid-plane strains and curvatures through the
following expressions: Nx

Ny

Nxy

= [F ]

ε0
xx

ε0
yy

γ0
xy

+[G]

κ0
x

κ0
y

κ0
xy

 (229)

while laminate bending and twisting moments, i.e. Mx, My and Mxy respectively,
are related to strains and curvatures as shown below:Mx

My

Mxy

= [G]

ε0
xx

ε0
yy

γ0
xy

+[H]

κ0
x

κ0
y

κ0
xy

 (230)

in eqs. (229) and (230) matrices [F], [G] and [H] are calculated as shown below:

Fi j =
N

∑
k=1

Q̄k
i j(zk− zk−1) (231a)

Gi j =
1
2

N

∑
k=1

Q̄k
i j(z

2
k− z2

k−1) (231b)

Hi j =
1
3

N

∑
k=1

Q̄k
i j(z

3
k− z3

k−1) (231c)

hence they depend on each k-th lamina stiffness matrix [Q̄k] and of distances from
mid-plane to the lamina.
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Yielding modeling

Strength of ABS specimens is modeled using Tsai-Hill failure criterion for com-
posite materials under multiaxial loading [17]. Tsai-Hill criterion assumes that
the yielding surface is quadratic with respect to the stress components expressed
in the material reference system as:

(B+C)σ2
11 +(A+C)σ2

22 +(A+B)σ2
33−2Cσ11σ22−2Bσ11σ33+

−2Aσ22σ33 + 2Lτ
2
23 + 2Kτ

2
13 + 2Nτ

2
12 = 1

(232)

where A, B, C, L, K, and N coefficients are Hill’s strength parameters that must
be intended as yielding values for ductile materials and ultimate failure values for
brittle ones. For an orthotropic, transversely isotropic lamina under plane stress,
the Tsai-Hill criterion is expressed as:

σ2
11

S2
1
+

σ2
22

S2
2
− σ11σ22

S2
1

+
τ2

12
S2

12
= 1 (233)

where S1 is the strength in the longitudinal direction, S2 is the strength in the
transverse direction and S12 is the in-plane shear strength. An admissible (elastic)
stress state is obtained when the l.h.s. of the equation (233) assumes a value lower
than 1.

In presence of mono-axial tensile stress σxx (σyy = τxy = 0), the stress com-
ponents in the material reference system are given in terms of the stress in the
loading direction of the specimen:

σ11 = σxxcos2
θ (234a)

σ22 = σxxsin2
θ (234b)

τ12 = −σxxcosθsinθ (234c)
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Parameters Type A Type B Unit
Extrusion Temperature 250-260 250-260 °C

Bed Temperature 100 100 °C
Heated Chamber Temperature 70 70 °C

Maximum Flowrate 6 5 mm3/s

TABLE 4: Main printing parameters identified during preliminary assessment

Substituting the above expressions into equation (233) and resolving for σxx gives
the following result:

σxx = S (θ ) =
[

cos4θ

S2
1

+
sin4θ

S2
2
− cos2θsin2θ

S2
1

+
cos2θsin2θ

S2
12

]− 1
2

(235)

Equation (235), along with admissible yield stresses S1, S2 and S12 can be
used to calculate the yielding strength S (θ ) against fiber orientation θ .

Materials and methods

Preliminary material analysis

Two different types of ABS, provided by Versalis S.p.A. [18] and indicated with
letters A and B, are investigated: type A is the base ABS, while type B is a
chemically additivated ABS. The 3D printer used for the present study is a 3NTR
A4v3 [19]. The machine is equipped with three extruders, which can be heated up
to 410 °C, through a ceramic heating component; a nozzle of 0,4 mm of diameter
is used. The bed temperature can reach 120 °C, while the heated chamber can
reach 75 °C. Preliminary assessment results relative to main printing parameters
are shown in Table 4.

Maximum extrusion flow-rate mainly depends on nozzle diameter and on the
viscosity of the filament [20] and it is about 6 and 5 mm3/s, respectively. Such
values must be taken in to account for the choice of admissible printing speeds
that can be used in relation to other printing parameters, namely fiber thickness
and width. As an example, using a thickness of 0,2 mm and a width of 0,4 mm, a
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velocity of 40 mm/s should be set (resulting in a flow-rate of 0,2 mm x 0,4 mm x
40 mm/s = 3,2 mm3/s).

Thermal distortion and compatibility with the selected support material are
tested through the printing of objects with a large base in contact with the bed.
Type A shows an optimal compatibility with High Impact Polystyrene (HIPS),
one of the most common polymers used to support ABS prints. The distance
between the last layer of support material and the first layer of ABS (commonly
defined as air gap) can be set to 0,1-0,2 mm. HIPS can be detached from the final
object using a mechanical or chemical approach, the latter thanks to the use of a
limonene solution.

Type A stitches well on a HIPS base during the printing and the support struc-
ture is extremely easy to remove after the final object has cooled down for some
minutes. Type B shows a lower compatibility with HIPS: better results can be
retrieved lowering the “air gap”, but the printing of large objects remains difficult
to be carried out. The support interface detachment is easily performed.

Experimental setup

We need four elastic constants to characterize an orthotropic lamina under plane
stress (eqs. (223)), while three admissible stresses are necessary for Tsai-Hill
yielding surface (eq. (233)). Such properties may be evaluated through tensile
tests on specimens with fiber orientation of 0◦, 90◦ and 45◦. Moreover, specimens
must be unidirectional and, consequently, perimeters must be avoided because
their direction would be different from the fiber orientation, for specimen with
θ 6= 0◦.

Longitudinal specimens (0◦) are used to determine longitudinal modulus of
elasticity E1, Poisson’s ratio ν12 and yield strength S1; transverse specimens (90◦)
are used to determine transverse elastic modulus E2 and yield strength S2.

Specimens with fiber orientation θ = 45◦ are tested to determine their elastic
modulus E45

x that is used to calculate the shear modulus G12, as already done by
Li et al. [16] and suggested in [21]. Indeed, in case of mono-axial stress state
σxx (σyy = τxy = 0), from relations (223), (224) and (225), we obtain the elastic
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Configuration Type Thickness [mm] Width [mm]
A1 A 0,2 0,4
A2 A 0,25 0,5
A3 A 0,3 0,6
B1 B 0,2 0,4

TABLE 5: Tested printing configurations differing in the filament cross-section and in the
material composition

modulus Eθ
x for an unidirectional specimen having fiber orientation θ :

Eθ
x =

σxx

εxx
=

[
cos4 (θ )

E1
+

sin4 (θ )

E2
+

1
4

(
1

G12
− 2ν12

E1
sin2 (2θ )

)]−1

(236)

equation (236), particularized for θ = 45◦ and resolved with respect to G12, gives:

G12 =

[
4

E45
x
− 1

E1
− 1

E2
+

2ν12

E1

]−1

(237)

We used equation (237) along with the others experimentally obtained elastic
constants E1, E2 and ν12, to calculate the in-plane shear modulus G12.

Similarly, we tested 45◦ samples to determine their yield strength S45
x that is

used to calculate in plane shear strength S12 [12, 22]. Indeed, particularizing eq.
(235) for θ = 45◦ and resolving with respect to S12 we obtain:

S12 =

[
4

(S45
x )

2 −
1
S2

2

]− 1
2

(238)

We used equation (238) along with the experimentally obtained transverse yield
strength S2 to calculate the in-plane shear strength S12. Moreover, we tested 20◦

and 70◦ specimens to assess prediction capabilities of CLT and Tsai-Hill yielding
theory.

We consider several configurations, differing in the meso-structure, i.e. the
filament cross-section, and in the material composition. Configurations are listed
in table 5: the letter indicates the material, while the number indicates the filament
dimensions. For type A we tested three configurations (i.e. A1, A2 and A3) in
order to investigate how fiber cross-section influences mechanical properties; for
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type B we consider the most common filament dimensions (i.e. configuration B1)
to assess the influence of chemical composition alone on mechanical behavior.
Fiber-to-fiber overlap is set to 10% of the fiber width.

It must be noted that, at the present day, there are no approved specific stan-
dards dedicated to the evaluation of 3D-printed objects tensile mechanical prop-
erties. Because of their pronounced anisotropy, the selection of the specimen
shape is a fundamental issue.

Recommendations from CEN-ISO committee of AM materials have recently
appeared suggesting the use of ISO-527 standard which involves the same sam-
ple shape (dog-bone) of ASTM D638 standard. However, previous studies (e.g.
[6] ) show that ASTM D638 [23] dog-bone shape gives rise to complications in
tensile tests of 3D-printed FDM specimens. Such complications involve stress
concentrations, which are produced by the termination of infill fibers used to ap-
proximate the large radii (see fig. 35a). The authors attempted to relieve the stress
concentrations by using perimeters that follow the contour of the sample. This
approach entails further problems such as areas where the extruded fibers are no
longer in pure tension but subjected to bi-axial stress state.

Given these considerations, we observe that dog-bone specimens fail prema-
turely at the stress concentrations or at the bi-axial stress state zones, i.e. at radius
level, while the rest of the sample remains intact. This is in contrast with ASTM
D638 and ISO-527 standard requirements that actually enforce the failure to oc-
cur in the gage region (central part of the specimen), otherwise the test must be
rejected.

To avoid such complications, we chose ASTM D3039 standard [24] as it is
tailored to anisotropic materials. The specimen recommended by ASTM D3039
test method consists in a thin flat strip of material having a constant rectangular
cross section as shown in fig. 35b.

Specimen dimensions vary with fiber orientation θ according to table 6. To
prevent gripping damage near the testing machine jaws area, ABS tabs are bonded
to the specimen ends using a cyanoacrylate adhesive.

For specimen manufacturing, first 3D models are created for both samples
and tabs, through a CAD software. They are then exported as STereoLithography
(STL) files and subsequently loaded in the slicing software. In order to produce
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(A)

(B)

FIGURE 35: Specimen shape. (a) Stress concentration zones for ASTM D638 dog-bone
specimen, (b) dimensions of the adopted specimens for tensile tests according to Table 6

Fiber
orientation

Specimen
length l1

(mm)

Specimen/tabs
width w
(mm)

Specimen
thickness t1

(mm)

Tabs
length l2

(mm)

Tabs
thickness t2

(mm)
0◦ 250 15 1,2 36 1,6
90◦ 175 25 2 25 1,6
45◦ 250 15 2,4 36 1,6
20◦ 250 15 2,4 36 1,6
70◦ 250 15 2,4 36 1,6

TABLE 6: Specimen dimensions used following ASTM D3039 – 00 standard geometry
recommendations
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unidirectional specimens, G-Code manipulation is mandatory, since, currently,
there are no slicing programs able to directly produce them. We preliminarily
used Slic3r [25] and KISSlicer [26] slicing software to produce G-Codes for i)

the single layer and ii) for the support interface, respectively. Subsequently, we
developed a custom made routine in Matlab environment [27] to assembly the
final G-Code with the desired features.

ABS specimens are tested under displacement control, at room temperature,
on a MTS Insight test system, with computer control and data acquisition. Strain
is measured with a video extensometer (ME-46 video extensometer, with 1 µm

resolution and a camera field of view of 200 mm) at the mid-section of the spec-
imen (gage section). Following ASTM D3039 recommendations, the displace-
ment rate, is set to 2 mm/min, and it is selected to produce failure within 1 to 10
min.

Results

Tensile tests on specimens at 0◦ are able to capture the mechanical response of a
3D-printed part that mainly depends on the mechanical behavior of the fiber i.e.
on intra-fiber properties. Conversely, tensile tests at 90◦ are suitable for retriev-
ing the mechanical characteristics of 3D-printed parts which primarily depend on
the bonding process, i.e. on inter-fibers properties. During tensile tests we ob-
served that specimens, especially longitudinal ones, exhibited whitening regions,
i.e. regions where the material turn its color into lighter shades. Yielding and
subsequently failure originated in proximity of these whitened zones, where we
observed localized fiber delamination. Conversely, 90◦ specimens did not show
considerable whitening, with failure always occurring at the interface between
adjacent fibers.

Fig. 36 reports the experimentally obtained stress-strains curves for speci-
mens with fiber orientation θ equal to 0◦, 45◦ and 90◦ respectively, for all con-
figurations examined. Stress-strain curves clearly display that fiber orientation
plays a significant role on the mechanical properties of the 3D-printed material.
Indeed in fig. 36 we observe that longitudinal specimens (0◦) show the more duc-
tile behavior: a linear elastic part is followed by an elastic region in which the
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(A) Configuration A1 (B) Configuration A2

(C) Configuration A3 (D) Configuration B1

FIGURE 36: Stress-strain curves for configurations A1, A2, A3 and B1

maximum stress value is reached, then the final part of the curve is characterized
by a plastic deformation at constant stress. Transverse specimens (90◦) show the
more brittle behavior, almost without plastic deformation, while 45◦ specimens
mechanical response lies approximately in the middle between 0◦ and 90◦ sam-
ples. For each configuration, elastic constants, yield stresses and ultimate strains
are reported in table 7.

Fig. 37 reports elastic modulus against fiber orientation θ as in eq. (236).
Elastic response analysis of each configuration shows that Young’s modulus at
0◦ is generally higher than Young’s modulus at 90◦. An unusual behavior is ob-
served for configuration B1 for which 90◦ elastic modulus is higher than 0◦ one.
Fig. 38 reports the yielding stress against fiber orientation θ in case of mono-axial
stress as in eq. (235). From the results reported we may conclude that strength
modeling through Tsai-Hill yielding criterion is sufficiently accurate to describe
specimen behavior. Fiber orientation significantly affects tensile yield strength:
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Config. A1 Config. A2 Config. A3 Config. B1
E1 [MPa] 1810 ± 63 2010 ± 153 1953 ± 83 1606 ± 152
E2 [MPa] 1695 ± 112 1671 ± 57 1752 ± 63 1842 ± 154

ν12 0,32 ± 0,1 0,32 ± 0,1 0,35 ± 0,05 0,3 ± 0,2
G12 [MPa] 617 ± 43 641 ± 47 772 ± 47 643 ± 109
S1 [MPa] 25,5 ± 0,2 26,3 ± 0,2 23,7 ± 0,7 28,6 ± 0,6
S2 [MPa] 16 ± 1 14,6 ± 0,4 17 ± 0,4 22,3 ± 0,7
S12 [MPa] 13,7 ± 0,6 12 ± 0,7 13,2 ± 0,3 13,4 ± 0,3

εu
1 [mm/mm] 0,04 ± 0,02 0,021 ± 0,007 0,016 ± 0,002 0,31 ± 0,07

εu
2 [mm/mm] 0,012 ± 0,002 0,014 ± 0,002 0,017 ± 0,002 0,028 ± 0,004

TABLE 7: Elastic constants, yield strengths and failure strains for the different configura-
tions tested

(A) Configuration A1 (B) Configuration A2

(C) Configuration A3 (D) Configuration B1

FIGURE 37: Elastic moduli E against fiber orientation θ
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(A) Configuration A1 (B) Configuration A2

(C) Configuration A3 (D) Configuration B1

FIGURE 38: Ultimate yield stresses against fiber orientation θ in case of mono-axial
stress state. The area under the curve represents resistance domain accordingly to Tsai-
Hill criterion
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longitudinal specimens have a much higher yield strength than transverse speci-
mens (from 25% to 45% higher). Higher data scatter can be observed in 45◦ and
90◦ specimens, while it is significantly lower for 0◦ specimens. This can be at-
tributed to a transition in the failure mode from 0◦ samples ductile fracture to 90◦

samples brittle fracture, led by fiber-to-fiber bonding strength. Such transition is
suggested to happen even after a slight change in the fiber angle from 0◦ [12].

Discussion

Elastic modulus validation data (20◦ and 70◦ specimen) show a good consistency
with theoretical estimation for configuration A1 and B1, while for configurations
A2 and A3 some overestimation of CLT with respect to experimental data has
been observed (see fig. 37).

Validation data for Tsai-Hill criterion are also well consistent with theoretical
estimation, with some slight underestimation for 70◦ specimens of configurations
A1 and B1 (see fig. 38): the reason probably lies in the air gap parameter. For
configuration A1 and B1, indeed, 70◦ samples could not be printed with the same
air gap of the experimental data samples (namely 0,2 mm air gap), because the
printing always failed. Lowering the air gap to 0,15 mm allowed the samples to
be printed. The reduction of air gap increases the fiber-to-fiber adhesion in the
first 1-2 layers, strengthening the whole specimen.

Comparisons between configurations have been carried out as follows: we
first compared three different filament cross-sections, printed with the same ma-
terial (configurations A1, A2 and A3) and then two different materials, with the
same cross section (configurations A1 and B1).

Manufacturing and testing conditions were kept identical in all configuration,
with the only exception of air gap parameter. Configurations A1, A2 and B1
samples have been printed with an air gap of 0,2 mm, while configuration A3, for
printability reasons, has been printed with 0,1 mm air gap.
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FIGURE 39: Elastic moduli for configurations A1, A2 and A3

FIGURE 40: Uniaxial tensile strength for configurations A1, A2 and A3

Fiber cross-section comparison

The comparison between the various filament cross sections has given the follow-
ing results:

• elastic modulus raises while increasing filament section, both at 0◦ and 90◦

(see fig. 39). This means that stiffness tends to be higher with bigger
filaments, thus with a lower number of filaments in the layer (given a fixed
geometry).

• Uniaxial tensile strength at 0◦ decreases raising filament cross-section, mean-
ing that a higher number of smaller filaments in the layer exhibits a higher
strength. Conversely, uniaxial tensile strength at 90◦ raises increasing fila-
ment cross-section (see fig. 40).

• Ultimate strain at 0◦ decreases increasing filament cross-section, conversely
strain at failure at 90◦ increases with filament cross-section (see fig. 41).
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FIGURE 41: Strain at failure for configurations A1, A2 and A3

FIGURE 42: Shear modulus and shear strength for configurations A1, A2 and A3

• Shear modulus raises increasing cross-section, while shear strength shows
a trend similar to 0◦ uni-axial tensile strength (see fig. 42).

Tensile and shear strength values obtained for configuration A2 seem to be anoma-
lous. Tests for such a configuration have been repeated to assess the anomalous
results, previously checking G-code instructions, modality of specimen measure-
ment and tensile test conditions. New results, not reported here, are perfectly
according to the previous one, presented in study. A possible explanation for the
anomalous results comes from the resolution of the motor stepper unit of the z
axis (0,015 mm), responsible for the bed movement and thus for the layer height.
The resolution may not allow a precise movement on the z axis of 0,254 mm, that
is the nominal value so far approximated at 0,25 mm. Since the error is system-
atic, the resulting height of each layer may significantly vary from its nominal
value. The error cannot be estimated from specimen thickness measurement, be-
cause all the specimens present a significant deviation from the nominal value,
independently from filament section (0,2 x 0,4 mm: 16%, 0,25 x 0,5 mm: 13%
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FIGURE 43: Elastic modulus at 0◦ and 90◦ for configurations A1 and B1

FIGURE 44: Uniaxial tensile strength at 0◦ and 90◦ for configurations A1 and B1

and 0,3 x 0,6 mm: 18%). Thus, the anomalous values regarding configuration A2
may come from a different bonding between subsequent layers due to an incorrect
layer height.

Material comparison

From the comparison between materials, maintaining the same filament cross -
section, we can make the following considerations:

• type B shows, compared to type A, higher elastic modulus (fig.43) at 90◦,
higher tensile strength (fig.44) and strain at failure (fig. 45) for both 0◦ and
90◦ orientations. Only the elastic modulus at 0◦ is higher for type A.

• Type B elastic modulus at 90◦ is higher than the elastic modulus at 0◦. This
behavior may depend on the optimal bonding properties of type B.

• The ultimate strain at 0◦ for type B is ten times higher than the correspond-
ing type A failure strain.
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FIGURE 45: Strain at failure at 0◦ and 90◦ for configurations A1 and B1

FIGURE 46: Shear modulus and shear strength for configurations A1 and B1

• Shear modulus and strength (fig. 46) do not show significant differences
between type A and type B.

Type B shows a more ductile failure mode compared to type A, with much higher
delamination. A brittle failure mode is found on 90◦ specimens, both for type A
and type B.

Conclusions

In this paper we investigated how fiber orientation, filament dimensions and
chemical composition affect the mechanical properties of ABS 3D-printed com-
ponents. In particular, we tested and compared i) three different meso-structures
on the same material and ii) two different types of ABS using the same meso-
structure.

As already highlighted by previous works, we verified how a 3D-printed ma-
terial shows anisotropic mechanical properties. Accordingly, CLT and Tsai-Hill
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yielding theory were found to be well capable of predicting in-plane stiffness
and strength at the macro-scale. Moreover, we experimentally investigated how
meso-structure impact on macro-scale mechanical properties.

We assessed that, acting on chemical composition, it is possible to tune i) fiber
properties and ii) fiber-to-fiber bonding and, consequently, the overall mechani-
cal properties at macro-scale, in particular the yielding strength and the strain at
failure.

Relying on the good consistency between experimental and estimated data,
we strongly suggest the adoption of suitable standard test methods tailored on
anisotropic materials in order to experimentally evaluate mechanical properties
of FDM 3D-printed parts.

The experimentally obtained data are useful to calibrate mechanical and yield-
ing models to be used with numerical simulations as finite element analyses. Such
computational tools would be used along with optimization techniques to design
structural-optimized functional parts.

Supplementary material

In this section both the optical microscope images of the cross sections of the
specimens (figure 47) and the images of the samples subjected to tensile tests
(figures 48, 49, 50 and 51) for all configurations are shown. In figure 47 it is
possible to observe the meso-structure, i.e. the geometry, at the sub-millimetric
scale, resulting from the filament deposition process. Note the similarity between
the real geometry and the idealized geometry as shown in figure 33.
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(A) configuration A2, view of the cross-sectional area of longitudinal specimens, magnification
75 X

(B) configuration A3, view of the cross-sectional area of longitudinal specimens, magnification
300 X

(C) configuration A1, detail of the cross-sectional area of longitudinal specimens, illustrating the
bonding between fibers, magnification 1000 X

FIGURE 47: Optical microscope images of the specimens
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(A) configuration A1, θ = 0◦

(B) configuration A1, θ = 45◦

(C) configuration A1, θ = 90◦

FIGURE 48: Tensile specimens for configuration A1
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(A) configuration A2, θ = 0◦

(B) configuration A2, θ = 45◦

(C) configuration A2, θ = 90◦

FIGURE 49: Tensile specimens for configuration A2
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(A) configuration A3, θ = 0◦

(B) configuration A3, θ = 45◦

(C) configuration A3, θ = 90◦

FIGURE 50: Tensile specimens for configuration A3
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(A) configuration B1, θ = 0◦

(B) configuration B1, θ = 45◦

(C) configuration B1, θ = 90◦

FIGURE 51: Tensile specimens for configuration B1
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Conclusions

In chapter 1 we found that TEVAR induced a longitudinal strain decrease in the
stented segments and a longitudinal strain mismatch between stented and non-
stented segments. Stent-graft oversizing did not affect the magnitude of strain
reduction. Tensile testing showed that peak stress-to-rupture was lower for lon-
gitudinal than for circumferential fragments. In addition, longitudinal fragments
were more prone to rupture proximally than distally.

This experimental study showed that TEVAR acutely stiffens the aorta in the
longitudinal direction and thereby induces a strain mismatch, while tensile testing
confirmed that longitudinal aortic fragments are most prone to rupture, particu-
larly close to the arch. Such an acute strain mismatch of potentially vulnerable
tissue might play a role in TEVAR-related complications, including retrograde
dissection and aneurysm formation. The finding that TEVAR stiffens the aorta
longitudinally may also shed light on systemic complications following TEVAR,
such as hypertension and cardiac remodelling. These observations may imply the
need for further improvement of stent-graft designs.

In chapter 2 we presented an optimization framework aiming at increasing
the fatigue life of Nitinol stents. The adopted computational framework relied
on nonlinear structural finite element analysis combined with a Multi Objective
Genetic Algorithm, based on Kriging response surfaces. In particular, such an
approach has been used to investigate the design optimization of planar stent cell,
introducing the concept of the tapered strut.

The results of the optimization procedure confirmed the key role of a tapered
strut design to enhance the stent fatigue strength, suggesting that it is possible to
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achieve a marked improvement of both the fatigue safety factor and the scaffold-
ing capability simultaneously.

The study outcomes confirmed that the use of tapered strut profile should be
a primary key factor to reduce and uniform the strain field along the strut and
thus to enhance the fatigue life of the whole stent. The obtained Pareto set allows
the designer for the selection of optimized solution, according to the specific de-
sign requirements. As illustrative example we compared a commercial reference
design with the optimized counterpart: increasing the strut length and the strut
width at the strut extremities, we shown that it is possible to achieve a marked
improvement of the fatigue safety factor, compared to the typical design (strut
with constant section), without any loss of scaffolding capabilities.

In chapter 3 we obtained a fractional-order Fourier diffusion law from a
multi-scale rheological model. Indeed, the instantaneous temperature - flux equa-
tion of the Fourier-type diffusion is generalized introducing a self-similar, fractal
type mass clustering at the micro-scale. In this setting the resulting conduction
equation at the macro-scale yielded a Caputo’s fractional derivative with order
β ∈ [0,1] of temperature gradient. The order of the fractional-derivative has been
found to be related to the fractal assembly of the micro-structure.

The distribution and the temperature raising in simple rigid conductors have
also been reported to investigate the influence of the derivation order on the tem-
perature field. The solution of the fractional heat equation (0 < β < 1), governed
by Mittag-Leffler functions, exhibits for small times a much faster rising, and for
large times, a much slower decay, compared with the solution of classical heat
equation, governed by exponential functions. Accordingly, it was found that the
main property of the anomalous heat transfer is that the time-rate of change at
which the resulting temperature field reaches a steady state, becomes higher as
the discrepancy from the Fourier law increases: the thermal steadiness is conse-
quently achieved, by rigid anomalous conductors, employing longer times than
Fourier ones. Such particular behavior represents the “long-tail memory effect”,
due to the power law thermal memory of such materials.

In chapter 4 the “thermally-anomalous” heat conduction has been extended
at slightly deformable bodies; the interplay between the thermal flux and the
elastic and thermal deformability has been investigated for a pinned-pinned truss.
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Such simple example allowed for focusing on the effects of the deviation from the
Fourier’s law on the thermoelastic coupling. The full analytical solution of the
problem has been provided obtaining the resulting displacement, temperature,
and internal axial force. Afterward, the anomalous thermal behavior of such
slightly deformable system has been investigated, thereby exploring not only the
transient behavior due to its deviation from the Fourier law, but also by studying
a resulting overall measure of energy rate.

All the resulting fields, namely the axial stress, the displacement, and the tem-
perature have been found to be influenced by the thermal and elastic deformabil-
ity of the bar. The higher is the deviation from the Fourier-like behavior, the
more rapid becomes the rise in time. This is an intrinsic feature of the anomalous
heat transfer, now coupled with an elastic and thermally deformable bar. An-
other effect of the deviation from the Fourier behavior is the tendency to reach
steady values in longer times. The higher the value of the anomaly exponent β in
[0,1/2) the slower this becomes.

The space-time modal analysis performed on the fractional-order system, re-
lying on the balance of linear momentum and on the balance of energy rate, pro-
vided the explicit solutions of the problem. The time evolution of each spatial
mode, for the temperature, for the displacement and for the axial force, turned
out to be characterized by modulated Mittag-Leffler functions. The higher is the
deviation from the Fourier-like behavior for the heat flux, the steeper is the re-
sulting time-transient of each mode.

In chapter 5 we focused on mechanical properties of Fused Deposition Mod-
eling (FDM) 3D-printed objects. We studied the influence of extruded filament
dimensions and chemical composition on mechanical behavior of FDM objects
made of Acrylonitrile Butadiene Styrene (ABS) polymer varying fiber orientation
with respect to the loading direction. All aspects have been investigated through
experimental campaigns: meso-structure influence, i.e. fiber thickness and width
has been tested on the same material, while chemical composition impact has
been tested using the same meso-structure.

We verified that FDM ABS specimens show anisotropic mechanical prop-
erties since they vary with filament extrusion direction. Accordingly, Classical
Lamination Theory (CLT) and Tsai-Hill yielding criterion were found to be well
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capable of predicting in-plane stiffness and strength of FDM specimens.
We assessed that, varying chemical composition and filament dimensions, it is

possible to tune fiber properties and fiber-to-fiber bonding and, consequently, the
overall mechanical properties at macro-scale, in particular the yielding strength
and the strain at failure. The experimentally obtained data may be useful to cal-
ibrate mechanical models to be used with computational tools as finite element
analyses. Relying on the good consistency between experimental and estimated
data, we strongly suggested the adoption of suitable standard test methods tai-
lored on anisotropic materials in order to experimentally evaluate mechanical
properties of FDM 3D-printed parts.
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