

PRIN Project: Advanced mechanical modeling of new materials and technologies for the solution of 2020 European challenges

<u>Target problem</u>: *Health care devices to treat cardiovascular pathologies* (UNIROMA2 research unit)

Towards a patient-specific constitutive modeling of soft biological tissues: the multiscale structural approach

Michele Marino

Seminar

DICAr, Pavia, Italy Tuesday, October 29

CONSTITUTIVE MODELS OF SOFT TISSUES

CONSTITUTIVE MODELS OF SOFT TISSUES

MICHELE MARINO

M.K. O'Connell et al., The Three-dimensional Micro- and Nanostructure of the Aortic Medial Lamellar Unit Measured Using 3D Confocal and Electron Microscopy Imaging. *Matrix Biol.* 27, 2008

M.K. O'Connell et al., The Three-dimensional Micro- and Nanostructure of the Aortic Medial Lamellar Unit Measured Using 3D Confocal and Electron Microscopy Imaging. *Matrix Biol.* 27, 2008

CONSTITUTIVE MODELS OF SOFT TISSUES

MICHELE MARINO

... corresponding to relevant alterations in arterial mechanics

Correlation also between aortic dilation, aneurysm, rupture risk, etc. etc. and histo-chemical alterations (Bruel et al., 1998; Carmo et al., 2002; Lindeman et al. 2010)

Computer-Aided Diagnosis

The example of aneurysmal care

From *Biomechanics and Pathobiology of Aortic Aneurysms* by J.A. Phillippi, S. Pasta and D.A. Vorp

The **puzzle**:

"Our understanding of aortic diseases continues to advance as new partnerships between surgeons, biologists, engineers and mathematicians [...]."

Computer-Aided Diagnosis

The example of aneurysmal care

The **missing pieces**:

"[...] developing the enabling non-invasive technologies to measure wall stress and strain, refinement of the mathematical models and establishing links between the clinical manifestations and the biological mechanisms inciting them."

For an effective **patient-specific** simulation:

Constitutive modeling of biological tissues explicitly depending on actual histology, biological features and biochemical environment

STATE OF THE ART

Two main approaches:

1) Phenomenological laws (Fung, 1973; Yin and Elliott, 2004)

2) Structural models: incorporate structure-based parameters

(Comninou and Yannas, 1976; Lanir, 1979; Freed and Doehring, 2005; Holzapfel et al., 2000, 2002)

$$\overline{\Psi}(\bar{I}_1, \bar{I}_4, \bar{I}_6) = \overline{\Psi}_g(\bar{I}_1) + \overline{\Psi}_f(\bar{I}_4, \bar{I}_6)$$
$$\Psi_g(\bar{I}_1) = \frac{c}{2}(\bar{I}_1 - 3) \qquad \overline{\Psi}_f(\bar{I}_4, \bar{I}_6) = \frac{k_1}{2k_2} \sum_{i=4,6} \{\exp[k_2]\bar{I}_i - 1)^2] - 1\}$$

$$\bar{I}_4 = \mathbf{C} : \mathbf{A}_1 \qquad \bar{I}_6 = \mathbf{C} : \mathbf{A}_2$$

$$\mathbf{A}_1 = \mathbf{M} \otimes \mathbf{M} \qquad \mathbf{A}_2 = \mathbf{M}' \otimes \mathbf{M}'$$

CONSTITUTIVE MODELS OF SOFT TISSUES

CONSTITUTIVE MODELS OF SOFT TISSUES

MICHELE MARINO

Double homogenization step

R

MICRO MECHANICS

- Beam theories Frish-Fay, Flexible Bars, Butterworths1962,

- Energetic approach

- Asymptotic expansion homogenization methods M. Potier-Ferry, L. Said, "Geometrical homogenization of a corrugated beam", *Comptes Rendus de l'Académie des Sciences* 314, 1992. $A \begin{bmatrix} \alpha \\ L_o \end{bmatrix}$

```
f(x)=H_o \sin(2\pi x/L_o)
```

M. Marino, G. Vairo, "Equivalent Stiffness and Compliance of Curvilinear Elastic Fibers", In: *Mechanics, Models and Methods in Civil Engineering* 61, 2012.

 $E_{eq}(\varepsilon_F) = E_{\ell} I_F \langle \cos \alpha \rangle \left[I_F \langle \cos^2 \alpha \rangle + A_F \langle f(x, \varepsilon_F)^2 \rangle \right]^{-1}$

MICRO MECHANICS

MACRO MECHANICS

- TRANSVERSELY ISOTROPIC MATERIAL IN LOCAL FRAME

$$\begin{bmatrix} \mathbb{L} \end{bmatrix} = \frac{1}{D} \begin{bmatrix} E_L (1 - \nu_{TT}^2) & E_T \nu_{LT} (1 + \nu_{TT}) & E_T \nu_{LT} (1 + \nu_{TT}) \\ E_T \nu_{LT} (1 + \nu_{TT}) & E_T (1 - \frac{E_T}{E_L} \nu_{LT}^2) & E_T (\nu_{TT} + \frac{E_T}{E_L} \nu_{LT}^2) \\ E_T \nu_{LT} (1 + \nu_{TT}) & E_T (\nu_{TT} + \frac{E_T}{E_L} \nu_{LT}^2) & E_T (1 - \frac{E_T}{E_L} \nu_{LT}^2) \end{bmatrix}$$

$$\begin{bmatrix} \mathbb{M} \end{bmatrix} = \begin{bmatrix} \frac{E_T}{2(1 + \nu_{TT})} & 0 & 0 \\ 0 & G_{LT} & 0 \\ 0 & 0 & G_{LT} \end{bmatrix} \qquad D = 1 - \nu_{TT}^2 - 2(1 + \nu_{TT}) \frac{E_T}{E_L} \nu_{LT}^2 \\ \begin{bmatrix} \mathbb{C}^L \end{bmatrix} = \begin{bmatrix} [\mathbb{L}] & [0] \\ [0] & [\mathbb{M}] \end{bmatrix} \end{bmatrix}$$

In the global coordinate system:

$$[\mathbb{C}] = \begin{bmatrix} \hat{\mathbb{T}}_{\sigma} \end{bmatrix} \begin{bmatrix} \mathbb{C}^L \end{bmatrix} \begin{bmatrix} \hat{\mathbb{T}}_{\varepsilon} \end{bmatrix}^{-1}$$

Stress and strain transformation matrices

MICRO-MACRO MODEL

Few parameters, experimentally measurable

MECHANICAL PARAMETERS: $E_M - E_\ell$

GEOMETRIC PARAMETERS:

	Tendon	Ref.		
L _o	240 µm	Hansen et al., 2002		
H _o	10.8 µm	Maceri et al., 2009		
r_{f}	4.0 μm	Kannus,2000		
V_f	50%	Silver et al., 2001		
v _m	0.49	Lavagnino et al., 2008		
E _M	1 MPa	Lavagnino et al., 2008		

 $E_{l}: 0.1-40 \text{ GPa} (Fratzl, 2008)$

MICRO-MACRO MODEL: RESULTS

CONSTITUTIVE MODELS OF SOFT TISSUES

FROM MACRO TO NANO MECHANICS

"TOE REGION": microscopic crimp removal

FROM MACRO TO NANO MECHANICS

"TOE REGION": microscopic crimp removal

"HEEL REGION": molecular kinks straightening (entropic mechanisms)

FROM MACRO TO NANO MECHANICS

"TOE REGION": microscopic crimp removal

"HEEL REGION": molecular kinks straightening (entropic mechanisms)

"LINEAR REGION": molecular and crosslinks straightening

STATE OF THE ART

Two main approaches:

1) Phenomenological laws (Fung, 1973; Yin and Elliott, 2004)

2) Structural models: incorporate structure-based parameters

(Comninou and Yannas, 1976; Lanir, 1979; Freed and Doehring, 2005; Holzapfel et al., 2000, 2002)

The **microscale** is the lowest scale explicitly modeled only in terms of collagen orientation

$$\overline{\Psi}_{\rm f}(\bar{I}_4, \bar{I}_6) = \frac{k_1}{2k_2} \sum_{i=4,6} \left\{ \exp[k_2(\bar{I}_i - 1)^2] - 1 \right\}$$

- To date, nanomechanics is predicted by molecular dynamical simulations (MDS) (Buehler, 2008; Deriu et al., 2010)

Computational efforts of MDS make them completely useless at the macroscale

NANO-MICRO HOMOGENIZATION

NANO STRUCTURE

 $N_c = \lambda N_m$: total number of covalent bonds

KINEMATICS: Two deformation mechanisms

NANO MECHANICS: COLLAGEN

NANO MECHANICS: COLLAGEN

NANO MECHANICS: COLLAGEN

$$\overset{\sigma_m^s \quad \sigma_m^h}{\longleftarrow} \overset{\mathcal{F}}{\longrightarrow}$$

Entropic Energetic mechanism mechanism

 $\sigma_m(\varepsilon_m) = \frac{\mathcal{F}}{A_m}$ $\varepsilon_m = \varepsilon_m^s + \varepsilon_m^h$

Tangent elastic modulus in entropic elasticty:

$$E_m^s = \frac{\varrho}{A_m} \left\{ \frac{r_\ell}{2[1 - r_\ell(1 + \varepsilon_m^s)]^3} + r_\ell \right\}$$

Recovery of the classical Worm-like chain formulation (Marko and Siggia, 1995)

$$r_{\ell} = \frac{\ell_m}{\ell_c}$$

Tangent elastic modulus in energetic elasticity

$$E_m^h(\varepsilon_m^h) = \frac{\hat{E}r_\ell}{1 + e^{-k(r_\ell \varepsilon_m^h - \varepsilon_o^h)}} + \hat{E}_o r_\ell \qquad \Longrightarrow$$

Non-linearity related to unrolling of triple helices (Buehler and Wong, 2009 - Maceri et al., 2012)

$$E_m(\varepsilon_m) = \frac{E_m^s(\varepsilon_m^s) E_m^h(\varepsilon_m^h)}{E_m^s(\varepsilon_m^s) + E_m^h(\varepsilon_m^h)}$$

NANO MECHANICS: COLLAGEN

F. Maceri, M. Marino, G. Vairo "Elasto-damage modeling of biopolymer molecules response", *Computer Modeling in Engineering and Sciences* 87, 2012

M. Marino, G. Vairo, "Multiscale Elastic Models of Collagen Bio-structures: From Cross-Linked Molecules to Soft Tissues", In: *Multiscale Computer Modeling in Biomechanics and Biomedical Engineering*, Springer 2013.

NANO-MICRO-MACRO MODEL

NANO-MICRO-MACRO MODEL

Few parameters, experimentally measurable

NANO-MICRO-MACRO MODEL: RESULTS

MLU_k

MLU_{k-1}

 MLU_{k+1}

AORTIC MODEL: MULTISCALE STRUCTURAL APPROACH

- Multi-layered thick cyinder
- Each layer is a MLU
- Each MLU is a laminate
- Nano-micro-macro homogenization

Helically-Arranged-Fiber-Reinforced-Composite-Materials: HFC

AORTIC MODEL: MULTISCALE STRUCTURAL APPROACH

AORTIC MODEL

Human aorta (media) – middle age (Hallock, 1937)

Nanoscale parameters:

	Value	Reference			
ℓ_c	285 nm	Sun, 2002			
ℓ_p	14.5 nm	Sun, 2002			
ℓ_{kinks}	22 nm	Graham, 2004			
\widehat{E}	80 GPa	Buehler, 2008			
λk_{cl}	10	-			

Microscale parameters:

	Value	Reference			
L _o	3.4 μm	O' Connell, 2008			
H_0/L_0	0.3	O' Connell, 2008			
r _F	100 nm	O' Connell, 2008			

Geometry:

	Value	Reference			
S ₀	1.42 μm	Ästrand, 2008			
Ν	60	Wolinsky, 1967			
r _{p=0}	6.2 mm	Ästrand, 2008			

Boundary conditions: Free estremities

Loading: Uniform internal pressure

Material properties: Multiscale model

Macroscale parameters:

	Value	Reference				
V _f	30%	Behmoaras, 2005				
E _M	24 kPa	Ästrand, 2008				
$F(\theta_f)$	-	O' Connell, 2008				

AORTIC MODEL: RESULTS

Quantitative and qualitative indications from experimental data:

Age	λk_{cl}	H_o/L_o	L _o	V _F	E _e	Φ_{e}	S _a	$r _{p=0}$
[yrs.]	[pN/nm]	[-]	[µm]	[%]	[kPa]	[-]	[mm]	[mm]
20-23	5	0,4	2,6	40	60	0,0	0,6	5,6
36-42	10	0,3	3,4	30	80	-0,3	0,6	6,2
71-78	100	0,2	3,7	20	100	-0,6	0,7	7,4

AORTIC MODEL: APPLICATIONS EVIDENCE REFERENCE Elastin stiffness Bruel, 1997 NANO **Cross-link density** Bailey, 2001 **Age-related remodeling** Elastin content Bruel, 1997 **MICRO** Collagen content Bruel, 1997 Fiber straightening Astrand, 2001 Diameter at p=0 Astrand, 2008 MACRO Astrand, 2008 Media thickness Young (exp.) Δ 200 Middle (exp.) Ο 175 -Old (exp.) 150 Young (model) Middle (model) 125 a (mmHg) Old (model) 100 -75 · 50 · **Experimental data** 25 (Hallock, 1937) F. Maceri, M. Marino, G. Vairo, "Age-dependent arterial mechanics via a multiscale elastic approach", International 0 Journal for Computational Methods in Engineering Science 10 5 7 8 9 11 12 and Mechanics 14, 2013. r (mm)

F. Maceri, M. Marino, G. Vairo, "Age-dependent arterial mechanics via a multiscale elastic approach", *International Journal for Computational Methods in Engineering Science and Mechanics* 14, 2013.

CONSTITUTIVE MODELS OF SOFT TISSUES

TISSUE DEFECT

Cross-links density defect:
$$~z=\lambda k_{cl}$$

M. Marino, G. Vairo, "Stress and strain localization in stretched collagenous tissues via a multiscale modelling approach", *Computer Methods in Biomechanics and Biomedical Engineering*, published online since 2012.

TISSUE DEFECT

Cross-links density defect: $z=\lambda k_{cl}$

M. Marino, G. Vairo, "Stress and strain localization in stretched collagenous tissues via a multiscale modelling approach", *Computer Methods in Biomechanics and Biomedical Engineering*, published online since 2012.

weak-bonds induced

covalent-bonds induced interstrand delamination

From: Buehler, *Theoretical and computational hierarchical nanomechanics of protein materials,* Progress in Materials Science 53, 2008

$$\begin{split} F_{f} &= \bar{\beta}_{m} \mathcal{A}_{c} \{ \sigma_{m}(\bar{\varepsilon}_{m}^{e}) + E_{m}(\bar{\varepsilon}_{m}^{e}) [(1 - \alpha_{1})\ell^{(n)} dw_{1}^{\prime} / \ell_{m,o} - \alpha_{1} \kappa_{m} \bar{\varepsilon}_{m}^{e}] \} \\ F_{f} &= N_{a} \{ \lambda_{c} (k_{c} \bar{\delta}_{c} + k_{c} \ell^{(n)} f_{c}(\bar{w}_{2}) dw_{2}^{\prime}) + k_{w}^{e} \bar{\delta}_{w}^{e} + k_{w} \ell^{(n)} (1 - \alpha_{2}) dw_{2}^{\prime} \} \\ 0 &\in c_{m} \dot{\beta}_{m} + \Psi_{m}^{el}(\bar{\varepsilon}_{m}^{e}) - w_{m} + a_{f} + \partial I_{[0,1]}(\beta_{m}) + \partial I^{-}(\dot{\beta}_{m}) \\ 0 &\in c_{c} \dot{\beta}_{c} + \mathcal{E}_{c}^{el} - w_{c} + a_{f} + \partial I_{[0,1]}(\beta_{c}) + \partial I^{-}(\dot{\beta}_{c}) \\ 0 &\in c_{w} \dot{\beta}_{w} + \frac{k_{w}(\bar{\delta}_{w}^{e})^{2}}{2} - w_{w} + a_{f} + \partial I_{[0,1]}(\beta_{w}) \end{split}$$

INELASTIC MECHANISMS

COUPLED MULTISCALE MECHANISMS

Softening/brittle failure Dependence on nanoscale quantities

Svensson RB, Mulder H, Magnusson SP (2013) Fracture mechanics of collagen fibrils: influence of natural cross-links. *Biophysical Journal* 104:2476-2484

Uzel S, Buehler MJ (2011) Molecular structure, mechanical behavior and failure mechanism of the C-terminal cross-link domain in type I collagen. *Journal of the Mechanical Behavior of Biomedical Materials* 4:153-161

CONSTITUTIVE MODELS OF SOFT TISSUES

PRIN Project: Advanced mechanical modeling of new materials and technologies for the solution of 2020 European challenges

<u>Target problem</u>: *Health care devices to treat cardiovascular pathologies* (UNIROMA2 research unit)

Contacts: Michele MARINO, PhD, MSc Department of Civil Engineering and Computer Science University of Rome "Tor Vergata" E-mail: m.marino@ing.uniroma2.it Tel: +39 06 7259 7016