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Abstract

The present paper develops a refined and general three-dimensional phenomenological constitu-
tive model for shape memory alloys (SMAs), along the lines ofwhat recently proposed by Au-
ricchio and Bonetti (2013) in a more theoretical context. Such an improved model takes into
account several physical phenomena, as martensite reorientation and different kinetics between
forward/reverse phase transformations, including also smooth thermo-mechanical response, low-
stress phase transformations as well as transformation-dependent elastic properties. The model is
treated numerically through an effective and efficient procedure, consisting in the replacement of
the classical set of Kuhn-Tucker inequality conditions by the so-called Fischer-Burmeister comple-
mentarity function. Numerical predictions are compared with experimental results and the finite
element analysis of a SMA-based real device is described to assess the reliability of the proposed
model as well as the effectiveness of its numerical counterpart.

Keywords: Shape memory alloys, Constitutive modeling, Phase transformation, Reorientation,
Fischer-Burmeister function

1. INTRODUCTION

Smart materials exhibit special properties that make them an attractive choice for industrial
applications in many branches of engineering. Among different types of smart materials, shape
memory alloys (SMAs) have unique features known as pseudo-elasticity (PE), one-way and two-
way shape memory effects (SMEs) (Duerig et al., 1990; Otsukaand Wayman, 1998). Such unusual
effects are exploited in a large variety of interesting applications. The most successful commercial
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examples are in the biomedical area, e.g., endo-prosthesis, orthodontic archwires, cardiovascular
stents (Auricchio et al., 2010a; Azaouzi et al., 2013; Wu et al., 2007), as well as in the robotic and
automotive areas, e.g., positioning for mirror seats, actuators, micro-grippers (Auricchio et al.,
2009a, 2010b; Huang, 1998; Williams and Elahina, 2008).

SMA features are the consequence of reversible martensiticphase transformations (PTs) be-
tween a high symmetric austenitic phase and a low symmetric martensitic phase. Austenite is
a solid phase, present at high temperature, which transforms into different possible martensitic
variants by means of a lattice shearing mechanism. In thermal-induced transformations under
zero stress, multi-direction martensite variants compensate each other and arrange themselves in a
self accommodating manner through twinning, with no observable macroscopic shape change. In
stress-induced transformations, starting from a martensitic specimen, the application of a loading
induces a detwinning process of the martensitic variants, leading to the presence of a single-variant
(Duerig et al., 1990); upon unloading, a large residual strain remains, which can be recovered by
heating. This phenomenon is referred to as SME. On the other hand, when a stress is applied
to an austenitic specimen, at high temperature, a transformation from austenite to single-variant
martensite occurs; upon unloading, the strain attained during loading is recovered. This process is
referred to as PE (Otsuka and Wayman, 1998).

Such functional material properties motivate researchersto formulate constitutive models able
to catch the interesting behavior of SMAs and to develop robust computational tools for practical
purposes. In the following, we focus on both the constitutive and numerical modeling of SMAs
by briefly reviewing some approaches available from the literature and by carefully describing our
motivations and proposed improvements.

1.1. CONSTITUTIVE MODELING: STATE OF ART AND PROPOSED IMPROVEMENTS

In the past three decades SMAs have been deeply investigatedfrom the point of view of model-
ing, analysis, and computation with the focus on a variety ofaspects, such as, for instance, stress-
and temperature-induced transformations, martensite reorientation or cyclic effects.

In terms of modeling, there have been several attempts to properly reproduce SMA material
features. The resulting models can be categorized as eithermicro, micro-macro or macro. For an
overview, see (Khandelwal and Buravalla, 2009; Lagoudas et al., 2006; Patoor et al., 2006).

In the following, we focus on phenomenological macro-modeling approaches which appear to
be a powerful tool for the direct simulation of SMA applications, thanks to their simple numeri-
cal implementation and reduced time-consuming calculations, compared to micro-mechanical ap-
proaches. In particular, the present research is devoted tothe aim of finding a flexible and accurate
three-dimensional phenomenological model for a reliable description of SMA-based real devices
behavior.

In the phenomenological framework, an appropriate set of internal variables has to be chosen
to represent at least a scalar and a directional information(Luig and Bruhns, 2008). Physical
motivations usually lead to the introduction of a martensite volume fraction and of a tensorial
variable describing martensitic inelastic deformation processes (Arghavani et al., 2010; Luig and
Bruhns, 2008; Peultier et al., 2006; Saleeb et al., 2011). Such a simplified description is motivated
by the aim to obtain fast and efficient models with a low numberof fitting parameters.

2



A set of only scalar variables is, in fact, not adequate due tothe loss of explicit directional
information. For instance, the model by Frémond (2002) describes SMA behavior in terms of
austenite and two martensite variants and assumes the transformation strain direction to be known,
although experimental studies showed that variant reorientation can be considered as a main phe-
nomenon in SMA non-proportional loadings (Bouvet et al., 2002; Grabe and Bruhns, 2009; Helm
and Haupt, 2003; Lim and McDowell, 1999; Sittner et al., 1995; Sun and Li, 2002).

On the other hand, models with only tensorial internal variables, by explicitly including simple
directional information, seem to be more successful, but present some limitations since scalar
and directional informations are tightly interconnected,possibly leading to limited or constrained
modeling approaches. As an example, the model by Souza et al.(1998), then investigated by
(Auricchio and Petrini, 2004a,b), introduces the transformation strain tensor as an internal variable
and presents a simple and robust algorithm, widely used for implementation within finite element
(FE) codes. On the contrary, it is not able to capture PTs for low levels of stress, as required often
by industrial applications (Auricchio et al., 2009a), and does not include some secondary effects
that may turn out to be relevant in practical cases (Thamburaja and Anand, 2001).

Numerous analyses of existing models and their comparison to experimental results have
shown that current SMA constitutive models have reached a high level of sophistication. Sev-
eral authors extended, in fact, such simplified phenomenological descriptions by using additional
variables as volume fraction of twinned/detwinned martensites (Lexcellent et al., 2000; Panico and
Brinson, 2007; Popov and Lagoudas, 2007), twins accommodation strain (Chemisky et al., 2011),
viscoplasticity (Chemisky et al., 2014), thermo-mechanical coupling (Morin et al., 2011a,b; Zaki
and Moumni, 2007a,b) or plastic strain (Auricchio et al., 2007; Hartl et al., 2010; Peng et al.,
2012; Saint-Sulpice et al., 2009; Zaki et al., 2010). The recent and innovative work by Sedlák
et al. (2012) formulates a new dissipation function to simulate non-proportional loadings and in-
cludes anisotropic behavior of textured SMAs as well as the thermo-mechanical response due
to austenite-R-phase transformation. Panoskaltsis et al. (2004) developed a three-dimensional
thermo-mechanical constitutive model based on generalized plasticity theory in the small defor-
mation regime, and Panoskaltsis et al. (2011a,b) within finite strains and rotations.

However, the most capable models usually achieve accuracy at the cost of complexity, since
they consider multiple and simultaneous processes (Chemisky et al., 2011; Popov and Lagoudas,
2007) or require costly calibrations of a high number of model parameters (Saleeb et al., 2013b,
2011).

Starting from the reviewed literature about constitutive modeling, the present paper is moti-
vated by the necessity of developing constitutive models that can predict the complex thermo-
mechanical behavior of SMAs and that can also be implementednumerically. Such models have
to accurately capture material response not only during classical PE and SME loading paths, but
also during loading paths involving the co-existence of allthe three material phases, i.e., austenite,
multiple- and single-variant martensite. Moreover, modelmaterial parameters have to be derived
from a simple physical interpretation, which is important for the calibration process, to allow a
quantitative validation through experimental results.
Indeed, the goal of the present paper is to introduce a refined, flexible and general three-dimensional
phenomenological constitutive model for SMAs, along the lines of the recent theoretical work by
Auricchio and Bonetti (2013), limiting the discussion to thesmall deformation regime.

3



The model by Auricchio and Bonetti (2013) addresses a generalflexible theoretical framework
for the development of constitutive models able to describemultiple phase transformations (PTs),
which may or may not interact. The model is investigated froma purely mathematical point
of view, by proposing some general considerations on requirements to be satisfied to make the
model thermo-dynamically consistent. In particular, the cited reference does not cover several
fundamental details, i.e., constitutive modeling detailing to SMAs, model parameters’ physical
interpretation and identification, as well as numerical modeling.
As concerns the constitutive modeling, the cited work givesonly some very general indications
on the effective modeling of SMA materials and, as a matter offact, it reports only a very simple
one-dimensional qualitative hand-computed response of the model. In fact, the cited reference
does not apply in details the model to the case of SMAs and, at the same time, it does not give any
indication on the possibility of effectively and robustly solving the complex set of possible PTs
occurring in real SMAs, which represents the essential starting point into SMA modeling.
As concerns the model parameters’ physical interpretationand identification, the cited reference
does not address the important issue related to the physicalinterpretation of model parameters, as
a clear and effective parameter identification procedure isan important key for the employment
of a constitutive model by engineers in real-life simulations. In particular, model parameters are
defined as general constants or general functions of temperature and volume fractions.
Finally, as concerns the numerical modeling, the cited model does not address any numerical
solution algorithm to model formulation, which is important for engineers needing to perform
accurate simulations for the design and study of the response of SMA structures or components.

In this context, the present paper aims to do a step-forward with respect to the work by Au-
ricchio and Bonetti (2013) by deepening all the listed lacking aspects and to possibly offer a new
contribution to the existing modeling solutions. The purpose is to formulate a general, complete
and flexible theoretical framework that can predict the complex behavior of SMAs and is based on
a physical interpretation of material parameters as well asto offer a robust numerical framework
to be then used for the simulation of real devices.

From the modeling point of view, the proposed model combinesthe main features of the ap-
proaches by Fŕemond (2002) and Souza et al. (1998) and describes secondaryeffects in PTs as well
as directional information for the transformation strain.Volume proportions of different configu-
rations of crystal lattice (i.e., austenite, single- and multiple-variant martensites) are used as scalar
internal variables and the direction of single-variant martensite as tensorial internal variable. With
respect to the model by Frémond (2002), the present model considers the transformation strain
direction unknown, by assuming the direction of single-variant martensite as tensorial internal
variable. Compared to the model by Souza et al. (1998), the proposed theoretical framework al-
lows for a completely independent description of the different PTs, leading to a very flexible frame
in terms of model features and allowing to capture PTs at low levels of stress. As an example, Sec-
tion 4.1 presents a detailed description of the one-dimensional stress-temperature phase diagram
related to the proposed model and a comparison with that related to the model by Souza et al.
(1998).

Compared to the model by Auricchio and Bonetti (2013), the proposed model naturally presents
similarities in terms of theoretical aspects and governingequations. In the present work, however,
we propose an enriched generalization, able to describe several phenomena such as martensite
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reorientation, different kinetics between forward/reverse phase transformations, smooth thermo-
mechanical response, low stress phase transformations, transformation-dependent elastic proper-
ties. In particular, the characteristics that have been included and improved upon in this work con-
cern the asymmetric behavior between forward and reverse phase transformations, hardening ef-
fects, increasing hysteresis width for low applied stresses in thermal-cycling tests at constant load,
the width of the hysteresis loop in superelasticity (i.e., difference between upper and lower plateau
stress) decreasing with increasing temperature, smooth thermo-mechanical response, transforma-
tion dependent elastic properties. As an example, in order to include the listed characteristics in
the theoretical model and to reproduce experimental evidences, we assign a significant flexibility
to the model in terms of ability by introducing very special forms for the elastic domain radii.

We remark, moreover, that the proposed modeling approach presents similarities with some
three-dimensional phenomenological models presented in the literature, in terms of capturing the
reorientation process in martensite. Among others, we can cite the interesting works by Argha-
vani et al. (2010) and Chemisky et al. (2011). The model by Arghavani et al. (2010) describes
the evolution of transformation strain with a unique martensitic volume fraction and considers
a proportional relationship between the evolution of transformation strain and the evolution of
the martensitic volume fraction; the model by Chemisky et al.(2011) adds to the classical inter-
nal variables, representing the martensite volume fraction and the mean transformation strain of
martensite, two new variables accounting for the strain mechanism related to the accomodation
of twins and for the self-accomodated martensite volume fraction. The final model is able to de-
scribe martensitic transformation and reorientation, andthe inelastic accommodation of twins in
self-accommodated martensite, as well as to account for tension-compression asymmetry and in-
ternal loops. Compared to the cited references, the proposedapproach is very flexible since it can
capture loading paths involving the co-existence of three material phases.

From the physical point of view, material parameters are then derived from a simple physi-
cal interpretation, and thus, are no more represented as general constants or general functions of
temperature and volume fractions.

In the following Section, the proposed improvements in terms of numerical aspects are treated
in detail.

1.2. NUMERICAL MODELING: STATE OF ART AND PROPOSED IMPROVEMENTS

The present work focuses on another important aspect of SMA modeling, i.e., the development
of an appropriate model implementation into numerical softwares (such as FE packages) to guar-
antee a robust computational tool, which could be effectively utilized for practical purposes. From
a numerical point of view, robust and efficient integration algorithms for the zero-dimensional
problem (e.g., constitutive equations at the Gauss point level in a FE scheme) need to be pro-
posed in order to then solve complex boundary-value problems and to simulate SMA real devices
behavior within FE codes. Some examples of SMA models are available in the literature in a suit-
able form to conduct three-dimensional thermo-mechanicalsimulations (Arghavani et al., 2011;
Auricchio and Petrini, 2004a; Gao et al., 2007; Hartl et al.,2009, 2010; Helm, 2007; Lagoudas
et al., 2012; Peultier et al., 2008; Popov and Lagoudas, 2007; Sedĺak et al., 2012; Stupkiewicz and
Petryk, 2012; Zaki, 2012a,b).
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Generally, SMA macroscopic models are solved by return-mapalgorithms, either through
norm regularization schemes at the cost of inaccuracy due tothe corresponding approximation
(Auricchio and Petrini, 2004a,b; Auricchio and Stefanelli, 2004) or nucleation-completion condi-
tions (Arghavani et al., 2011). The recent work by Sedlák et al. (2012) applies the Nelder-Mead
minimization algorithm to solve the derived energy minimization problem and introduces a reg-
ularization energy to assure the fulfillment of constraintson internal variables. Stupkiewicz and
Petryk (2012) presented a pseudoelastic model within the incremental energy minimization frame-
work and proposed an unified augmented Lagrangian treatmentof both constitutive constraints and
non-smooth dissipation function. The recent works by Peigney and Seguin (2013); Peigney et al.
(2011) propose a new numerical approach for a micro-mechanical material model, based on the re-
formulation of the incremental problem as a linear complementarity problem (LCP), which can be
solved using well established algorithms such as interior-point methods. Solving the obtained LCP
allows to fully take the constraints on the internal variable into account and leads to an efficient
numerical algorithm. The work by Popov and Lagoudas (2007) applies an extension of the clos-
est point projection algorithm to describe a SMA model incorporating single- and multi-variant
martensites. The work by Hartl et al. (2009) proposes a three-dimensional constitutive model
capturing conventional SMA functional properties and thermal strain recovery, and additionally
considering the initiation and evolution of plastic strains. The model is numerically implemented
in a FE framework using a return mapping algorithm to solve the constitutive equations at each
material point. The model is tested for three-dimensional FE analyses of SMA structural compo-
nents under uniaxial and bending loads and then compared to experimental results of a bending
member, illustrating the predictive accuracy of the model and its implementation.

However, algorithm schemes still need robustness investigations, aiming also at the develop-
ment of flexible, effective and efficient procedures, applicable to models as the one introduced in
the present work. In fact, the numerical application of standard predictor-corrector methods is not
suitable for the proposed approach, because an elaborate active set search has to be carried out.
Compared to the work by Hartl et al. (2009), for instance, the model deals with multiple scalar
and tensorial internal variables, whose evolution is strongly coupled, and involving several con-
stitutive constraints imposed on internal variables, which introduce additional complexity in the
incremental schemes used in FE computations and, consequently, decrease algorithmic efficiency.

For these reasons different approaches need to be explored for the proposed modeling frame-
work to describe situations corresponding to nucleation, saturation or completion of transforma-
tion.

Recalling the discussion of Section 1.1, the model by Auricchio and Bonetti (2013) does not
address any numerical solution algorithm to model formulation.

The purpose of the present paper to integrate the proposed constitutive equations is to reduce
the complexity, and thus increase the efficiency, of the algorithmic treatment. This is achieved
by eliminating the need for a predictor-corrector-type scheme and by automatically constraining
the range of the variant volume fractions. Consequently, we conduct the numerical investigation
of the proposed model through an effective and efficient procedure, introduced in the framework
of crystal plasticity by Schmidt-Baldassari (2003). It consists in replacing the Kuhn-Tucker com-
plementarity inequality conditions by the equivalent Fischer-Burmeister complementarity function
(Fischer, 1992) and in making possible to omit an active set search, a fundamental advantage when
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dealing with many coupled evolution equations.
Besides the contributions by Bartel and Hackl (2009, 2010); Bartel et al. (2011) in the context

of SMA micro-mechanical modeling, the work by Kiefer et al. (2012) presents two alternative
algorithms for the integration of the coupled, non-linear and inelastic constitutive equations for
magnetic shape memory alloy, i.e., the classical predictor-corrector return-mapping scheme and
the Fischer-Burmeister based algorithm. The work shows the greater numerical efficiency of the
second algorithm that is however tested for simple loading cases and not for three-dimensional
analyses.

The proposed paper presents a detailed investigation of thenumerical Fischer-Burmeister
based algorithm, applied to the case of SMAs, to test its robustness and efficiency. This is achieved
through: (i) a complete presentation of the adopted algorithmic scheme; (ii) the description of pos-
sible computational difficulties and related solutions; (iii) several numerical simulations, ranging
from simple uniaxial tests to more complex three-dimensional FE analyses of a real-life device;
and (iv) details about CPU times, number of steps and iterations. Moreover, FE analyses allow to
qualitatively show and emphasize all the model features, while the comparison between numeri-
cal predictions and experimental data allows to quantitatively validate the proposed model and to
demonstrate its reliability.

The present paper is organized as follows. The proposed three-dimensional phenomenologi-
cal model is presented in Section 2. Section 3 describes the numerical implementation of model
equations and the full solution algorithm. Section 4 presents model phase diagram and calibration.
Section 5 is devoted to numerical tests and comparisons withexperimental results. Conclusions
and summary are finally given in Section 6.

2. A 3-D PHENOMENOLOGICAL MODEL FOR SMAs

This Section initially addresses a general three-dimensional phenomenological model for SMAs
along the lines of the recent theoretical work by Auricchio and Bonetti (2013) and then, it proposes
a simplified formulation based on physically motivated considerations.

In the following, we adopt superscriptsA, M , andS to indicate austenite, multiple-variant and
single-variant martensites, respectively. Moreover, we make use of the notation‖ · ‖ to denote the
Euclidean norm and of|·| to indicate the absolute value function. The notation(· : ·) denotes the
inner product between two second order tensors (Gurtin et al., 2010).

2.1. A GENERAL MODEL FORMULATION

In the framework of macroscopic modeling and of small straincontinuum mechanics, we as-
sume the total strain,εεε, representing the total deformation of the material, and temperature,T , as
state variables. A general assumption of additive strain decomposition is adopted in the form:

εεε = εεε
e + εεε

ie + εεε
th (1)

whereεεεe, εεεie andεεεth denote the elastic, inelastic and thermal strain, respectively. The inelastic
strain,εεεie, should include the description of several physical phenomena, ranging from permanent
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plasticity and PTs, up to void generation and fracture. In the following, all inelastic phenomena
are neglected except for reversible martensitic PTs which are considered in combination with
martensite reorientation.

Recalling the discussion reported in Section 1, the model introduces scalar and tensorial in-
ternal variables taking into account different PTs betweenaustenite, multiple- and single-variant
martensites as well as directional information for the transformation strain. The model decouples
the pure reorientation from the pure transformation mechanism, but additionally, takes into ac-
count for temperature-induced transformation. Consequently, similarly to (Arghavani et al., 2010;
Chemisky et al., 2011), we do not treat the inelastic strain,εεε

ie, as a unique tensor variable, but
we clearly distinguish between its norm and direction with the aim of getting more modeling free-
dom. In the following, we choose a measure of the amount of single-variant martensite as scalar
internal variable, being related to the amount of inelasticstrain due to stress-induced PT, while
the average direction of different variants (or preferred direction of variants) as tensorial internal
variable, representing the inelastic strain direction. Consequently, we may clearly interpret these
two internal variables as PT and variant reorientation in order to hopefully describe transforma-
tion and reorientation with more flexibility. Moreover, we choose a measure of the amount of
multiple-variant martensite as scalar internal variable,being related to the amount of martensite
due to thermal-induced PT.

According to the previous discussion, volume proportions of different configurations of crystal
lattice (austenite and martensite variants) are assumed asscalar internal variables and are repre-
sented by three phase parameters,χA, χM , χS, standing, respectively, for austenite, multiple-
variant and single-variant martensite, such thatχA, χM , χS ∈ [0, 1] andχA + χM + χS = 1.
Thanks to this last constraint, the model restricts itself just to two independent phase variables,
χM andχS, lettingχA = 1− χM − χS. Then, the following restrictions need to be fulfilled:

0 ≤ χM , χS ≤ 1, χM + χS ≤ 1 (2)

Consequently, the inelastic strain is given by:

εεε
ie = εLχ

Sdtr (3)

whereεL is a material parameter related to the maximum transformation strain reached at the end
of the transformation during an uniaxial test (Otsuka and Ren, 2005), whiledtr is the direction of
single-variant martensite, assumed as tensorial internalvariable with the following constraint:

‖dtr‖ = 1 (4)

We remark, again, that the choice of dealing with a tensorialvariable,dtr, and two scalar
variables,χM andχS, allows to distinguish between a phase to which no macroscopic strain is
associated and a phase to which a homogenized macroscopic strain is associated, as well as to
consider thermal-induced transformations when no stress is applied. Moreover, the model is able
to distinguish between the norm and the direction of the inelastic strain,εεεie, similarly to other
effective modeling approaches as the one proposed in Arghavani et al. (2010); Chemisky et al.
(2011), but allowing to get a richer model compared, for instance, to the works by Auricchio and
Petrini (2004a,b); Fŕemond (2002); Souza et al. (1998).
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2.1.1. Helmholtz free-energy function
The Helmholtz free-energy function,Ψ = Ψ

(

εεε, T, χM , χS,dtr
)

, is assumed in the following
form:

Ψ = Ψel +Ψch +Ψint +Ψv (5)

whereΨel is the elastic energy,Ψch the chemical energy related to entropic changes due to PTs,
Ψint the interaction or interfacial energy, often derived from micro-mechanical or metallurgical
considerations (Chemisky et al., 2011; Moumni et al., 2008; Peultier et al., 2006), andΨv the
energy due to internal constraints.

For the first two components of the free-energy, i.e.,Ψel = Ψel
(

εεε, χM , χS,dtr
)

andΨch =

Ψch
(

T, χM , χS
)

, presented in Eq. (5), we employ the rule of mixtures (Lagoudas et al., 2006),
considering that each of them is a combination of austenite,multiple-variant and single-variant
martensites. In particular, we set:







Ψel =
(

1− χM − χS
)

Ψel,A + χMΨel,M + χSΨel,S

Ψch =
(

1− χM − χS
)

Ψch,A + χMΨch,M + χSΨch,S
(6)

To treat the elastic energy of Eq. (6)1, Ψel, we develop the aspect of phase mixture following
the model of Reuss, by assuming the material as elastically isotropic with a homogeneous distri-
bution of stresses in austenite, multiple-variant and single-variant martensites. The elastic energy
term,Ψel, follows:

Ψel =
1

2
Kθ2 +G‖e− εLχ

Sdtr‖2 − 3αKθ (T − T0) (7)

whereT0 is the equilibrium temperature;θ = tr(εεε) ande is the deviatoric part of the strain
tensor,εεε, such thatεεε = e + 1/3θI, I being the second-order identity tensor and tr(·) the trace
operator. The bulk modulus,K, is assumed equal for all phases and the total shear modulus,
G = G

(

χM , χS
)

, is determined from the Reuss model (Wagner and Windl, 2008),i.e.:






K = KA = KM = KS

1

G
=

(

1− χM − χS
) 1

GA
+ χM

1

GM
+ χS

1

GS

(8)

The last right-side term of Eq. (7) derives from the assumption thatεεεth = α (T − T0), α = αI
being the thermal expansion coefficient tensor.

To treat the chemical energy of Eq. (6)2, Ψch, we define the free-energies of pure phases at
stress-free conditions,Ψch,i = Ψch,i (T ), as:

Ψch,i = ui
0 − si0T + ci

[

(T − T0)− T log
T

T0

]

(9)

for i ∈ A, M , S. Hereui
0 andsi0 are the internal energy and entropy of thei-phase at a fixed equi-

librium temperature,T0; ci is the constant heat capacity of thei-phase (Leclercq and Lexcellent,
1996; Lexcellent et al., 2006; Panico and Brinson, 2007).
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The free-energy component,Ψint = Ψint
(

χM , χS
)

, presented in Eq. (5), represents the in-
teractions that appear between the phases, typically the incompatibilities between deformations
(Leclercq and Lexcellent, 1996; Raniecki et al., 1992). One of the characteristics of this energy is
that it must disappear when only one phase is present inside the material. Moreover, in the case
of three phases coexisting, this term must take into accountinteractions between one phase and
the two remaining ones, separately (one interface separates two phases and not three). Indeed,
we assume the following expression for the configurational energy (this expression has the great
advantage to become fairly simple):

Ψint =
(

1− χM − χS
)

(

Ψ
AM

χM +Ψ
AS

χS +Ψ
AMS

χMχS
)

+Ψ
MS

χMχS (10)

Ψ
AM

, Ψ
AS

, Ψ
MS

, andΨ
AMS

being material constants indicating interaction energiesbetween
phasesA andM , A andS, M andS, A, M andS, respectively (Leclercq and Lexcellent, 1996;
Raniecki et al., 1992).

To satisfy constraints (2) and (4) on internal variables, wedefine the free-energy contribution,
Ψv, presented in Eq. (5), as:

Ψv = I[0,1]
(

χM , χS
)

+ I1
(

‖dtr‖
)

(11)

where the indicator function,I[0,1]
(

χM , χS
)

, is set to enforce inequality constraints (2) onχM and
χS as (Rockafellar, 1970):

I[0,1]
(

χM , χS
)

=

{

0 if 0 ≤ χM , χS ≤ 1, χM + χS ≤ 1

+∞ otherwise
(12)

and the indicator function,I1 (‖dtr‖), is defined to enforce equality constraint (4) ondtr as:

I1
(

‖dtr‖
)

=

{

0 if ‖dtr‖ = 1

+∞ otherwise
(13)

In conclusion, the energy term,Ψ, reads as:

Ψ =
1

2
Kθ2 +G‖e− εLχ

Sdtr‖2 − 3αKθ (T − T0) (14)

+ uA0 − sA0 T + cA
[

(T − T0)− T log
T

T0

]

−
(

∆uAMχM +∆uASχS
)

+
(

∆sAMχM +∆sASχS
)

T

−
(

∆cAMχM +∆cASχS
)

[

(T − T0)− T log
T

T0

]

+
(

1− χM − χS
)

(

Ψ
AM

χM +Ψ
AS

χS +Ψ
AMS

χMχS
)

+Ψ
MS

χMχS + I[0,1]
(

χM , χS
)

+ I1
(

‖dtr‖
)

where:
{

∆uAM = uA
0 − uM

0

∆uAS = uA
0 − uS

0

{

∆sAM = sA0 − sM0

∆sAS = sA0 − sS0

{

∆cAM = cA − cM

∆cAS = cA − cS
(15)
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2.1.2. Constitutive equations
Starting from the adopted free-energy,Ψ, presented in Eq. (14), and following standard argu-

ments (Gurtin et al., 2010), we derive the volumetric and thedeviatoric part of the stress tensor,
σ, denoted, respectively, withp ands, and the entropy,η:






























p =
∂Ψ

∂θ
= Kθ − 3αK (T − T0)

s =
∂Ψ

∂e
= 2G

(

e− εLχ
Sdtr

)

η = −∂Ψ

∂T
= sA0 −

(

∆sAMχM +∆sASχS
)

+
(

cA −∆cAMχM −∆cASχS
)

log
T

T0
+ 3αKθ

(16)

as well as the thermodynamic forces,BM , BS andBd, associated toχM , χS anddtr, respectively:














































































BM = − ∂Ψ

∂χM
= − ∂G

∂χM
‖e− εLχ

Sdtr‖2 +∆uAM −∆sAMT +∆cAM

[

(T − T0)− T log
T

T0

]

−
(

Ψ
AM

+Ψ
AMS

χS
)

(

1− 2χM − χS
)

+
(

Ψ
AS −Ψ

MS
)

χS − γM

BS = − ∂Ψ

∂χS
= 2GεL

(

e− εLχ
Sdtr

)

: dtr − ∂G

∂χS
‖e− εLχ

Sdtr‖2

+∆uAS −∆sAST +∆cAS

[

(T − T0)− T log
T

T0

]

−
(

Ψ
AM

+Ψ
AMS

χM
)

(

1− χM − 2χS
)

+
(

Ψ
AS −Ψ

MS
)

χM − γS

Bd = − ∂Ψ

∂dtr
= 2GεLχ

S
(

e− εLχ
Sdtr

)

− γddtr

(17)

VariablesγM andγS are defined as:

γM = ∂I[0,1]
(

χM , χS
)

=











γM0 ≤ 0 if χM = 0

0 if 0 < χM < 1

γMS ≥ 0 if χM + χS = 1

(18)

and

γS = ∂I[0,1]
(

χM , χS
)

=











γS0 ≤ 0 if χS = 0

0 if 0 < χS < 1

γMS ≥ 0 if χM + χS = 1

(19)

while
γd = ∂I1

(

‖dtr‖
)

6= ∅ if ‖dtr‖ = 1 (20)

We can rewrite Eqs. (18)-(19) in terms of the classical Kuhn-Tucker complementarity conditions:














χM ≥ 0, γM0 ≤ 0, γM0χM = 0

χS ≥ 0, γS0 ≤ 0, γS0χS = 0
(

χM + χS − 1
)

≤ 0, γMS ≥ 0, γMS
(

χM + χS − 1
)

= 0

(21)
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Moreover, we may observe that, in the case of proportional loading, i.e., neglecting the re-
orientation process, by definition, the preferred variant direction, dtr, coincides with the devi-
atoric stress direction,s. Under this assumption, we may simplify model equations by setting
dtr = s/‖s‖.

2.1.3. Evolution equations and limit functions
As traditionally done in the context of associative evolution, we assume the evolution equations

of internal variables as follows:


































χ̇M = ζ̇M
BM

|BM |

χ̇S = ζ̇S
BS

|BS|

ḋtr = ζ̇d
Bd

‖Bd‖

(22)

whereζ̇M , ζ̇S andζ̇d are non-negative consistency parameters.
Then, we define three limit functions,FM = FM

(

BM
)

, F S = F S
(

BS, χS, T
)

andF d =
F d

(

Bd, χS
)

, playing the role of yield functions (Lubliner, 1990), to describe PTs and reorientation
evolutions, in the following form:











FM = |BM | −RM

F S = |BS| −RS

F d = ‖Bd‖ −Rd

(23)

whereRM andRS = RS
(

BS, χS, T
)

represent the positive radii of elastic domains to activate
temperature and pure transformations, respectively, while Rd = Rd

(

χS
)

represents a positive
threshold value for the component of stress in the directionnormal to the preferred direction of
variants to activate variant reorientation. We observe that the proposed limit functions depend
on the three thermodynamic forces,BM , BS, andBd, and on the radii,RM , RS, andRd, whose
adopted forms determine the specific dependencies of each limit function.

The model is finally completed by the classical Kuhn-Tucker and consistency conditions, as
follows:















ζ̇M ≥ 0, FM ≤ 0, ζ̇MFM = 0, ζ̇M ḞM = 0

ζ̇S ≥ 0, F S ≤ 0, ζ̇SF S = 0, ζ̇SḞ S = 0

ζ̇d ≥ 0, F d ≤ 0, ζ̇dF d = 0, ζ̇dḞ d = 0

(24)

A significant flexibility is assigned to the model in terms of ability to reproduce experimental
evidences by introducing a very special form forRS. In particular, through a proper choice ofRS

we can guarantee the following features:

• asymmetric behavior between forward and reverse PTs, also modeled, for instance, in the
works by Bouvet et al. (2004); Lagoudas et al. (2012);
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• hardening effects, also modeled, for instance, in the work by Bouvet et al. (2004);

• increasing hysteresis width for low applied stresses in thermal-cycling tests at constant
load, as experimentally demonstrated by Shaw and Kyriakides (1995); Stachowiak and Mc-
Cormick (1987, 1988) and also modeled, for instance, in the works by Brinson (1993);
Chemisky et al. (2011); Lagoudas et al. (2012); Panico and Brinson (2007); Peultier et al.
(2008); Popov and Lagoudas (2007);

• width of the hysteresis loop in superelasticity (i.e., difference between upper and lower
plateau stress) decreasing with increasing temperature, as experimentally demonstrated by
Sittner et al. (2009) and also modeled, for instance, in the work by Sedĺak et al. (2012);

• smooth thermo-mechanical response, as experimentally demonstrated by Hartl et al. (2010);
Lagoudas et al. (2006) and also modeled, for instance, in thework by Lagoudas et al. (1996).

To take into account all these aspects we introduce the following very specific form forRS:

RS =

{

RS
f0 + hS

fχ
S + aS

f0

(

χS
)n

+ aS
f1

(

1− χS
)n

if BS ≥ 0

RS
r0
− hS

r χ
S − cST (T − T0) + aS

r0

(

χS
)n

+ aS
r1

(

1− χS
)n

if BS < 0
(25)

RS
f0,RS

r0
, hS

f , hS
r , cST , aS

f0, aSr0, a
S
f1, aSr1, andn ∈ [0, 1] being positive material parameters, discussed

in Section 4 (subscriptsf andr stand for forward and reverse PT).
We remark that we derive such an expression by starting from some modeling contributions

presented in the literature and cited in the above list. In particular, we distinguish between the
positive and negative sign ofBS to model the asymmetric behavior between forward and re-
verse PTs. Then, we introduce the following terms: (i)hS

fχ
S andhS

r χ
S to classically describe

hardening effects due to single-variant martensite; (ii)aS
f0

(

χS
)n

, aS
f1

(

1− χS
)n

, aS
r0

(

χS
)n

, and

aS
r1

(

1− χS
)n

to describe hardening effects as well as smooth thermo-mechanical response always
due to single-variant martensite; and (iii)cST (T − T0) to model increasing hysteresis width for low
applied stresses in thermal-cycling tests at constant loadas well as the width of the hysteresis loop
in superelasticity decreasing with increasing temperature. This last choice manifests itself as two
different slopes of the phase diagram boundaries for forward and reverse transformations, known
as stress influence coefficients (Liang and Rogers, 1992) or stress rates (Duerig et al., 1990; Otsuka
and Wayman, 1998), as presented in Section 4.

2.1.4. Dissipation function
Although the proposed model relies on an yield surface-based formulation, we complete the

description by recalling that the yield surface conditionscan be equivalently converted in a pseudo-

potential of dissipation,φ = φ
(

χ̇M , χ̇S, ḋtr
)

, which is a positive convex functional depending on

dissipative variables, vanishing for vanishing dissipation, in particular in the form:

φ = RM |χ̇M |+RS|χ̇S|+Rd‖ḋtr‖ (26)
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The introduced pseudo-potential of dissipation,φ, captures forward and reverse austenite to multiple-
variant martensite and austenite to single-variant martensite transformations as well as the reori-
entation process of single-variant martensite. The pseudo-potential of dissipation,φ, may also
depend on state and internal variables through the particular forms chosen forRM , RS, andRd.
This choice assigns a significant flexibility to the model.

2.2. A SIMPLIFIED MODEL FORMULATION

Based on physically motivated considerations, the present Section introduces a simplified
model formulation, based on a reduced set of material parameters but still able to capture fun-
damentals SMA feature effects.

2.2.1. Simplified Helmholtz free-energy function and time-continuous equations review
We start by making the following assumptions:

1. regarding single- and multiple-variant martensites, wereasonably assume:

• equal internal energies and entropies between single- and multiple-variant martensites,
implying ∆uAMS = ∆uAM = ∆uAS and∆sAMS = ∆sAM = ∆sAS;

• equal interaction energies between single- and multiple-variant martensites with austen-
ite, i.e.,Ψ

in
= Ψ

AM
= Ψ

AS
andΨ

AMS
= Ψ

MS
= 0;

• equal shear moduli between single- and multiple-variant martensites, i.e.,GMS =
GM = GS;

2. since many calorimetry experiments showed that the heat capacities of austenite and single-
variant martensite are almost equal (Qidwai and Lagoudas, 2000), we assume∆cAS = 0.
We make the same reasonable assumption for multiple-variant martensite, i.e.,∆cAM = 0;

3. sinceT0 denotes the equilibrium temperature at which phases energyis equal, we choose
T0 such thatΨch,A (T0) = Ψch,S (T0), i.e.,T0 = ∆uAS/∆sAS (Sedĺak et al., 2012). Since
∆uAMS = ∆uAM = ∆uAS and∆sAMS = ∆sAM = ∆sAS, it follows∆uAMS = ∆sAMST0.

4. since thermal expansion is a secondary effect compared tomartensite production, we set the
thermal expansion material coefficient,α, equal to zero.

Then, by applying such assumptions to Eq. (14), we derive thefree-energy function,Ψsimpl =
Ψsimpl

(

εεε, T, χM , χS,dtr
)

(superscriptsimpl stands for simplified):

Ψsimpl =
1

2
Kθ2 +G‖e− εLχ

Sdtr‖2 (27)

+ uA0 − sA0 T + cA
[

(T − T0)− T log
T

T0

]

+∆sAMS
(

χM + χS
)

(T − T0) + Ψ
in
(1− χM − χS)(χM + χS)

+ I[0,1]
(

χM , χS
)

+ I1
(

‖dtr‖
)
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We remark that the introduced free-energy function,Ψsimpl, does not include full thermo-mechanical
coupling since temperature is considered as a prescribed parameter.

A review of the model equations derived from the simplified free-energy (27) is reported in
Table 1.
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TIME-CONTINUOUS SIMPLIFIED MODEL FRAME

State variables:εεε, T

Internal variables:χM , χS , dtr

Constraints on internal variables:
0 ≤ χM , χS ≤ 1, χM + χS ≤ 1, ‖dtr‖ = 1

Constitutive equations:














p = Kθ

s = 2G(e− εLχ
Sdtr)

η = sA0 −∆sAMS(χM + χS) + cA log
T

T0











































BM = − ∂G

∂χM
‖e− εLχ

Sdtr‖2 −∆sAMS(T − T0)

−Ψ
in
(1− 2χM − 2χS)− γM

BS = 2GεL(e− εLχ
Sdtr) : dtr − ∂G

∂χS
‖e− εLχ

Sdtr‖2

−∆sAMS(T − T0)−Ψ
in
(1− 2χM − 2χS)− γS

Bd = 2GεLχ
S(e− εLχ

Sdtr)− γddtr

Evolution equations:

χ̇M = ζ̇M
BM

|BM | , χ̇S = ζ̇S
BS

|BS | , ḋtr = ζ̇d
Bd

‖Bd‖
Limit functions:

FM = |BM | −RM , FS = |BS | −RS , F d = ‖Bd‖ −Rd

Kuhn-Tucker conditions:










ζ̇M ≥ 0, FM ≤ 0, ζ̇MFM = 0, ζ̇M ḞM = 0

ζ̇S ≥ 0, FS ≤ 0, ζ̇SFS = 0, ζ̇SḞS = 0

ζ̇d ≥ 0, F d ≤ 0, ζ̇dF d = 0, ζ̇dḞ d = 0

Table 1: Time-continuous simplified model equations review

3. TIME-DISCRETE FRAME

We now elaborate on the algorithmic treatment of the model equations summarized in Table
1. For the sake of notation simplicity, the convention establishes superscriptn for all the variables
evaluated at timetn, while drops superscriptn+ 1 for all the variables computed at timetn+1.

We start making use of a classical Backward-Euler integration algorithm for the evolution
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equations (22). In this sense, time-discretized evolutionequations are given by:



































χM − χM
n −∆ζM

BM

|BM | = 0

χS − χS
n −∆ζS

BS

|BS| = 0

dtr − dtr
n −∆ζd

Bd

‖Bd‖ = 0

(28)

where∆ζM =
∫ tn+1

tn
ζ̇M , ∆ζS =

∫ tn+1

tn
ζ̇S and∆ζd =

∫ tn+1

tn
ζ̇d are the time-integrated consistency

parameters. Here Eq. (28)3 guarantees constraint (4) through the indicator function presented in
Eq. (13). All the remaining model equations are evaluated attime tn+1.

In Section 1.2.3 we presented an overview of several numerical approaches available from
the literature and suitable for both simple and more complexSMA phenomenological models.
Since the purpose of the present paper to integrate the proposed constitutive equations is to reduce
the complexity, and thus increase the efficiency, of the algorithmic treatment, this is achieved by
eliminating the need for a predictor-corrector-type scheme and by automatically constraining the
range of the variant volume fractions. In fact, in the resulting model, since we deal with several
phase fractions, with strongly coupled evolutions and involving constraints, the application of
standard predictor-corrector methods is not suitable, because an elaborate active set search has to
be carried out. In particular, iterative solution procedures may suffer from instabilities caused by
periodic oscillations of the active set.

An effective approach to the detection of an active set search has been introduced by Schmidt-
Baldassari (2003) in the context of crystal plasticity, consisting in the replacement of the Kuhn-
Tucker complementarity inequality conditions,a ≤ 0, b ≥ 0, ab = 0, a, b ∈ ℜ, by the equivalent
Fischer-Burmeister complementarity functionΦ (Fischer, 1992), withΦ : ℜ2 → ℜ and defined as
follows: Φ(a, b) =

√
a2 + b2 + a − b, such thatΦ(a, b) = 0 ⇔ a ≤ 0, b ≥ 0, ab = 0. This gen-

eral definition allows to rewrite the complementarity inequality constraints as a non-linear equality
constraint by their replacement with a Fischer-Burmeister complementarity function. The appli-
cation of Fischer-Burmeister functions makes possible to omit an active set search, a fundamental
advantage when dealing with many coupled evolution equations.

The discrete Kuhn-Tucker conditions deriving from system (24) are so substituted by the fol-
lowing set of functions in the time-discrete frame:















√

(FM)2 + (∆ζM)2 + FM −∆ζM = 0
√

(F S)2 + (∆ζS)2 + F S −∆ζS = 0
√

(F d)2 + (∆ζd)2 + F d −∆ζd = 0

(29)

The same strategy can be employed to treat the set of inequalities given by constraint (2). In fact,
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the additional Kuhn-Tucker conditions (21) can be substituted by the equivalent equalities:














√

(γM0)2 + (χM)2 + γM0 − χM = 0
√

(γS0)2 + (χS)2 + γS0 − χS = 0
√

(γMS)2 + (χM + χS − 1)2 − γMS + (χM + χS − 1) = 0

(30)

The time-discrete problem, evaluated at timetn+1, takes the specific form:

Q (εεε,h) =

























































χM − χM
n −∆ζM

BM

|BM | = 0

√

(FM)2 + (∆ζM)2 + FM −∆ζM = 0
√

(γM0)2 + (χM)2 + γM0 − χM = 0

χS − χS
n −∆ζS

BS

|BS| = 0

√

(F S)2 + (∆ζS)2 + F S −∆ζS = 0
√

(γS0)2 + (χM)2 + γS0 − χS = 0
√

(γMS)2 + (χM + χS − 1)2 − γMS + (χM + χS − 1) = 0

dtr − dtr
n −∆ζd

Bd

‖Bd‖ = 0

√

(F d)2 + (∆ζd)2 + F d −∆ζd = 0

‖dtr‖ − 1 = 0

























































= 0 (31)

with h =
{

χM ,∆ζM , γM0, χS,∆ζS, γS0, γMS,dtr,∆ζd, γd
}

. The active set can now be de-
termined via the solution of the non-linear system of equations (31), using a classical Newton-
Raphson method, which results in the standard update relation at iteration(k), as follows:

h(k+1) = h(k) +∆h(k) (32)

where:

∆h(k) = −
(

∂Q

∂h

)

−1

Q
(

εεε,h(k)
)

(33)

The FE implementation of model equations and of all the numerical examples presented in Section
5 is carried out using the symbolic code generation system AceGen/AceFEM (Korelc, 2007). This
system extends the symbolic capabilities of Mathematica (Wolfram, 2013) with the automatic
differentiation technique, simultaneous optimization ofexpressions, and automatic generation of
program code. Accordingly, we do not provide explicit expressions resulting from differentiation
as these are obtained automatically using the automatic differentiation technique implemented in
AceGen (Korelc, 2007). Application of these automation tools leads to exact linearization of the
non-linear FE equations (consistent tangent matrix). Thisguarantees quadratic convergence rate
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of the global Newton method and results in a robust and efficient FE implementation of the model,
as illustrated by the numerical examples of Section 5.

We remark that, in cases where no analytically evaluation ofthe Jacobian matrix is possible, the
most known approximation is through a finite difference scheme (Quarteroni et al., 2007). In such
a case, to obtain good approximations of derivatives, the use of higher order divided difference is
recommended, consequently leading to high computational costs in the evaluation of one or more
residuals and to low efficiency.

Moreover, we observe that in the case of proportional loading, we may simplify model equa-
tions by settingdtr = s/‖s‖, as presented in Section 2.1.2. In such a case, system (31) iscomposed
of only scalar-valued, rather than tensorial, equations byconsequently increasing efficiency.

Since the Fischer-Burmeister complementary function,Φ, is non-differentiable at(0, 0), we
introduce a regularized counterpart,Φδ, defined asΦδ(a, b, δ) =

√
a2 + b2 + 2δ2 + a − b, such

thatΦδ(a, b, δ) = 0 ⇔ a ≤ 0, b ≥ 0, ab = −δ2, whereδ is a positive regularization parameter
(Kanzow, 1996). This aspect characterizes especially the initiation of PTs, when botha andb are
equal to zero.

Possible difficulties are linked to the numerical sensitiveness of these schemes (due to the
presence ofδ) and to the proper choice of the Newton-Raphson initial guessto guarantee a fast
and correct convergence. In fact, a potential disadvantageof this method is that when the initial
point is far from a solution, the method might not converge ormay converge very slowly. To
resolve these shortcomings, we apply a line-search strategy (Dennis and Schnabel, 1983; Nocedal
and Wright, 1999). Such a choice is suggested by practical experience which reveals that it is not
necessary to solve accurately for Eq. (33) to devise efficient methods (Quarteroni et al., 2007),
rather, it is crucial to enforce some limitations on the steplength such that:

h(k+1) = h(k) + α(j)∆h(k) (34)

whereα(j) represents the admissible coefficient at iteration(j) of the line-search procedure. With-
out introducing any limitation, a reasonable request on thechoice ofα(j) would seem be that
satisfying the following condition:

∥

∥Q
(

εεε,h(k+1)
)∥

∥ <
∥

∥Q
(

εεε,h(k)
)∥

∥ (35)

for which the new iterate,h(k+1), satisfies the inequality whenh(k) and∆h(k) have been fixed. To
this purpose, a simple procedure, that starts from a sufficiently large value of the step length,α(j),
and halves this value until condition (35) is fulfilled, can be used even if not always satisfactory
(Dennis and Schnabel, 1983). In fact, more stringent criteria than condition (35) have to be adopted
in the choice of possible values forα(j) to avoid a slow descent rate of the sequence and the use
of small step sizes. Among the most up-to-date strategies, we adopt here the back-tracking line-
search technique for which the following condition needs tobe satisfied (Quarteroni et al., 2007):

∥

∥Q
(

εεε,h(k+1)
)
∥

∥ <
∥

∥Q
(

εεε,h(k)
)
∥

∥+ λα(j)∂Q

∂h
∆h(k) (36)

with λ ∈ (0, 0.5). In our case, the procedure, that starts from a sufficiently large value of the step
length,α(j), and halves this value until condition (36) is fulfilled, hasbeen demonstrated effective
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and efficacy. Clearly, other strategies can be used for the choice ofα(j) and theoretical results can
be found in the well-known book by Dennis and Schnabel (1983).

The application of the Fischer-Burmeister algorithm to the proposed problem leads to a well-
behaved and robust algorithmic scheme as demonstrated by examples described in Section 5. Table
2 provides a summary of the full algorithm needed to integrate the constitutive relations in a FE
framework, while Table 3 presents the numerical scheme for the adopted line-search strategy,
where we assumeλ = 10−4 andρ = 0.5.

Moreover, in Eq. (25) we chooseRS such that its derivatives become infinite asχS approaches
0 or 1 to ensure a smooth transition in stress-strain or strain-temperature response predicted at
initiation and completion of transformation. While this condition is essentially an analytical one,
the numerical evaluation of these derivatives atχS = 0 andχS = 1 may cause computational
difficulties. To avoid this problem, we introduce a modification ofRS as follows:

RS =

{

RS
f0 + hS

fχ
S + aS

f0

(

χS + ǫ
)n

+ aS
f1

(

1− χS + ǫ
)n

if BS ≥ 0

RS
r0
− hS

r χ
S − cST (T − T0) + aS

r0

(

χS + ǫ
)n

+ aS
r1

(

1− χS + ǫ
)n

if BS < 0
(37)

ǫ being a positive regularization parameter. For small values of ǫ (e.g., ǫ = 10−8), Eq. (37)
produces results similar to those provided by Eq. (25).
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1. Initialize

i. Setk = 0, h(0) =
(

χM
n ; ∆ζMn ; γM0

n ;χS
n ; ∆ζSn ; γ

S0
n ; γMS

n ;dtr
n ; ∆ζdn; γ

d
n

)

at timetn+1

2. Determination of the solution

Repeat

i. ComputeBS(k) = BS(εεε, T,h(k)) at timetn+1

ii. ComputeRS(k) = RS(BS(k),h(k), T ) at timetn+1

iii. Find∆h(k) solving system (31) via Newton-Raphson scheme through Eq. (33)

iv. Evaluateh(k+1) by applying a line-search strategy (see Table 3)
v. Setk = k + 1

until
∥

∥Q
(

εεε,h(k)
)∥

∥ < tol

Table 2: Full algorithm to integrate the constitutive relations of the proposed model.
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1. Chooseλ ∈ (0, 0.5) andρ ∈ (0, 1)

2. Setj = 0, α(0) = 1

3. Computeh(k+1) = h(k) + α(0)∆h(k)

4. While
∥

∥Q
(

εεε,h(k+1)
)
∥

∥ >
∥

∥Q
(

εεε,h(k)
)
∥

∥+ λα(j)∂Q

∂h
∆h(k) do

i. α(j+1) = ρα(j)

ii. h(k+1) = h(k) + α(j+1)∆h(k)

iii. j = j + 1

5. End

Table 3: Back-tracking line-search algorithm.
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4. MODEL CALIBRATION

This Section is dedicated to the calibration of the proposedmodel. To properly calibrate most
of the model parameters it is sufficient to focus on one-dimensional stress states, condition which
reduces the model to the following simplified form:

Ψ1D =
1

2

σ2

E
+ uA0 − sA0 T + cA

[

(T − T0)− T log
T

T0

]

+∆sAMS
(

χM + χS
)

(T − T0) (38)

+Ψ
in (

1− χM − χS
) (

χM + χS
)

+ I[0,1]
(

χM , χS
)

whereσ is the uniaxial state of stress andE is the Young’s modulus defined in terms of the elastic
modulus of austenite,EA, and of the elastic modulus of martensite,EMS, as follows:

1

E
=

(

1− χM − χS
) 1

EA
+
(

χM + χS
) 1

EMS
(39)

In the following, for the sake of calculus simplicity, we assumeE = EA = EMS.
Then, we can derive the thermodynamic forces,BM andBS, as follows:







BM = −∆sAMS (T − T0)−Ψ
in (

1− 2χM − 2χS
)

− γM

BS = εLσ −∆sAMS (T − T0)−Ψ
in (

1− 2χM − 2χS
)

− γS
(40)

Moreover, we recall the adopted expression forRS:

RS =

{

RS
f0 + hS

fχ
S + aS

f0

(

χS
)n

+ aS
f1

(

1− χS
)n

if BS ≥ 0

RS
r0
− hS

r χ
S − cST (T − T0) + aS

r0

(

χS
)n

+ aS
r1

(

1− χS
)n

if BS < 0
(41)

In the following, we firstly present the one-dimensional stress-temperature phase diagram re-
lated to the proposed model. Then, we list the model parameters to be calibrated, we indicate
possible calibration techniques and we also comment, whenever possible, on their physical inter-
pretation. Moreover, for a complete overview, we cite some other works from the literature, which
adopt the same physical interpretation for some parametersof the proposed model. In particular,
we observe that:

• the elastic moduli (EA andEMS, with the corresponding three-dimensional quantities,GA,
GMS, andK) and the maximum amount of single-variant martensite,εL, can be determined
directly from experimental uniaxial stress-strain curvesat constant temperature;

• the difference of entropy between the austenitic and single-variant martensitic phases,∆sAMS,
can be determined from the slope of the forward phase transformation curve in a stress-
temperature space, usually obtained from experimental tensile tests (Qidwai and Lagoudas,
2000; Sedĺak et al., 2012). Its determination is deepened in Section 4.3;

• the material parameter,cST , describes the change of the hysteresis loop width in superelas-
ticity (i.e., the difference between upper and lower plateau stress), which decreases with
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increasing temperature, as experimentally demonstrated by Sittner et al. (2009) and also
modeled, for instance, in the work by Sedlák et al. (2012). Its determination from the slope
of the reverse phase transformation curve in a stress-temperature space, usually obtained
from experimental tensile tests, is reported in Section 4.3;

• the material constant indicating interaction energies between phases,Ψ
in

, the equilibrium
temperature,T0, and the parameters related to the transformation radii, i.e.,RM , RS

f∗ , RS
r∗ ,

hS
f , hS

r , can be easily calibrated by considering a temperature-induced transformation under
zero stress and a stress-induced transformation at high temperature;

• the parametersaS
f0, aSr0, a

S
f1, aSr1, and exponent,n, of Eq. (25) or (41), do not have an

associated material property and are directly chosen to best fit the four corners of the trans-
formation hysteresis plots.

In the following, we consider only the governing equations of the two transformations nec-
essary to model calibration, i.e., a temperature-induced transformation under zero stress and a
stress-induced transformation at high temperature. Moreover, for the sake of calculus simplicity,
we assumeRS as follows:

RS =

{

RS
f0 + hS

fχ
S if BS ≥ 0

RS
r0
− hS

r χ
S − cST (T − T0) if BS < 0

(42)

4.1. PHASE DIAGRAM OF THE PROPOSED MODEL

This Section presents the one-dimensional stress-temperature phase diagram related to the
proposed model and shown in Figure 1(a).

To simplify the presentation, the three phases are denoted by A, M andS, standing for austen-
ite, multi- and single-variant martensites, respectively. The five possible PTs, indicated in Figure
1(a), are denoted byA → M , A → S, M → A, S → A, andM → S for austenite to multi-
variant martensite, austenite to single-variant martensite, multi-variant martensite to austenite,
single-variant martensite to austenite and multi- to single-variant martensite, respectively.

The critical start and finish transformation temperatures at zero stress level are denoted as
follows: Ms andMf for theA → M transformation,AM

s andAM
f for theM → A transformation,

Ss andSf for theA → S transformation, andAS
s andAS

f for theS → A transformation.AS
s and

AS
f are assumed as different fromAM

s andAM
f in agreement with experiments provided by Popov

and Lagoudas (2007). All the temperatures are indicated in Figure 1(a), except forSs andSf .
The critical uniaxial start and finish stresses required fordetwinning of twinned martensite,

i.e., transformationM → S, are denoted byσs andσf , respectively.
The phase diagram of Figure 1(a) follows the established literature in assuming three regions

where only the pure phasesA, M andS can exists (light-blue shaded regions of Figure 1(a)). The
three regions are separated by transformation strips whichare labeled according to the transfor-
mations which take place. Note that some of these strips overlap and in an overlap region multiple
transformations are possible. In the non-shaded region of the phase diagram various mixtures can
exist (white regions of Figure 1(a)).
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Due to the lack of inelastic strain associated with theA ↔ M transformation, we assume the
start and finish lines for the forward and reverse transformationsA ↔ M vertical and passing
through the critical temperaturesMs, Mf , AM

s andAM
f , respectively (Leclercq and Lexcellent,

1996; Popov and Lagoudas, 2007). This assumption has been adopted in several models taking into
account the separate development of single- and multiple-variant martensites, e.g., for instance,
(Leclercq and Lexcellent, 1996; Popov and Lagoudas, 2007).Clearly, the two strips are bounded
by the critical stress,σf .

The start and finish lines for the forward stripA → S pass through the critical temperatures
Ss andSf and exhibits a temperature dependence, defined by the positive slope,kf , in Figure
1(a). Equivalently, the start and finish lines for the reverse stripS → A pass through the critical
temperaturesAS

s andAS
f and exhibits a temperature dependence, defined by the positive slope,kr.

Moreover, the two strips present different widths. These features are due to the fact that the present
flexible model takes into account for: (i) different kinetics between forward and reverse PTs; (ii)
the increasing hysteresis width for low applied stresses inthermal-cycling tests at constant load;
and (iii) the width of the hysteresis loop in superelasticity decreasing with increasing temperature.

Since Popov and Lagoudas (2007) demonstrated that if the finish line for theA → S strip
passes above the intersection point(Ms, σf ) then one can find a particular isobaric cooling path
which leads to jump discontinuities in the strain as the temperature is lowered, we assume the
finish line for theA → S strip passing through or below the point(Ms, σf ) (in Figure 1(a) the
extreme case is represented by an orange dot). Furthermore,two approaches are available from
the literature for the definition of theA → S strip at low stresses (σ < σs) and temperatures
(T < Ms): some authors have extended it to zero-stress level (Bekkerand Brinson, 1997); others
(Lagoudas and Shu, 1999) suggest that in the regionT < Ms the dependence on temperature
disappears and there is a critical stress below whichA → S does not occur. In our case, we
assume the first choice reasonable.

Now, we consider the simple phase diagram related to the model by Souza et al. (1998)
and shown in Figure 1(b), which classically describes the behavior of SMAs material in a one-
dimensional setting. The model considers the presence of only two possible phase fractions, i.e.,
austenite and single-variant martensite, as shown in Figure 1(b). As clearly explained in Section 1,
the model is unable to catch SMA behavior for work conditionswhere the material is considered as
linear elastic and where the model is particularly sensitive to its numerical implementation. Such
a work condition includes stress values lower thanσf at T < T0, as it can be observed in Figure
1(b). Contrarily, the proposed model allows for a more flexible approach taking into account the
presence of multiple PTs and PTs at low levels of stress.

4.2. TEMPERATURE-INDUCED TRANSFORMATION
We start considering a temperature-induced transformation under zero stress. To this purpose,

Figure 2 focuses only on theA ↔ M transformation, by highlighting the two related vertical strips
(orange regions). Accordingly, exploiting the definition (40)1 for the driving forceBM , we can
detect start and finish of forward and reverse PT through the following conditions:

• Start forward PT: FM
∣

∣

T=Ms
= −∆sAMS(Ms − T0)−Ψ

in −RM = 0

• Finish forward PT: FM
∣

∣

T=Mf
= −∆sAMS(Mf − T0) + Ψ

in −RM = 0
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• Start reverse PT:FM
∣

∣

T=AM
s

= −∆sAMS(AM
s − T0) + Ψ

in
+RM = 0

• Finish reverse PT:FM
∣

∣

T=AM
f

= −∆sAMS(AM
f − T0)−Ψ

in
+RM = 0

whereMs, Mf , AM
s andAM

f can be easily determined by differential scanning calorimetry (DSC)
tests (Popov and Lagoudas, 2007; Qidwai and Lagoudas, 2000). We assumeT0 =

(

Mf + AM
f

)

/2,
i.e., we treatT0 as equilibrium temperature. Accordingly, since forward and reverse PTs are
perfectly symmetric, we deriveRM andΨ

in
by considering only the two equations related to

forward PT:














Ψ
in

= −∆TAM∆sAMS

2

RM = ∆sAMS

(

∆T0 +
∆TAM

2

) (43)

where∆TAM = Ms −Mf = AM
f − AM

s and∆T0 = T0 −Ms = AM
s − T0 (see Figure 2).

4.3. STRESS-INDUCED TRANSFORMATION
We now consider a stress-induced transformation at constant high temperature,T ∗. To this

purpose, Figure 3 focuses only onA ↔ S transformation, by highlighting the related strips (orange
regions). The loading path is represented in Figure 3 by a vertical violet line passing throughT ∗.

Accordingly, exploiting the definition (40)2 for the driving forceBS, we can detect start and
finish of forward and reverse PT through the following conditions:

• Start forward PT: FS
∣

∣

σ=σS
s
= εLσ

S
s −∆sAMS(T ∗ − T0)−Ψ

in −RS
f0 = 0

• Finish forward PT: FS
∣

∣

σ=σS
f

= εLσ
S
f −∆sAMS(T ∗ − T0) + Ψ

in −RS
f0 − hSf = 0

• Start reverse PT:FS
∣

∣

σ=σA
s
= εLσ

A
s −∆sAMS(T ∗ − T0) + Ψ

in
+RS

r0
− hSr − cST (T ∗ − T0) = 0

• Finish reverse PT:FS
∣

∣

σ=σA
f

= εLσ
A
f −∆sAMS(T ∗ − T0)−Ψ

in
+RS

r0
− cST (T ∗ − T0) = 0

whereσS
s , σS

f , σA
s and σA

f are the martensitic and austenitic start and finish stresses, respec-
tively. The transformation lines for forward and reverse transformations are linear with slopes
kf = ∆sAMS/εL andkr =

(

∆sAMS + cST
)

/εL, respectively (see Figure 3). Oncekf andkr are
experimentally determined, we can calibrate both∆sAMS andcST .

Finally, we deduce the remaining model parameters by considering the four equations, as
follows:



























hS
f = εL∆σS + 2Ψ

in

hS
r = εL∆σA + 2Ψ

in

RS
f0 = εLσ

S
s −Ψ

in −∆sAMS(T ∗ − T0)

RS
r0

= (∆sAMS + cST )(T
∗ − T0) + Ψ

in − εLσ
A
f

(44)

where∆σS = σS
f − σS

s and∆σA = σA
s − σA

f (see Figure 3).
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5. NUMERICAL SIMULATIONS AND EXPERIMENTAL VALIDATIONS

In this Section we test the validity of the model as well as algorithm efficiency through several
numerical simulations and comparisons with experimental results on thin superelastic NiTi wires
reported by Sittner et al. (2009). Then, we approach a complex three-dimensional finite element
analysis of a real SMA-based device, i.e., an helical springactuator.

In all the numerical tests we adopt the material parameters reported in Table 4 and calibrated
as described in Section 4, by referring to the material properties characterizing NiTi wires and
provided by Pilch et al. (2009); Sittner et al. (2009); in particular, the material parameters are
extracted from an experimental curve, i.e., a tensile test at a constant temperature of10 ◦C (Figure
4).

It is important to notice that all the parameters are calibrated using only uniaxial data. The
reduced number of experimental data for the calibration certainly reduces the model accuracy,
but the purpose is to emphasize: (i) model prediction capabilities, based on a simple calibration
method, through a quantitative validation with experimental data; and, above all, (ii) the robustness
and efficiency of the adopted numerical procedure, through amore complex three-dimensional
analysis of a real SMA-based device.

In all the simulations, to emphasize the improvements of thenew modeling framework, we
compare the proposed model with the model by Souza et al. (1998) (Auricchio et al., 2009b).

5.1. ISO-THERMAL TENSILE TESTS

We start considering uniaxial tensile tests at constant temperature, simulated as simple uni-
axial tension tests, with displacement control and prescribed homogeneous constant temperature
field. We consider four constant temperatures of40, 20, −10 and−20 ◦C for the tensile tests and
four constant temperatures of40, 20, 10 and−20 ◦C for the tensile tests with internal subloops.
Accordingly, Figures 5 and 6 report stress-strain diagrams. Compared to the model by Souza et al.
(1998), the proposed model allows for an accurate description of material behavior by reproducing
experimental hysteresis loops decreasing with increasingtemperature, transformation-dependent
elastic properties as well as PTs smoothness.

5.2. THERMAL-CYCLING TESTS AT CONSTANT APPLIED STRESSES

We now present thermal-cycling tests at constant stress, simulated as uniaxial tension tests with
load control and prescribed homogeneous varying temperature field. We consider two constant
stresses of300 and400 MPa. Accordingly, Figure 7 reports strain-temperature diagrams. The
experimental curves are successfully predicted by both models for σ = 400 MPa, while both
models fail forσ = 300 MPa since an experimental weak inelastic strain is obtainedfor low
stress levels. Although there is no clear experimental evidence, these small actuation strains can
be attributed to a R-phase transformation (Sittner et al., 2009), not taken into account by both
models. Another clear feature of the proposed model is the decrease of temperature hysteresis
width with increasing stress.
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Parameter Value Unit Parameter Value Unit

GA 21890 MPa RM 1 MPa
GMS 9016 MPa RS

f0 1 MPa
K 31125 MPa RS

r0
17 MPa

εL 6.15 % hSf 1 MPa
T0 -48.15 ◦C hSr 1 MPa

∆sAMS 0.31 MPa/◦C aS
f0 2 MPa

Ψ
in

-0.1 MPa aS
f1 0.5 MPa

cST 0.2 MPa/◦C aS
r0

0.01 MPa
n 0.1 / aS

r1
9 MPa

Table 4: Model parameters used in all the numerical simulations.
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5.3. THERMO-MECHANICAL RECOVERING STRESS TESTS

We now present thermo-mechanical recovering stress tests carried out on a wire strained in
tension at room temperature, up to a certain level of prestrain, at upper and lower plateau, respec-
tively, followed by thermal-cycling at constant prestrainand final unloading at room temperature.
Again, the present tests are simulated as uniaxial tension tests. We consider a room temperature
of 24 ◦C and three levels of prestrain of2%, 3.5% and5%. Accordingly, Figures 8-9 represent
stress-strain (left) and stress-temperature (right) diagrams at both upper and lower plateau. The
transformation slopes as well as the achieved magnitude of the recovery stress at maximum tem-
perature predicted by the proposed model are in good agreement with experiments also if both
models do not capture the absence of hysteresis in the stress-temperature plot.

5.4. COMBINED TENSION-TORSION TESTS

We present results of combined tension-torsion tests consisting of iso-thermal loading paths
with applied angular displacement at constant axial stress. The numerical prediction are obtained
considering a1 mm wire segment, modeled using8-node brick FE discretization consisting in one
element through the wire thickness and320 elements in the cross-section.

Accordingly, Figure 10 represents torque-angular displacement (left) and axial strain-angular
displacement (right) diagrams. Tests in the first row of Figure 10 are performed at a constant
tensile stress of70 MPa and at a constant temperature of30 ◦C; curves in the second row are
plotted for a constant tensile stress of194 MPa and at a constant temperature of40 ◦C; curves in
the third row are plotted for a constant tensile stress of379 MPa and at a constant temperature of
40 ◦C.

Both models underpredict the resulting torque moment and overestimate the maximum amount
of transformation strain reached at the end of the transformation. However, discrepancies are not
surprising since all the material parameters are calibrated using uniaxial tests. In fact, thin wires
loaded in tension often exhibit a localization of transformation, which produces more well stress-
oriented variants, resulting in an important transformation strain in tension. In torsion test, due
to the stress gradient through the radius, no localization is expected and, consequently, a reduced
transformation strain is expected. As the models consider the transformation in an average way,
this kind of effects is not captured. Moreover, there are discrepancies in terms of axial strains,
due to the effect of strong material texture and anisotropy,not accounted by isotropic models,
which influences yield transformation surfaces and transformation strains (Sittner et al., 2009).
In fact, tension/compression asymmetry, which is accounted for in the model by Souza et al.
(1998), originates from the transformation anisotropy associated with NiTi cubic to monoclinic
martensitic transformation (Sittner et al., 2009). The model by Souza et al. (1998) nevertheless
remains isotropic and hence the tension/compression asymmetry does not solve the problem of the
length of the plateau in angular displacements in torsion. Beside these discrepancies, the global
behavior of the proposed model is generally in good agreement with experiments.

5.5. SIMULATION OF SMA DEVICE

We conclude this Section by considering a real SMA-based device, i.e., an SMA helical spring
actuator. Such device constitutes an important example of actuator and, despite the apparent sim-
plicity, its behavior is rather complex. Consequently, its design may possibly take advantage of
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numerical simulations. The literature presents numerous efforts for the modeling, design, simu-
lation and control of SMA actuator systems related to innovative devices employed for different
purposes. Among them, there have been several efforts to model SMA helicoidal springs thermo-
mechanical behavior (Attanasi et al., 2011; de Aguiar et al., 2013, 2010; Dumont and Kuhl, 2005;
Saleeb et al., 2013a; Savi and Braga, 1993; Toi et al., 2004).

The SMA helical spring actuator considered in the present work consists of3.5 free coils of
initial length of24.59 mm, a wire diameter of1.5 mm, a spring external diameter of13.3 mm, a
spring internal diameter of10.3 mm and a pitch size of6.4 mm. Figure (11) reports the adopted
mesh, consisting of6912 8-node brick elements and7497 nodes, and the initial geometry.

First, we simulate a helical spring at a constant temperature of40 ◦C. We apply an axial force
at the bottom end of the helical spring while the top end is completely fixed. We increase the
force from zero to its maximum value and then, we unload the force back to zero. We remark that
all the nodes on the bottom section are constrained against the two translations in the directions
orthogonal to the axial one (thus ensuring that the bottom section is restrained against twist rota-
tion). Figure 12(a) shows the deformed shape under the maximum force, compared to the initial
geometry of the spring. After unloading, the spring recovers its original shape as expected in the
PE regime. Figure 12(b) shows the force-vertical displacement (of the loaded end) diagram. The
results presented in Figure 12(b) illustrate also the robustness of the present formulation and im-
plementation. The markers indicate the solution obtained using large load increments (automatic
step size control1), whereas the solid line corresponds to fixed small load increments. As it can
be seen, the former solution follows exactly the latter. To assess computational efficiency of the
present model and its FE implementation, Table 5 provides the total number of steps, the total
number of global Newton iterations and the total computation time for both the small and large
load increments.

Then, to qualitatively compare the behavior of the proposedmodel to that by Souza et al.
(1998) for low-stress PTs, we consider the spring fixed at thetop end, initially loaded by a vertical
force at the bottom end and subjected to temperature cycle while keeping constant the load. We
consider two constant loads of5 and15 N. Figures 13(a) and 13(c) show the two loading histories
during the simulations, while Figures 13(b) and 13(d) show the vertical displacement-temperature
diagrams. As it can be observed, compared to the model by Souza et al. (1998), the proposed
model is able to capture low-stress PTs and to predict the decrease of temperature hysteresis width
with increasing stress (see Figures 13(b)-(d)).

6. CONCLUSIONS

The present paper has developed a refined and general three-dimensional phenomenological
constitutive model for SMAs, taking into account several physical phenomena. Moreover, the
present paper has proposed the numerical implementation ofthe new model, through an effective
and efficient procedure, consisting in the replacement of the classical set of Kuhn-Tucker condi-
tions by the Fischer-Burmeister complementarity function.The great advantage of the numerical

1All computations are performed using an automatic step sizecontrol procedure in which the desired number of
Newton iterations is prescribed (here, equal to 8), and the current load increment is increased (decreased) when the
number of iterations at the previous increment is smaller (larger) then the desired number.
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algorithms based on the Fischer-Burmeister complementary functions is that no active set search is
required, allowing an efficient procedure for complex constitutive models. Numerical robustness
and efficiency have been carefully investigated. Possible difficulties and the adopted solutions
have been described. Extensive numerical tests have been performed to show robustness as well
as efficiency of the proposed integration algorithm and the quantitative validation of the proposed
model with experimental data has been addressed to confirm model reliability.
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Type of load increments Number of steps Number of iterationsTotal time [s]

Large 52 401 909.046
Fine 204 1023 2134.75

Table 5: Pseudoelastic test of a SMA helical spring actuator: comparison of computational effi-
ciency.
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(a)

(b)

Figure 1: 1D phase diagrams generated by (a) the proposed model and by (b) Souza model, in
terms of stress,σ, and temperature,T .
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Figure 2: Identification of model parameters from a temperature-induced transformation.
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Figure 3: Identification of model parameters from a stress-induced transformation.

Figure 4: Model calibration on a tensile test at a constant temperature of10 ◦C.
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Figure 5: Model response for iso-thermal tensile tests.

Figure 6: Model response for iso-thermal tensile tests withinternal subloops.
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Figure 7: Model response for thermal-cycling tests at constant tensile stresses.

(d)

Figure 8: Model response for thermo-mechanical recoveringstress tests at upper plateau.
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(d)

Figure 9: Model response for thermo-mechanical recoveringstress tests at lower plateau.
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Figure 10: Model response for combined tension-torsion tests.

Figure 11: SMA helical spring actuator: adopted mesh.

46



(a)

(b)

Figure 12: Pseudoelastic test of a SMA helical spring actuator: (a) spring initial geometry and
scaled deformed shape under the maximum force (color map indicates distribution of the single-
variant martensite volume fraction,χS); (b) force vs. vertical displacement of the loaded end of
the spring diagram (markers, large load increments; solid line, small increments).
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(a) (b)

(c) (d)

Figure 13: Thermal-cycling test at constant load of a SMA helical spring actuator: (a)-(c) temper-
ature and force loading histories during simulation; (b)-(d) vertical displacement of the loaded end
of the spring vs. temperature diagrams.
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