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Abstract

The present paper develops a refined and general threeglonahphenomenological constitu-
tive model for shape memory alloys (SMAS), along the linesvbat recently proposed by Au-
ricchio and Bonetti (2013) in a more theoretical context. ISan improved model takes into
account several physical phenomena, as martensite reireenand different kinetics between
forward/reverse phase transformations, including alsoamthermo-mechanical response, low-
stress phase transformations as well as transformatipendient elastic properties. The model is
treated numerically through an effective and efficient pohae, consisting in the replacement of
the classical set of Kuhn-Tucker inequality conditionshwy $o-called Fischer-Burmeister comple-
mentarity function. Numerical predictions are comparethweixperimental results and the finite
element analysis of a SMA-based real device is describegstesa the reliability of the proposed
model as well as the effectiveness of its numerical couatérp

Keywords: Shape memory alloys, Constitutive modeling, Phase tramsftoon, Reorientation,
Fischer-Burmeister function

1. INTRODUCTION

Smart materials exhibit special properties that make theratiactive choice for industrial
applications in many branches of engineering. Among dfietypes of smart materials, shape
memory alloys (SMAs) have unique features known as pselatigty (PE), one-way and two-
way shape memory effects (SMESs) (Duerig et al., 1990; OtankidVayman, 1998). Such unusual
effects are exploited in a large variety of interesting aggtions. The most successful commercial
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examples are in the biomedical area, e.g., endo-prostleeti®dontic archwires, cardiovascular
stents (Auricchio et al., 2010a; Azaouzi et al., 2013; Wu.e2807), as well as in the robotic and
automotive areas, e.g., positioning for mirror seats, aons, micro-grippers (Auricchio et al.,
2009a, 2010b; Huang, 1998; Williams and Elahina, 2008).

SMA features are the consequence of reversible martepditise transformations (PTs) be-
tween a high symmetric austenitic phase and a low symmetatemsitic phase. Austenite is
a solid phase, present at high temperature, which transfanta different possible martensitic
variants by means of a lattice shearing mechanism. In tHandaced transformations under
zero stress, multi-direction martensite variants comatensach other and arrange themselves in a
self accommodating manner through twinning, with no obeleler macroscopic shape change. In
stress-induced transformations, starting from a martierspecimen, the application of a loading
induces a detwinning process of the martensitic variae#slihg to the presence of a single-variant
(Duerig et al., 1990); upon unloading, a large residuairstramains, which can be recovered by
heating. This phenomenon is referred to as SME. On the otluad,hwhen a stress is applied
to an austenitic specimen, at high temperature, a tranatoymfrom austenite to single-variant
martensite occurs; upon unloading, the strain attaineshglwading is recovered. This process is
referred to as PE (Otsuka and Wayman, 1998).

Such functional material properties motivate researctogigrmulate constitutive models able
to catch the interesting behavior of SMAs and to develop sbbamputational tools for practical
purposes. In the following, we focus on both the constisuawnd numerical modeling of SMAs
by briefly reviewing some approaches available from thedttee and by carefully describing our
motivations and proposed improvements.

1.1. CONSTITUTIVE MODELING: STATE OF ART AND PROPOSED IMPROWENE

In the past three decades SMAs have been deeply investigatethe point of view of model-
ing, analysis, and computation with the focus on a varietgspfects, such as, for instance, stress-
and temperature-induced transformations, martensiteereation or cyclic effects.

In terms of modeling, there have been several attempts feepsoreproduce SMA material
features. The resulting models can be categorized as eiticen, micro-macro or macro. For an
overview, see (Khandelwal and Buravalla, 2009; Lagoudak,&2@)6; Patoor et al., 2006).

In the following, we focus on phenomenological macro-modgapproaches which appear to
be a powerful tool for the direct simulation of SMA applicats, thanks to their simple numeri-
cal implementation and reduced time-consuming calcuiatioompared to micro-mechanical ap-
proaches. In particular, the present research is devotbe @mm of finding a flexible and accurate
three-dimensional phenomenological model for a relialelecdption of SMA-based real devices
behavior.

In the phenomenological framework, an appropriate settefial variables has to be chosen
to represent at least a scalar and a directional informgtiorg and Bruhns, 2008). Physical
motivations usually lead to the introduction of a martemsiblume fraction and of a tensorial
variable describing martensitic inelastic deformatioagasses (Arghavani et al., 2010; Luig and
Bruhns, 2008; Peultier et al., 2006; Saleeb et al., 2011)h Swimplified description is motivated
by the aim to obtain fast and efficient models with a low nundiditting parameters.
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A set of only scalar variables is, in fact, not adequate dutaéoloss of explicit directional
information. For instance, the model by&mmond (2002) describes SMA behavior in terms of
austenite and two martensite variants and assumes thémaasion strain direction to be known,
although experimental studies showed that variant retatiem can be considered as a main phe-
nomenon in SMA non-proportional loadings (Bouvet et al.,2@Brabe and Bruhns, 2009; Helm
and Haupt, 2003; Lim and McDowell, 1999; Sittner et al., 1:998n and Li, 2002).

On the other hand, models with only tensorial internal \@es, by explicitly including simple
directional information, seem to be more successful, basgmt some limitations since scalar
and directional informations are tightly interconnectedssibly leading to limited or constrained
modeling approaches. As an example, the model by Souza Et98I8), then investigated by
(Auricchio and Petrini, 2004a,b), introduces the transi@tion strain tensor as an internal variable
and presents a simple and robust algorithm, widely usedrfplamentation within finite element
(FE) codes. On the contrary, it is not able to capture PTsolerévels of stress, as required often
by industrial applications (Auricchio et al., 2009a), aragsd not include some secondary effects
that may turn out to be relevant in practical cases (Thanyarad Anand, 2001).

Numerous analyses of existing models and their comparisogxperimental results have
shown that current SMA constitutive models have reachedyh level of sophistication. Sev-
eral authors extended, in fact, such simplified phenomgnbdescriptions by using additional
variables as volume fraction of twinned/detwinned maitesgLexcellent et al., 2000; Panico and
Brinson, 2007; Popov and Lagoudas, 2007), twins accomnmdatiain (Chemisky et al., 2011),
viscoplasticity (Chemisky et al., 2014), thermo-mechdrtcapling (Morin et al., 2011a,b; Zaki
and Moumni, 2007a,b) or plastic strain (Auricchio et al.020Hartl et al., 2010; Peng et al.,
2012; Saint-Sulpice et al., 2009; Zaki et al., 2010). Theené@nd innovative work by Seak
et al. (2012) formulates a new dissipation function to sateihon-proportional loadings and in-
cludes anisotropic behavior of textured SMAs as well as benbo-mechanical response due
to austenite-R-phase transformation. Panoskaltsis e2@04) developed a three-dimensional
thermo-mechanical constitutive model based on genedapiasticity theory in the small defor-
mation regime, and Panoskaltsis et al. (2011a,b) withitefsirains and rotations.

However, the most capable models usually achieve accutabg @ost of complexity, since
they consider multiple and simultaneous processes (Chgratsi., 2011; Popov and Lagoudas,
2007) or require costly calibrations of a high number of mMg#deameters (Saleeb et al., 2013b,
2011).

Starting from the reviewed literature about constitutived®ling, the present paper is moti-
vated by the necessity of developing constitutive moded$ tlan predict the complex thermo-
mechanical behavior of SMAs and that can also be implemeniatkrically. Such models have
to accurately capture material response not only duringsatal PE and SME loading paths, but
also during loading paths involving the co-existence oftadlthree material phases, i.e., austenite,
multiple- and single-variant martensite. Moreover, madeterial parameters have to be derived
from a simple physical interpretation, which is importaot the calibration process, to allow a
guantitative validation through experimental results.

Indeed, the goal of the present paper is to introduce a refilesthle and general three-dimensional
phenomenological constitutive model for SMAs, along tinedi of the recent theoretical work by
Auricchio and Bonetti (2013), limiting the discussion to #mall deformation regime.
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The model by Auricchio and Bonetti (2013) addresses a gefiexddle theoretical framework
for the development of constitutive models able to desanbéiple phase transformations (PTs),
which may or may not interact. The model is investigated frarmurely mathematical point
of view, by proposing some general considerations on rements to be satisfied to make the
model thermo-dynamically consistent. In particular, titectreference does not cover several
fundamental details, i.e., constitutive modeling detgilto SMAs, model parameters’ physical
interpretation and identification, as well as numerical eiodg).

As concerns the constitutive modeling, the cited work gively some very general indications
on the effective modeling of SMA materials and, as a mattéadt, it reports only a very simple
one-dimensional qualitative hand-computed responseeofrtbdel. In fact, the cited reference
does not apply in details the model to the case of SMAs antigagdme time, it does not give any
indication on the possibility of effectively and robustlghgng the complex set of possible PTs
occurring in real SMAs, which represents the essentialistppoint into SMA modeling.

As concerns the model parameters’ physical interpretarahidentification, the cited reference
does not address the important issue related to the physiegbretation of model parameters, as
a clear and effective parameter identification procedusmignportant key for the employment
of a constitutive model by engineers in real-life simulasio In particular, model parameters are
defined as general constants or general functions of teroperand volume fractions.

Finally, as concerns the numerical modeling, the cited rhddes not address any numerical
solution algorithm to model formulation, which is importdor engineers needing to perform
accurate simulations for the design and study of the regpohSMA structures or components.

In this context, the present paper aims to do a step-forwattd respect to the work by Au-
ricchio and Bonetti (2013) by deepening all the listed lagkaspects and to possibly offer a new
contribution to the existing modeling solutions. The pwpds to formulate a general, complete
and flexible theoretical framework that can predict the clempehavior of SMAs and is based on
a physical interpretation of material parameters as wetbadfer a robust numerical framework
to be then used for the simulation of real devices.

From the modeling point of view, the proposed model combthesmain features of the ap-
proaches by mond (2002) and Souza et al. (1998) and describes secasftints in PTs as well
as directional information for the transformation straMelume proportions of different configu-
rations of crystal lattice (i.e., austenite, single- andtiple-variant martensites) are used as scalar
internal variables and the direction of single-variant t@asite as tensorial internal variable. With
respect to the model by &mond (2002), the present model considers the transfamatrain
direction unknown, by assuming the direction of singletatalr martensite as tensorial internal
variable. Compared to the model by Souza et al. (1998), theosex theoretical framework al-
lows for a completely independent description of the ddfePTs, leading to a very flexible frame
in terms of model features and allowing to capture PTs at ém&lb of stress. As an example, Sec-
tion 4.1 presents a detailed description of the one-dino@asistress-temperature phase diagram
related to the proposed model and a comparison with thatetela the model by Souza et al.
(1998).

Compared to the model by Auricchio and Bonetti (2013), the psep model naturally presents
similarities in terms of theoretical aspects and govereiggations. In the present work, however,
we propose an enriched generalization, able to describralgghenomena such as martensite
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reorientation, different kinetics between forward/reephase transformations, smooth thermo-
mechanical response, low stress phase transformatiamsfdrmation-dependent elastic proper-
ties. In particular, the characteristics that have beelnd®d and improved upon in this work con-
cern the asymmetric behavior between forward and reverasepinansformations, hardening ef-
fects, increasing hysteresis width for low applied stress¢hermal-cycling tests at constant load,
the width of the hysteresis loop in superelasticity (i.dfedence between upper and lower plateau
stress) decreasing with increasing temperature, smoetmtitmechanical response, transforma-
tion dependent elastic properties. As an example, in oalerdude the listed characteristics in
the theoretical model and to reproduce experimental egelerwe assign a significant flexibility
to the model in terms of ability by introducing very speciairhs for the elastic domain radii.

We remark, moreover, that the proposed modeling approaetepts similarities with some
three-dimensional phenomenological models presentdtkifiterature, in terms of capturing the
reorientation process in martensite. Among others, we tartte interesting works by Argha-
vani et al. (2010) and Chemisky et al. (2011). The model by Avghi et al. (2010) describes
the evolution of transformation strain with a unique mastéa volume fraction and considers
a proportional relationship between the evolution of tfameation strain and the evolution of
the martensitic volume fraction; the model by Chemisky ef2011) adds to the classical inter-
nal variables, representing the martensite volume fraciod the mean transformation strain of
martensite, two new variables accounting for the strainhaeism related to the accomodation
of twins and for the self-accomodated martensite volumetitya. The final model is able to de-
scribe martensitic transformation and reorientation, #edinelastic accommodation of twins in
self-accommodated martensite, as well as to account feraetompression asymmetry and in-
ternal loops. Compared to the cited references, the promygawach is very flexible since it can
capture loading paths involving the co-existence of thraéenmal phases.

From the physical point of view, material parameters ara ttherived from a simple physi-
cal interpretation, and thus, are no more represented asaeaonstants or general functions of
temperature and volume fractions.

In the following Section, the proposed improvements in eahnumerical aspects are treated
in detail.

1.2. NUMERICAL MODELING: STATE OF ART AND PROPOSED IMPROVEMENTS

The present work focuses on another important aspect of Skdidefing, i.e., the development
of an appropriate model implementation into numericalvgafes (such as FE packages) to guar-
antee a robust computational tool, which could be effelstivélized for practical purposes. From
a numerical point of view, robust and efficient integratidgoaithms for the zero-dimensional
problem (e.g., constitutive equations at the Gauss pousl i a FE scheme) need to be pro-
posed in order to then solve complex boundary-value probkemad to simulate SMA real devices
behavior within FE codes. Some examples of SMA models ariéadlain the literature in a suit-
able form to conduct three-dimensional thermo-mecharsicalilations (Arghavani et al., 2011,
Auricchio and Petrini, 2004a; Gao et al., 2007; Hartl et 2009, 2010; Helm, 2007; Lagoudas
et al., 2012; Peultier et al., 2008; Popov and Lagoudas,;208dtk et al., 2012; Stupkiewicz and
Petryk, 2012; Zaki, 2012a,b).



Generally, SMA macroscopic models are solved by return-algprithms, either through
norm regularization schemes at the cost of inaccuracy dulkeet@orresponding approximation
(Auricchio and Petrini, 2004a,b; Auricchio and Stefan@004) or nucleation-completion condi-
tions (Arghavani et al., 2011). The recent work by Sédbt al. (2012) applies the Nelder-Mead
minimization algorithm to solve the derived energy miniatian problem and introduces a reg-
ularization energy to assure the fulfillment of constrammnsinternal variables. Stupkiewicz and
Petryk (2012) presented a pseudoelastic model within tremental energy minimization frame-
work and proposed an unified augmented Lagrangian treatshbath constitutive constraints and
non-smooth dissipation function. The recent works by Reygand Seguin (2013); Peigney et al.
(2011) propose a new numerical approach for a micro-mechbhmiaterial model, based on the re-
formulation of the incremental problem as a linear completawgty problem (LCP), which can be
solved using well established algorithms such as intgraant methods. Solving the obtained LCP
allows to fully take the constraints on the internal vargaiito account and leads to an efficient
numerical algorithm. The work by Popov and Lagoudas (20@p)ias an extension of the clos-
est point projection algorithm to describe a SMA model ipovating single- and multi-variant
martensites. The work by Hartl et al. (2009) proposes a ttmr@ensional constitutive model
capturing conventional SMA functional properties and minglr strain recovery, and additionally
considering the initiation and evolution of plastic stsifThe model is numerically implemented
in a FE framework using a return mapping algorithm to sohedbnstitutive equations at each
material point. The model is tested for three-dimensiofabRalyses of SMA structural compo-
nents under uniaxial and bending loads and then comparexparimental results of a bending
member, illustrating the predictive accuracy of the moael s implementation.

However, algorithm schemes still need robustness invasigs, aiming also at the develop-
ment of flexible, effective and efficient procedures, aggilie to models as the one introduced in
the present work. In fact, the numerical application of dead predictor-corrector methods is not
suitable for the proposed approach, because an elabotate set search has to be carried out.
Compared to the work by Hartl et al. (2009), for instance, tleeleh deals with multiple scalar
and tensorial internal variables, whose evolution is gilpcoupled, and involving several con-
stitutive constraints imposed on internal variables, Whitroduce additional complexity in the
incremental schemes used in FE computations and, conggqulecrease algorithmic efficiency.

For these reasons different approaches need to be exptordtefproposed modeling frame-
work to describe situations corresponding to nucleatiatyration or completion of transforma-
tion.

Recalling the discussion of Section 1.1, the model by Auieemd Bonetti (2013) does not
address any numerical solution algorithm to model formaihat

The purpose of the present paper to integrate the proposetitctive equations is to reduce
the complexity, and thus increase the efficiency, of therélgoic treatment. This is achieved
by eliminating the need for a predictor-corrector-typeesuk and by automatically constraining
the range of the variant volume fractions. Consequently, evelact the numerical investigation
of the proposed model through an effective and efficientgaace, introduced in the framework
of crystal plasticity by Schmidt-Baldassari (2003). It astsin replacing the Kuhn-Tucker com-
plementarity inequality conditions by the equivalent RsseBurmeister complementarity function
(Fischer, 1992) and in making possible to omit an activeesich, a fundamental advantage when
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dealing with many coupled evolution equations.

Besides the contributions by Bartel and Hackl (2009, 2010)teBat al. (2011) in the context
of SMA micro-mechanical modeling, the work by Kiefer et #20(2) presents two alternative
algorithms for the integration of the coupled, non-linead anelastic constitutive equations for
magnetic shape memory alloy, i.e., the classical predmborector return-mapping scheme and
the Fischer-Burmeister based algorithm. The work shows rtbater numerical efficiency of the
second algorithm that is however tested for simple loadesges and not for three-dimensional
analyses.

The proposed paper presents a detailed investigation ohuhgerical Fischer-Burmeister
based algorithm, applied to the case of SMAS, to test itsstlass and efficiency. This is achieved
through: (i) a complete presentation of the adopted algmit scheme; (ii) the description of pos-
sible computational difficulties and related solutions) §everal numerical simulations, ranging
from simple uniaxial tests to more complex three-dimeraidiE analyses of a real-life device;
and (iv) details about CPU times, number of steps and iteratiboreover, FE analyses allow to
gualitatively show and emphasize all the model featuredewhe comparison between numeri-
cal predictions and experimental data allows to quantéativalidate the proposed model and to
demonstrate its reliability.

The present paper is organized as follows. The proposed-tlineensional phenomenologi-
cal model is presented in Section 2. Section 3 describesufmerical implementation of model
equations and the full solution algorithm. Section 4 préserodel phase diagram and calibration.
Section 5 is devoted to numerical tests and comparisonsexjierimental results. Conclusions
and summary are finally given in Section 6.

2. A 3-D PHENOMENOLOGICAL MODEL FOR SMAs

This Section initially addresses a general three-dimeéighenomenological model for SMAs
along the lines of the recent theoretical work by Auriccmd 8onetti (2013) and then, it proposes
a simplified formulation based on physically motivated ¢desations.

In the following, we adopt superscripts M, andS to indicate austenite, multiple-variant and
single-variant martensites, respectively. Moreover, ve&eruse of the notatigh- || to denote the
Euclidean norm and df| to indicate the absolute value function. The notation-) denotes the
inner product between two second order tensors (Gurtin,e2@10).

2.1. AGENERAL MODEL FORMULATION

In the framework of macroscopic modeling and of small st@intinuum mechanics, we as-
sume the total straimg, representing the total deformation of the material, antpterature’, as
state variables. A general assumption of additive stracoeiposition is adopted in the form:

e —ge° _I_sie +€th (1)

wheree®, €° ande'* denote the elastic, inelastic and thermal strain, respgegti The inelastic
strain,e®, should include the description of several physical phegrmmranging from permanent
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plasticity and PTs, up to void generation and fracture. &nftilowing, all inelastic phenomena
are neglected except for reversible martensitic PTs whiehcansidered in combination with
martensite reorientation.

Recalling the discussion reported in Section 1, the modebdioices scalar and tensorial in-
ternal variables taking into account different PTs betwaestenite, multiple- and single-variant
martensites as well as directional information for the $farmation strain. The model decouples
the pure reorientation from the pure transformation meigmanbut additionally, takes into ac-
count for temperature-induced transformation. Consedyesimilarly to (Arghavani et al., 2010;
Chemisky et al., 2011), we do not treat the inelastic strgih,as a unique tensor variable, but
we clearly distinguish between its norm and direction wité &im of getting more modeling free-
dom. In the following, we choose a measure of the amount gfisimvariant martensite as scalar
internal variable, being related to the amount of inelastiain due to stress-induced PT, while
the average direction of different variants (or preferregdation of variants) as tensorial internal
variable, representing the inelastic strain direction. $éguently, we may clearly interpret these
two internal variables as PT and variant reorientation oheoto hopefully describe transforma-
tion and reorientation with more flexibility. Moreover, waanse a measure of the amount of
multiple-variant martensite as scalar internal variabking related to the amount of martensite
due to thermal-induced PT.

According to the previous discussion, volume proportididifferent configurations of crystal
lattice (austenite and martensite variants) are assumedadar internal variables and are repre-
sented by three phase parameters$, v, y°, standing, respectively, for austenite, multiple-
variant and single-variant martensite, such thatx, y* < [0,1] andx* + x™ + x° = 1.
Thanks to this last constraint, the model restricts itagdt fo two independent phase variables,
YMandy?®, lettingy? = 1 — x™ — x°. Then, the following restrictions need to be fulfilled:

0<xMx¥<1, XM+xS < )
Consequently, the inelastic strain is given by:
Ez’e — 8LXSdtr (3)

wheree, is a material parameter related to the maximum transfoonatirain reached at the end
of the transformation during an uniaxial test (Otsuka and,R605), whiled'" is the direction of
single-variant martensite, assumed as tensorial intearable with the following constraint:

Jd”] =1 (4)

We remark, again, that the choice of dealing with a tensaaailable,d’”, and two scalar
variables,xy and y®, allows to distinguish between a phase to which no macréssimin is
associated and a phase to which a homogenized macroscapitistassociated, as well as to
consider thermal-induced transformations when no steeapplied. Moreover, the model is able
to distinguish between the norm and the direction of theaistét straing, similarly to other
effective modeling approaches as the one proposed in Aaghat al. (2010); Chemisky et al.
(2011), but allowing to get a richer model compared, foransge, to the works by Auricchio and
Petrini (2004a,b); Bmond (2002); Souza et al. (1998).
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2.1.1. Helmholtz free-energy function

The Helmholtz free-energy functiod, = ¥ (e,T, M, X%, d““), is assumed in the following
form:

U = \I]el + \chh 4 \Ijint + P (5)

where ¥ is the elastic energyy“* the chemical energy related to entropic changes due to PTs,
Ut the interaction or interfacial energy, often derived froritim-mechanical or metallurgical
considerations (Chemisky et al., 2011; Moumni et al., 20G8ltrer et al., 2006), and’’ the
energy due to internal constraints.

For the first two components of the free-energy, i, = ¥ (e, x", x%,d") and U*" =
yeh (T, M, XS), presented in Eqg. (5), we employ the rule of mixtures (Lagsuet al., 2006),
considering that each of them is a combination of austemitéfiple-variant and single-variant
martensites. In particular, we set:

{\l,el = (1= XM — \5) WebA 4 MgeLM |y Sel.S

(6)
\chh _ (1 o XM _ XS) \I/ch,A T XM\I/Ch’M 4 XS\IJCh’S
To treat the elastic energy of Eq. (6)l', we develop the aspect of phase mixture following
the model of Reuss, by assuming the material as elasticalisojsc with a homogeneous distri-
bution of stresses in austenite, multiple-variant andlsivgriant martensites. The elastic energy
term, ¥, follows:

1
= KO+ Glle — e A — 3aK0 (T~ Ty) )

whereTj is the equilibrium temperature) = tr(e) ande is the deviatoric part of the strain
tensor.e, such thae = e + 1/361, I being the second-order identity tensor and)tithe trace
operator. The bulk modulugy, is assumed equal for all phases and the total shear modulus,
G =G (XM, x%), is determined from the Reuss model (Wagner and Wind|, 20@8),

K=KA=KM"=K°
1 O L D | (8)
g~ 0 =) G X g
The last right-side term of Eq. (7) derives from the assuampthate’” = o (T — Tp), a = al
being the thermal expansion coefficient tensor.

To treat the chemical energy of Eq. {6)/'", we define the free-energies of pure phases at
stress-free conditiong"i = ¥ (T'), as:

. ) ) . T
U =y — syT + ¢ (T = To) = Tlog 9)
0

fori € A, M, S. Hereu! ands}, are the internal energy and entropy of thghase at a fixed equi-
librium temperature7y; ¢! is the constant heat capacity of thphase (Leclercq and Lexcellent,
1996; Lexcellent et al., 2006; Panico and Brinson, 2007).
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The free-energy component™ = W™t (yM ), presented in Eq. (5), represents the in-
teractions that appear between the phases, typically ttwemipatibilities between deformations
(Leclercq and Lexcellent, 1996; Raniecki et al., 1992). Onth@ characteristics of this energy is
that it must disappear when only one phase is present insedmaterial. Moreover, in the case
of three phases coexisting, this term must take into accotertactions between one phase and
the two remaining ones, separately (one interface sepganate phases and not three). Indeed,
we assume the following expression for the configurationalkgy (this expression has the great
advantage to become fairly simple):

pint — (1 M XS) (\IIAM M T X n TAMS XMXS'> _i_EMSXMXS (10)

oM Y T, and T being material constants indicating interaction eneriesveen
phasesA and M, A andS, M andS, A, M andS, respectively (Leclercq and Lexcellent, 1996;
Raniecki et al., 1992).

To satisfy constraints (2) and (4) on internal variablesdefine the free-energy contribution,
Uv, presented in EqQ. (5), as:

U = Toq (x™. x%) + L (/[d"])) (11)

where the indicator functiory 1} (x*, x*), is set to enforce inequality constraints (2)pH and
x° as (Rockafellar, 1970):

0 if0<XMXS<1XM+XS<1
_[ M7 S — - ? - ) - 12
(0.1 (X X ) {+oo otherwise (12)

and the indicator functiony; (||d*

), is defined to enforce equality constraint (4)df as:

f tr|| —
h(nd”n):{o ta = (13)

+o00 otherwise

In conclusion, the energy tern¥, reads as:
1
U= —K02 + Glle — epx®d"||?> — 3aK6 (T — Tp) (14)

T
+U0—30T+C [(T—TO)—TIOgT]
(A’LLAM M+AUAS S) (ASAM M+ASAS S)T

— (AN 4 AN ) [(T —Ty) — Tlog TT}
0

+ (1 —XM _ XS) (\IIAM M +\IJAS S + \I/AMS MXS>
=MS
+ UM 4+ T M X)) + L (1d7))
where:
{AuAM = uf —ud! {ASAM = sit — si! {ACAM =ct—cM (15)

Aus = ug‘ — ug AsAS = 564 — SOS ActS = A — 5
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2.1.2. Constitutive equations

Starting from the adopted free-energy, presented in Eq. (14), and following standard argu-
ments (Gurtin et al., 2010), we derive the volumetric anddéeatoric part of the stress tensor,
o, denoted, respectively, wighands, and the entropy;:

ov

ov
8= oo = 2G (e — f—:Lxsdt’”) (16)
A Y 4SS AM M 4SS r
n:_ﬁzso_(A + As )+( — Ac — Ac )logT + 3a K0

as well as the thermodynamic forcés!, B° andB¢, associated tg, v° andd’", respectively:

ov 0G T
BM:— — _ o Sdtr2 AAM—AAMT AAM T Ty —T1 -
M aXMHe ELX * + Au s + Ac ( 0) og T
ow oG
BS = ——— =2Ge (e —erx®d") : A" — —|le — e x d""||?
ox® ox®
. an
+AuAS — AsAST + AcAd [(T —Tp) —T'log T]
0
— (T T (1M - 2) (T ) M 8
ov
Bd — _8dtr — 2GELXS (e o ELXSdtr) _ ,.yddtr

Variablesy™ and~* are defined as:

MO0 if M =0
= 0l (X", x%) =} 0 if 0 <M <1 (18)
YME >0 if M xS =1

and
YO <0  ifx¥=0
v¥ =08y (XM, x%) =<0 if 0<x% <1 (19)
,YMSZO ifXM+XS:1
while
y=o6 ([la"]) #0 if [d"] =1 (20)

We can rewrite Egs. (18)-(19) in terms of the classical Killmoker complementarity conditions:

X]V[ Z 0’ ,VMO S 0 ,YMOXM 0
§ >0, %0 <0, 5% =0 (21)

(XM+XS_1)§O, ’YMSZO, ’YMS(XM+XS—1):O
11
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Moreover, we may observe that, in the case of proportioredila, i.e., neglecting the re-
orientation process, by definition, the preferred variargéddion, d”, coincides with the devi-
atoric stress directions. Under this assumption, we may simplify model equations ddyirgy
d” =s/|s||.

2.1.3. Evolution equations and limit functions
As traditionally done in the context of associative evauatiwe assume the evolution equations
of internal variables as follows:

( . BM
M __ M
. ¢ B?
=g (22)
) . B¢
dir = Cd
( B4

where¢M, (5 and(? are non-negative consistency parameters.

Then, we define three limit functiong™ = F™ (BM), Fs = F% (B*,x*,T) and F¢ =
F? (B4, x), playing the role of yield functions (Lubliner, 1990), tosteibe PTs and reorientation
evolutions, in the following form:

FM = |BM| — RM
F$ =|B%| - R® (23)
F'=|B| - R

whereRM and R® = R (B, x®,T) represent the positive radii of elastic domains to activate
temperature and pure transformations, respectively,enkl = R? (XS) represents a positive
threshold value for the component of stress in the direatimmal to the preferred direction of
variants to activate variant reorientation. We observe tinva proposed limit functions depend
on the three thermodynamic forces?, B, andB¢, and on the radiik", R°, andR¢, whose
adopted forms determine the specific dependencies of eaithuinction.

The model is finally completed by the classical Kuhn-Tucked aonsistency conditions, as
follows:

M>0, FM <0, (MFM =0, (MFM =0
(5>0, F$<0,(SF5 =0, (SF5=0 (24)
(1>0, F1<0, (iF? =0, (1Fd =0

A significant flexibility is assigned to the model in terms bildy to reproduce experimental

evidences by introducing a very special form fot. In particular, through a proper choice Bf
we can guarantee the following features:

e asymmetric behavior between forward and reverse PTs, ateleied, for instance, in the
works by Bouvet et al. (2004); Lagoudas et al. (2012);

12



¢ hardening effects, also modeled, for instance, in the wgrBduvet et al. (2004);

e increasing hysteresis width for low applied stresses imntlaécycling tests at constant
load, as experimentally demonstrated by Shaw and Kyriakiti@95); Stachowiak and Mc-
Cormick (1987, 1988) and also modeled, for instance, in theksvby Brinson (1993);
Chemisky et al. (2011); Lagoudas et al. (2012); Panico andsBnir{2007); Peultier et al.
(2008); Popov and Lagoudas (2007);

e width of the hysteresis loop in superelasticity (i.e., eiince between upper and lower
plateau stress) decreasing with increasing temperatsirex@erimentally demonstrated by
Sittner et al. (2009) and also modeled, for instance, in thkkWwy Sedak et al. (2012);

e smooth thermo-mechanical response, as experimentallpmgnated by Hartl et al. (2010);
Lagoudas et al. (2006) and also modeled, for instance, iwdinke by Lagoudas et al. (1996).

To take into account all these aspects we introduce theasipvery specific form for2°:
ps _ B FHE +af ()" + afi (1= X) if BS >0 5)
R% —hExS — G (T —Ty) +a% (x°)" +ad (1—x%)" ifBS<0

Ry, RS, b7, B, 5, a%o, a2, afy, o, andn € [0, 1] being positive material parameters, discussed
in Section 4 (subscriptg andr stand for forward and reverse PT).

We remark that we derive such an expression by starting frmmesmodeling contributions
presented in the literature and cited in the above list. Ini@dar, we distinguish between the
positive and negative sign dB° to model the asymmetric behavior between forward and re-
verse PTs. Then, we introduce the following terms:Aff)® and h2x* to classically describe
hardening effects due to single-variant martensite;affi)(x*)", af, (1 —x*)", a3 (x*)", and
a? (1 — x®)" to describe hardening effects as well as smooth thermo-amécdl response always
due to single-variant martensite; and (i) (7' — Tp) to model increasing hysteresis width for low
applied stresses in thermal-cycling tests at constantdsauell as the width of the hysteresis loop
in superelasticity decreasing with increasing tempeeatlihis last choice manifests itself as two
different slopes of the phase diagram boundaries for fahaad reverse transformations, known
as stress influence coefficients (Liang and Rogers, 1992)amsstates (Duerig et al., 1990; Otsuka
and Wayman, 1998), as presented in Section 4.

2.1.4. Dissipation function

Although the proposed model relies on an yield surfaceé&senulation, we complete the
description by recalling that the yield surface conditioas be equivalently converted in a pseudo-

potential of dissipationy = ¢ (;'(M, X2, d”) , Which is a positive convex functional depending on
dissipative variables, vanishing for vanishing dissipatin particular in the form:

¢ = RMxM| + RS + RY||d" || (26)
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The introduced pseudo-potential of dissipatiojcaptures forward and reverse austenite to multiple-
variant martensite and austenite to single-variant maitetransformations as well as the reori-
entation process of single-variant martensite. The ps@oatential of dissipationy, may also
depend on state and internal variables through the paatiéotms chosen foR™, R®, and R,

This choice assigns a significant flexibility to the model.

2.2. A SIMPLIFIED MODEL FORMULATION

Based on physically motivated considerations, the presentid introduces a simplified
model formulation, based on a reduced set of material pasambut still able to capture fun-
damentals SMA feature effects.

2.2.1. Simplified Helmholtz free-energy function and tooetinuous equations review
We start by making the following assumptions:

1. regarding single- and multiple-variant martensitesr@asonably assume:

e equal internal energies and entropies between single- attgpta-variant martensites,
implying AutMS = AutM = Au?9 and AsAMS = AsAM = AsA5;

e equal interaction energies between single- and multipheamt martensites with austen-

ite, i.e., U =T = T andT" = T = 0;
e equal shear moduli between single- and multiple-varianttenaites, i.e.G"* =
GM = G,

2. since many calorimetry experiments showed that the lagetaties of austenite and single-
variant martensite are almost equal (Qidwai and Lagoud30)2 we assuméc¢*® = 0.
We make the same reasonable assumption for multiple-¥amartensite, i.e Ac*M = 0;

3. sinceT;, denotes the equilibrium temperature at which phases engrggual, we choose
Ty such thatl4 (Ty) = WS (Ty), i.e., Ty = Au?¥/As?S (Sedbk et al., 2012). Since
AutMS = Au M = Au% andAsAMS = AsM = AsA9 it follows AuAMS = AsAMST,.

4. since thermal expansion is a secondary effect comparedtiensite production, we set the
thermal expansion material coefficient,equal to zero.

Then, by applying such assumptions to Eq. (14), we derivéréeeenergy functiony*' =
weimel (g, T, x™M, x,d'") (superscriptimpl stands for simplified):
\Ijsimpl _ %K02 + G||e N ELXSdtTHQ (27)

T
+up — T + A (TfTo)leog?
0
+ I (XM XT) + I (7))
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We remark that the introduced free-energy functibfi?*?!, does not include full thermo-mechanical
coupling since temperature is considered as a prescribadpter.

A review of the model equations derived from the simplifiegefienergy (27) is reported in
Table 1.
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TIME-CONTINUOUS SIMPLIFIED MODEL FRAME

State variabless, T'
Internal variablesy™, x°, d*
Constraints on internal variables:
0<xMx¥ <1, M+xS<1, |d7=1
Constitutive equations:
(p = K6
s =2G(e —erx°d™)
T
n= st — AsAMS (M 4 \5) + cAlog —
\ T
oG
BM — —WHe —epx3df||? — AsAMS(T — Tp)
(1 - 2xM - 2x5) =AM
S S qtr tr oG S qtr|2
B® =2Ge(e —erx?d™) : d —a—s\e—qx d"||
. X
—AsAMI(T — Tp) — T (1 — 2xM — 2y) — 4
Bd — 2G5LXS(e . 8LXSdtr) o ’YddtT

Evolution equations:
7M, stésis, dtr:édid
| BM |BS [B]|
Limit functions:
FM:|BM|—RM, FS:|BS\—RS, FdZHBdH—Rd

Kuhn-Tucker conditions:

(M >0, FM <, (MpM — o (MpM —

(5>0, FS<0, (SFS =0, (SFS =0

(t>0, F1<0, (IFT=0, (PF? =0

: oy B
XM =¢M

Table 1: Time-continuous simplified model equations review

3. TIME-DISCRETE FRAME

We now elaborate on the algorithmic treatment of the modeaggns summarized in Table
1. For the sake of notation simplicity, the convention elsshbs superscript for all the variables
evaluated at time,, while drops superscript + 1 for all the variables computed at timg, ;.

We start making use of a classical Backward-Euler integnadilgorithm for the evolution

16



equations (22). In this sense, time-discretized evolutigmations are given by:

( BM

S S S BS
VS A = 28
Bd
dir — dr — AC= =0
( B4

whereA¢M = [+ (M A¢S = [ (S andA¢? = [/ (? are the time-integrated consistency
parameters. Here Eq. (%Eguarantees constraint (4) through the indicator functi@sented in
Eq. (13). All the remaining model equations are evaluateoired?,,, ;.

In Section 1.23 we presented an overview of several numerical approacheklale from
the literature and suitable for both simple and more com@kl phenomenological models.
Since the purpose of the present paper to integrate the gedmmnstitutive equations is to reduce
the complexity, and thus increase the efficiency, of therétlyoic treatment, this is achieved by
eliminating the need for a predictor-corrector-type scaand by automatically constraining the
range of the variant volume fractions. In fact, in the raaglimodel, since we deal with several
phase fractions, with strongly coupled evolutions and Ivimg constraints, the application of
standard predictor-corrector methods is not suitablealise an elaborate active set search has to
be carried out. In particular, iterative solution procestumay suffer from instabilities caused by
periodic oscillations of the active set.

An effective approach to the detection of an active set daas been introduced by Schmidt-
Baldassari (2003) in the context of crystal plasticity, astisg in the replacement of the Kuhn-
Tucker complementarity inequality conditions< 0, b > 0, ab = 0, a,b € R, by the equivalent
Fischer-Burmeister complementarity functiér(Fischer, 1992), witld : 2 — R and defined as
follows: ®(a,b) = va? + b?> + a — b, such thatb(a,b) =0 < a <0, b > 0, ab = 0. This gen-
eral definition allows to rewrite the complementarity inalijty constraints as a non-linear equality
constraint by their replacement with a Fischer-Burmeistenglementarity function. The appli-
cation of Fischer-Burmeister functions makes possible td amactive set search, a fundamental
advantage when dealing with many coupled evolution equstio

The discrete Kuhn-Tucker conditions deriving from syste) (@re so substituted by the fol-
lowing set of functions in the time-discrete frame:

VETP 4 (ACHY 4 FM = ACM =
VI + (AC)E + FS — ACS =0 (29)
VFD?+ (A + F = A =0

The same strategy can be employed to treat the set of indgaaiven by constraint (2). In fact,
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the additional Kuhn-Tucker conditions (21) can be sub&dly the equivalent equalities:
VMR + ()2 4 M = XM =0

VT2 + ()2 + 9% =X =0 (30)
VO M+ x5 — 12 =AM 4 (M + x5 —1) =0

The time-discrete problem, evaluated at titpe;, takes the specific form:

[ XM_XM_ACMBM —0 |
" | B
VETE(ACH)E + FM — ACM = 0

V(YMO)2 4 (X M)2 4 MO M —

BS
XS—XE—ACSWIO
Q(e,h) = VIFS)? + (AP + F¥ = AC =0 =0 (31)

VO + M2+ 9% = x5 =0
VO O+ X7 =12 =M+ (M % = 1) =0

Bd
A" —dr — A¢? =0
[B]
VED L (AT + Fi— At =0
)= 1=0

with h = {\M ACM M0 5 ACY 450, M5 di", Ac?,v*}. The active set can now be de-
termined via the solution of the non-linear system of equneti(31), using a classical Newton-
Raphson method, which results in the standard update nelaticeration(k), as follows:

h¢*+) — h®) L AR®) (32)

where:

-1
Ah® = — (%ﬁ) Q (e,h®) (33)

The FE implementation of model equations and of all the nicakexamples presented in Section
5is carried out using the symbolic code generation systeet&a/AceFEM (Korelc, 2007). This
system extends the symbolic capabilities of Mathematicalifam, 2013) with the automatic
differentiation technique, simultaneous optimizatioregpressions, and automatic generation of
program code. Accordingly, we do not provide explicit exgsiens resulting from differentiation
as these are obtained automatically using the automatereiitiation technique implemented in
AceGen (Korelc, 2007). Application of these automatiorizdeads to exact linearization of the
non-linear FE equations (consistent tangent matrix). gherantees quadratic convergence rate
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of the global Newton method and results in a robust and effi¢i& implementation of the model,
as illustrated by the numerical examples of Section 5.

We remark that, in cases where no analytically evaluatisghefacobian matrix is possible, the
most known approximation is through a finite difference sacéQuarteroni et al., 2007). In such
a case, to obtain good approximations of derivatives, tkeeotifigher order divided difference is
recommended, consequently leading to high computatiassén the evaluation of one or more
residuals and to low efficiency.

Moreover, we observe that in the case of proportional lagdive may simplify model equa-
tions by settingl” = s/||s||, as presented in Section 2.1.2. In such a case, system (2ithzosed
of only scalar-valued, rather than tensorial, equationsdmsequently increasing efficiency.

Since the Fischer-Burmeister complementary functibnis non-differentiable at0,0), we
introduce a regularized counterpa®t;, defined asb;(a,b,0) = va? + b2 + 262 + a — b, such
that®s(a,b,6) = 0 < a <0, b > 0, ab = —6%, whered is a positive regularization parameter
(Kanzow, 1996). This aspect characterizes especiallynitiation of PTs, when both andb are
equal to zero.

Possible difficulties are linked to the numerical sensitess of these schemes (due to the
presence ob) and to the proper choice of the Newton-Raphson initial gteggiarantee a fast
and correct convergence. In fact, a potential disadvartétfgs method is that when the initial
point is far from a solution, the method might not convergeray converge very slowly. To
resolve these shortcomings, we apply a line-search syéiBaEnnis and Schnabel, 1983; Nocedal
and Wright, 1999). Such a choice is suggested by practicarexgce which reveals that it is not
necessary to solve accurately for Eq. (33) to devise efficiggthods (Quarteroni et al., 2007),
rather, it is crucial to enforce some limitations on the d&th such that:

h+D) — K L D ARK (34)

wherea”) represents the admissible coefficient at iteratigrof the line-search procedure. With-
out introducing any limitation, a reasonable request oncigice of«¥) would seem be that
satisfying the following condition:

Qe " )| < Qe n)] (35)

for which the new iteratdy(**1), satisfies the inequality whed*) andAh®*) have been fixed. To
this purpose, a simple procedure, that starts from a suffigiearge value of the step length?),

and halves this value until condition (35) is fulfilled, cam bised even if not always satisfactory
(Dennis and Schnabel, 1983). In fact, more stringent @itean condition (35) have to be adopted

in the choice of possible values faf?) to avoid a slow descent rate of the sequence and the use
of small step sizes. Among the most up-to-date strategieadept here the back-tracking line-
search technique for which the following condition needkédcatisfied (Quarteroni et al., 2007):

1Q (e.h* )| < [|Q (e,h®)| + )\a(j)aa_EAh(k) )

with A € (0,0.5). In our case, the procedure, that starts from a sufficieattyd value of the step
length,a?), and halves this value until condition (36) is fulfilled, Haeen demonstrated effective

19



and efficacy. Clearly, other strategies can be used for theelobn?) and theoretical results can
be found in the well-known book by Dennis and Schnabel (1983)

The application of the Fischer-Burmeister algorithm to theppsed problem leads to a well-
behaved and robust algorithmic scheme as demonstrate@bypées described in Section 5. Table
2 provides a summary of the full algorithm needed to integthé constitutive relations in a FE
framework, while Table 3 presents the numerical schemeheraidopted line-search strategy,
where we assumg = 10~* andp = 0.5.

Moreover, in Eq. (25) we choose® such that its derivatives become infinitey@sapproaches
0 or 1 to ensure a smooth transition in stress-strain or strampé&gature response predicted at
initiation and completion of transformation. While this ction is essentially an analytical one,
the numerical evaluation of these derivativesyat= 0 andy® = 1 may cause computational
difficulties. To avoid this problem, we introduce a modifioatof R° as follows:

g _ R?o +hjsc’XS+a?0 (XS+€)n+CL?1 (1 —XS+€)n |f BS 2 0 (37)
Rfo — thS — c% (T —Tp) +afo (XS +e)n +afl (1 —x° —I—e)n if BS <0

¢ being a positive regularization parameter. For small \&lofec (e.g.,e = 107%), Eq. (37)
produces results similar to those provided by Eq. (25).
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1. Initialize

i. Setk =0, h(© = (\M; ACM; MO x5 AT 30 455 dir A d) at timety, 4y

n

2. Determination of the solution

Repeat
i. ComputeBS®*) = BS(g, T,h)) at timet,,
ii. ComputeRS*) = RS(B5) h(*) T) attimet,
iii. Find Ah(®) solving system (31) via Newton-Raphson scheme through Eq. (33)

iv. Evaluateh(*+1) by applying a line-search strategy (see Table 3)
v. Setk=k+1

until || Q (e, h®) || < tol

Table 2: Full algorithm to integrate the constitutive redat of the proposed model.
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. Choose\ € (0,0.5) andp € (0,1)
. Setj=0,a® =1
. Computeh*t1) = h(*) 4 o(OARK)

- While | (e h(+D) | > Q@ (e,h®)|| + 2 T2 AR do

i. Ut = pal)

i. h+D) = B L oUFD ARK)
iii. j=5+1
. End

Table 3: Back-tracking line-search algorithm.
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4. MODEL CALIBRATION

This Section is dedicated to the calibration of the propasedel. To properly calibrate most
of the model parameters it is sufficient to focus on one-dsimTal stress states, condition which
reduces the model to the following simplified form:

102 T
1D _ 5% +ud — T + A (T —Tp) — Tlog |+ AsMS (M 4\ (T - Tpy)  (38)
0
+ 0 (1= ™ = x5) (M X))+ Iy (M X0)
whereo is the uniaxial state of stress aads the Young’s modulus defined in terms of the elastic
modulus of austenitey“, and of the elastic modulus of martensif&"’*, as follows:

1 M S 1 M S 1
7= =X =x%) 2 + (M +X°) (39)
In the following, for the sake of calculus simplicity, we aee £ = E4 = FMS,
Then, we can derive the thermodynamic ford8&’ and B, as follows:
BM = —AsMMS (T —Ty) = 0" (1 — 2™ — 2x5) — M o)
B% =¢epo — AsMS (T - Ty) — v (1—2xM —2x%) — 4%
Moreover, we recall the adopted expression&st
RS _ Rfo + h?xs + a;?o (XS) + a?l (1 — XS) if BS>0 (1)
Rfo - hfxs — c% (T —Tp) + afo (Xs)n + afl (1 — Xs)n if BS <0

In the following, we firstly present the one-dimensionaéss-temperature phase diagram re-
lated to the proposed model. Then, we list the model paramé&tebe calibrated, we indicate
possible calibration techniques and we also comment, wieep®ssible, on their physical inter-
pretation. Moreover, for a complete overview, we cite somheioworks from the literature, which
adopt the same physical interpretation for some parametéh® proposed model. In particular,
we observe that:

e the elastic moduli £* and EM, with the corresponding three-dimensional quantities,
GMS | andK) and the maximum amount of single-variant martensitecan be determined
directly from experimental uniaxial stress-strain curaesonstant temperature;

o the difference of entropy between the austenitic and singte@nt martensitic phases s %,
can be determined from the slope of the forward phase tremstmn curve in a stress-
temperature space, usually obtained from experimentsiléstests (Qidwai and Lagoudas,
2000; Seddk et al., 2012). Its determination is deepened in Sectidn 4.

e the material parameter;, describes the change of the hysteresis loop width in slgsere
ticity (i.e., the difference between upper and lower platsiess), which decreases with
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increasing temperature, as experimentally demonstrateSitmer et al. (2009) and also

modeled, for instance, in the work by Sakllet al. (2012). Its determination from the slope
of the reverse phase transformation curve in a stress-tatype space, usually obtained
from experimental tensile tests, is reported in Section 4.3

e the material constant indicating interaction energiesvbeh phasesy"”, the equilibrium
temperature]y, and the parameters related to the transformation raelij i, R;?*, R3,,
h? h?, can be easily calibrated by considering a temperatureeied transformation under
zero stress and a stress-induced transformation at highetaxture;

o the parameters?,, a2, a7, a2, and exponenty, of Eq. (25) or (41), do not have an
associated material property and are directly chosen tdfibése four corners of the trans-
formation hysteresis plots.

In the following, we consider only the governing equatiofsh@ two transformations nec-
essary to model calibration, i.e., a temperature-inducaasformation under zero stress and a
stress-induced transformation at high temperature. M@amedor the sake of calculus simplicity,
we assumei® as follows:

R%, + hix® it BS>0
Rs:{ jo X = (42)

RS —hix® = (T —Ty) if BS<0

4.1. PHASE DIAGRAM OF THE PROPOSED MODEL

This Section presents the one-dimensional stress-tetaperphase diagram related to the
proposed model and shown in Figure 1(a).

To simplify the presentation, the three phases are dengted b/ and.S, standing for austen-
ite, multi- and single-variant martensites, respectivélye five possible PTs, indicated in Figure
1(a), are denoted bt — M, A — S, M — A, S — A, andM — S for austenite to multi-
variant martensite, austenite to single-variant martensnulti-variant martensite to austenite,
single-variant martensite to austenite and multi- to gaglriant martensite, respectively.

The critical start and finish transformation temperaturiegeao stress level are denoted as
follows: M, and M, for the A — M transformationA}’ and A}’ for the M — A transformation,

S, andSy for the A — S transformation, andl{ and A} for the S — A transformation.A; and
A;’? are assumed as different frand’ andAﬁf” in agreement with experiments provided by Popov
and Lagoudas (2007). All the temperatures are indicatedhur€ 1(a), except fof, andS;.

The critical uniaxial start and finish stresses requireddietvinning of twinned martensite,
I.e., transformatio/ — S, are denoted by, ando, respectively.

The phase diagram of Figure 1(a) follows the establishedslitire in assuming three regions
where only the pure phaséls M andsS can exists (light-blue shaded regions of Figure 1(a)). The
three regions are separated by transformation strips wdrietiabeled according to the transfor-
mations which take place. Note that some of these stripsagvand in an overlap region multiple
transformations are possible. In the non-shaded regidmegbhase diagram various mixtures can
exist (white regions of Figure 1(a)).
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Due to the lack of inelastic strain associated with the»> M transformation, we assume the
start and finish lines for the forward and reverse transftiona A <+ M vertical and passing
through the critical temperaturéd, M;, A¥ and A}”, respectively (Leclercq and Lexcellent,
1996; Popov and Lagoudas, 2007). This assumption has bepteddn several models taking into
account the separate development of single- and multgizavt martensites, e.g., for instance,
(Leclercq and Lexcellent, 1996; Popov and Lagoudas, 20DI&arly, the two strips are bounded
by the critical stresss;.

The start and finish lines for the forward strip— S pass through the critical temperatures
Ss and S; and exhibits a temperature dependence, defined by theveoslitipe,k, in Figure
1(a). Equivalently, the start and finish lines for the regesgipS — A pass through the critical
temperatures!? andA;? and exhibits a temperature dependence, defined by theveoditpe k...
Moreover, the two strips present different widths. Thesduiees are due to the fact that the present
flexible model takes into account for: (i) different kinetioetween forward and reverse PTs; (ii)
the increasing hysteresis width for low applied stresseélenmal-cycling tests at constant load;
and (iii) the width of the hysteresis loop in superelasfidiécreasing with increasing temperature.

Since Popov and Lagoudas (2007) demonstrated that if thehflme for theA — S strip
passes above the intersection pdiht;, o) then one can find a particular isobaric cooling path
which leads to jump discontinuities in the strain as the terafure is lowered, we assume the
finish line for theA — S strip passing through or below the poifit/,, o) (in Figure 1(a) the
extreme case is represented by an orange dot). Furthermare@pproaches are available from
the literature for the definition of thd — S strip at low stressess( < o) and temperatures
(T < M,): some authors have extended it to zero-stress level (BelickBrinson, 1997); others
(Lagoudas and Shu, 1999) suggest that in the re@ioa M, the dependence on temperature
disappears and there is a critical stress below which> S does not occur. In our case, we
assume the first choice reasonable.

Now, we consider the simple phase diagram related to the Inmd&ouza et al. (1998)
and shown in Figure 1(b), which classically describes theab®r of SMAs material in a one-
dimensional setting. The model considers the presencelptwo possible phase fractions, i.e.,
austenite and single-variant martensite, as shown in €igy{ln). As clearly explained in Section 1,
the model is unable to catch SMA behavior for work conditisi®re the material is considered as
linear elastic and where the model is particularly sersitivits numerical implementation. Such
a work condition includes stress values lower tharat 7" < T, as it can be observed in Figure
1(b). Contrarily, the proposed model allows for a more flexi@bproach taking into account the
presence of multiple PTs and PTs at low levels of stress.

4.2. TEMPERATURE-INDUCED TRANSFORMATION

We start considering a temperature-induced transformatnaler zero stress. To this purpose,
Figure 2 focuses only on thé «» M transformation, by highlighting the two related verticiaiss
(orange regions). Accordingly, exploiting the definitiat0}; for the driving forceB™, we can
detect start and finish of forward and reverse PT throughdh@ding conditions:

o Startforward PT: FM| _ = —As™MS (M, - Ty) - T - RM =

e Finish forward PT: FM]T:Mf = —AsAMS(M; — Ty) + T — RM =0
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e Start reverse PT:FM\T:AQ/I = —AsMS(AM _ T3y + T + RM =
e Finish reverse PT:FM\T:AJA/[ = —AsAMS(Ay ~Ty) — T + RM =

whereM;, My, AY andAy can be easily determined by differential scanning calaiyn@®SC)
tests (Popov and Lagoudas, 2007; Qidwai and Lagoudas, 20@0assumé;, = (M; + A}') /2,
i.e., we treatl; as equilibrium temperature. Accordingly, since forwardi asverse PTs are

perfectly symmetric, we deriv&®" and " by considering only the two equations related to
forward PT:

e ATAM A gAMS
g =2
2
(43)
RM — AsAMS <AT0 + ATAM)
whereAT4M = M, — My = A} — AY andAT, = T, — M, = AM — T, (see Figure 2).

4.3. STRESS-INDUCED TRANSFORMATION

We now consider a stress-induced transformation at conbitgh temperature]™. To this
purpose, Figure 3 focuses only drk— S transformation, by highlighting the related strips (orang
regions). The loading path is represented in Figure 3 by @caériolet line passing through™.

Accordingly, exploiting the definition (4@)or the driving forceB*, we can detect start and
finish of forward and reverse PT through the following coiodis:

e Start forward PT: F*|__ o5 = =er05 — AsAMS(TF —Tp) — T — R3 =0
e Finish forward PT: F'| _ o5 = =epof — AsAMS(T* _Tp) + T — RJ*?O —hi=0

e Startreverse PT:F®| _ ot = = epof — AsAMS (T — ) + 0" + R% —hi = (T* = Tp) =0

e Finishreverse PT:F®| _ . =epof — As?M5(T* —Tp) — T4 R = (T* = Tp) =0
of
whereo?, o7, o/ ando are the martensitic and austenitic start and finish stressepec-
tively. The transformation lines for forward and reversangformations are linear with slopes
ky = AsM5 /e andk, = (AsM5 4 ¢f) /eL, respectively (see Figure 3). OnkgandF, are
experimentally determined, we can calibrate bat'** andc3.

Finally, we deduce the remaining model parameters by censgl the four equations, as
follows:

(h? =e.Ad® + 27"
hS = e Ach + 20"
Rfo =cpo? _0" - AsAMS(T* — Ty)
| RS = (As*MS 4 ) (T* — Ty) + 0" — e

(44)

whereAo® = af — o andAc? = o2 — of (see Figure 3).
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5. NUMERICAL SIMULATIONSAND EXPERIMENTAL VALIDATIONS

In this Section we test the validity of the model as well a®atgm efficiency through several
numerical simulations and comparisons with experimemsiilts on thin superelastic NiTi wires
reported by Sittner et al. (2009). Then, we approach a contplee-dimensional finite element
analysis of a real SMA-based device, i.e., an helical spagtgator.

In all the numerical tests we adopt the material parameggrsrted in Table 4 and calibrated
as described in Section 4, by referring to the material pteggecharacterizing NiTi wires and
provided by Pilch et al. (2009); Sittner et al. (2009); intmadar, the material parameters are
extracted from an experimental curve, i.e., a tensile testanstant temperature tf °C (Figure
4).

It is important to notice that all the parameters are caldataising only uniaxial data. The
reduced number of experimental data for the calibratiotagdy reduces the model accuracy,
but the purpose is to emphasize: (i) model prediction cdipiabj based on a simple calibration
method, through a quantitative validation with experinaédata; and, above all, (ii) the robustness
and efficiency of the adopted numerical procedure, througioee complex three-dimensional
analysis of a real SMA-based device.

In all the simulations, to emphasize the improvements ofniéwe modeling framework, we
compare the proposed model with the model by Souza et al8§i8@ricchio et al., 2009b).

5.1. ISO-THERMAL TENSILE TESTS

We start considering uniaxial tensile tests at constanpé&sature, simulated as simple uni-
axial tension tests, with displacement control and prbsdrhomogeneous constant temperature
field. We consider four constant temperatured®@f20, —10 and—20 °C for the tensile tests and
four constant temperatures &, 20, 10 and—20 °C for the tensile tests with internal subloops.
Accordingly, Figures 5 and 6 report stress-strain diagradasnpared to the model by Souza et al.
(1998), the proposed model allows for an accurate desznipti material behavior by reproducing
experimental hysteresis loops decreasing with increasimgerature, transformation-dependent
elastic properties as well as PTs smoothness.

5.2. THERMAL-CYCLING TESTS AT CONSTANT APPLIED STRESSES

We now present thermal-cycling tests at constant strassaied as uniaxial tension tests with
load control and prescribed homogeneous varying temperéield. We consider two constant
stresses o800 and400 MPa. Accordingly, Figure 7 reports strain-temperaturegdiens. The
experimental curves are successfully predicted by bothetsodr o = 400 MPa, while both
models fail forc = 300 MPa since an experimental weak inelastic strain is obtafoedow
stress levels. Although there is no clear experimentalesdd, these small actuation strains can
be attributed to a R-phase transformation (Sittner et aD9P0not taken into account by both
models. Another clear feature of the proposed model is ticeedse of temperature hysteresis
width with increasing stress.

27



Parameter Value Unit | Parameter Value Unit

GA 21890  MPa RM 1 MPa
GMS 9016  MPa R% 1 MPa
K 31125  MPa R 17 MPa
55 6.15 % h? 1 MPa
Ty -48.15  °C hy 1  MPa
AsAMS 031  MParC afy 2 MPa
v -0.1 MPa a3y 0.5 MPa
e 0.2 MParcC az 0.01 MPa

n 0.1 / a? 9 MPa

Table 4: Model parameters used in all the numerical sinsiati
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5.3. THERMO-MECHANICAL RECOVERING STRESS TESTS

We now present thermo-mechanical recovering stress testied out on a wire strained in
tension at room temperature, up to a certain level of priestahupper and lower plateau, respec-
tively, followed by thermal-cycling at constant prestraimd final unloading at room temperature.
Again, the present tests are simulated as uniaxial tensgis.tWe consider a room temperature
of 24°C and three levels of prestrain %, 3.5% and5%. Accordingly, Figures 8-9 represent
stress-strain (left) and stress-temperature (right)rdiag at both upper and lower plateau. The
transformation slopes as well as the achieved magnitudeeafeicovery stress at maximum tem-
perature predicted by the proposed model are in good agreaemith experiments also if both
models do not capture the absence of hysteresis in the-stm@perature plot.

5.4. COMBINED TENSION-TORSION TESTS

We present results of combined tension-torsion tests stmgiof iso-thermal loading paths
with applied angular displacement at constant axial strélse numerical prediction are obtained
considering & mm wire segment, modeled usifghode brick FE discretization consisting in one
element through the wire thickness &) elements in the cross-section.

Accordingly, Figure 10 represents torque-angular digpteent (left) and axial strain-angular
displacement (right) diagrams. Tests in the first row of Fegli0 are performed at a constant
tensile stress of0 MPa and at a constant temperature306fC; curves in the second row are
plotted for a constant tensile stressl6ft MPa and at a constant temperaturetofC; curves in
the third row are plotted for a constant tensile stres$76fMPa and at a constant temperature of
40°C.

Both models underpredict the resulting torque moment ancestienate the maximum amount
of transformation strain reached at the end of the transitiom. However, discrepancies are not
surprising since all the material parameters are calidraseng uniaxial tests. In fact, thin wires
loaded in tension often exhibit a localization of transfation, which produces more well stress-
oriented variants, resulting in an important transfororastrain in tension. In torsion test, due
to the stress gradient through the radius, no localizas@xpected and, consequently, a reduced
transformation strain is expected. As the models conslietransformation in an average way,
this kind of effects is not captured. Moreover, there areréigancies in terms of axial strains,
due to the effect of strong material texture and anisotropy,accounted by isotropic models,
which influences yield transformation surfaces and transéion strains (Sittner et al., 2009).
In fact, tension/compression asymmetry, which is accaufde in the model by Souza et al.
(1998), originates from the transformation anisotropyoasged with NiTi cubic to monoclinic
martensitic transformation (Sittner et al., 2009). The elda Souza et al. (1998) nevertheless
remains isotropic and hence the tension/compression asymaoes not solve the problem of the
length of the plateau in angular displacements in torsiorsidgethese discrepancies, the global
behavior of the proposed model is generally in good agreemiém experiments.

5.5. SIMULATION OF SMA DEVICE

We conclude this Section by considering a real SMA-basettdgeve., an SMA helical spring
actuator. Such device constitutes an important exampletoasor and, despite the apparent sim-
plicity, its behavior is rather complex. Consequently, gsidn may possibly take advantage of
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numerical simulations. The literature presents numerdoste for the modeling, design, simu-
lation and control of SMA actuator systems related to intigeadevices employed for different
purposes. Among them, there have been several efforts telrS&A helicoidal springs thermo-
mechanical behavior (Attanasi et al., 2011; de Aguiar 2813, 2010; Dumont and Kuhl, 2005;
Saleeb et al., 2013a; Savi and Braga, 1993; Toi et al., 2004).

The SMA helical spring actuator considered in the presemkwonsists o83.5 free coils of
initial length of24.59 mm, a wire diameter of.5 mm, a spring external diameter 63.3 mm, a
spring internal diameter dfd.3 mm and a pitch size af.4 mm. Figure (11) reports the adopted
mesh, consisting adf912 8-node brick elements ard97 nodes, and the initial geometry.

First, we simulate a helical spring at a constant tempegaitt0 °C. We apply an axial force
at the bottom end of the helical spring while the top end is gleitely fixed. We increase the
force from zero to its maximum value and then, we unload thesfback to zero. We remark that
all the nodes on the bottom section are constrained ag&iestvo translations in the directions
orthogonal to the axial one (thus ensuring that the bottartiseis restrained against twist rota-
tion). Figure 12(a) shows the deformed shape under the memiforce, compared to the initial
geometry of the spring. After unloading, the spring receves original shape as expected in the
PE regime. Figure 12(b) shows the force-vertical displaa@n(of the loaded end) diagram. The
results presented in Figure 12(b) illustrate also the rvtass of the present formulation and im-
plementation. The markers indicate the solution obtairskdgularge load increments (automatic
step size controt), whereas the solid line corresponds to fixed small loackiments. As it can
be seen, the former solution follows exactly the latter. $sess computational efficiency of the
present model and its FE implementation, Table 5 providegdtal number of steps, the total
number of global Newton iterations and the total computatime for both the small and large
load increments.

Then, to qualitatively compare the behavior of the propasediel to that by Souza et al.
(1998) for low-stress PTs, we consider the spring fixed atdpend, initially loaded by a vertical
force at the bottom end and subjected to temperature cyale kéeping constant the load. We
consider two constant loads ®and15 N. Figures 13(a) and 13(c) show the two loading histories
during the simulations, while Figures 13(b) and 13(d) shoswtertical displacement-temperature
diagrams. As it can be observed, compared to the model byaSetual. (1998), the proposed
model is able to capture low-stress PTs and to predict theedse of temperature hysteresis width
with increasing stress (see Figures 13(b)-(d)).

6. CONCLUSIONS

The present paper has developed a refined and general ihmersibnal phenomenological
constitutive model for SMASs, taking into account severaygbal phenomena. Moreover, the
present paper has proposed the numerical implementatithe efew model, through an effective
and efficient procedure, consisting in the replacementetthassical set of Kuhn-Tucker condi-
tions by the Fischer-Burmeister complementarity functidhe great advantage of the numerical

1All computations are performed using an automatic step@ingrol procedure in which the desired number of
Newton iterations is prescribed (here, equal to 8), and tineent load increment is increased (decreased) when the
number of iterations at the previous increment is smaltagér) then the desired number.
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algorithms based on the Fischer-Burmeister complementatibns is that no active set search is
required, allowing an efficient procedure for complex caugve models. Numerical robustness
and efficiency have been carefully investigated. Possibffieuties and the adopted solutions

have been described. Extensive numerical tests have befennped to show robustness as well
as efficiency of the proposed integration algorithm and thentjtative validation of the proposed

model with experimental data has been addressed to confichelmaiability.
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Type of load increments Number of steps Number of iteratiomstal time [s]

Large 52 401 909.046
Fine 204 1023 2134.75

Table 5: Pseudoelastic test of a SMA helical spring actuatomparison of computational effi-
ciency.
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Figure 11: SMA helical spring actuator: adopted mesh.
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