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ABSTRACT

With the new developments of structural engineering and the continuously in-

creasing need for more and more complete and complex analysis tools, the study

of advanced computational techniques is becoming a very important issue also in

the field of earthquake engineering.

The employment in structural design of seismic devices as isolators and of smart

materials as shape memory alloys, together with the use of new nonlinear analysis

strategies, requires the capability of dealing with difficult topics as geometric and

material nonlinearity, incompressibility constraints, 3D inelasticity, modeling and

meshing complexity, which in many situations still need to be deeply understood

and studied.

It is in this framework that the present work has its basis, focusing on the deve-

lopment of advanced computational tools able to treat some of the delicate issues

cited above.

Keywords: finite element method, isogeometric analysis, NURBS, structural

vibrations, frame, truss, plate, membrane, 3D inelastic models, shape memory

alloys, permanent plasticity, large strains, incompressibility, enhanced strain tech-

nique, seismic devices, nonlinear analysis
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1. INTRODUCTION

As the development of the field of earthquake engineering is growing rapidly in many

directions, it can be stated that there really exists the need of giving an adequate com-

putational support to this growth.

In this framework, it is possible to identify a number of computational issues, needing

new formulations and deeper investigations, which can turn out useful for a correct and

complete modeling of structures, in particular when subjected to strong ground motions.

When studying isolators, it is not unfrequent to deal with both material and geometric

nonlinearities, as well as with the incompressibility constraint when rubbers are em-

ployed. Moreover, when 3D finite element simulations of seismic devices are required,

also mesh complexity (and related geometric approximations) may become a problem.

Other examples of fields where material or geometric nonlinearities play an important

role are the study of the behaviour of smart materials (as shape memory alloys) that

can be employed in earthquake engineering and the introduction of innovative design

guidelines based on nonlinear analysis strategies.

It is from these considerations that the idea behind this thesis arises. Its goal is giving

a collection of numerical tools able to overcome some numerical difficulties that can be

faced in earthquake engineering. In particular, the themes treated within this work are:

- isogeometric analysis for structural dynamics;

- shape memory alloys for earthquake engineering: applications and modeling;

- mixed-enhanced strain techniques for the study of incompressibility and geometric

nonlinearities.

In the following Chapters, contributions to all of these issues are given, as detailed in

Section 1.1 which describes the organization of the work.
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1.1 Organization of the Work

The present work is organized in four main Chapters.

The first one consists of the presentation of some important earthquake engineering pro-

blems implying the need for a deep study of advanced computational issues.

In the second one, the concept of Isogeometric Analysis applied to structural dynamics

is presented (cf. Reali [2004, 2005]; Cottrell et al. [2005a,b]). Case studies are the modal

analysis of truss, frame and two-dimensional elements, as well as some three-dimensional

structural members and the whole resulting structure for which modal experimental re-

sults are available from NASA.

The third main Chapter refers to shape memory alloys: some seismic applications for

these smart materials are presented, together with the introduction and the assessment

of a new constitutive model able to reproduce their three-dimensional macroscopic beha-

viour, including permanent inelastic effects (cf. Auricchio and Reali [2005a,b]; Auricchio

et al. [2005d]).

The last Chapter, then, deals with finite element approximation of incompressibility in

both the small and the large strain regimes: a solution to some of the related problems

is found in the framework of mixed-enhanced strain elements (cf. Auricchio et al. [2004,

2005a,b]).

Afterwards, conclusions about the numerical tools developed within this work are di-

scussed together with possible future ways of investigation.

Finally, the two Appendices report, respectively, some analytical computations of isoge-

ometric analysis orders of accuracy and the mathematical proofs for Chapter 5 Proposi-

tions and Theorems.



2. THE NEED FOR ADVANCED
COMPUTATIONAL TOOLS IN EARTHQUAKE

ENGINEERING

Earthquake engineering is a research field in continuous expansion and the development

of numerical methods able to support its new frontiers constitutes an important field of

investigation as well.

In this context, the aim of the present Chapter is to briefly analyze some earthquake

engineering problems from which computational difficulties may arise, justifying the re-

search project described in this thesis.

The seismic applications considered in the following are:

- seismic isolation: high-damping rubber bearings;

- smart materials for seismic devices: shape memory alloys;

- innovative design guidelines: nonlinear analysis strategies.

As shown in next Sections, these research directions call for deeper studies on some

delicate topics such as geometric nonlinearity, inelasticity, incompressibility, mesh and

geometry complexity. Subsequent Chapters will then focus on some numerical techniques

for dealing with these issues.

2.1 Seismic isolation: high-damping rubber bearings

Seismic isolation is a widespread method for seismic protection of bridges and buildings.

The main idea is to place flexible bearings between the primary mass of the structure

and the source motion, typically isolating bridge superstructures from piers or buildings

from foundations. Such a procedure can be used for both new and existing structures

and its main advantages will be briefly discussed in the following.

As a first effect, adding a flexible bearing lengthens the fundamental period of the whole

structure, decreasing design forces for short period structures.

Then, a higher flexibility may increase structure displacements, but, on the other side,
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inelastic deformation is confined to the isolation device so that an elastic design for the

remainder of the structure is possible.

Moreover, isolators are able to dissipate seismic energy by means of hysteretic damping

or through supplemental damper insertion.

Finally, it is to be considered also that in some cases the isolator can act as a “fuse” for

the structure, when the forces transferred to the structure are limited by the maximum

amount of force that can be transmitted across the bearing.

Rubber-based isolators, as lead-rubber and high-damping rubber bearings, are a partic-

ularly significative example within this study, because their characteristics constitute a

reason for the study of incompressibility (always to be taken into account when modeling

rubber materials) as well as of material and geometric nonlinearities (for instance, Figure

2.1 shows the response of a lead-rubber bearing subjected to 208% shear strain). In the

following, we focus on a particular type of seismic isolation device, the so-called high-

damping rubber bearing (HDRB), about which the interested reader can find a detailed

discussion in Grant et al. [2005] and references therein.

Figure 2.1. University of California at San Diego: SRMD dynamic testing of a
lead-rubber bearing at 208% shear strain.

HDRBs are seismic isolators commonly used in both construction and retrofit of bridges

and buildings. As usual with elastomeric seismic devices, HDRBs are composed of elas-

tomeric compound layers reinforced by steel layers in order to increase vertical stiffness

(see Figure 2.2 for a sketch of a typical HDRB). The elastomer usually consists of a filled

natural or synthetic rubber in order to provide seismic energy dissipation under cyclic

loading without needing supplemental damping.

The nonlinear constitutive law of the employed rubbers (both in the cases of filled nat-

ural or synthetic) implies high horizontal stiffness for low shear strains, low stiffness for

medium strains and increasing shear modulus for higher strains. In this way, at service

conditions a high bearing stiffness makes forces and deformations in the structure to be
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Figure 2.2. Bridgestone KL301 high-damping rubber bearing (cf. Grant et al.

[2005]).

expected in the elastic range; at a moderate earthquake, instead, the bearing deforma-

tion isolates the structure and provides energy dissipation; at an extreme seismic event,

finally, the elastomer strain-stiffening limits the isolator deformation, thus reducing the

risk of instabilities of the bearing itself.

We remark that this brief (and not satisfactory at all) presentation of such a device aims

only at introducing to the reader’s attention the presence of problems like large deforma-

tion, inelasticity and incompressibility in earthquake engineering state-of-the-practice, so

highlighting the necessity of computational tools able to simulate these important be-

haviours. In Chapter 5, we will deal with mixed-enhanced finite element methods for

treating incompressibility, and, in particular, in the second part of the Chapter, we will

focus on incompressible large strain (i.e. geometrically nonlinear) problems.

Moreover, Figure 2.2 shows that the geometry of an isolator of this type, though simple

in each of its parts, can be rather complex in its entirety. Accordingly, if an analysis of

the device is required, also geometry approximation and mesh complexity problems play

an important role for a successful simulation procedure. In fact, the introduction of a

faceted mesh approximating a smooth surface may for instance give rise to non-physical

stress concentrations at mesh corners. So, in Chapter 3, we will show, with particular

reference to structural dynamics, a new method (referred to as Isogeometric Analysis)

able to deal with geometric problems like this by means of an exact geometry approach.
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2.2 Smart materials for seismic devices: shape memory alloys

Earthquake engineering, and in particular its branch devoted to the design of seismic

protection devices, is a field strongly influenced by material science progresses, as the

availability of new materials often opens roads previously considered difficult to be fol-

lowed. A first example could be the development of rubbers with high damping prop-

erties, whose use has made possible the design of the HDRB isolators described in the

previous Section.

Among the many smart materials that have been successfully employed in seismic devices

in last years, we find particularly interesting the so-called shape memory alloys (SMAs),

whose name comes from their capability of recovering the original shape after being

subjected to large deformations. Though developed in the 1960s, it is only in the last

decade that SMA use in earthquake engineering has been really considered and studied,

opening new possibilities and applications due to their unique characteristics (Figure

2.3 reports an example of commercial SMA seismic devices). As a consequence, the

development of constitutive models able to reproduce the three-dimensional inelastic

behaviour of SMAs is a subject to be tackled, as it is basilar in order to construct

reliable numerical tools for simulating the response of any SMA-based devices.

So, we entirely devote Chapter 4 to SMAs and, after a general introduction to their

main features and a review of the state-of-the-art on the employment of such materials

in earthquake engineering, we present in detail a new 3D constitutive model capable of

reproducing their main macroscopic behaviours.

Figure 2.3. SMA seismic devices produced by FIP Industriale SpA [2005].
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2.3 Innovative design guidelines: nonlinear analysis strategies

The field of earthquake engineering is increasingly influenced by the significant devel-

opment of the performance-based seismic engineering concepts and methodologies that

is taking place in the last two decades (cf. Penelis and Kappos [1997] and references

therein). Accordingly, innovative design guidelines and analysis procedures, as nonlinear

time-history or pushover (nonlinear static) analysis, are becoming more and more popu-

lar (see, e.g., FEMA 440 [2005]; NZS 1170.5 [2004]; OPCM 3274 [2003]).

An essential requisite in performance-based seismic design is the estimation of inelastic

deformation demands in structural members; in fact, the main idea consists in accounting

for the structural ductility developed by a structure when entering its nonlinear response

range to reach a predetermined performance limit state (cf., e.g., Paulay and Priest-

ley [1992]). In this context, the study of analysis strategies able to model in a reliable

way the nonlinear behaviour of the structures under investigation becomes of primary

importance.

The matter of nonlinear analysis techniques within performance-based seismic engineer-

ing would indeed deserve a detailed and complete discussion, as proved by the wide

literature devoted to this topic. The aim of this Section, instead, just consists in point-

ing out that also the diffusion of these research directions, which are becoming more and

more an important part in design guidelines, highlights the necessity of deeper studies

on issues like material and geometric nonlinearities, basilar to correctly implement the

numerical tools needed for these kinds of analysis.





3. ISOGEOMETRIC ANALYSIS FOR
STRUCTURAL DYNAMICS

As seen in the previous Chapter, mesh and geometry problems may constitute important

issues in the field of earthquake engineering and, more in general, of structural dynamics.

Here a new method, referred to as Isogeometric Analysis, showing a number of advantages

with respect to standard finite element methods is presented and discussed.

The concept of Isogeometric Analysis, introduced by Hughes et al. [2005], may be viewed

as a logical extension of finite element analysis. The objectives of the isogeometric ap-

proach are to develop an analysis framework based on functions employed in Computer

Aided Design (CAD) systems, capable of representing many engineering geometries ex-

actly; to employ one, and only one, geometric description for all meshes and all orders

of approximation; and to vastly simplify mesh refinement procedures. As a primary tool

in the establishment of this new framework for analysis, Hughes et al. [2005] selected

NURBS (Non-Uniform Rational B-Splines; see, e.g., Rogers [2001] and Piegl and Tiller

[1997]), obtaining excellent results for problems of linear solid and structural mechanics

and linear shells modeled as three-dimensional solids (as well as for advection-diffusion

problems).

A fundamental tenet of isogeometric analysis is to represent geometry as accurately as

possible, because the faceted nature of finite element geometries could lead to significant

errors and difficulties. This is schematically conveyed in Figure 3.1. In order to gen-

erate meshes, geometrical simplifications are introduced in finite element analysis. For

example, features such as small holes and fillets are often removed. Stress concentrations

produced by holes are then missing, and artificial, non-physical, stress concentrations

are induced by the removal of fillets. The stresses at sharp, reentrant corners will be

infinite, which makes adaptive mesh refinement strategies meaningless. If the refinement

is performed to capture geometrical features in the limit, then tight, automated com-

munication with the geometry definition, typically a CAD file, must exist for the mesh

generator and solver. It is rarely the case that this ideal situation is attained in industrial

settings, which seems to be the reason that automatic, adaptive, refinement procedures
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have had little industrial penetration despite enormous academic research activity. In

isogeometric analysis, the first mesh is designed to represent the exact geometry, and

subsequent refinements are obtained without further communication with the CAD rep-

resentation. This idea is dramatized in Figure 3.2 in which the question “What is a

circle?” is asked rhetorically. In finite element analysis, a circle is an ideal achieved in

the limit of mesh refinement (i.e., h-refinement) but never achieved in reality, whereas

a circle is achieved exactly for the coarsest mesh in isogeometric analysis, and this ex-

act geometry, and its parameterization, are maintained for all mesh refinements. It is

interesting to note that, in the limit, the isogeometric model converges to a polynomial

representation on each element, but not for any finite mesh. This is the obverse of finite

element analysis in which polynomial approximations exist on all meshes, and the circle

is the idealized limit.

Feature removal,

adaptive meshing

NURBS

Isogeometric analysis

preserves geometry

Finite element analysis

approximates geometry

Figure 3.1. Schematic illustration comparing finite element analysis and isogeomet-
ric analysis meshes for a bracket.

In this Chapter we discuss the isogeometric analysis methodology in structural vibration

analysis. In Section 3.1 we briefly review the basic concepts of isogeometric analysis (the

interested reader may consult Hughes et al. [2005] for a more comprehensive introduc-

tion). We emphasize the concept of k -refinement, a higher-order procedure employing

smooth basis functions, which is used repeatedly in the vibration calculations later on.

After a brief recall on the equations governing structural vibrations (Section 3.2), in

Sections 3.3-3.7 we investigate isogeometric approaches to some simple model problems
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Finite Element Analysis

h 0
É

Isogeometric Analysis

É

Figure 3.2. “What is a circle?” In finite element analysis it is an idealization
attained in the limit of mesh refinement but never for any finite mesh. In isogeo-
metric analysis, the same exact geometry and parameterization are maintained for
all meshes.

of structural vibration, including the longitudinal vibration of a rod (and, equivalently,

the transverse vibration of a string, or shear beam), the transverse vibration of a thin

beam governed by Bernoulli-Euler theory, the transverse vibration of membranes, the

transverse vibration of thin plates governed by Poisson-Kirchhoff theory, and the trans-

verse vibration of a thin plate modeled as a three-dimensional elastic solid. In the cases

of Bernoulli-Euler beam theory and Poisson-Kirchhoff plate theory, we have employed

rotationless formulations, an important theme of contemporary research in structural

mechanics (see, e.g., Oñate and Cervera [1993]; Oñate and Zarate [2000]; Cirak et al.

[2000]; Cirak and Ortiz [2001]; Cirak et al. [2002]; Engel et al. [2002]; Phaal and Calla-

dine [1992a,b]).

In the one-dimensional cases we perform numerical analyses of discrete frequency spectra.

We are also able to theoretically derive the continuous, limiting spectra and we determine

that these spectra are invariant if normalized by the total number of degrees-of-freedom

in the model. In other words, one is able to determine a priori the error in frequency

for a particular mode from a single function, no matter how many degrees-of-freedom

are present in the model. These elementary results are very useful in determining the

vibration characteristics of isogeometric models and provide a basis for comparison with

standard finite element discretizations. It is well known that, in the case of higher-order

finite elements, “optical” branches are present in the spectra (see Brillouin [1953]) and
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that these are responsible for the large errors in the high-frequency part of the spec-

trum (see Hughes [2000]) and contribute to the oscillations (i.e., “Gibbs phenomena”)

that appear about discontinuities in wave propagation problems. The accurate branch,

the so-called “acoustic” branch (see Brillouin [1953]), corresponds to the low-frequency

part of the spectrum. In finite element analysis, both acoustic and optical branches are

continuous, and the optical branches vitiate a significant portion of the spectrum. In

isogeometric analysis, when a linear parameterization of the geometrical mapping from

the patch to its image in physical space is employed, only a finite number of frequencies

constitute the optical branch. The number of modes comprising the optical branch is

constant once the order of approximation is set, independent of the number of elements,

but increases with order. In this case, almost the entire spectrum corresponds to the

acoustic branch. A linear parameterization of the mapping requires a non-uniform dis-

tribution of control points. Hughes et al. [2005] describe the algorithm which locates

control points to attain a linear parameterization. Spacing control points uniformly pro-

duces a nonlinear parameterization of the mapping and in this case, remarkably, the

optical branch is entirely eliminated. The convergence rates of higher-order finite ele-

ments and isogeometric elements constructed by k -refinement are the same for the same

order basis, but the overall accuracy of the spectrum is much greater for isogeometric

elements. These observations corroborate the speculation that the k -method would be

a more accurate and economical procedure than p-method finite elements in vibration

analysis of structural members. Studies of membranes and thin plates provide additional

corroboration. We also present some initial studies of mass lumping within the isogeo-

metric approach. The “row sum” technique is employed (see Hughes [2000]). Due to the

pointwise non-negativity of B-Spline and NURBS bases, the row sum technique is guar-

anteed to produce positive lumped masses but only second-order accurate frequencies

are obtained, independently of the order of basis functions employed. This is unsat-

isfactory but we conjecture that, by appropriately locating knots and control points,

higher-order-accurate lumping procedures may exist. This is a topic requiring further

research.

In Section 3.8, we apply the isogeometric approach to the NASA Aluminum Testbed

Cylinder (ATC) which has been extensively studied experimentally to determine its vi-

bration characteristics. Our isogeometric model is an exact three-dimensional version

of the “as drawn” geometry. All fine-scale features of the geometry, such as fillets, are

precisely accounted for. Comparisons are made between the experimental data and the

numerical results.

In Section 3.9 we draw conclusions. Appendix A presents analytical and numerical results
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concerning the order of accuracy of consistent and lumped mass schemes.

Finally, we remark that details on isogeometric analysis for structural vibrations can be

found in Reali [2004, 2005] and Cottrell et al. [2005a,b].

3.1 NURBS and Isogeometric Analysis

Non-Uniform Rational B-Splines (NURBS) are the standard way of describing and con-

structing curves and surfaces in the field of CAD and computer graphics, so these func-

tions are widely described in the corresponding literature (refer for instance to Piegl and

Tiller [1997] and to Rogers [2001]). The aim of this Section is to introduce them briefly

and to present the guidelines of isogeometric analysis. The interested reader may refer

to Hughes et al. [2005] for a detailed presentation of isogeometric analysis.

3.1.1 B-Splines

B-Splines are piece-wise polynomial curves whose components are defined as the linear

combination of B-Spline basis functions and the components of some points in the space,

referred to as control points. Fixed the order of the B-Spline (i.e. the degree of polyno-

mials), to construct the basis functions the so-called knot vector needs to be introduced,

as it is a fundamental ingredient for this operation.

3.1.1.1 Knot vectors.

A knot vector, Ξ, is a set of non-decreasing real numbers representing coordinates in the

parametric space of the curve:

Ξ = {ξ1, ..., ξn+p+1}, (3.1)

where p is the order of the B-Spline and n is the number of basis functions (and control

points) necessary to describe it. The interval [ξ1, ξn+p+1] is called a patch. A knot

vector is said to be uniform if its knots are uniformly-spaced and non-uniform otherwise.

Moreover, a knot vector is said to be open if its first and last knots are repeated p + 1

times. In what follows, we always employ open knot vectors. Basis functions formed from

open knot vectors are interpolatory at the ends of the parametric interval [ξ1, ξn+p+1]

but are not, in general, interpolatory at interior knots.

3.1.1.2 Basis functions.

Given a knot vector, Ξ, B-Spline basis functions are defined recursively starting with
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p = 0 (piecewise constants):

Ni,0(ξ) =

{

1 if ξi ≤ ξ < ξi+1

0 otherwise.
(3.2)

For p > 1 :

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (3.3)

In Figure 3.3 we present an example consisting of n = 9 cubic basis functions generated

from the open knot vector Ξ = {0, 0, 0, 0, 1/6, 1/3, 1/2, 2/3, 5/6, 1, 1, 1, 1}.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ξ

N
i,
3

Figure 3.3. Cubic basis functions formed from the open knot vector Ξ =
{0, 0, 0, 0, 1/6, 1/3, 1/2, 2/3, 5/6, 1, 1, 1, 1}.

An important property of B-Spline basis functions is that they are Cp−1-continuous, if

internal knots are not repeated. If a knot has multiplicity k, the basis is Cp−k-continuous

at that knot. In particular, when a knot has multiplicity p, the basis is C0 and interpo-

latory at that location.

Other remarkable properties are that:

- B-Spline basis functions from an open knot vector constitute a partition of unity,

i.e.
∑n

i=1 Ni,p(ξ) = 1 ∀ξ.

- The support of each Ni,p is compact and contained in the interval [ξi, ξi+p+1].

- B-Spline basis functions are non-negative, i.e. Ni,p ≥ 0 ∀ξ.
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3.1.1.3 B-Spline curves.

As a consequence of what seen above, given the order of a B-Spline and a knot vector,

n basis functions are defined. Now, given n points in R
d, referred to as control points,

by taking the linear combination of the basis functions weighted by the components of

control points, the components of the piece-wise polynomial B-Spline curve C(ξ) of order

p can be obtained:

C(ξ) =

n
∑

i=1

Ni,p(ξ)Bi, (3.4)

being Bi the ith control point.

The piece-wise linear interpolation of the control points is called control polygon.

In Figure 3.4, a cubic 2D B-Spline curve, generated with the basis functions shown in

Figure 3.3, is reported together with its control polygon.

0 2 4 6 8 10
−1

0

1

2

3

4

5

6

Figure 3.4. Piece-wise cubic B-Spline curve (solid line) and its control polygon
(dotted).

It is important to stress that a B-Spline curve has continuous derivatives of order p − 1,

which can be decreased by k if a knot or a control point has multiplicity k + 1.

Moreover, an important property of these curves is the so-called affine covariance, i.e.

an affine transformation of the curve is obtained by applying the transformation to its

control points.

3.1.1.4 B-Spline surfaces.

By means of tensor products, B-Spline surfaces can be constructed starting from a net
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of n × m control points Bi,j (control net) and knot vectors:

Ξ = [ξ1, ..., ξn+p+1] and H = [η1, ..., ηm+q+1].

Defined from the two knot vectors the 1D basis functions Ni,p and Mj,q (with i = 1, ..., n

and j = 1, ..., m) of order p and q respectively, the B-Spline surface is then constructed

as:

S(ξ, η) =

n
∑

i=1

m
∑

j=1

Ni,p(ξ)Mj,q(η)Bi,j . (3.5)

3.1.1.5 B-Spline solids.

By means of tensor products, also B-Spline solids can be constructed. Given an n×m× l

control net and three knot vectors:

Ξ = [ξ1, ..., ξn+p+1], H = [η1, ..., ηm+q+1] and Z = [ζ1, ..., ζl+r+1],

from which the 1D basis functions Ni,p, Mj,q and Lk,r (with i = 1, ..., n, j = 1, ..., m and

k = 1, ..., l) of order p, q and r respectively are defined, the B-Spline solid is then:

S(ξ, η, ζ) =

n
∑

i=1

m
∑

j=1

l
∑

k=1

Ni,p(ξ)Mj,q(η)Lk,l(ζ)Bi,j,k. (3.6)

3.1.2 Non-Uniform Rational B-Splines

A rational B-Spline in R
d is the projection onto d-dimensional physical space of a poly-

nomial B-Spline defined in (d + 1)-dimensional homogeneous coordinate space. For a

complete discussion of these space projections, see Farin [1995] and references therein.

In this way, a great variety of geometrical entities can be constructed and, in particular,

all conic sections can be obtained exactly. The projective transformation of a B-Spline

curve yields a rational polynomial curve. Note that when we refer to the “order” of a

NURBS curve, we mean the order of the polynomial curve from which the rational curve

was generated.

To obtain a NURBS curve in R
d, we start from a set Bw

i (i = 1, ..., n) of control points

(“projective points”) for a B-Spline curve in R
d+1 with knot vector Ξ. Then the control

points for the NURBS curve are:

(Bi)j =
(Bw

i )j

wi
, j = 1, ..., d (3.7)
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where (Bi)j is the jth component of the vector Bi and wi = (Bw
i )d+1 is referred to as

the ith weight. The NURBS basis functions of order p are then defined as:

Rp
i (ξ) =

Ni,p(ξ)wi
∑n

î=1 Nî,p(ξ)wî

(3.8)

and their first and second derivatives are given by:

(Rp
i )′(ξ) =

N ′
i,p(ξ)wi

∑n
î=1 Nî,p(ξ)wî

−
Ni,p(ξ)wi

∑n
î=1 N ′

î,p
(ξ)wî

(
∑n

î=1 Nî,p(ξ)wî)
2

(3.9)

and

(Rp
i )

′′(ξ) =
N ′′

i,p(ξ)wi
∑n

î=1 Nî,p(ξ)wî

+
2Ni,p(ξ)wi(

∑n
î=1 N ′

î,p
(ξ)wî)

2

(
∑n

î=1 Nî,p(ξ)wî)
3

−
2N ′

i,p(ξ)wi

∑n
î=1 N ′

î,p
(ξ)wî + Ni,p(ξ)wi

∑n
î=1 N ′′

î,p
(ξ)wî

(
∑n

î=1 Nî,p(ξ)wî)
2

.

(3.10)

The NURBS curve is defined by:

C(ξ) =
n
∑

i=1

Rp
i (ξ)Bi. (3.11)

Rational surfaces and solids are defined in an analogous way in terms of the basis functions

(respectively)

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Mj,q(η)wi,j
∑n

î=1

∑m
î=1 Nî,p(ξ)Mĵ,q(η)wî,ĵ

(3.12)

and

Rp,q,r
i,j,k (ξ, η, ζ) =

Ni,p(ξ)Mj,q(η)Lk,r(ζ)wi,j,k
∑n

î=1

∑m
î=1

∑l
k̂=1 Nî,p(ξ)Mĵ,q(η)Lk̂,r(ζ)wî,ĵ,k̂

. (3.13)

In the following, we summarize remarkable properties of NURBS:

- NURBS basis functions from an open knot vector constitute a partition of unity,

i.e.
∑n

i=1 Rp
i (ξ) = 1 ∀ξ.

- The continuity and supports of NURBS basis functions are the same as for B-

Splines.

- NURBS possess the property of affine covariance.
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- If all weights are equal, NURBS become B-Splines.

- NURBS surfaces and solids are the projective transformations of tensor product

piece-wise polynomial entities.

3.1.3 Isogeometric Analysis

Hughes et al. [2005] propose the concept of Isogeometric Analysis as an exact geometry

alternative to standard finite element analysis. In the following the guidelines for such a

technique are reported:

- A mesh for a NURBS patch is defined by the product of knot vectors. For example,

in three-dimensions, a mesh is given by Ξ × H × Z.

- Knot spans subdivide the domain into “elements.”

- The support of each basis function consists of a small number of elements.

- The control points associated with the basis functions define the geometry.

- The isoparametric concept is invoked, that is, the unknown variables are repre-

sented in terms of the basis functions which define the geometry. The coefficients

of the basis functions are the degrees-of-freedom, or control variables.

- Three different mesh refinement strategies are possible: analogues of classical h-

refinement (by knot insertions) and p-refinement (by order elevation of the ba-

sis functions), and a new possibility referred to as k-refinement, which increases

smoothness in addition to order.

- The element arrays constructed from isoparametric NURBS can be assembled into

global arrays in the same way as finite elements (see Hughes [2000], Chapter 2).

Compatibility of NURBS patches is attained by employing the same NURBS edge

and surface representations on both sides of patch interfaces. This gives rise to a

standard continuous Galerkin method and mesh refinement necessarily propagates

from patch to patch. There is also the possibility of employing discontinuous

Galerkin methods along patch boundaries.

- Dirichlet boundary conditions are applied to the control variables. If the Dirichlet

conditions are homogeneous, this results in exact pointwise satisfaction. If they

are inhomogeneous, the boundary values must be approximated by functions lying

within the NURBS space, and this results in “strong” but approximate satisfaction

of the boundary conditions, as in finite elements. Another option is to impose

Dirichlet conditions “weakly” (we will discuss this later on). Neumann boundary
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conditions are satisfied naturally as in standard finite element formulations (see

Hughes [2000], Chapters 1 and 2).

When applied to structural analysis, which is the field of interest for the present work, it

is possible to verify (as highlighted in Hughes et al. [2005]) that isoparametric NURBS

patches represent all rigid body motion and constant strain states exactly. So structures

assembled from compatible NURBS patches pass standard “patch tests” (see Hughes

[2000], Chapters 3 and 4, for a description of patch tests).

3.1.4 k-refinement

Isogeometric analysis is fundamentally a higher-order approach. While it is true that the

first two NURBS bases consist of constants and linears, identical in every way to standard

finite elements, it takes at least quadratic-level NURBS to exactly represent conic sec-

tions. Refinement procedures are also fundamental components of NURBS technology.

There are analogues of finite element h- and p-refinement procedures, and a new, poten-

tially more efficient, higher-order procedure, k -refinement (see Hughes et al. [2005]). In

p-refinement, C 0-continuity is maintained across knots (i.e., “element” boundaries). In

k -refinement, continuity of order C p−1 is attained across knots, at least within patches.

The additional smoothness in k -refinement seems intuitively appealing for situations in

which exact solutions are dominantly very smooth, such as free vibrations of structures

and bifurcation buckling of thin beams, plates and shells. k -refinement also offers a

very concise parameterization of smooth functions. The potential efficiency gains of k -

refinement are suggested by the following calculations comparing p- and k -refinement.

First, consider a one-dimensional mesh with n basis functions of order p. Note that the

number of basis functions is equal to the number of control variables, and is also equal

to the number of control points. After r refinements (i.e., order elevations), the number

of basis functions, each of order p + r, is (r + 1)n − rp for p-refinement and n + r for

k -refinement. The growth in the number of control variables is depicted graphically in

Figure 3.5. Next, consider a d-dimensional mesh with nd basis functions. After r refine-

ments, assuming r to be large, the number of basis functions asymptotically approaches

nd(rd + drd−1) for p-refinement and nd(1 + drn−1) for k -refinement. The difference is

seen to be very significant. Graphical comparisons for two and three dimensions are

presented in Figures 3.6 and 3.7, respectively. Keep in mind that the mesh, defined by

the knot locations, is fixed and is the same for p- and k -refinement. See Hughes et al.

[2005] for further details.
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n initial control points

p-reÞnement k-reÞnement
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Figure 3.5. Comparison of control variable growth in one dimension.

n2 initial control points

p-reÞnement k-reÞnement

n rn r

Figure 3.6. Comparison of control variable growth in two dimensions.

n3 initial control points

p-reÞnement k-reÞnement
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Figure 3.7. Comparison of control variable growth in three dimensions.
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3.2 Structural vibrations

The goal of this Section is to briefly recall the main equations governing structural

vibrations; for a complete discussion on the subject refer to Hughes [2000] and to classical

books of structural dynamics such as Clough and Penzien [1993] and Chopra [2001].

Given a multi-degree-of-freedom structural linear system, the undamped, unforced equa-

tions of motion which govern the free vibrations of the system are:

Mü + Ku = 0 (3.14)

where M and K are, respectively, the consistent mass and the stiffness matrices of the

system, u = u(x, t) is the displacement vector and ü =
d2u

dt2
is the acceleration vector.

The free vibrations of the system in its nth natural mode can be described (by variable

separation) by:

u(x, t) = ϕn(x)qn(t), (3.15)

where ϕn is the nth natural mode vector and qn(t) is a harmonic function, depending on

the nth natural frequency ωn, of the form:

qn(t) = An cos(ωnt) + Bn sin(ωnt). (3.16)

Combining equations (3.15) and (3.16) gives:

u(x, t) = ϕn(x)(An cos(ωnt) + Bn sin(ωnt)) (3.17)

which yields:

ü = −ω2
nu. (3.18)

Substituting equation (3.18) into the equations of motion (3.14) gives the following linear

system:

(K − ω2
nM)ϕnqn = 0. (3.19)

Asking for nontrivial solutions of this linear system gives rise to the generalized eigenvalue

problem:

det(K− ω2
nM) = 0, (3.20)

whose solutions are the natural frequencies ωn (with n = 1, ..., N , where N is the number

of degrees-of-freedom of the system) associated to the natural modes ϕn. Once a natural

frequency ωn is found, it is possible to compute the corresponding natural mode by

solving the following linear system for ϕn:

(K − ω2
nM)ϕn = 0. (3.21)
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We remark that the natural modes resulting from (3.21) are defined up to a multiplicative

normalization constant. Different standard ways of normalization have been proposed,

the most used probably being:

ϕT
nMϕn = 1. (3.22)

In conclusion, to employ the concepts of Isogeometric Analysis to study structural vibra-

tions, the steps to be performed are:

1. assemble the stiffness matrix K as proposed in Hughes et al. [2005];

2. assemble the mass matrix M in an analogous way;

3. solve the eigenvalue problem (3.20).

Then, if there exists also an interest in computing the natural modes, it is necessary to

solve as many linear systems like (3.21) as the desired modes are.

3.3 Longitudinal vibrations of an elastic rod

In this and in the following Section, we study 1D problems such as of rod and beam

element vibrations. We stress that for these cases, due to the simplicity of the geometry,

all of the weights are equal to 1 (i.e., NURBS basis functions become B-Splines).

To begin with, we study the problem of the structural vibrations of an elastic fixed-

fixed rod of unit length, whose natural frequencies and modes, assuming unit material

parameters, are governed by:

u,xx + ω2u = 0 for x ∈]0, 1[

u(0) = u(1) = 0,
(3.23)

and for which the exact solution in terms of natural frequencies is:

ωn = nπ, with n = 1, 2, 3... (3.24)

After writing the weak formulation and performing the discretization, a problem of the

form of (3.19) is obtained.
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3.3.1 Numerical experiments

As a first numerical experiment, the generalized eigenproblem (3.19) is solved with both

finite elements and isogeometric analysis using quadratic basis functions. The resulting

natural frequencies, ωh
n, are presented in Figure 3.8, normalized with respect to the exact

solution (3.24), and plotted versus the mode number, n, normalized by the total number

of degrees-of-freedom, N . To produce the spectra of Figure 3.8, we use N = 999 but the

results are in fact independent of N.
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Figure 3.8. Fixed-fixed-rod. Normalized discrete spectra using quadratic finite
elements and NURBS.

Figure 3.8 illustrates the superior behaviour of NURBS basis functions compared with

finite elements. In this case, the finite element results depict an acoustical branch for

n/N < 0.5 and an optical branch for n/N > 0.5 (see Brillouin [1953]).

We then perform the same eigenvalue analysis using higher-order NURBS basis functions.

The resulting spectra are presented in Figure 3.9; the analyses were carried out using

N = 1000 degrees-of-freedom.

Increasing the order, p, of the basis functions, the results show higher accuracy, namely,

2p (see Appendix A for the computation of the order of accuracy using quadratic and

cubic NURBS). Figures 3.11-3.13 confirm that the order of convergence for frequencies

computed using NURBS is O(h2p), as with polynomial-based finite elements. Increasing

p also results in the appearance of strange frequencies at the very end of the spectrum,

referred to in the following as “outlier frequencies” (in analogy with outlier values in sta-

tistics, see, e.g., Montgomery et al. [2003]), whose number and magnitude increase with
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Figure 3.9. Fixed-fixed rod. Normalized discrete spectra using different order
NURBS basis functions.

p. In Figure 3.10, this behaviour is highlighted by plotting the last computed frequen-

cies for p = 2, ..., 10. To understand the outliers, we first remark that the finite element

spectrum for quadratic elements consists of acoustic (low-mode) and optical (high-mode)

branches, in the sense of Brillouin [1953]. Both these branches are continuous as may

be seen from Figure 3.8. There are only two distinct equations in the discrete system,

corresponding to element middle and end nodes, and this gives rise to the two branches.

In the case of NURBS, all but a finite number of equation are the same. The ones asso-

ciated with the open knot vectors are different, and are responsible for the outliers. The

outliers constitute a discrete optical branch. The typical equation of the interior knots

gives rise to the continuous acoustic branch, as will be analytically verified in the next

Section. In finite element analysis, the frequencies associated with the optical branch

are regarded as inaccurate and, obviously, the same is true for NURBS. In many appli-

cations, these frequencies are harmless. They can be ignored in vibration analysis and

their participation in transient response can be suppressed through the use of dissipative,

implicit time integration algorithms (see, e.g., Chung and Hulbert [1993], Miranda et al.

[1989], Hilber and Hughes [1978], Hughes et al. [1976], and Hughes [2000]). However,

they would be detrimental in explicit transient analysis because the frequencies of the

highest modes are grossly overestimated and stability would necessitate an unacceptably

small time step, but it will be shown in the next Section how to completely eliminate the

outliers by a reparameterization of the isogeometric mapping.

3.3.2 Analytical determination of the discrete spectrum

Following the derivations of Hughes [2000], Chapter 9, it is possible to analytically com-

pute the discrete spectra previously determined numerically. The starting point is the
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Figure 3.10. Fixed-fixed rod. Last normalized frequencies for p = 2, ..., 10.
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Figure 3.11. Fixed-fixed rod. Order of convergence for the first three frequencies
using quadratic NURBS.

mass and stiffness matrices for a typical interior element (note that, for interior elements,

the basis functions are all identical). For quadratic NURBS, the mass and stiffness of a

typical interior element are:

Me =
h

120







6 13 1

13 54 13

1 13 6






, Ke =

1

6h







2 −1 −1

−1 2 −1

−1 −1 2






, (3.25)

where h = 1/nel = 1/(N − p), nel is the number of elements, N is the number of control

points, and p = 2 is the order of the basis functions. The equation of motion for the
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Figure 3.12. Fixed-fixed rod. Order of convergence for the first three frequencies
using cubic NURBS.
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Figure 3.13. Fixed-fixed rod. Order of convergence for the first three frequencies
using quartic NURBS.

typical interior control point, A, is:

h

120
(üA−2 + 26üA−1 + 66üA + 26üA+1 + üA+2)

−
1

6h
(uA−2 + 2uA−1 − 6uA + 2uA+1 + uA+2) = 0,

(3.26)

which can be compactly written as:

h2

20
αüA − βuA = 0, (3.27)

where α and β are operators defined as follows:

αxA = xA−2 + 26xA−1 + 66xA + 26xA+1 + xA+2,

βxA = xA−2 + 2xA−1 − 6xA + 2xA+1 + xA+2.
(3.28)
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Separating variables,

uA(t) = ϕAq(t), (3.29)

and substituting this expression into (3.27), after adding and subtracting
(ωhh)2

20
αuA,

we obtain:

(q̈ + (ωh)2q)
h2

20
αϕA − (

(ωhh)2

20
αϕA + βϕA)q = 0. (3.30)

The satisfaction of (3.30) is achieved by selecting ϕA and q such that:

(
(ωhh)2

20
α + β)ϕA = 0 (3.31)

and

q̈ + (ωh)2q = 0. (3.32)

Assuming a solution for (3.31) of the form (for fixed-fixed boundary conditions):

ϕA = C sin(Aωh), ω = nπ, (3.33)

(3.31) can be rewritten as:

(
(ωhh)2

20
α + β) sin(Aωh) = 0. (3.34)

Substituting expressions (3.28) for α and β, and using the trigonometric identity sin(a±
b) = sin(a) cos(b) ± sin(b) cos(a), yields:

(ωhh)2

20
(16 + 13 cos(ωh) + cos2(ωh)) − (2 − cos(ωh) − cos2(ωh)) = 0, (3.35)

which can be solved for
ωh

ω
, giving:

ωh

ω
=

1

ωh

√

20(2 − cos(ωh) − cos2(ωh))

16 + 13 cos(ωh) + cos2(ωh)
. (3.36)

Equation (3.36) is the analytical expression for the normalized discrete spectrum for

our problem, using quadratic NURBS basis functions. Analogous calculations can be

performed for higher-order approximations. The expression for cubic NURBS is:

ωh

ω
=

1

ωh

√

42(16 − 3 cos(ωh) − 12 cos2(ωh) − cos3(ωh))

272 + 297 cos(ωh) + 60 cos2(ωh) + cos3(ωh)
. (3.37)

In Figure 3.14 we present the analytical and numerical spectra for quadratic and cu-

bic NURBS. For the computation of the numerical spectra, 2000 control points were
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Figure 3.14. Fixed-fixed rod. Comparison of analytical and numerical discrete
spectra computed for quadratic and cubic NURBS.

employed. The only differences are the outlier frequencies at the end of the numerical

spectrum obtained for cubic NURBS.

Remark 3.4.1. Equations (3.36) and (3.37), and Figure 3.14, confirm that the contin-

uous part of the NURBS frequency spectra are invariant, that is, are independent of the

number of degrees-of-freedom.

Remark 3.4.2. All the numerical results described up to now have been obtained

using control points computed with the procedure proposed by Hughes et al. [2005],

which leads to linear parameterization (i.e., constant Jacobian determinant). The results

obtained are seen to be very good, except for the outliers, which get progressively worse

for higher-order approximations. A way to avoid this behaviour is to employ uniformly-

spaced control points. The difference between a distribution of 21 control points in the

case of linear parameterization and of uniformly-spaced points, using cubic NURBS, is

presented in Figure 3.15. This choice corresponds to a nonlinear parameterization (see

Figure 3.16 and 3.17 for plots of the parameterization x(ξ) and its Jacobian J(ξ) =
dx(ξ)

dξ
for the cases in Figure 3.15). Figure 3.18 presents spectra computed using uniformly-

spaced control points. The outlier frequencies are eliminated and the continuous spectra

coincide with the ones computed analytically and presented previously in Figure 3.14 for

quadratic and cubic NURBS.

Remark 3.4.3. In this work, consistent mass is emphasized because it seems more

suitable than lumped mass when higher-order approximations are involved. However,

some preliminary tests were performed with a “row sum” lumped mass (see Hughes
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Figure 3.15. Control points for linear parameterization (dots) compared with
uniformly-spaced control points (asterisks) for cubic NURBS.
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Figure 3.16. Plot of the parameterization for the cases of uniformly-spaced control
points and linear parameterization (cubic NURBS, 21 control points).

[2000], Chapter 7). This approach proves satisfactory for some low-order finite elements

but it is incapable of maintaining full accuracy in the present context (see Figure 3.19).

In all cases, accuracy is limited to second-order. Analytical and numerical lumped mass

results for quadratic and cubic NURBS are presented in Appendix A. Despite these

negative results, we do not think the issue of lumped mass and NURBS is closed. There

may be ways to develop higher-order accurate lumped mass matrices. Inspiration may

be taken from the work of Fried and Malkus [1976]. Perhaps nonlinear parameterizations

and nonuniform knot distributions, in conjunction with a lumping scheme, are worthwhile

directions to explore. This seems to be an interesting problem of applied mathematics

with practical significance.

3.4 Transverse vibrations of a Bernoulli-Euler beam

The transverse vibrations of a simply-supported, unit length Bernoulli-Euler beam are

considered (see Hughes [2000], Chapter 7). For this case, the natural frequencies and

modes, assuming unit material and cross-sectional parameters, are governed by:

u,xxxx − ω2u = 0 for x ∈]0, 1[

u(0) = u(1) = u,xx(0) = u,xx(1) = 0,
(3.38)
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Figure 3.18. Fixed-fixed rod. Normalized discrete spectra using uniformly-spaced
control points. (These results are identical to those presented in Figure 3.9 except
the outliers have been eliminated.)

where

ωn = (nπ)2, with n = 1, 2, 3, ... (3.39)

3.4.1 Numerical experiments

The numerical experiments and results for the Bernoulli-Euler beam problem are anal-

ogous to the ones reported for the rod. A remark about the formulation is in order

before presenting the results. The classical beam finite element employed to solve prob-

lem (3.38) is a two-node Hermite cubic element with two degrees-of-freedom per node

(transverse displacement and rotation), whereas our isogeometric analysis formulation is

rotation-free (see, for example, Engel et al. [2002]). Later in this Section we will discuss
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Figure 3.19. Fixed-fixed rod. Normalized discrete spectra using different order
NURBS basis functions with “row sum” lumped mass matrices.

the problem of the imposition of rotation boundary conditions.

Discrete spectra obtained using classical cubic finite element and NURBS basis functions

are presented in Figure 3.20. The NURBS solution is significantly more accurate but two

outlier frequencies are present at the end of the spectrum.
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Figure 3.20. Simply-supported beam. Normalized discrete spectra using cubic
finite elements and NURBS.

Figure 3.21 presents the discrete spectra obtained using different order NURBS basis

functions. The behaviour is similar to the case of the rod, including the outlier frequencies

(see Figure 3.22). Note that quadratic NURBS are admissible in the present context

because they are C1-continuous on patches. Slope continuity may be weakly enforced

across patch boundaries by way of the technique described in Engel et al. [2002]. There
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are no outliers for quadratic NURBS but the accuracy level is rather poor compared with

cubics.

0 0.2 0.4 0.6 0.8 1
1

1.05

1.1

1.15

1.2

1.25

1.3

n/N

ω
nh
/ω

n

quadratic
cubic
quartic
quintic
sextic

Figure 3.21. Simply-supported beam. Normalized discrete spectra using different
order NURBS basis functions.
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Figure 3.22. Simply-supported beam. Last normalized frequencies for p = 2, ..., 10.

Figures 3.23-3.25 show that the order of convergence of frequencies using NURBS is

optimal, that is O(h2(p−1)).

The analytical computation of the discrete spectrum, performed previously for the rod

problem, can also be done in the present case. Employing cubic NURBS shape functions,

for example, gives rise to the following expression:

ωh

ω
=

1

ωh2

√

210(2 − 3 cos(ωh) + cos3(ωh))

272 + 297 cos(ωh) + 60 cos2(ωh) + cos3(ωh)
. (3.40)
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Figure 3.23. Simply-supported beam. Order of convergence for the first three
frequencies using quadratic NURBS.
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Figure 3.24. Simply-supported beam. Order of convergence for the first three
frequencies using cubic NURBS.

The analytical and numerical discrete spectra for cubic and quartic approximations are

compared in Figure 3.26. For the computation of the numerical discrete spectra, 2000

control points were used. The only differences are in the outlier frequencies at the end of

the numerical discrete spectra. As previously shown for the rod problem, the outliers can

be removed by nonlinear parameterization derived from a uniformly-spaced distribution

of control points. In this way, the discrete spectra of Figure 3.27 are obtained, which

coincide with the analytically computed ones.

3.4.2 Boundary conditions on rotations

The Bernoulli-Euler beam formulation employed is “rotation-free,” that is, only displace-

ments are degrees-of-freedom. Rotations (i.e., slopes) can be computed as derivatives of
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Figure 3.25. Simply-supported beam. Order of convergence for the first three
frequencies using quartic NURBS.

0 0.2 0.4 0.6 0.8 1
1

1.05

1.1

1.15

n/N

ω
nh
/ω

n

analytical, p=3
numerical, p=3
analytical, p=4
numerical, p=4

Figure 3.26. Simply-supported beam. Analytical and numerical discrete spectra
computed using cubic and quartic NURBS.

displacement but are not degrees-of-freedom. To illustrate the method utilized to enforce

rotation boundary conditions, we consider the following problem of a cantilever beam:

u,xxxx − ω2u = 0 for x ∈]0, 1[

u(0) = u,x(0) = u,xx(1) = u,xxx(1) = 0,
(3.41)

The natural frequencies are (see Chopra [2001]) ωn = β2
n, with β1 = 1.8751, β2 = 4.6941,

β3 = 7.8548, β4 = 10.996, and βn = (n− 1/2)π for n > 4. Two strategies were employed

to solve this problem. One is based on weak boundary condition imposition and the

other on Lagrange multipliers. The former is the approach used in Engel et al. [2002].

In this case, the bilinear form, from which the stiffness matrix derives, is given by:

A(vh, uh) =

∫ 1

0

vh
,xxuh

,xxdx + vh
,xuh

,xx|x=0 + vh
,xxuh

,x|x=0 + τvh
,xuh

,x|x=0, (3.42)
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Figure 3.27. Simply-supported beam. Normalized discrete spectra using equally
spaced control points. (These results are identical to those presented in Figure 3.21
except the outliers are eliminated.)

where vh and uh are the discrete weighting and trial solution, respectively, and τ is

a stabilization parameter. Analogous to what is done in Prudhomme et al. [2001] for

the Poisson problem, it can be shown that the choice of τ needs to be proportional to

p2/h, where p is the order of the NURBS basis and h is the mesh parameter. With this

formulation, the cantilever beam problem (3.41) is solved, and corresponding discrete

spectra for different order NURBS are shown in Figure 3.28 (1000 control points and

τ = p2/h are used). Figure 3.28 shows the same behaviour seen in Figure 3.21 for the

simply-supported case.
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Figure 3.28. Cantilever beam with weakly enforced rotation boundary condition.
Normalized discrete spectra using different order NURBS basis functions.

The other way to enforce rotation boundary conditions is through Lagrange multipliers.



36 Alessandro Reali

In this case the bilinear form is:

A(vh, µ, uh, λ) =

∫ 1

0

vh
,xxuh

,xxdx + λvh
,x|x=0 + µuh

,x|x=0, (3.43)

where λ is the Lagrange multiplier and µ is its weighting counterpart. The advantage

of the Lagrange multiplier approach is that the rotation boundary condition is exactly

enforced. Results for the Lagrange multiplier approach are presented in Figure 3.29. For

all practical purposes, the results of the two approaches are the same (cf., Figures 3.28

and 3.29).

0 0.2 0.4 0.6 0.8 1
1

1.05

1.1

1.15

1.2

1.25

1.3

n/N

ω
nh
/ω

n

quadratic
cubic
quartic
quintic
sextic

Figure 3.29. Cantilever beam with Lagrange multiplier. Normalized discrete spec-
tra using different order NURBS basis functions.

3.5 Transverse vibrations of an elastic membrane

In this Section and in the next one, we present some numerical experiments for two-

dimensional counterparts of the rod and Bernoulli-Euler beam problems considered previ-

ously, namely, the transverse vibrations of an elastic membrane and transverse vibrations

of a Poisson-Kirchhoff plate, respectively.

The first problem we consider consists of the study of the transverse vibrations of a

square, elastic membrane, whose natural frequencies and modes, assuming unit tension,

density and edge length, are governed by:

∇2u(x, y) + ω2u(x, y) = 0, (x, y) ∈ Ω =]0, 1[×]0, 1[

u(x, y)|∂Ω = 0,
(3.44)

where ∇2 is the Laplace operator. The exact natural frequencies are (see, e.g., Meirovitch

[1967]):

ωmn = π
√

m2 + n2, m, n = 1, 2, 3... (3.45)
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The numerical results are qualitatively similar to the ones obtained in the study of the

one-dimensional problems. The normalized discrete spectra obtained employing different

order NURBS basis functions and using a linear parameterization over a 90× 90 control

net are presented in Figure 3.30. Note that l is the number of modes sorted from the

lowest to the highest in frequency, while N is the total number of degrees-of-freedom.

Figure 3.31 shows the lower half of the frequency spectra to highlight the accuracy of

the different approximations. The optical branches seen in Figure 3.30 can again be

eliminated by a uniformly-spaced control net, as shown in Figure 3.32.
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Figure 3.30. Square membrane. Normalized discrete spectra using different or-
der NURBS basis functions (90 × 90 control points). Note the presence of optical
branches.

3.6 Transverse vibrations of a Poisson-Kirchhoff plate

We now consider the transverse vibrations of a simply-supported, square plate governed

by Poisson-Kirchhoff plate theory. The natural frequencies and modes, assuming unit

flexural stiffness, density and edge length, are governed by the biharmonic problem:

∇4u(x, y) − ω2u(x, y) = 0 for (x, y) ∈ Ω =]0, 1[×]0, 1[

u(x, y)|∂Ω = 0,
(3.46)

for which the exact solution natural frequencies (see, e.g., Meirovitch [1967]) are:

ωmn = π2(m2 + n2), m, n = 1, 2, 3... (3.47)

For this case, as for the Bernoulli-Euler beam, the NURBS formulation results in a
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Figure 3.31. Square membrane. Detail of the low-frequency part of the normalized
discrete spectra.

rotation-free approach. The boundary conditions on rotations can be imposed in similar

fashion to the way described for the beam (see Engel et al. [2002] for further details).

The numerical results are similar to the ones obtained for the elastic membrane. In Figure

3.33, the normalized discrete spectra using a linear parameterization and a 90×90 control

net are presented. Figure 3.34 shows a detail of the lower-frequency part. The y-axis

of Figure 3.33 is cut off at a value of 1.4 because the outlier frequencies for the highest-

order approximations would make the remaining part of the plot completely unreadable.

Figure 3.35 shows the spectra obtained employing a uniformly-spaced control net.

3.7 Vibrations of a clamped thin circular plate using three-dimensional

solid elements

Hughes et al. [2005] have shown that higher-order three-dimensional NURBS elements

could be effectively utilized in the analysis of thin structures. In this Section we consider

the vibrations of a clamped, thin circular plate modeled as a three-dimensional solid. A

coarse mesh, but one capable of exactly representing the geometry, is utilized and the

order of the basis functions is increased by way of the k -refinement strategy (see Hughes

et al. [2005]). The exact Poisson-Kirchhoff solution for this problem, given, for example,

in Meirovitch [1967], is

ωmn = C2
mn

π2

R2

√

D

ρt
[rad/s], (3.48)
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Figure 3.32. Square membrane. Normalized discrete spectra using a uniformly-
spaced control net. Note, the optical branches of Figure 3.30 are eliminated.

where R is the radius of the plate, t is the thickness, D =
Et3

12(1 − ν2)
is the flexural

stiffness (E and ν are Young’s modulus and Poisson’s ratio, resp.) and ρ is the density

(mass per unit volume). For the first three frequencies, the values of the coefficients Cmn

are C01 = 1.015, C11 = 1.468 and C02 = 2.007. The data for the problem are presented

in Table 3.1. Note that, because the radius to thickness ratio is 100, the plate may be

considered thin, and the results of Poisson-Kirchhoff theory may be considered valid.

Table 3.1. Clamped circular plate. Geometric and material parameters.

R 2.000 [m]

t 0.020 [m]

E 30·106 [KN/m2]

ν 0.200 [–]

ρ 2.320 [KN s/m4]

The initial control net consists of 9 × 4 × 3 control points in the θ, r, and z directions,

respectively, and quadratic approximations in all the parametric directions are employed.

Figure 3.36 shows the mesh, consisting of eight elements within a single patch. The nu-

merical results are compared with the exact solution in Table 3.2, where p, q and r are the

orders of the basis functions in the circumferential, radial and vertical directions, respec-

tively. Figures 3.37-3.39 show the first three eigenmodes (computed using p = 4, q = 5,


























































































































































































































































































