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ABSTRACT

High-damping rubber (HDR) bearings are used in seismic isolation applications for buildings
and bridges, although no models are currently available for the accurate description of the
shear force—deformation response under bidirectional loading. Furthermore, existing state-
of-the-practice and research-oriented unidirectional models are unable to describe adequately
the strain-stiffening and strain-induced degradation observed in experimental tests of HDR
bearings. An accurate bidirectional model that is able to describe HDR bearing response «

priori is required for analysis and design applications.

For these teasons, a strain rate-independent, phenomenological model is developed which
effectively represents the stiffness, damping, and degradation response of HDR bearings.
The model decomposes the resisting force vector as the sum of an elastic component in
the direction of the displacement vector and a hysteretic force component which evolves
based on the current displacement and velocity vectors. The elastic component is obtained
from a generalised Mooney—Rivlin strain energy function, and the hysteretic component is
described by an approach similar to bounding surface plasticity. Degradation is decomposed

into long term (“scragging”) and short term (“Mullins’ effect”) components.

Calibration of the proposed model is carried out over a series of bidirectional test data, using
the downhill simplex algorithm to obtain a set of material parameters for the bearing. The
model provides a good match of slow strain-rate experimental data using a unique set of
material parameters for all tests. A testing protocol and calibration of the model for use in

design of structures with HDR bearings are discussed.

The analysis and design of seismically-isolated bridges involves a number of assumptions
about the input ground motion, and the distribution of mass, stiffness and damping in the
substructure, superstructure and bearings. Existing design procedures provide inconsistent
recommendations, particulatly for the design of piers. A design methodology that targets
performance goals at two levels of seismic hazard is developed, as an extension of existing
displacement-based design methods. The design method aims to ensure that pier inelasticity

is prevented at a “design” seismic hazard level, and is limited to a specified ductility for
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“maximum credible” hazard.

Finally, a number of parametric studies of isolated bridge system response are carried
out, using the proposed bearing model to represent isolator response, and simple bridge
geometries. Input ground motion is simultaneously applied in two orthogonal directions,
and is scaled by a range of scaling factors to assess the effects of bidirectional input and
variable seismic intensity on isolated bridge response. Itis found that the nonlinear response
of HDR bearings reduces the bearing displacement demand at high intensity levels, at the
expense of increased force demand in the piers, particularly compared to the response of
other bearing types. When nonlinear pier behaviour is considered, this results in a significant
ductility demand in piers for ground motions greater than design level intensity. The
multiple performance level design approach is also assessed in the parametric studies, and
it performs adequately for simple bridge configurations; the method will, however, require
modification to account for the effects of superstructure flexibility and more complicated

bridge geometries.
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1. INTRODUCTION

1.1 SEISMIC ISOLATION

Seismic isolation is a widely used method of protecting both bridges and buildings from the effects
of strong ground motion. Flexible isolation bearings are placed between the primary mass of
the structure and the source motion, effectively using inertia and lengthened vibration period to
limit structural deformation in critical components. In this manner, a building is isolated from its

foundations, and the superstructure of a bridge is isolated from the piers.

The main benefits of seismically isolating a structure, either new or existing, are:

1. The addition of flexibility to the system increases the fundamental period, which, for short
period structures, will decrease the design forces. However, for long period structures, or
ground motions with unusual frequency content, this effect may be negligible, and in extreme

cases, design forces may even be higher.

2. Although increased flexibility can lead to larger system displacements, inelastic deformation
is confined to the bearing, allowing elastic design of the remainder of the structure. Bearings

are relatively easy to maintain, and if necessary, replace, compared to structural elements.

3. Significant seismic energy may be dissipated in the isolators, by hysteretic damping in its
components, or through the addition of supplemental dampers to the isolation system. This
has the effect of further decreasing the shear forces and limiting the maximum displacement

demand on the bearing.

4. The shear forces transmitted to the piers are limited by the amount of force that can be
transmitted across the bearing, which, in some cases, allows the isolation device to act as a

fuse for the structure.

In new bridge design, and retrofit and repair of existing bridges, isolation devices are generally placed
between the piers and the superstructure. Typically, seismic isolation bearings may be used in the

place of other bearing types detailed for non-seismic design requirements.



2 Damian N. Grant, Gregory L. Fenves & Ferdinando Auricchio

1.2 HIGH-DAMPING RUBBER BEARINGS

Since the first use of seismic isolation in bridges in the early 1970s, many novel devices have been
proposed and implemented for the isolation of structures. High-damping rubber (HDR) bearings
are a type of seismic isolator commonly used in bridge and building construction and retrofit. As
with other elastomeric isolation devices, HDR bearings are composed of layers of an elastomeric
compound, reinforced with steel shims to provide vertical stiffness. The elastomer is typically a filled
natural rubber or synthetic rubber to provide energy dissipation under cyclic loading, without the
need for additional dampers. The nonlinear stress—strain behaviour of filled or synthetic rubbers
used in HDR bearings results in high horizontal stiffness for low shear strains, low stiffness for
intermediate strains, and an increasing shear modulus under higher strains. This behaviour has
some advantages for earthquake protection, because under service conditions, such as wind or small
earthquakes, the stiffness of the bearing is high, and the forces and deformation in the structure are
expected to be in the elastic range. In a moderate seismic event, the bearing deforms, thus isolating
the structure and providing additional energy dissipation. In an extreme earthquake loading, the
strain-stiffening behaviour of the elastomer limits the deformation in the bearing, at the expense of

increased force, which helps to reduce the risk of bearing instability.

With respect to the four benefits of seismic isolation discussed in the previous section, HDR bearings
provide an efficient source of energy dissipation (benefit 3), and at moderate displacement levels,
satisfy the requirements of benefit 1 and 2. However, because the maximum shear force is not
well-defined for HDR bearings, the device does not provide an effective fuse across the isolated
interface, violating benefit 4. Because of this, at high strains it may not be possible to confine inelastic
deformation to the isolator, and piers may experience inelastic demand. Current design guidelines
for isolated structures [AASHTO, 1999; Ministry of Public Works, 1998] prohibit the development
of pier ductility by prescribing appropriate behaviour factors. One motivation for developing an
accurate phenomenological model for HDR bearings is to assess the system response of isolated

bridges, and consider the interaction between bearing deformation and inelasticity in piers.

The behaviour of high-damping rubber bearings has been the subject of numerous experimental
studies. Extensive tests were carried out on bearings for use in the Foothill Community Law and
Justice Center, the first building to be seismically-isolated in the United States [Tatics ez al, 1984;
Kelly and Celebi, 1984]. These tests included both prototype and production bearings, and distin-
guished between the virgin and degraded behaviour characteristics. HDR bearings manufactured by
the Bridgestone corporation [Bridgestone Corporation, 1994] have been extensively studied at the
Earthquake Engineering Research Center (EERC) in the University of California, Berkeley [Kelly,
1991], and the Argonne National Laboratory, Illinois [Chang and Seidensticker, 1993]. The unidi-
rectional, cyclic force—deformation behaviour of the beatings was studied, and failure mechanisms

were characterised. In the late 1990% a joint research project between the Shimizu Corporation,
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Japan, and EERC was carried out. This project, which was described in details by Clark ef a/. [1997],
included unidirectional component tests of HDR bearings, in addition to shake table tests of a
0.4-scale base-isolated reinforced-concrete building. The component tests included investigations of

horizontal and vertical force—deformation behaviour, failure modes, and ageing effects.

The Caltrans Seismic Protective Systems Project [Thompson ez a/., 2000; Morgan, 2000; Huang, 2002],
carried out at the University of California, Berkeley included pseudo-static and dynamic tests on HDR
bearings under several different bidirectional load paths. The project aimed to characterise, and to
develop predictive models for, the response under earthquake loading. In this thesis, experimental
data from the Caltrans Seismic Protective Systems Project is used in the development of a new
mathematical model that describes bidirectional response. The testing programme is discussed in

more detail in Section 2.1.

1.3 EXISTING MODELS FOR HDR BEARINGS

The dynamic analysis of structures for seismic assessment and design requires an accurate math-
ematical model of the isolation bearings. The strongly nonlinear response of HDR bearings has
made the development of mathematical models challenging. Unlike other isolation devices, such as
lead—rubber (ILR) bearings [Tyler and Robinson, 1984; Kelly, 1996] and friction pendulum system
(FPS) beatings [Zayas ez al., 1987], a bilinear approximation to the force—deformation relationship
is not adequate for HDR bearings under unidirectional or bidirectional loading [Huang, 2002]. In
addition, laboratory tests [Thompson ef a/., 2000; Huang, 2002] reveal other characteristics of HDR
bearings, including “scragging”, Mullins” effect, strain-induced anisotropy, and dependence on load
history. Other factors that are difficult to represent are the variation in horizontal stiffness with axial

load and temperature, strain-rate dependence and ageing effects.

To enable dynamic analysis of structures with HDR bearings, several mathematical models have been
proposed in the literature for unidirectional loading, Models based on an additive decomposition of
the total shear force in the bearing into a restoring force and damping force have appeared promising,
The damping force may be considered as a hysteretic, rate-independent effect [Kikuchi and Aiken,
1997], or as a viscoelastic dissipation that depends on the strain rate [Hwang ez a/., 2002]. Tsai ez al.
[2003] recently proposed a model based on a Bouc—Wen [Bouc, 1967] approach, coupled with a
linear viscous term. These models, however, require the identification of a large number of material
parameters that in some cases have little obvious physical significance, and the models are difficult
to extend to bidirectional response. Furthermore, existing models either have no evolution rules to

represent degradation under arbitrary loading paths, or the rules are very simple.

The large strain constitutive response of filled elastomers has been extensively studied, including

nonlinear elastic, viscoelastic and viscoplastic models. Recent models by Miehe and Keck [2000]
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and Haupt and Sedlan [2001] consider all three of these aspects of elastomer behaviour, represented
rheologically by a number of appropriately defined springs in parallel. In addition, they consider
a damage parameter to represent the degradation of the stress and stiffness under cyclic loading.
The “8-chain network model” [Arruda and Boyce, 1993] considers the hyperelastic behaviour of an
elastomer to be represented by eight macroscopic polymer chains that stretch from the corners of
a rectangular prism to its centre. Subsequent developments, also based on macroscopic interpreta-
tions of micromechanical theories, have added rate-dependency [Bergstrém and Boyce, 1998] and
degradation [Chagnon ez a/, 2002] to the 8-chain model.

Material models of this type may be used in a finite element representation of an individual bear-
ing, Indeed, material level representations may be necessary to investigate local aspects of bearing
behaviour, such as cavitation and failure modes. However, continuum models of bearings are not
useful for design and analysis of structures with seismic isolation bearings, and phenomenological

models of the shear force—deformation relationship for bearings are necessary.

1.4 DESIRABLE FEATURES OF A HDR BEARING MODEL

For the development of a new bidirectional model for use in design and analysis of HDR bearings,
a number of desirable features can be identified. Clearly, it is important for a model to be able
to capture the nonlinearity of stiffness and damping observed in experimental tests. Models that
are calibrated for a certain level of shear strain, such as linear viscoelastic or bilinear models, are
inadequate for describing the response to a large range of strain levels in earthquake loading. In the
case where an “equivalent viscous damping” is calculated for a certain peak displacement excursion,
cycles at lower levels of displacement will typically be overdamped. Although simplicity is important

in both analysis and design, accuracy and robustness are paramount.

A model that can represent the coupling of response in two orthogonal directions is also important.
Experimental evidence, presented in Section 2.2, shows that loading a bearing in one direction affects
the load resisted in an orthogonal direction. The use of two unidirectional models in parallel cannot

describe this behaviour, so a model that incorporates coupling between the two directions is required.

The degradation of stiffness and damping must also be included in a model for HDR bearings.
Stiffness and damping typically degrade after the first cycle of loading, a phenomenon variously
referred to in the literature as “scragging” or “Mullins’ effect”. Because beatings are typically
scragged before use to provide stable hysteretic behaviour, this feature is often ignored in proposed
models. However, virgin behaviour is typically recovered over a period of a few years [Thompson
et al., 2000], which is well within the design life of a typical structure. Consequently, it is not known
in advance if isolation bearings will be in scragged or unscragged state when an earthquake occuts,

and it is important that both types of behaviour can be described by the model.
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HDR bearings also exhibit some degree of strain-rate dependence [Huang, 2002], and ideally this
should be included in a prospective model. Some existing models [Hwang ef al., 2002; Tsai ez al.,
2003] include strain-rate dependence, although different material parameters are used for tests at

different strain rates, which suggests that the models cannot describe the dependence  priorz.

Other features that are desirable in a HDR bearing model, but not essential, are the inclusion of
axial load and temperature dependence. For the range of axial loads typical of bridge isolation
applications, the variation of HDR bearing behaviour with axial load is expected to be relatively
insignificant, provided that the model has been calibrated appropriately. Temperature of a bearing
typically increases with cyclic loading, but this change will be taken into account in the degradation
and strain rate components of the model. Again, different ambient temperatures can be taken into

account with material parameters calibrated at the appropriate temperature.

1.5 DESIGN GUIDELINES FOR ISOLATED BRIDGES

Most existing design approaches for isolated systems in general [BSSC, 1997], and bridges in particular
[AASHTO, 1999], are based on an equivalent linearisation of nonlinear bearing properties. Priestley
et al. [1996] have also presented a displacement-based design approach for isolated bridges that adopts
the equivalent linear approximation for beating response. In these approaches, an equivalent linear
viscoelastic model, defined by its stiffness and fraction of critical damping, is used to approximate
the real nonlinear response of the bearing, which greatly simplifies the evaluation of peak demand
on the isolators and structural elements. Many authors [e.g. Rosenblueth and Herrera, 1964; Iwan,
1980; Hwang ez al., 1994, 1996] have presented combinations of effective stiffness (or equivalently, a
period shift) and viscous damping, which are generally functions of bearing properties and maximum

deformation, to best approximate the nonlinear response.

For the design of isolation systems for existing bridges, Calvi and Pavese [1998] present an optimi-
sation procedure that is based on varying an assumed superstructure deflected shape to obtain an
optimum value for a defined regularity index. The authors propose that the methodology can also be
adopted for new bridges, as the converged superstructural deformation will be relatively insensitive

to assumed pier and abutment strengths.

Recently, Ryan and Chopra [2004] published a method for estimating the displacement demand
for an isolation bearing characterised by bilinear hysteretic behaviour, subjected to a suite of ground
motions. The proposed procedure has the advantage that it is able to directly account for bidirectional
ground motion, and does not require linearisation of bearing response. By normalising the equation
of motion in an appropriate manner, it is shown that the median bearing demand over the suite can
be made a function of only the isolation period of the bearing, and its normalised strength. However,

with isolation systems for which a bilinear model is less appropriate, such as HDR bearings, the results
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of the design method may not be applicable. The method is also difficult to extend to predicting the

system response of a pier and an isolator in series, or more complicated bridge geometries.

1.6 SYSTEM RESPONSE STUDIES OF ISOLATED BRIDGE SYSTEMS

Analytical studies on isolated bridge systems has been directed primarily at the unidirectional response,
and for isolation devices that may be characterised by bilinear hysteresis. Kartoum ez 2/l [1992]
presents such a study for sliding Teflon beatings, with a two-span continuous deck bridge model,
incorporating the effects of superstructure and pier flexibility. The analytical work complements an
experimental study on the same bearings by Constantinou ez /. [1992].

Franchin ef /. [2001] conducted a study on the use of equivalent linearisation for bearing response
in isolated bridges. The authors discuss the difficulty in assembling a classical damping matrix
when equivalent linear viscoelastic properties have been derived for each of the bearing locations
in the structure. They show that the complex mode shapes resulting from such a non-classical
damping matrix can be approximated accurately by appropriately defined real mode shapes. They
also compare bridge response, in terms of deck, pier and isolator displacement and isolator force,
for three lineatisation formulae: the model contained in the AASHTO provisions [AASHTO, 1999],
and two models due to Hwang and coauthors [Hwang ez a/, 1994, 1996]. The authors find that
the equivalent linearisation procedures give the best results for regular bridges, and poor results for
irregular ones. They suggest that codes should limit the use of linearisation to the former type of
structure.

Huang [2002] and Mosqueda ez a/ [2004] have conducted bidirectional analytical parametric studies
for bridges isolated with LR and FPS bearings, respectively, using data from the Caltrans Protective
Systems Project (discussed further in Chapter 2). It is the intention of this study to adapt the
conclusions of these references to the bidirectional response of bridges isolated with HDR bearings.
In addition, nonlinear pier behaviour is considered, to investigate the interaction of pier and isolator

nonlinearity at different levels of seismic hazard.

1.7 ORGANISATION OF THESIS

This thesis is an investigation of the bidirectional response of bridges isolated with high-damping
rubber beatings. Chapter 2 outlines a series of bidirectional tests that was catried out at the
University of California, Berkeley, as part of the Caltrans Seismic Protective Systems Project. This
experimental programme has been described previously [Morgan, 2000; Huang ez a/, 2000], and
included bidirectional tests on lead—rubber (LR) bearings, and friction pendulum systems (FPS),
in addition to the HDR bearings considered in this thesis. Although effective models have been
developed from the bidirectional data for LR [Huang, 2002] and FPS bearings [Mosqueda ez @/, 2004],
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the bidirectional behaviour of HDR bearings has not been adequately described. The observed

behaviour of the beatings is discussed in the context of micromechanics in Section 2.3.

In Chapter 3, existing approaches to the modelling of HDR bearings are discussed. In the first part,
Section 3.1, several phenomenological models for the unidirectional response are considered. The
linearised viscoelastic and bilinear idealisations of bearing behaviour, considered in most existing
design guidelines [BSSC, 1997; AASHTO, 1999], are discussed in Section 3.1.1. Following this,
promising models by Hwang ¢ a/. [2002] and Kikuchi and Aiken [1997], based on a decomposition
of the total resisting force into an elastic force and damping force, are considered in Sections 3.1.2
and 3.1.3. Finally, a model recently proposed by Tsai ez /. [2003] is discussed in Section 3.1.4. In each
case, advantages and limitations of the existing undirectional modelling approaches are discussed, in

addition to the difficulties in adapting these models to bidirectional response.

Although no models have been developed specifically for the bidirectional modelling of HDR
bearings, several existing approaches from plasticity theory have been considered in the past. In
the second part of Chapter 3, Section 3.2, several approaches from classical plasticity and bounding
surface plasticity [Dafalias and Popov, 1975] are presented, and an attempt is made to reconcile
model response with HDR bearing behaviour. This chapter also includes a “stiffening surface”
model which was developed as an extension of the bounding surface approach, as an attempt
to describe the stiffening observed in HDR bearings at high strain levels. As with the existing
unidirectional approaches, limitations and advantages of the bidirectional modelling approaches are

discussed.

In Chapter 4, a new mathematical model for the bidirectional shear force—displacement response of
HDR bearings is developed. The force vector is additively decomposed into two components: a
pseudo-elastic resisting force in the direction of the displacement vector, and a hysteretic damping
force in the direction of the velocity vector. The latter component evolves within a rate-independent
envelope, similar to a bounding surface plasticity approach [Dafalias and Popov, 1975]. Both
components are modified by two damage parameters, which take into account the effects of both
scragging and Mullins’ effect separately. In Section 4.3, a sensitivity study is conducted to assess
the effects of changing model parameters. In Section 4.4, the model is extended to describe rate-
dependent effects in HDR bearing response, with the addition of a third force term to the original
two-component model. As with existing models, the effects of temperature, axial load and ageing can
only be included in the proposed model « priori, through the determination of appropriate material

parameters for the conditions.

The model is calibrated using data from a series of displacement-controlled experiments, in Chapter 5,
to obtain a unique set of material parameters for a given bearing. This approach allows a consistent

and realistic portrayal of the long and short-term degradation in stiffness and damping with cyclic
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loading, Two alternative sets of experimental data are included in the calibration procedure, and a
comparison between the results is made. Using the material parameters obtained in each calibration,
the predictive power of the model is assessed by considering tests that were not explicitly included in
the calibration procedure. The calibration of the model for rate-dependent data, and the sensitivity of
the calibration algorithm to the initial parameter set are also discussed. Finally, minimum requirements
for an experimental protocol that would allow effective calibration of the model are suggested. This
experimental programme would allow practical application of the model beyond a research setting,

for any new high-damping rubber bearings that are developed.

In Chapter 6, existing methodologies for the analysis and design of isolated bridges are summarised.
Section 6.1 discusses modelling issues for time history analysis, with a patticular focus on the four
principal elements of the equation of motion: the representation of inertial mass, viscous damping,
structural stiffness and input ground motion. In Section 6.2, a number of issues related to the
displacement-based design of isolated bridges are considered. The representation of bidirectional
seismic demand, and the equivalent linearisation of bearing and, if necessary, pier properties are
discussed in Sections 6.2.1 and 6.2.2, respectively, and are placed within the context of direct
displacement-based design [Priestley ez a/, 1996] in Section 6.2.3. Finally, in Section 6.2.4, the
existing design framework is extended to allow design for multiple performance levels for different
return periods of earthquake hazard. Specifically, the design goals considered are elastic piers and
the limitation of bearing displacement at design intensity, and the limitation of pier and bearing

displacement demand for higher intensities.

In Chapter 7, a number of parametric studies of simple isolated bridge models are presented. The
response of bridges isolated with HDR bearings is compared with other bearing types, assuming
both elastic and inelastic pier response. The design methodologies discussed in Chapter 6 are also

investigated.

Finally, it should be noted that a mixture of imperial and ST units are used in this thesis. Imperial units
are used in Chapters 2-5, which deal with experimental data from the Caltrans Protective Systems
Project. The experimental work and data collection were carried out using imperial units, and the
results are presented in this form for consistency with other publications from this project. Chapter
7 considers analytical parametric studies in which ST units are used, although the results are presented
in a normalised form, and should be generally applicable. The design methods considered in Chapter

6 are independent of the system of units used, provided that it is internally consistent.



2. HIGH-DAMPING RUBBER BEARING BEHAVIOUR

2.1 CALTRANS PROTECTIVE SYSTEMS PROJECT

The Caltrans Protective Systems Project at the University of California, Berkeley included a number
of bidirectional experiments to characterise the behaviour of elastomeric and friction bearings. The
experimental programme, thoroughly described by Thompson [1998], Morgan [2000] and Huang
[2002], included bidirectional tests of bearings under imposed displacement orbits, and dynamic tests
using scaled earthquake records. Most tests of HDR bearings were conducted on low-modulus,
high-damping Bridgestone KI.301 bearings, illustrated in Fig, 2.1. Although the behaviour of the
bearing is dependent on the compound, these bearings can be considered typical of those commonly
used in the construction of seismically-isolated bridges. The thickness of rubber in the bearing (¢,)
is 1.8 in. (45mm). The unidirectional behavior of these bearings has been studied extensively [Clark
et al., 1997, and one objective of the experimental programme was to improve knowledge about the

bidirectional behaviout.
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Figure 2.1. Bridgestone KIL301 high-damping rubber bearing used for experimental programme.
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The earthquake simulator at the Pacific Earthquake Engineering Research (PEER) Center was used
for both displacement-controlled and dynamic tests on the bearings. For the displacement-controlled
tests, a rigid block was supported by four bearings on the platform, and the block was held in place by
horizontal struts reacting against abutments. The simulator platform was subjected to bidirectional
displacement orbits at varying levels of maximum strain and at a slow rate (approximately 0.01 Hz).
The four orbits illustrated in Fig, 2.2 were selected to investigate the force—deformation behaviour
of the bearings, including the effects of scragging, Mullins’ effect and path-history dependence. To

investigate the effects of strain-rate, orbit 4 was also run at an increased strain-rate of 0.5 Hz.

Orbit 1: Cruciform Orbit 2: Box

-

Y >

Orbit 3: Hourglass Orbit 4: Figure-8

Figure 2.2. Orbits for bidirectional displacement-controlled tests of seismic isolation bearings.

2.2 DISPLACEMENT-CONTROLLED EXPERIMENTAL DATA

To illustrate several important aspects about the bidirectional behaviour of HDR beatings, Figs. 2.3
and 2.4, show the experimental shear force—deformation relationship for the cruciform (orbit 1) and
box (orbit 2) displacement orbits, respectively. In each case, the results from moderate (y = 100%)
and high (y = 250%) shear strain tests are shown. The test numbers cited in the figures refer to the
order within the entire series, listed in Table 2.1, which will be important when history effects are

considered.
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Figure 2.4. Experimental results box orbit 2: tests 24 (solid line) and 12 (dashed line), 7> = v, = 250%
and v, = 7, = 100%, respectively.

The cruciform tests (orbit 1) are useful for assessing the unidirectional response of the bearing in
two orthogonal directions, and to determine if there is interaction between them. From the first part
of Fig. 2.3 it is clear that the stiffness decreases up to a strain level of 100% to 125%, but then the
stiffness increases at larger strains. This stiffening behaviour is also apparent in the reversed cycle in
the z-direction, and for subsequent loading in the y-direction. Comparing the peak shear forces in
each half cycle, however, degradation of the bearing stiffness can be observed. In the x-direction,
the peak shear force is approximately 10.5 kips (47 kIN) on the first half cycle, and 7.5 kips (33 kIN) in
the reverse direction; in the y-direction, the corresponding forces are 7.5 kips (33 kN) and 6.5 kips
(29 kN), respectively. This type of degradation of filled rubbers was studied extensively by Mullins
[1969], and is referred to as “Mullins’ effect” or “scragging”.

For developing a new bidirectional model, the interaction between scragging in each direction is of
interest. From the results in Fig; 2.3, it can be observed that loading in one direction appears to scrag
the bearing in the orthogonal direction. However, Thompson e a/. [2000] have suggested that this

interaction between directions could be dependent on the compound.

If a scragged bearing is retested after some time, it is found that a portion of the degradation is
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Table 2.1. Displacement-controlled tests of HDR bearings

Test | Orbit | Rate (Hz) | 72 (%)* | 7,(%)° Test log
@ 1 0.01 25 25 980514182504
2 1 0.01 250 250 980514185709
3 1 0.01 25 25 980515135923
O] 1 0.01 100 100 908515143353
®) 1 0.01 200 200 980515145330
©) 2 0.01 25 25 980515152024
(7 3 0.01 25 25 980515153657
) 4 0.01 25 25 980515160926
© 2 0.01 25 100 980515161626
(10) 3 0.01 25 100 980515162423
(11) 4 0.01 25 100 980515163026
(13) 3 0.01 100 100 980515171130
(14) 4 0.01 100 100 980515172315
(15) 4 0.50 100 100 980515174937
(16) 2 0.01 100 200 980515180155
(17) 3 0.01 100 200 980515181019
(18) 4 0.01 100 200 980515181927
(19) 4 0.50 100 200 980515184130
(20) 2 0.01 200 200 980515184556
21 3 0.01 200 200 980515185801
(22) 4 0.01 200 200 980515190354
(23) 2 0.50 200 200 980515191558
(24 2 0.01 250 250 980515192119
(25) 3 0.01 250 250 980515193319
(26) 4 0.01 250 250 980515194014
27) 1 0.01 25 25 980515195509
(28) 1 0.01 250 250 980515200229

recovered over a period of a few days, whereas full recovery occurs over a petiod of a few years
[Thompson ez a/., 2000]. Although the distinction is not discussed consistently in the literature, Clark
et al. [1997] referred to the short-term and long-term degradation as Mullins’ effect and scragging,
respectively. The consideration of the recovery of virgin bearing properties is important for the

development of a model capable of predicting HDR bearing behaviour over a range of service

conditions.

®Maximum shear strain in y-direction

%Maximum shear strain in z-direction
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The box orbit tests demonstrate the behaviour of HDR bearings when subjected to loading in
orthogonal directions simultaneously. From Fig, 2.4, the degradation of stiffness between successive
cycles is apparent. It can also be noted that increasing the displacement in one direction while
keeping the displacement in the orthogonal direction fixed affects the shear force in both directions.
This experimental observation means that bidirectional motion is coupled and that two independent
unidirectional models will not accurately describe the bidirectional behaviour. Finally, the force vector
with components F; and F, pointing from the origin to the force point, can be observed in the third
part of Fig. 2.4. The force vector is cleatly not in the same direction as the displacement vector for
all parts of the displacement orbit. For example, when the shear strain is 250% in each direction, in
the first cycle of loading, the displacement vector will be oriented at 45° to the x-axis, while the force
vector is approximately {6 9 }7 kips. The implication of this observation is that a mathematical
model in which the force vector is expressed solely as a function of the current displacement vector
will not be able to describe adequately the bidirectional response of HDR bearings. The otientation
of the force vector will be considered in more detail in the development of the bidirectional model

in Chapter 4.

2.3 MICROMECHANICAL EXPLANATION OF OBSERVED BEHAVIOUR

The experimental behaviour described in the previous section can be explained in terms of the
micromechanics of high-damping rubber materials. The stiffening and degradation of high-damping
rubber bearings, and the strain-rate dependence (discussed further in Sections 4.4 and 5.3) may be
related to the interaction between the rubber matrix and filler particles, and how this interaction
evolves with strain and time. In this section, the micromechanical behaviour of filled rubber is
summarised briefly, and related to the macroscopic observations from the previous section; more
information may be found in other references on high-damping rubber behaviour [Govindjee and
Simo, 1991; Clatk ez al., 1997; Motrgan, 2000].

At the microscopic level, vulcanised natural rubbers are composed of a matrix of randomly-oriented
polymer chains. Under small strain loading and unloading, the chains are untangled and re-tangled in
an essentially linear elastic manner. At higher strain levels, the links become fully straightened, and
subsequent loading leads to strain crystallisation, which is reversible on unloading. The macroscopic
result of this process is an increase in stiffness and energy dissipation relative to the low strain

behaviour.

Although not discussed in Section 2.2, the tests conducted at higher strain rates in the test programme
(test numbers 15, 19 and 23) confirmed the well-known rate-dependence of both filled and unfilled
natural rubbers [e.g. Govindjee and Simo, 1992; Bergstrém and Boyce, 1998; Thompson ez /., 2000].
This rate-dependence may be related to the presence of inactive chain segments in the polymer lattice,

as shown in Fig, 2.5 [Bergstrém and Boyce, 1998]. When the network is strained at a sufficiently fast
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rate, the free chain segment (the black line in Fig, 2.5) is stretched along with the rest of the polymer
mattix. In the deformed configuration, the loop A—B—C' undergoes Brownian motion, and tends to
return to a relaxed equilibrium state over time. This implies that the macroscopic force carried by the
elastomer is a function of how much the network is allowed to relax during loading, and therefore

the rate at which the strain is applied.
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Figure 2.5. Relaxation of inactive chain segments in a petfect network (from [Bergstrém and Boyce,
1998]).

The addition of filler materials, such as carbon black or oil resins, to the rubber compound does not
change the micromechanical behaviour of the polymer chains. The filler particles, however, obstruct
the chains from untangling fully and lead to stress concentrations in parts of the rubber matrix. For
this reason, the stiffness of the compound is higher than the unfilled rubber, and strain crystallises at
lower strain levels. Traditionally, this process has been used to enhance the abrasion resistance, tear
strength and tensile strength of natural rubbers [Govindjee and Simo, 1992], although in earthquake
engineering applications the increased energy dissipation at moderate strain levels is of most interest.
The change in macroscopic material properties is a function of the size and surface area, in addition
to the total volumetric ratio, of filler particles added [Clark ez a/, 1997].

Adding fillers to provide enhanced stiffness and energy dissipation has the side effect of introducing
stiffness degradation under cyclic loading, According to Clark ez 2/ [1997], two distinct mechanisms
are responsible for this degradation, and they may be distinguished by their rate of recovery. The
semi-permanent stiffness reduction that occurs primarily in the first cycle to a given strain level is
referred to as “scragging”, and the recoverable reduction in stiffness that occurs under subsequent
cyclic loading is “Mullins’ effect”. This distinction is not followed consistently in the literature,
and other references on filled rubber behaviour attribute both effects to the same micromechanical
mechanism, with the possibility of multiple relaxation processes acting in parallel [e.g. Govindjee and

Simo, 1992]. Experimental evidence that unscragged stiffness is recovered over a period of a few
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years [Thompson e7 al., 2000] suggests that the degradation and recovery mechanism may be more
complicated than Clark ez a/ [1997] propose. Nevertheless, the distinction between scragging and
Mullins’ effect is followed in this thesis, and the phenomenological model described in Chapter 4 is
defined on this basis.

Clark ez al. [1997] attribute the scragging effect to the semi-permanent damage of some molecular links
in the polymer matrix. The first cycle of loading to a given strain level will exhibit a higher stiffness
than subsequent cycles. If the material is loaded to a higher strain amplitude, further degradation
of stiffness will be observed, as further polymer chains are broken. The eventual recovery of the
original “virgin” or “unscragged” material stiffness may be attributed to the healing of the polymer

chains with time.

Govindjee and Simo [1991] report two main micromechanical explanations for Mullins’ effect. The
first theory, originating with some of the early experimental work on the subject by Mullins and
coworkers [Mullins, 1969], is that strain-induced crystallisation and decrystallisation takes place in
the polymer chains under cyclic loading, The second theory [e.g. Bueche, 1960] proposes that links
between the filler particles and polymer chains are broken under sufficient load. Both theories allow
for the recovery of material properties with time — in the first case healing involves a rearrangement of

the polymer matrix, while in the second case, the bonds between the filler and polymer are reformed.

As discussed above, it is not clear if the distinction between scragging and Mullins’ effect should
be made on a molecular level, and it is possible that a combination of the effects discussed above
is responsible for the observed degradation of high-damping rubbers under cyclic loading. Indeed,
although Clark ez a/. [1997] cite the two theories discussed in the previous paragraph as the possible
causes of the Mullins’ effect component of degradation, they were originally postulated to explain
the total reduction in stiffness, including scragging and Mullins’ effect. In fact, typically the first cycle
semi-permanent degradation was of more interest in the development of these theories, as it has a
larger effect on material properties. Although bearings are typically prescragged to a certain level of
displacement before installation, the complete recovery of virgin properties with time suggests that

both degradation effects need to be carefully considered in analysis and design.






3. EXISTING PHENOMENOLOGICAL MODELS FOR
HIGH-DAMPING RUBBER BEARINGS

3.1 UNIDIRECTIONAL HDR BEARING MODELS

Existing phenomenological models desctibe HDR bearing behaviour for unidirectional loading.
Typically, they express the resisting force of the beating, I, in terms of the shear displacement, U.
In this section, recent approaches to unidirectional modelling are summarised, and advantages and

limitations of each model are highlighted.

3.1.1 State-of-the-Practice Modelling: Linear and Bilinear Models

Guidelines for the design of seismic isolation systems are primarily based on a linearised viscoelastic
model for bearing behaviour [BSSC, 1997; AASHTO, 1999]. The nonlinear, hysteretic response
of a bearing is represented by two parameters: an effective stiffness, Kgr, and equivalent viscous
damping, £cgr. This is an idealisation of bearing behaviour, with the same inherent assumptions and
limitations as in design approaches that make use of a “substitute structure” approach [Shibata and
Sozen, 1976] to represent inelasticity of structural elements. For example, the equivalent stiffness
and damping values are both fixed for a certain level of displacement (typically the design peak
displacement), and the equivalent viscous damping is fixed for a single natural frequency of the
excitation (the fundamental frequency of the bearing). Compared with typical civil engineering
materials, however, the assumption of viscous damping holds more validity for elastomers, because
some of the observed hysteretic energy dissipation is viscous (though nonlinear) in nature [Kelly,
1998].

In addition to the usual limitations of the substitute structure approach, the behaviour of HDR
bearings is particularly difficult to characterise with a linearised viscoelastic model. As discussed
in Chapter 2, the virgin bearing properties recover with time, and bearings can be expected to
degrade over the course of induced cyclic deformations. Expressions for Kog and &g given by

manufacturers are typically calibrated for scragged bearings, and cannot be applied to virgin response.

The above comments notwithstanding, it should be emphasised that the linearised viscoelastic model
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is a design tool, and bearing design based on the model can be verified with time history analysis
using a more sophisticated model. A bilinear force—displacement model represents the next level
of sophistication. Although the bilinear model is not required for time history analyses in design
provisions, it forms the basis of the property modification factors concept outlined in the AASHTO
Guide Specifications for Seismic Isolation Design [AASHTO, 1999], described in Section 6.2.2. For
LR and FPS bearings, the physical interpretation of a bilinear model is more apparent. In the former
case, the lead plug dominates the elastic stiffness, and when the lead yields, the post-yield stiffness is
essentially the shear stiffness of the rubber. In the latter case, a very high initial stiffness is specified,
primarily for computational convenience, and the post-yield stiffness represents the geometrical

stiffness of the bearing,

In the case of HDR bearings, the bilinear hysteretic relationship is clearly an idealisation of the
actual unidirectional behaviour. Tt is suggested [BSSC, 1997] that a bilinear hysteretic model (or a
smoothed version of a bilinear model) is appropriate, provided that the peak shear strain is less than
approximately 150—200%, depending on the rubber compound. Even within these limits, the three
parameters used to define the model (for example, initial stiffness K, post-yield stiffness ratio ¢, and
yield force F)) are displacement dependent, which suggests that an iterative process is required to

obtain appropriate values.

The relationship between the bilinear and linearised viscoelastic models is illustrated in Fig, 3.1, using
the secant stiffness to characterise the equivalent linearisation. The total restoring force, equal to
the elastic (spring) testoring force, F, plus the viscous damping force, Fy, is shown in the plots.
For the rate-independent bilinear model the viscous force is zero, while for the viscoelastic model,
the viscous force is linearly proportional to the velocity. As discussed in the previous section, the
equivalent damping for the linearised model is commonly calculated such that the energy dissipated
in a cycle at resonant frequency is equal to the energy dissipated in hysteresis in the bilinear model
[AASHTO, 1999]. More sophisticated approaches for calculating the equivalent damping have also
been used, based on optimisation of the peak response [Iwan and Gates, 1979], and on random
vibration theory [Hwang ez a/, 1994, 1996].

As noted by Kelly [1998], one implication of using a bilinear approach for elastomeric bearings is
that damping at small to moderate displacements is underestimated. Clark and Kelly [1996] use the
experimental observation that energy dissipated in a HDR bearing in one cycle is proportional to a
power of displacement close to 1.5 to develop a viscoplastic model. Similarly, Tsai ef a/. [2003] adds
a viscous element to a rate-independent hysteretic model to obtain a closer match for small strain

response.

The Bouc—Wen model [Bouc, 1967] is also commonly used for elastomeric bearings. The model

is particularly useful for stochastic analysis because of its differential equation form [Wen, 1970],
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FF,

Dynamic restoring forceF

Displacementy

Figure 3.1. Relationship between bilinear and linearised viscoelastic models in terms of dynamic
restoring force versus displacement.

and it has also been adapted for bidirectional response by Park ez a/ [1986], and generalised by
Casciati [1989]. The Bouc—Wen model, in unidirectional or bidirectional form, may be considered
a smoothed form of the classical bilinear model, and in this respect is similar to bounding surface
plasticity, introduced for bidirectional loading in Section 3.2.2. Huang [2002] shows that the Bouc—
Wen model performs similarly to the bounding surface model, although it violates Drucker’s and
Tlyushin’s plasticity postulates [Lubliner, 1990]. Nevertheless, the Bouc—Wen framework is used as
the basis of a unidirectional model recently developed by Tsai ¢z @/ [2003], which is discussed in
Section 3.1.4.

Linear and bilinear models give a simple and convenient description of bearing response for design
applications. The equivalent linearisation of bearing and structural properties is discussed further
in Section 6.2.2. The strong nonlinearity of HDR bearings, however, and the change of bearing
behaviour with cyclic loading suggest that improved models are required for accurate time history

analysis of isolated structural systems. Some of these models are discussed in the following sections.

3.1.2 Hwang et al. [2002] Model

Several existing mathematical models for HDR bearings express the shear force as the summation
of a restoring force and a damping force. The model of Hwang ez a/. [2002], modified from Pan and
Yang [1996] to consider the effects of degradation, gives the bearing force, F' in the form:

F(U,U) = KU, U,Wp)U + C(U,U,Wp)U 3.1)

whete U and U are the relative displacement and velocity of the bearing, Wp is a history variable rep-

resenting the work done, and K and C' are nonlinear stiffness and damping coefficients, respectively.
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The dependence of K and C on U, U and Wp is given by:

. W,
K(U,U,Wp) = a1 + asU? + asU* + M (.2)
cosh”(asU)
and 2
. ag + a
C(U, U, Wp) = 22222 (1 + exp(aioWn)) (3.3)

\/ai + U2

where a1 to aig are material parameters. Parameters a1 to as describe the shape of the elastic
skeleton, and ag to ag determine the shape of the hysteresis loop through the nonlinear damping
force. Finally, parameters ag and a1o describe the degradation with work done in cyclic loading,

W, of the stiffness and damping, respectively.

Figure 3.2(a) illustrates the force—displacement behaviour of the Hwang ez a/. [2002] model, for high-
strain level harmonic loading, with typical material parameters, aq to ag. Degradation is neglected in
the figure (ag = a10 = 0). The elastic skeleton provides the stiffening behaviour at high strains, and
the damping force provides increasing hysteretic area as the strain level increases. The total restoring
force from Eq. (3.1) is shown [Hwang ez a/, 2002] to provide a good match of experimental data

from unidirectional harmonic loading tests, when the ten material parameters are calibrated for each

experiment.
L U [
Q @
<4 <
L2 L
j=2} j=2}
£ £
S S
7] 7]
Q Q
14 x|
— Total force r — Total force
- - Skeleton curve - - Skeleton curve
Damping force| Damping force]
(a) DisplacementlJ (b) Displacement|)

Figure 3.2. Force—displacement hystetesis for Hwang et al. [2002] model: total resisting force, F', and

elastic (U) and damping (C U ) components for (a) harmonic displacement history (inset), and (b)
‘sawtooth’ displacement history (inset).

Although the model provides a good match of experimental data for unidirectional and harmonic
loading, a number of shortcomings can be observed. Despite the rate-dependence of Eq. (3.1),
a separate parameter identification procedure must be carried out for loading at different strain
rates [Hwang ez al,, 2002], and there can be significant differences between the two sets of material

parameters obtained for a single bearing. The velocity term appearing in the expressions for K
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and C' simply provides a harmonic component out of phase with the displacements, which is only
relevant for sinusoidal loading. When applied to ‘sawtooth’ displacement histories, the velocity
is a step function, and the model cannot adequately represent the force—deformation behaviour.
Figure 3.2(b) illustrates the hysteretic behaviour under such a displacement history. The elastic
skeleton is not changed significantly, but the damping component continues to increase with the
square of the displacement, and changes abruptly when the direction of loading reverses. This
behaviour is not observed in experimental tests carried out with sawtooth displacement histories,
such as those described in Section 2.2, and a smoother transition would be desirable. It could
be argued, however, that the sawtooth displacement history can never be recreated exactly in an
experimental setting, and a more gradual transition would be observed under an experimental

displacement input.

A second shortcoming with the Hwang ez /. [2002] model is the calibration procedure used to obtain
material parameters for a bearing. Although the model describes scragging and Mullins’ effects for
a given test, a separate parameter identification is performed on subsequent tests of post-scragged
behaviour, and the damage parameter is reset to zero. As with the calibration at different strain rates,
there are significant changes in material parameters between tests. These changes are not consistent
with the damage model used for scragging and Mullins’ effect, as even components of the stiffness
and damping that do not degrade are changed between calibrations. It would be desirable to calibrate
the model over a series of tests, retaining damage variables between tests, to obtain a unique set of

material parameters for a given bearing, This approach is discussed further in Chapter 5.

Jankowski [2004] presents another adaptation of the model due to Pan and Yang [1996], which slightly
improves the response of the original model under small loading cycles. This model, however, exhibits

the same shortcomings as the Hwang e a/. [2002] model, discussed above.

3.1.3 Kikuchi and Aiken [1997] Model

Kikuchi and Aiken [1997] present a strain-rate independent model, similar to Hwang ef a/. [2002].

The steady-state force—displacement response is given by the following expression:
F(U, U;, F;, n) = Fl(U) + FQ(U, U;, F;, n) + AF(U) (3.4

whete F and F5 describe an elastic skeleton and hysteretic damping force, respectively, and AF
represents the difference between first cycle response and the subsequent cycles. In addition to
Eq. (3.4), a set of hysteresis rules based on Masing’s rules [Masing, 1926] is used to characterise the
response under a randomly varying displacement history. To describe the hysteretic response, U;
and F; are the displacement and force at the most recent load teversal, and n = sgn(U) gives the

direction of loading,
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The elastic skeleton, F, is given by:

Fr= 51 = ¢)Fn{u+ sgn(U)lul"} (3.5)

N

and the hysteretic force, Fb:

Fy = ¢F{1 —2exp(—a(l +u)) + b(1 + u) exp(—c(1 + u))}, for U >0
Fy = —¢pF{1 — 2exp(—a(l —u)) + b(1 —u)exp(—c(1 —u))}, forU <0  (3.6)

where ¢ is the rato of force at zero displacement to a maximum teference force, F),,, and w is
the displacement normalised with respect to a cortesponding refetrence displacement, Uy, . The
exponent . gives a measure of stiffening in the elastic skeleton. Parameters a, b and ¢ control the
shape of the hysteresis loop: a and b are determined by equating the area of the experimental and

analytical hysteresis loops, and c is a preselected material constant.

The reference force value, Fj,, is determined from the reference displacement U, from an
experimentally-determined, strain-dependent equation involving six parameters. The increment
AF in Eq. (34) is calculated in the same mannet, from virgin test data and five parameters. The
values of ¢, the equivalent experimental damping, A, and the exponent, n, from Eq. (3.5) are given
by two, three and four-parameter equations in terms of the shear strain, respectively. Finally, the
value of ¢, and upper bounds on a and b, account for another three constants to be determined
from experiments. Although many of these expressions are of a form commonly reported in labo-
ratory experiments, the task of calibrating 23 material parameters for a new bearing is a demanding

requirement for the practical use of the model.

A typical steady-state force—displacement envelope for high strain levels is illustrated in Fig, 3.3. In
Fig. 3.3(a), the addition of the first two components, F'; and F5 is shown. As with the previously
discussed model, the elastic term accounts for the stiffening behaviour, while the hysteretic term
provides nonlinear damping. In Fig, 3.3(b), the force envelope for the first and subsequent cycles are
shown. The difference between the two cutves is equal to the force increment, AF', which is only
applied on the first cycle. It should be noted that this increment is applied over the whole first cycle
in this model, whereas experimental evidence (Section 2.2) suggests that most degradation occurs in
the first half cycle. Note also that no further degradation is applied after the first cycle, which is an

approximation of actual bearing behaviour.

3.1.4 Tsai et al. [2003] Model

Tsai et al. [2003] recently proposed a force—displacement model for HDR bearings based on the
Bouc—Wen hysteretic model, introduced in Section 3.1.1. A linear viscous term was added to this rate-

independent component to more accurately describe small strain response. Although expressions
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Figure 3.3. Force—displacement hysteresis envelope for Kikuchi and Aiken [1997] model. (a) To-

tal steady-state resisting force, and elastic and damping components, and (b) virgin and scragged
response.

are given for the force in two orthogonal directions, the components are uncoupled. As was shown
in Section 2.2, two uncoupled unidirectional models are unable to describe the bidirectional response

of HDR bearings.

The unidirectional force—displacement response is therefore expressed as:
F(U.U,2) = Fy(U, 2) + F,(U) (37)

where Fs and F), are the rate-independent hysteretic force, and the rate-dependent viscous force.

The latter is given by a linear viscous damping equation, with viscosity coefficient, C
F,=CU (3.8)

The former is expressed in incremental form, in terms of a normalised plastic internal vatiable,
—1 < Z < 1, which represents the evolution from elastic (Z = 0) to fully plastic (Z = =£1)

response. In time discrete form, Fy is given by:
Fy=F;,+DU—-U,) (3.9)

where the subscript n represents quantities at the previous time step, and D is the tangent stiffness.
In the standard, smoothed bilinear Bouc—Wen formulation [Bouc, 1967; Wen, 1976], D may be
expressed as:

D =aK + (1 —a)K[A — (ysgn(UZ) + €) Z?] (3.10)
where A, v and £ are matetial constants; recommended values are 1.0, 0.1 and 0.9, respectively
[Tsopelas ez al, 1994]. The terms K and o atre the initial stiffness and plastic stiffness ratio,
respectively, and are taken as constant in the original Bouc—Wen model. The evolution of Z is also

governed by an incremental equation [Tsai ef a/., 2003].
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The main innovation in the Tsai e /. [2003] model is the introduction of strain-dependence to
the stiffness terms, K = K(U) and a = «(U) in Eq. (3.10). The authors report that the initial
stiffness, K (U ), has been calculated expetimentally in terms of the maximum shear strain, although
the relationship is not provided in the paper. The ratio of tangent stiffness to initial stiffness,
a(U) = Kp(U)/K(U), is similarly determined from experimental data for K, as a function of
displacement. Different values for Kt are given for unloading, based on the envelope shown in
Fig. 3.4. The solid line portions ate obtained directly from the experimental data, the dashed lines
are at constant slope determined by a model parameter, and the dotted line is given by a transition
equation between the slopes before and after. The size of the transition region is governed by another
material parameter. At each time step, the appropriate values of K (U) and «(U) ate substituted
into Eq. (3.10), then the force on the bearing is calculated from Egs. (3.9) and (3.7).

Restoring forcef
\
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t eff
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Figure 3.4. Force—displacement hysteresis envelope for Tsai et al. [2003] model.

The biggest shortcoming of the Tsai ef 2/ [2003] model is that degradation with cyclic loading is not
included. Even if a damage parameter were added to the model to describe this degradation, it seems
that the original framework would be inadequate for describing virgin response. In particular, the
use of a constant tangent slope for the dashed line portion of Fig. 3.4, and the form of the equation
for the transition region, shown as a dotted line, does not easily permit the nonlinear damping,
increasing with shear strain, observed in experimental tests of virgin response (Section 2.2). It is
possible that a modified form of transition slope equation could be introduced to propetly account
for this nonlinearity in damping, although this would require the introduction of additional material

parameters.

It is not clear how the model is calibrated for the series of tests presented in [Tsai e al, 2003].
Although the model describes the behaviour of scragged HDR bearings with different levels of axial
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load, strain level and strain rate, it appears that a separate set of material parameters are obtained for
each test. For example, the model response is different in two tests for the same strain history and
strain rate, but with different axial load. Because the effect of axial load is not accounted for in the
mathematical model, it is reasonable to assume that different calibrations have been used for every
test. If this is the case, then the ability of the model to capture the strain-rate dependence of a given
bearing is questionable, as with the Hwang ¢z 2/ [2002] model, discussed in Section 3.1.2.

Finally, because the equations used for K g in terms of shear strain are not provided in the reference,
it is impossible to judge exactly how many material constants must be calibrated for a given material.
However, if the Kikuchi and Aiken [1997] model, discussed in Section 3.1.3 is any indication, six
parameters will be requited to define the backbone curve of K1 (U) (the solid line in Fig 3.4),
and presumably several more for the initial stiffness, K (U). Additionally, three parameters are
required to define the various regions in Fig. 3.4, three more (4, £ and ) define the Bouc—Wen
evolutionaty equation, and one (C') represents the linear viscous damping term. As with the Kikuchi
and Aiken [1997] model, it could be argued that many of these parameters are readily available from
manufacturer guidelines or are consistently obtained in experimental testing, In any case, a large

number of material parameters are required.

3.2 PLASTICITY-BASED APPROACHES TO BIDIRECTIONAL BEARING MODELLING

Aside from fully three-dimensional constitutive models applied in a finite element setting [Miehe and
Keck, 2000; Haupt and Sedlan, 2001], no phenomenological models have been specifically developed
for the bidirectional behaviour of HDR bearings. Huang [2002] has applied bidirectional models
based on rate-independent classical and bounding surface plasticity to lead—rubber (LR) bearings,
and obtained a good match of experimental data. Huang also calibrated a classical plasticity model
for the HDR test data from the Caltrans Protective Systems Project (Chapter 2.1), but did not obtain
a good match of the experimental behaviour across the full range of strains. In particular, classical
and bounding surface plasticity is unable to capture the strain-stiffening behaviour at high strains,

and path dependence of HDR bearings.

Nevertheless, these plasticity-based attempts highlight many of the difficulties in developing bidirec-
tional models for HDR bearings. For this reason, this section contains a summary of these various
approaches, primarily adapted from the work of Huang [2002]. In addition, a first attempt at mod-
ifying the plasticity models to describe the characteristic strain-stiffening behaviour is presented in
Section 3.2.3, through the addition of a stiffening surface’ model in parallel to the standard bounding

surface model.

In the following, the bidirectional force and displacement quantities are expressed in terms of vector
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F= {Fx} ; U= {U“”} (3.11)
Fy Uy

where the subscripts « and y refer to the components of a quantity in orthogonal directions in

quantities F' and U, given by:

the plane of the bearing. The dot product and tensor product of two column vectors are defined,
respectively, by:

a-b=a’b ; a®b=ab’ (3.12)

where the superscript “I” represents vector transposition.

In plasticity theory, the displacement vector is additively decomposed into an elastic part, which is

recovered upon unloading, and a plastic part, which represents unrecoverable deformation:
U=0U°+1U" (3.13)

This assumption is used in the models presented in the remainder of this chapter.

3.2.1 Classical Plasticity with Kinematic Hardening

A classical rate-independent plasticity model [Lubliner, 1990] with linear kinematic hardening may
be considered a bidirectional generalisation of the bilinear unidirectional model discussed in Sec-
tion 3.1.1. The time continuous version of the model is discussed below, followed by the time

discretisation, solution algorithm, and application to the HDR bearing experimental data.

3.2.1.1 Time continuous model.  An isotropic yield function is postulated, which delineates the
boundary between elastic and plastic states. With a “back force” oy, and a radius I, the yield
function is given by:

fy =IIF — oy — R, (3.14)

The equation f,, = 0 then defines a circular yield surface in bidirectional force space. Within this yield
surface, the response may be considered linearly isotropic, with the force related to the displacement
by a constant stiffness parameter, K;. In combination with the elastic-plastic decomposition of the

displacement vector, Eq. (3.13), the following expression is assumed:

F = K,U° = K,(U - U?) (3.15)

For many applications, an associative plastic flow rule is both computationally convenient, and gives
a good fit of experimental data. Indeed, an associative flow rule has been shown to describe the

experimentally observed force vector, for lead—rubber bearings [Huang ¢z /., 2000] and high-damping
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rubber bearings at low to moderate strain levels [Huang, 2002]. Associative flow implies that the

evolution of the plastic displacement vector is always normal to the yield surface in force space:

U» — 173@({;’;"%) — 4n (3.16)

where 7 is the time continuous consistency parameter, and n is given by:

8fy(F, ay) F—-o,
n=— = 3.1
OF F— o] G170

The consistency parametet, , must satisfy the Kuhn—Tucker conditions [Lubliner, 1990]:

fy <0, Yfy =0, ¥>0 (3.18)

The Kuhn—Tucker conditions of Eq. (3.18) require elastic force states (for which 7 = 0) to lie on or
inside the yield surface, and plastic force states (¥ > 0) to lie on the yield surface. Furthermore, the

consistency condition must be satisfied, given by:
fy =0 (3.19)

which prohibits the force point from leaving the yield surface during plastic flow.

Finally, a linear kinematic hardening rule is specified, with:
&, = KoUP = Kyyn (3.20)

where K is a constant hardening modulus. Note that in a unidirectional force—displacement history,
with elastic stiffness /1, and second slope a1, the hardening modulus is given by:
«
Ky=K— 3.21

2 1 (1 — O() ( )
3.2.1.2 Integration algorithm.  For use of the plasticity model in a discrete time regime, the
time continuous rate equations of the previous section must be integrated. The problem may be
considered displacement driven, in that the displacement history {U,,, Uy, 1} is known over a time
step, At, and F,, 1 is to be determined. A backward Euler implicit integration scheme is used
to evaluate the discrete change in model variables over the time step, and calculate F,,; from
Eq. (3.15).

In the following, quantities at time t,, carry a subscript ‘n’, and, to minimise the appearance of
subscripts, quantities at time ¢,,.1 = t, + At carry no subsctipt. Furthermore, the discrete

consistency parameter is denoted by A, where:

tn+1
A= / 4 dt
t

n
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Using the backward Euler scheme, the plastic displacement rate equation, Eq. (3.16), and the
hardening expression, Eq. (3.20), are integrated to obtain:

U? = U2 4+ An (3.22)
and
oy = oy, + Kodn (3.23)
This expression is substituted into Eq. (3.15) to give:

F =K, (U-TU” - \n) (3.24)

Finally the Kuhn-Tucker conditions, Eq. (3.18), in their discrete forms are given by:

f, <0, Ay =0, >0 (3.25)

The time discrete system of equations can be conveniently and efficiently solved using the return
mapping algorithm [Simo and Hughes, 1998]. To this end, an elastic trial state at time ;41 is
obtained by setting the discrete consistency parameter to zero, effectively freezing plastic flow for
the time step. Substituting A = 0 into Egs. (3.14), (3.22), (3.23) and (3.24) the following trial state
values (denoted by a ‘7’ superscript) are obtained:

urtr = ur
F' = (U — UP
. i ") (3.26)
ay = ay7n
ir tr t
[ =1F" —af| - Ry

If f;’” < 0, then the Kuhn—Tucker conditions (3.25) are all satisfied by the trial state values given in
Eq. (3.26). Therefore, the time step At is elastic as assumed, and the correct state at time t,,11 is
given by Eq. (3.206).

However, if f;r > 0, then Eq. (3.25); is violated for the trial state, and the time step must result in
inelastic deformation. For A # 0, (3.25)2 requires that f, = 0, and Eqgs. (3.22), (3.23) and (3.24)
give the following plastic state, as functions of the trial state values in Eq. (3.26):

UP = UP" 4+ \n
F =K (U-UP" - \n) =F" — K;\n (3.27)

a, = al + Ky\n
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Substituting Eq. (3.27) into Eq. (3.17) it can easily be shown that n = n'”. Therefore, taking the dot
product of both sides with n, substituting for [2, from Eq. (3.14), and solving for A, the following

expression for the discrete consistency parameter is obtained:

F7 -y -R, Sy

)\:‘ =
K1+K2 K1+K2

(3.28)

The consistency parameter is substituted into Eq. (3.27) to obtain the present state corrected for the
plastic deformation.

3.2.1.3 Model application. In this section, the calculated response of a linear kinematic hardening
plasticity model is compared with the medium strain behaviour of HDR bearings. Huang [2002]
calibrated this model separately for each of the tests referred to in Table 2.1. The nonlinearity
of the force—deformation response of HDR bearings meant that the material parameters obtained
varied significantly with strain level. In addition, Huang [2002] found that the parameters also varied
significantly with the displacement orbit used in the test. This suggests that even if the nonlinearity in
the unidirectional force—deformation response could be described by nonlinear hardening equations,

a classical plasticity approach is not adequate for modelling the bidirectional response.

The three model parameters obtained in the calibration of Huang for test 12 (orbit 2 with 100%
maximum strain in each direction) were: K7 = 3.29 kips/in., Ko = 1.68 kips/in. and R, = 1.15
kips. Different model parameters were used to characterise the bilinear curve in the reference, so
these have been converted to the parameters used in the model description above. Using these
material parameters, Fig. 3.5 shows a comparison of experimental and model response. The figure
suggests that at this moderate strain level, a propetly calibrated classical plasticity model can describe
approximately the bidirectional coupling in the response. At the pointin the displacement orbit when
the loading first changes from the x- to the y-direction, the force point follows the circumference
of the yield surface until subsequent plastic flow is in the direction of loading, This results in
approximately the correct amount of coupling between force components for a well-calibrated
classical plasticity model, although the force trajectory of the experimental data is not followed
perfectly.

Beyond this strain level, the stiffening and degradation behaviour of HDR bearings cannot be
captured by the linear hardening model. Furthermore, even at moderate strains and below, the
classical plasticity model must be recalibrated for every strain level and displacement orbit, which is
inadequate for structural analysis and design applications. The next sections describe extensions to

the classical plasticity framework which address these issues.
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Figure 3.5. (a) Experimental response and (b) classical plasticity model response for test 12: orbit 2,
Yz = 7y = 100%, slow strain rate.

3.2.2 Bounding Surface Model

Bounding surface plasticity is a commonly used framework for the development of constitutive
models for soils [e.g. Dafalias and Herrmann, 1982] and metals [e.g. Krieg, 1975; Dafalias and
Popov, 1975]. Bounding surface model response is characterised by a smooth transition from
elastic to plastic behaviour, and, on reloading, the onset of plasticity at a stress level lower than
that reached previously. This is more representative of the response of real materials, including
HDR bearings at strains less than approximately 150%, than provided by a classical plasticity model
with linear kinematic hardening. Bounding surface plasticity may be considered a generalisation
of classical plasticity, with a nonlinear kinematic hardening law. More importantly, the bounding
surface model does not require recalibration at different strain levels because the inelastic stiffness is

strain-dependent.

The main feature of bounding surface plasticity is the postulation of a “bounding surface” in stress
(force) space, which delineates the boundary between admissible and inadmissible stress states, in
addition to the yield surface of classical plasticity. Although there are many different types of model
within the general framework, a common requirement of all bounding surface models is a mapping
of the current stress state onto a stress state on the bounding surface, called the “image stress”. With
this defined, an expression for the plastic modulus at any inelastic stress state within the bounding

surface is given as a function of the distance from the current stress to the image stress and the
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asymptotic plastic modulus at the image stress. This allows a smooth transition from the elastic
stiffness, at the immediate onset of yielding, to a fully plastic stiffness as the stress point moves

towards the bounding surface.

Huang [2002] shows that a bounding surface model provides a good description of the unidirectional
cyclic behaviour of LR isolation bearings. Furthermore, he presents a bidirectional “improved
patallel” model which makes use of a bounding surface backbone for LR bearings, which is described
in the following section. In this section, a bidirectional bounding surface model is presented, based
on the generalisation of the model by Dafalias [1986], and applied to medium strain HDR bearing

response.

3.2.2.1 Time continuous model description. In the bounding surface formulation, elastic
behaviour within a yield surface in force space is considered, as with the classical plasticity model
(Egs. (3.14) and (3.15)). Furthermore, a circular bounding surface is also postulated in force space,
and is defined by the following expression:

fo=IIF — | — Ry =0 (3.29)

where o, and Ry, define the centre and radius of the bounding surface, as before. The “image force”,
F, may be defined by an appropriate mapping rule, and represents a mapping of the current force
state, F, onto the bounding sutface. A homologous mapping rule is commonly used with putely
kinematic hardening, which is given by:

F=0F—a,) +a (3.30)
where b is a constant material parameter. By substituting Eq. (3.30) into Eq. (3.29), it can be seen that
b reptesents the ratio of the radii of the two surfaces, Rp/ Ry, provided that f, = 0 holds. When
fy < 0, either one of the material parameters (R, Rp, b) must change, or the image force does not

lie on the bounding surface.

Although the image force is only required for inelastic states (f,, = 0), it is more consistent to define
a mapping rule of the form:
F=Rn+ay (3.31)

where n is the outward normal vector to the yield surface at the current force point, and is defined
as before (3.17). While Eqs. (3.30) and (3.31) are equivalent for inelastic states, the latter gives an
image force which satisfies Eq. (3.29) for f, < 0.

The homologous mapping rule of Eq. (3.31), combined with the assumption of associative flow,
allows the following evolutionary expression for the plastic displacement:
—_ f,yafb(]?‘,ab) 0f,(F, )

U oF =7 OF =4n (3.32)
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where 7 is the time continuous consistency parameter, as before. The consistency parameter must
satisfy the Kuhn—Tucker conditions, which in bounding surface plasticity are usually defined in terms
of the bounding function, f;. In the current formulation, howevet, in which purely kinematic
hardening is used (defined below), the conditions may be postulated in terms of the yield function,
fy, as stated previously in Eq. (3.18).

The principal advantage of the bounding surface formulation over classical plasticity is in the
modelling of hardening, especially for cyclic loading histories. It was postulated in the original
presentations of bounding sutface plasticity [Dafalias and Popov, 1975; Krieg, 1975] that the plastic
modulus at a given force state may be defined as a function of the distance to the bounding surface,
and appropriate “plastic internal variables” [Dafalias and Popov, 1976] representing the prior loading
history. Dafalias [1986] changed the scalar distance term to a vector connecting the current force
and the image force:

6=F-F (3.33)

The prior loading history is taken into account by the internal variable, d;,, which represents the
value of § immediately after the last detection of unloading. In this manner, the value of d reduces
from a value of §;,, to 0 on plastic loading and reloading. An unloading condition may be considered
in the following form [Dafalias, 19806]:

0in n—0-n<0 (3.34)

which allows for the update of d;,, under general bidirectional loading, even if a sharp change in

loading direction does not occut.

Note that the dependence of the plastic modulus on the discontinuous parameter, d;y, results in
a non-smooth force—displacement response upon unloading. This is not a problem for general
loading histories, but it can lead to difficulties when small perturbations in the loading occur. In
this case, a small reversal in load may result in the satisfaction of Eq. (3.34), and the updating of
din. On reloading in the original direction, the plastic modulus will be defined with respect to
the new &y, and stiffer model response will be observed. This ‘overshooting” phenomenon, first
recognised by Dafalias [1986], is of particular significance when using experimental displacement
histories, which may be influenced by fluctuations in equipment response. Dafalias suggests the use
of a threshold of reverse plastic strain (displacement) accumulation befote d;y, is updated. This will
lead to discontinuity in the plastic modulus as the threshold is exceeded, but should limit the effect

of small load perturbations on the model response.

To simplify the current model, a modified version of this proposal is adopted here. Instead of a

plastic displacement threshold, a force threshold is used, whereby the update of §;,, occurs only
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when both the unloading condition (3.34) and the yield surface equation (3.14) are satisfied!. The
implication is that small unloading cycles within the elastic range (f, < 0) will not affect subsequent
loading, and the model response is less susceptible to small load perturbations. The update of d;y,
now occurs with the first onset of plastic flow (f, = 0) in an unloading state (3.34), at which time
din is set equal to the current value of §2.

With an appropriate definition of § and d;y,, evolutionary equations for the internal hardening
variables of the model may be defined. Adopting a purely kinematic hardening formulation, R,, and
Ry = bRy are taken as constant, and the evolution of the back force terms, oy and v, is defined
through rate equations. As with many classical plasticity applications, Prager’s kinematic hardening
rule is adopted for the first of these back force rate terms, whereby oy is defined parallel to the

plastic displacement increment:
a, = (K; + AK,) U? = (K3 + AK,)4m (3.35)

whete K> is the asymptotic plastic stiffness of the bearing, and AK), is an appropriately defined
scalar function of 8, d;,, and n. For a smooth transition from elastic, to inelastic, to petfectly plastic
response, it is required that AK,, = oo for § = §;, and AK}, — 0 ford — 0. A possible function,
adapted from Dafalias [19806], is:

d'n
AK, = K3 {7} 3.36
p ( am _ 5) ‘n ( )
where K3 is a material parameter describing the transition from elastic to fully plastic response, with
dimensions of stiffness. The term in square brackets takes values from oo to 0, for § between 9,
and 0.

As shown by Dafalias and Popov [1976], Prager’s hardening rule is not appropriate for the evolution
of the back force term, ap. It is important for the consistency of the model that convergence of the
two surfaces occurs along a unit vector joining the current force point and the image force —i.e. a
unit vector in the direction of § — and any contact of the surfaces occurs at the cutrent force point.
It is required that the yield surface may contact the bounding surface, but may not overlap. Because
of the homologous mapping rule used here, for which n = 8f,/dF = df,/JF, this condition
can only be satisfied if contact is confined to the current force point. Furthermore, on contact, it is

requited that the two sutfaces translate together, such that ai, = ap, = K, UP.

"The use of the yield surface as a force threshold is in fact equivalent to the plastic displacement threshold,
UP = 0, as a nonzeto value of U? implies yielding is occurting,

It is intetesting to note that this realisation of ds» is much closer to the original, uniaxial definition as
“the value of § at the initiation of yielding for each loading process...” [Dafalias and Popov, 1976], while
the multiaxial generalisation of this definition in the same paper referred to an update of d;, “at each stress
reversal”.
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The above conditions can be satisfied by a hardening equation of the following form [Dafalias and
Popov, 1976]:
ap=oy, — Mp (3.37)

where M is an appropriately selected function, which specifies the rate of convergence of the two

surfaces along i = 8/|9]|.

Based on the general form given by Eq. (3.37), the following expression for oy, is considered:

oy = Oy — AKP% (3.38)
For uniaxial loading, i = n, and Eq. (3.38) gives:
ay = a, — AK,U? = K,UP (3.39)
while for more general loading conditions, the following expression results:
oy = [Kgn + AK, (n — %)} 0 (3.40)

The unidirectional response of the bounding surface model is illustrated in Fig, 3.6(a). When force
is plotted against plastic displacement, the bounding sutface is a pair of straight lines with slope K.
As the plastic displacement increases, the plastic modulus evolves from initially infinite within the

yield surface, to K5 as the force approaches the bounding surface.

>T
!

@ ()

Figure 3.6. Unidirectional response of (a) bounding sutface and (b) stiffening surface models.
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3.2.2.2 Integration algorithm.  As with the classical plasticity model time integration, a backward
Euler implicit integration scheme is used to evaluate the discrete change in model variables over
the time step. The return mapping algorithm is set up in the same manner as Section 3.2.1, with
an additional step added for the unloading check. As before, the elastic trial state at time £, is

obtained by freezing plastic flow over the time step:

urtt = Uk
F" = K,(U-U})
all =ay, (3.41)
al’ = app
V=" —ay| - R,

If f;’" < 0, then the discrete Kuhn—Tucker conditions (3.25) are all satisfied by the trial state values
given in Eq. (3.41). Because the unloading condition is only checked for inelastic time steps, the time

step At is elastic as assumed, and the correct state is represented by the trial state.

If f;’” > 0, then Eq. (3.25); is violated for the trial state, and the time step is inelastic. By hypothesis,
inelastic states may satisfy the unloading condition, Eq. (3.34), and this must be checked. The
evaluation of the unloading condition will require values of n and d that are consistent with the trial
state, Eq. (3.41). From Eq. (3.17):

tr _ ir
n!" = Fiay (3.42)
||Ft'r‘ _ atr” )
Y

The trial image stress may also be directly evaluated from Eq. (3.31); after substituting trial values,
the following is obtained:
F" = al” +n'"R, (3.43)

The trial value of § could now be evaluated directly from Eq. (3.33), using the trial values of F
and F. However, this definition of 8" could lead to some difficulties, particularly for time steps
where the yield surface lies close to the bounding surface. In this case, F*" could lie outside the
bounding surface, and 8" will point inwards. This change in direction of § will lead to the detection

of unloading, even though the load is increasing.

An effective solution to this problem can be achieved by defining 8" in the following manner:
. .
8" =F" —F) (3.44)
where

F, = o) +n"R, (3.45)



36 Damian N. Grant, Gregory L. Fenves & Ferdinando Auricchio

In this context, FZT may be thought of as the trial value of F, radially returned to the yield surface
such that f, (FZT, a;r) = 0. Although the value of F to be obtained in the plastic correction phase
is also obtained by a radial return [Simo and Hughes, 1998], in that case the evolutionary equations

for the hardening variables must also be satisfied.

Using this definition of 6"", and n'" defined above, Eq. (3.34), in the discrete case, becomes:

i -m" = 6" 0" <0 (3.46)

The definition of " in (3.44) is not used in the plastic correction, so it does not affect the final
solution for the inelastic time step. However, it does provide an accurate evaluation of § which may
be used in the unloading check above. It also coincides with the updated value of 8, if Eq. (3.46)
is satisfied because it represents the value of & immediately after yielding takes place within the
time step At. Therefore, if unloading is detected, the initial value of d is reset, using the following

expression:

Oin =6 (3.47)

If the trial yield function violates the first of the Kuhn—Tucker conditions, Eq. (3.25)1, then the initial
assumption that A = 0 was incorrect. Backward Euler integration gives the following plastic state,

as functions of the trial state values in Eq. (3.41):
U? =UP" + An
F =K (U-UP" - \n) =F" — K;\n
a, = a; + (K + AK,)\n (348)

ap =a) + (Ky+ AK,)An — AKP)\%

Following the same procedure as for classical plasticity, it can again be shown that n = n*”. Solving
Egs. (3.17) and (3.48) for A, and substituting for R, from Eq. (3.14), the following expression for
the discrete consistency parameter can be derived:
O L f

K, + Ky + AK, K+ Ky + AK,
This is an implicit expression for A, as the AK), appeating on the right-hand side of the equation is
also a function of d, and thus \.

(3.49)

To evaluate d, and hence AK), and )\, an expression for the image stress for the plastic state must

be determined. Equation (3.48)4 is substituted into Eqs. (3.31) and (3.43), to give:

F=F" + (K, + AKy) n — AKp/\% (3.50)
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Starting from the original definition of 8, Eq. (3.33), A is substituted from Eq. (3.49), and the dot
product is taken with n. This gives the following result:

. AK
. — tr _ iy . tr _ p
§n=(F"—F") n+f (1 K A ,,) (3.51)

Finally, the definition of AKj, is recalled from Eq. (3.36), which is a function of § - n. This system
must be solved with the Newton—Raphson algorithm for AK,,. To do so, the following residual

function is defined:

d-n
(6m—5)-n

where & - 1 is obtained from Eq. (3.51), and n = n'" applies. The gradient of the residual function,

g(AK,) = K3 { } - AK, (3.52)
g(AK,) is also required. After differentiating Eq. (3.52), and some rearranging, the gradient is:

fUrK3(Ki 4 K2)(din - 1)
(K1 + KQ =+ AKp)2((51n -n — (5 . 1’1)2

J(AK,) =—-1-— (3.53)

‘The Newton—Raphson algotithm starts with an initial value of AK, detived from Eq. (3.36) and the
trial state (3.41). The (k + 1) iterate of AK), is obtained from the k™ from the following:

-1
AK(HD = AR — [gl(AKék))] g (AKSC)) (3.54)

and convergence may be considered achieved when the residual function is less than the machine

tolerance:

9(AK,) < TOL (3.55)

When a converged value of AKj, has been reached, the corrected consistency parameter may be
evaluated from Eq. (3.49), and, the remainder of the plastic state obtained from Eq. (3.48).

3.2.2.3 Model application.  As with the classical plasticity model, the bounding surface model is
compared with the medium strain bidirectional response of HDR bearings, using the experimental
data from test 12. Model parameters were determined based on the calibrated classical plasticity
parameters, and to fit the initial unidirectional backbone of the loading, and are shown in Table 3.1.
Note that the bounding surface model is intended to describe model response across a range of
strain levels, so it should be calibrated across a seties of tests. By just comparing with one test, the
advantages over the classical formulation, in which material parameters are strain-dependent, are not

So apparent.

The experimental and model response are compared in Fig, 3.7. The unidirectional response of the

model in the first excursion of the displacement orbit is described well by the bounding surface model,
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Table 3.1. Material parameters for bounding surface model.
K, K, K; Ry Ry n
329 kip/in 13 kip/in 035kip/in 0.7kip 28kip 1

with a smooth transition from elastic to plastic response. However, the bidirectional response for the
remainder of the orbit is poorly-described. For the first change of loading direction, the unloading
condition, Eq. (3.406) is satisfied, and the tangent stiffness returns to the elastic stiffness, K. This
means that while the hardening vector, n, is evolving from the x-direction to the y-direction, the
response is too stiff to capture the change in F},. Consequently, the force trajectory of the first cycle
model response is essentially the same shape as the displacement orbit, and the bidirectional coupling

of force is not described.
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Figure 3.7. (a) Experimental response and (b) bounding surface model response for test 12: orbit 2,
Yz = vy = 100%, slow strain rate.

Several alternative approaches have been adopted to properly describe the force trajectory. Different
hardening rules, including Mréz hardening [Mré6z, 1967], and a linear combination of Mréz and Prager
hardening were examined, although these approaches generally involved greater computational effort,

and did not provide a satisfactory description of the experimental response.

The second and third cycles in Fig, 3.7 exhibit another limitation of the bounding surface model.
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After the first complete displacement orbit, the force point returns to a position offset from the origin
due to accumulation of kinematic hardening, Subsequent cycles continue this ratchetting behaviour,
and the force trajectories propagate in the y-direction. The bounding surface model, in this form,
does not exhibit stable hysteresis, contrary to the observed experimental response of HDR bearings.
For this reason, the bidirectional version of the bounding surface model presented in this section is

inappropriate for bidirectional analyses.

Because of these difficulties, Huang [2002] developed an improved model for LR bearings, that could
be calibrated for low to medium strain HDR bearing behaviour. The Huang model represents the
bidirectional response by a set of classical plasticity models in parallel, calibrated on a bounding
surface backbone. The result is a piecewise linear approximation of the bounding surface model in
unidirectional loading, which provides a better match of force component coupling in bidirectional
loading. Because LR bearings do not exhibit the nonlinearity of stiffness and damping, and degrada-
tion with cyclic loading, the approach does not include these considerations, and it may be difficult
to extend to high strain HDR beating behaviout.

3.2.3 Bounding and Stiffening Surfaces Model

The bounding surface model discussed in the previous section accurately describes the smooth
transition from elastic to plastic behaviour in a unidirectional loading regime. Although this was
not demonstrated in this thesis, the model could also allow the calibration of a unique set of strain-
dependent material parameters for unidirectional loading, appropriate for a range of low to medium
strain level tests. For higher strains, the stiffening behaviour governs and the bounding surface model

cannot capture the unidirectional response.

In this section, an extension to the bounding surface model is presented that represents the nonlinear
stiffening backbone of the monotonic loading response of HDR bearings. The limitations of the
bounding surface approach for bidirectional loading, highlighted in Fig, 3.7, are not addressed in this
section, and the same limitations may be expected to apply here. The model presented below is one
of several attempts that were made to extend the bounding surface model for stiffening behaviour,

and illustrates some of the difficulties involved in such an approach.

3.2.3.1 Time continuous model description.  The stiffening surface model is defined by adding
a second force component in patallel to the bounding surface force (F1), such that the total force is
given by:

F=F;+F; (3.56)

where F is the stiffening force. This additional force component describes the stiffening of the
bearing for high strains. In addition to Eq. (3.50), the elastic force—displacement law holds for the
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total force vector, as previously defined in Eq. (3.15).

The first component of force, F'1, is described completely by the bounding surface model discussed
in the previous section. In particular, the yield sutface and bounding sutface in F'; space are defined
by the equations f, (F1, &) = 0and f4(F, o) = 0, respectively, with the functions defined earlier
in Eqs. (3.14) and (3.29). The image force and associative plastic flow rule are as given in Egs. (3.31)
and (3.16), and kinematic hardening of the yield and bounding sutfaces is defined by:

ay = (Ky + AK,) UP = (K + AK,1)4m (3.57)
and
ap = [Kgn—k AKp <n - %)] A (3.58)
where
AK, = K3 [ﬁ] (3.59)

and & and 6;,, are defined as before, except with a dependence on F'; instead of the total force:

b=F—F, (3.60)

The stiffening component of the force, Fa, is defined by a bounding surface model in plastic displace-
ment space. Unlike a traditional bounding surface model, the tangent stiffness must increase with
increasing plastic displacement to describe the stiffening behaviour of HDR bearings. This is difficult
to attain in a force space formulation, and necessitates the use of a displacement space framework.

A vector €, which measures the normalised distance from the origin in plastic displacement space, is

defined:
_ Ur — ﬁs

T's

€ (3.61)

where 3, and 75 are, respectively, the centre and the radius, of a circular bounding surface in plastic

displacement space.

For general hardening of the bounding surface, B, and 75 evolve with kinematic and isotropic
hardening laws, respectively. Furthermore, because an additional degree of freedom has been
introduced to the problem in Eq. (3.56), the evolution of the stiffening component of the force, Fa,

must also be defined through a rate equation. In plastic displacement space, the following expression

. 1 1—en\™.
U?P = — F 3.62
K4 + ( Eg.n ) 2 ( )

is analogous to Eq. (3.35):

Substituting for U? from Eq. (3.16), and solving for Fg, gives:

Fy = AK,29n (3.63)
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where

1

%+ ()

AK,, = (3.64)

Finally, the evolution of the bounding surface in plastic displacement space is represented by rate
equations for 3, and 7. The relative proportion of kinematic and isotropic hardening of the surface
is described by an additional material parameter, 0 < ¢y, < 1, defined as the fraction of hardening
which is kinematic. Similatly, (1 — ¢y ) gives the fraction of isotropic hardening. Therefore, the

following rate equations hold:

Grhg . AKys,
B, = s = o =" im (3.65)
and
. (1— orn) = AK,oFy-n .
Py = Foll = (1 — 3.66

Because the two components of the model are coupled by the plastic displacement, they must be

solved together. The following section describes the time discretisation and integration algorithm.

The unidirectional response of the stiffening surface component of the model is illustrated in
Fig. 3.6(b). The total force is obtained by adding the bounding surface component of force, from
Fig. 3.6(a), to the stiffening surface force. As with the bounding surface, the force is plotted as
a function of plastic displacement. The stiffening surface is given by a pair of lines with a slope
K4, and the force approaches the surface from an initial plastic modulus of zero. Figure 3.6(b)
also illustrates a potential problem with the stiffening surface approach: upon unloading, the plastic
modulus returns to zero, and negative energy is dissipated in each cycle. When the Fy component
is added to the F'; component, the total energy dissipation may be confined to positive values by
the selection of appropriate model parameters. However, this may not be representative of the real

cyclic response of HDR bearings, as will be shown later in this section.

3.2.3.2 Integration algorithm.  Using the backward Euler scheme, the time discretisation is

carried out in the same manner as before. An additional step is added by recognising that:

F1 =F - F2 = [Kl(U — Uﬁ)] — [Fg,n -+ (K1 + AKPQ)AII] (367)
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This allows the following trial state to be defined:

urtt = Ut
F'" = K,(U-U?)
Fgr =F;,
Fi' = K,(U - U) ~ Fy,,
ol =ay, (3.68)
o = app
B =B
ri = Tsm
£y =¥ — || = R,

Unloading is checked based on the bounding sutface force component, F';. Similarly, the trial yield

tr

function, v

is calculated, and if it is less than zero, a plastic correction must be performed:

U? =UP" 4+ An
F=F" - K )n
Fy =FY + AK,2An
F1 =F) — (K; + AKp2)An
a, =a + (K + AKy)An

(3.69)
o
ap = azr + (K2 + AKpl)/\n — AKP}\H
AK
B, = B¢ + drn sz An
4
AK 2 F2 -1n
re =714+ (1— —r=
Sy oa
As before, n = n'", and:
sy
A (3.70)

T Ky + Ky + AK, + AK,,

Again, Eq. (3.70) gives an implicit expression for A, as both AK 1 and AK), 5 are implicit functions
of A\. As before, this is resolved by evaluating the bounding surface distance parameters, d and €,
and taking their dot products with n, to give:

d-n=(F" —F) . n4 (K, + Ko+ AKp2)A (3.71)
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and

1 AK
e-n— — (Up,tr _ IBZT‘) ‘n4+ (1 _ M) )\:| (372)
s Ky
where
- (]. — qbkh)(FéT -n -+ AKp2>\)AKp2)\
8 K4||F§T —|— AKPQ/\IIH

(3.73)
from Eq. (3.69).
Substituting into Eqs. (3.59) and (3.64) for A, d - n, € - n and r from Eqs. (3.70), (3.71), (3.72) and

(3.73), tespectively, gives two simultaneous equations for AKp and AK), 9, which are solved using
a Newton—Raphson approach. The following vector of residuals is defined:

m

Ks [57*1] — AK,,

gl (6m76)n p
g(AKp) —{ }— S (3.74)

e | [H+ ()] - Ak
where the vector of unknowns, AKoy, is:
AK,

AK. = p 3.75
P {AKPQ} G

The gradient of the residuals is a matrix, derived by taking the partial derivative of each component
of g with respect to each component of AKyp. To calculate this gradient, the expressions for A,
(6 - n), (e - n) and r; must first be differentiated:

o Iy 1
0AK,  (Ki+ Kz +AKpy +AK,y2)? |1

87“5 (1 — ¢kh) 0 8)\
SCHEE

= n .
0AK, K4||Fq]

Fy ® Fo
+ AK, oA (H — 7>
? [[F2?
d@d-n) fir K1+ Ko+ AK)»
0AK, (K1 + Ko+ AKy + AK,»)? _AK,,

8(6'11) B 1 oA 1 ¢khAKp2 )\(Zskh 0 37'5
IAK, 7, aAKp< TR, > K \1() 9aK, ™

(3.76)
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Finally, the gradient of g is:

o -1 N mK3(8-n)m"1(8;, -n) (S - n)
0AK, 0 (0in -m—0-n)ntl  JAK,

dg2 | 0 +772(1—s-n)’72‘1 L_,_ 1—€e-n\"”] (e n)
0AK, |-1 (g - m)mtl K, €-n 0AK,

The Newton—Raphson algorithm used here is the same as that used in Section 3.2.2, extended to

(3.77)

two unknown variables. The (k + 1)® iterate of AK, is obtained from the k™ using the following

expression:

T

~1
AR = AKP) — 87gk) g (AK;’“)) (3.78)
AKY

and convergence may be considered to be achieved when the norm of the residual function is less

than the machine tolerance:

lg(AKp)|| < TOL (3.79)

3.2.3.3 Model application.  To assess the high-strain behaviour of the stiffening surface model,
the model response was compared with the experimental data from test 24 (orbit 2, 250% strain).
Model parameters corresponding to the bounding surface component of loading were retained from
the bounding surface model discussed in Section 3.2.2, except for K9 which was reduced to account
for the force in the stiffening component. The parameters of the stiffening surface component
were selected to fit the first unidirectional, monotonic loading portion of the test cycle. The model

parameters that were selected are shown in Table 3.2.

Table 3.2. Material parameters for bounding and stiffening surfaces model.
K K, K; K, R, Ry m m b
329 kip/in  0.7kip/in  0.35kip/in 8kip/in 0.7kip 2.8kp 1 1 1

The response of the stiffening surface model is compared with the experimental behaviour in Fig. 3.8.
Only the initial unidirectional loading portion of the load history (v, increasing to 250%, ~y,, = 0)
is described well by the model. When the loading direction changes, the stiffening surface model is
unable to capture the bidirectional coupling of the bearing response, and the beating force is grossly
underestimated. Finally, under load reversals, the model results in negative energy dissipation, which
cleatly does not describe real bearing behaviour, nor satisfy Tlyushin’s plasticity postulate [Lubliner,
1990].

Although it is possible that a plasticity based approach may be adopted to describe the behaviour
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Figure 3.8. (a) Experimental response and (b) stiffening surface model response for test 24: orbit 2,
Yz = Yy = 250%, slow strain rate.

of HDR bearings, it is apparent that the approach described in this section is not sufficient for this

purpose.






4. PROPOSED BIDIRECTIONAL MODEL

To address the limitations of the unidirectional phenomenological and bidirectional plasticity models
described in the previous chapter, a new rate-independent bidirectional model is developed in this
section. Although the behaviour of HDR bearings is recognised to have some strain-rate and
time-dependent effects [Morgan, 2000], there is little experimental data available about relaxation
and creep needed to characterise the rate-dependent behaviour. This limitation notwithstanding, a
viscoelastic term is added to the rate-independent model, in common with other models for the
viscous behaviour of elastomers. The proposed model addresses the goal of representing the effects

of bidirectional loading and stiffness and damping degradation.

4.1 TIME CONTINUOUS MODEL DEVELOPMENT

As in Section 3.2, the model is expressed in terms of vector quantities F and U. In addition, the
unit direction of velocity vector, n, is defined:
U

- 4.1
ST &b

Results from the bidirectional test programme discussed in Section 2.2 suggest that, at changes
in loading direction, the force vector, F = F; + F5, can be decomposed into a component
parallel to the displacement vector, F'1, and a component parallel to the velocity vector, Fz. As a
demonstration of the resisting force decomposition, Fig. 4.1 shows the force vectors for the box
orbit displacement history in part (a). At the circled point in the displacement orbit, for which
U, = U,, the displacement vector is oriented at 45° to the axes, and the velocity vector is parallel to
the y-axis. The two force vectors in the first cycle of loading are shown superimposed on the force

loci in Fig. 4.1(b), and the second cycle is illustrated in part Fig. 4.1(c).

It is interesting to note from Fig, 4.1 that both vectors, F'; and Fg, reduce in magnitude from the first
to the second cycle, but within a cycle the peak magnitudes are essentially unchanged. Comparing
this observation with the response for the cruciform orbit (Fig. 2.3), it may be concluded that

scragging occurs when the bearing is fully unloaded to zero displacement, but does not occur when
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Figure 4.1. Example of decomposition of bearing force resisting force into two vectors. (a)
Displacement-controlled ‘box’ orbit, (b) first cycle force locus, and (c) second cycle force locus.

one direction is unloaded while maintaining the other direction. This suggests that for a bearing to
be considered degraded for a peak displacement value, it must be completely unloaded through the
origin. This observation will be used in the definition of degradation due to scragging, as described
in Section 4.1.3.

The F; force component in the direction of the displacement may be expressed as a continuous,
isotropic function of the displacement vector, with degradation occurring as a function of the cyclic
path. This behaviour may be described by a hyperelastic force—displacement relation, modified by a
scalar damage parameter. The F'3 component is representative of hysteretic response in the bearing,
and may also be defined in terms of the magnitude of the displacement vector. The hysteretic force
evolves towards the direction of the velocity vector, such that, even under a sudden change in loading
direction, the change in F5 is smooth. Hysteretic rules are required to desctibe the behaviour under
arbitrary, bidirectional loading histories.

Using the decomposition of resisting force, F is defined as:
F(U,n,Dg,Dy) =F1(U,Dg,Dy) + Fo(U,n, Dg) 4.2

where Dg and D)y are scalar history vatiables that account for the degradation of stiffness and
damping in the first and subsequent cycles. Equation (4.2) may be considered a bidirectional
generalisation of the unidirectional models discussed in Section 3.1, in which the total force is
composed of an elastic force in the ditection of U, and a hysteretic force in the direction of

sgn(U). For the bidirectional model the following subsections present the approaches for the force

components and degradation history variables.

4.1.1 Elastic Component

Constitutive models of elastomers commonly consider a hyperelastic stress—strain relation, derived
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from an isotropic strain energy function. The viscoplastic model of Haupt and Sedlan [2001], for
example, considers a generalisation of the Mooney—Rivlin strain energy function, with five elasticity

constants:
U(C) =di (I} —3) +do(Iz — 3) +d3(I; —3)(Ia — 3) + dy(Iy — 3)* +ds(I, — 3)* (4.3)

where d; to ds are material parameters. The tensor C is the right Cauchy-Green strain tensor, and

I and I5 are its first two invariants:

I=uC ; I = - [(tC)* — tr (C)?] (4.4)

N | =

If it is assumed that the simple shearing of an entire beating may be represented by a single state
of stress and plane strain, the deformation gradient, F, and right Cauchy-Green tensor for this

deformation are given by:

1 v 0 1 v 0
F=1(0 1 0 C=F'F=|y 14742 0 4.5)
0 0 1 0o 0 1

where 7y is the shear strain. This assumption is equivalent to representing the entire bearing by a
single Gauss integration point, and does not take into account localised effects caused by bearing

boundary conditions. For this presctibed deformation, Eq. (4.4) reduces to:

L =I,=+?+3 (4.6)

For a hyperelastic material, the second Piola—Kirchhoff stress tensor may be derived by differentiating
the free energy equation with respect to the conjugate strain tensor. The following expression applies
[Bonet and Wood, 1997]:

S =201+ 40,C + 2J2¥,C 1 4.7

where J = 1 is the Jacobian of the transformation, and the W; terms are the derivatives of the free

energy with respect to the strain invariants.

The Cauchy stress tensor is of more importance for engineering applications, and is obtained from the
second Piola—Kirchoff stress tensor by transforming to the ‘spatial description’ of solid mechanics,
through the following relationship:

o= J 'FSFT (4.8)

After some calculation, the form for the Cauchy stress tensor is obtained:
E(M%) 00 0
o=10(y") E'(yY) 0 49)
0 0 E"(y")
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whete the terms O(7y™) and E(7") are odd and even polynomials of the nth otder of the shear
strain, -y, and the apostrophes signify that the functions are different for each component, although
the matrix is symmetric. The coefficients of each polynomial are given by factors of the material

parameters d; to ds. For example, the shear component of Eq. (4.9) is given by:

012 = 0(75) = (2d1 + Sdz)’}/ + (4d2 + 2d3)’y3 + (12d3 + 8d4 + 226[5)’}/5 (4.10)

Because the shear stress (012 = 021) components are the only concern in the bearing model, this
result motivates the use of a fifth-order odd polynomial function of displacement for the elastic
component of the force. Allowing for degradation with cyclic loading, the following expression for
F is defined:

Fi =K Kylar + a2||U||2 + a3HU||4 U (4.11)

where a1 to a3 are material parameters, and Kg1 and K are reduction factors to represent the
effects of scragging and Mullins’ effect, respectively. The reduction factors are initially equal to unity,

and their evolution with cyclic loading is described in Section 4.1.3.

4.1.2 Hysteretic Damping Component

The second term in Eq. (4.2), Fa, represents the hysteretic behaviour of the bearing, An approach
similar to bounding surface plasticity [Dafalias and Popov, 1975] is used for F5 under general cyclic
loading. Unlike the Hwang ez a/. [2002] model, the new approach provides a continuous response
under load reversals, without restrictions to a harmonic loading history. Italso avoids the dependence
on a previous maximum load cycle in defining the hysteretic behaviour, as in the Kikuchi and Aiken
[1997] model.

A bounding surface in force space, with radius R(||U||), is defined by the following expression:

B(U) = |[Fef - R(|[U]]) = 0 4.12)

Considering only rate-independent, isotropic behaviour, a quadratic expression is used for the depen-
dence of the radius, R, on the current displacement vector, U. The quadratic function is primarily
motivated by experimental data, although may be considered a rate-independent simplification of the
model of Hwang ¢z /. [2002] under monotonic loading, The quadratic term is degraded under cyclic
loading, while the constant term representing the radius of the bounding sutface for ||U|| = 0, is
unchanged. These considerations lead to the following expression for the radius of the bounding
surface:

R =b, + Kg2 b2 U||? 4.13)
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where by and b are matetial parameters, and K g is a reduction factor described in Section 4.1.3.

The position of the force vector relative to the bounding surface is described by a scalar distance
variable, §, and a unit direction vector along which the distance is measured, pt. Both terms are
derived from the “image force”, F, which performs a role analogous to the “image stress” in
bounding surface plasticity [Dafalias and Popov, 1975]. The image force is defined by projecting the

unit direction of velocity vector, n, from the origin onto the bounding surface:
F=Rn (4.14)

The parameters d and pt ate then taken as the magnitude and unit direction of the vector pointing

from the current force point to the image force:
F-F,

]_LFQH ; @.15)

Finally, an evolutionary relationship for F' is required, to describe both the direction and magnitude
of the rate of change of hysteretic force, FQ. The hysteretic force is assumed to move towards the
image force in F'» space, such that:
F2 o
|F2|

w (4.16)

‘The magnitude of the change is given implicitly in terms of a scalar evolutionary equation for :
6 = —bsd|[U|| (4.17)

which describes a smooth transition from high to low values of 9, with a rate dictated by the material
parameter, b3. Although Eq. (4.17) is expressed in rate form, the appearance of time derivatives on
both sides of the equation results in a rate-independent model. Also note that a sudden change of
load direction changes the direction and magnitude of the vector o, according to the definition,
Eq. (4.15). However, this formulation does not suffer from the “overshooting” phenomenon of
conventional bounding surface plasticity (Section 3.2.2). In this approach, the plastic modulus is
controlled by the absolute value of §, rather than a ratio of § to an initial value, §;,. This implies that
after a small perturbation in the displacement history, the value of § is essentially unchanged.

Equations (4.14) and (4.15) can be rearranged to obtain the following expression for the hysteretic
force:

Fo=Rn—-dp (4.18)

The evolution of Fg is summarised in Fig. 4.2. The smooth transition described by the scalar
equation, (4.17), is illustrated for unidirectional loading in Fig. 4.2(2). For a given value of | U],



52

Damian N. Grant, Gregory L. Fenves & Ferdinando Auricchio

the values of R and 6 are determined, and from these, F is calculated. For bidirectional loading,

Fig. 4.2(b) shows the definition of the image force, and vectors Rn and dp, which are used to
determine Fy from Eq. (4.18).

@)

Figure 4.2, Evolution of hysteretic force, (a) Unidirectional and (b) bidirectional evolution of hysteretic
component of force.

Although the hysteretic model described in this section is in some respects similar to conventional

bounding surface plasticity, there are several important differences:

1. The model described here refers only to the hysteretic part of the force, which is added

in parallel to an elastic component. Bounding surface plasticity is an extension of classical
plasticity, in which the elastic and plastic parts of the displacement vector (or strain tensor)

are added in series.

. The image force is projected parallel to the velocity vector, and not homologously with the

force point (as described in Section 3.2.2) or radially from a centre of homology (as in the

radial mapping formulation; for example [Dafalias, 19806]).

. The rate of convergence to the bounding sutface is defined by the amplitude of a distance

parameter in force space, and not by a ratio of current to initial distance. This not only provides
a better fit of experimental data for HDR bearings, but also minimises storage requirements,

and it does not require unloading checks or suffer from the overshooting problem.

. The radius of the bounding surface is defined as a function of the current displacement vector

and a damage parameter, and does not harden, either isotropically or kinematically, in the

classical plasticity sense.
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4.1.3 Degradation

The bidirectional experimental data presented in Section 2.2 show that, under cyclic loading condi-
tions, the stiffness and damping of HDR bearings decrease. In general, a virgin bearing will exhibit
higher stiffness and damping in the first cycle of loading at a given amplitude than on subsequent
cycles. With continued cyclic loading, additional degradation accumulates, but the effect is less

significant.

The distinction between scragging and Mullins’ effect was discussed from a phenomenological and
micromechanical point-of-view in Section 2.3. The term “scragging” is used to describe the first
cycle degradation related to the maximum displacement reached, while “Mullins’ effect” refers to
degradation over the course of the loading process related to work done in the bearing, It is then
assumed that the distinction of Clark ez 2/ [1997] applies to the recovery of this damage. That is, the
first cycle degradation corresponds to long-term scragging, while the accumulated degradation over
all cycles corresponds to short-term Mullins’ effect. Recovery of damage parameters is important
when the bearing model is calibrated over a series of tests, as will be presented in Chapter 5, and is

essential for accurately describing the bearing behaviour of a wide range of cyclic loading.

The model includes the following approaches for defining the reduction factors in Eqs. (4.11) and
(4.13).

4.1.3.1 Scragging.  'The reduction factors Kg; and Ko, represent the effects of scragging on
the bearing stiffness and hysteretic forces, respectively. Exponential degradation of the two forces is

considered, based on a damage parameter, D g, which represents the state of scragging in the bearing,

Although some bidirectional effects are exhibited at higher strain levels [Morgan, 2000], the ex-
perimental data considered in Section 2.2 indicate that the scragging effect may be approximately
modelled as an isotropic softening process. This suggests that the scragging damage parameter
should increase when the displacement norm, |U||, exceeds the previous maximum. The obser-
vations from Fig, 4.1, however, suggest that scragging does not fully take effect until the bearing
is unloaded below a threshold level. Furthermore, if Dg evolves continuously while a maximum
cycle is applied, then the maximum force reached will be governed by Eqgs. (4.11) and (4.13), and
subsequent cycles will reach the same level of force. This means that the damage parameter must be

modified after some amount of unloading from a maximum.

To incorporate this observation for general cyclic loading, two damage thresholds, D;: and Dy are
defined to govern the evolution of Dg. The first parameter represents the maximum value of | U]|
reached, and is updated continuously with the applied displacement history. When unloading takes
place from ||U|| = DY, the second parameter, Dy is reduced with ||U||, and represents the extent
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of unloading, while the current scragging parameter, Dy is increased at the same rate. Load reversals
within the upper and lower bounds will have no effect on Dg. When Dg reaches zero, the current
value of Dg reaches Dg, and the scragging process is complete. In a continuous time setting, the

rate equations of the various scragging parameters are summarised below:

i ||U| = Df and TU[ >0
D§ =Dy = U]
D=0
if ||U| =D3 and JU[ <0 4.19)
Di =0
Dg = [[U]]
Ds = —[[U]]

Figure 4.3 illustrates the evolution of the scragging parameter and thresholds with initial values
Dgo = DE;O and Dy, under an arbitrary displacement history shown in Fig. 4.3(a). In Fig. 4.3(a),
the upper and lower scragging thresholds increase from time ¢1 to t2, when the displacement norm
exceeds D;O. Upon load reversal, when the displacement reaches the lower threshold (3 to t4),
Dy decreases, and the scragging parameter in Fig. 4.3(b) increases according to Eq. (4.19). A small
displacement cycle between the current thresholds (t4 to £g) does not affect any of the parameters,
and finally when the displacement returns to zero (tg to t7) the scragging parameter reaches the

upper threshold.

Finally, it is necessary to define the reduction factor for each component of the force vector as a
function of the scalar scragging parameter. An exponential expression for each reduction factor is
considered in terms of the cube of the scragging parameter. The cube of D is considered appropriate
because this is approximately proportional to the work done by the quadratic hysteretic force defined
in Eq. (4.18). The work done by the hysteretic force is representative of the energy dissipated in
the bearing under virgin displacement excursions, which may be expected to give a measure of the
degradation in these scragging cycles. Comparisons with experimental data in Section 5 also suggest
that this assumption is reasonable. For example, the percentage degradation observed on a virgin
displacement cycle to 250% strain magnitude is less than that observed on a subsequent displacement
cycle to 350% strain magnitude. An exponential reduction in terms of Dg alone would predict that
it takes a 500% strain to degrade the bearing the same amount. Therefore, the following expressions

apply for the reduction factors:
Kg1 = exp(—c1D3) Kgy = exp(—c2D3) (4.20)

where ¢ and cy are material parameters which govern the rate of degradation of F; and Fy,

respectively.
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Figure 4.3. (a) Arbitrary history of displacement norm, || U||, and scragging parameter upper and lower

thresholds, D and Dy, and (b) evolution of scragging and Mullins’ effect damage parameters, Ds
and D M

4.1.3.2 Mullins’ effect. = Mullins’ effect is accounted for in the model by the reduction factor
K. For consistency with the scragging damage parameter, a strictly increasing, displacement-based
parameter, Dy, is adopted. Unlike the scragging effect, however, Mullins’ effect degradation occurs
over successive cycles of loading, regardless of previous peak cycles. As with scragging though, it is
desirable for Mullins’ effect to be applied when the displacement norm decreases. To represent this
behaviour, the rate of increase of D)y is given by the rate of decrease of the displacement norm,
|IU||. The rate equations are summarised below, while the evolution of D) from an initial value
of D0, under the general displacement history consideted eatlier is shown in Fig, 4.3(b). The
difference between the behaviour of Dg and D)y is that the Mullins’ effect parameter increases
whenever the displacement is decreasing (2 to t4 and tg to t7), and not just when it decreases below
a certain threshold.

if || || DM =0

L @21)

>0,
<0, Dy = —|U]|

it [[U]]

The degradation of response due to Mullins’ effect is smaller than the degradation due to scragging,

and tends to become insignificant after several cycles. For this reason, exponential degradation is
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defined to a residual limit, with the following expression appropriate for the reduction factor:
Ky =¢34 (1 — c3) exp(—caD3y) (4.22)

where c3 and ¢4 are material parameters. This expression describes a reduction factor that evolves

from an initial value of 1.0 to a residual value of c3 as Dy is increased.

The Mullins” effect reduction factor is only applied to the elastic skeleton, and not to the hysteretic
force. Experimental data, such as those shown in Fig, 2.4, suggest that the reduction of the hysteretic
force is small compared with the elastic force, and does not justify the inclusion of further material

parameters in the model.

4.2 TIME DISCRETISATION AND INTEGRATION ALGORITHM

The time discretisation and solution algorithm for the continuous model discussed in the previous
section is relatively simple compared with the return mapping algorithm used with classical plas-
ticity approaches (Section 3.2). Initially, Eqs. (4.1) and (4.17) are integrated using backward Euler

integration to give:

n— U-U. (4.23)
d
an 5.
(4.24)

f=———n
1 +b3||U _UnH

It must be realised that Eq. (4.24) applies along displacement paths with no sudden change of
direction, as discussed in the previous section. This means that an effective value of §,, = ¢, must
be defined at the start of the time step based on the curtent value of n, and values of R and Fg
at time step n. Storage requirements can also be minimised by recalculating R,, by substituting
values of U,, and D sy, (which must be stored for other steps in the algorithm) into Eq. (4.13). The
effective 9y, is then given by:

5; = ”R(Um DSn)n - F2n|| (4.25)

The unit vector, pt, can be obtained by integrating Eq. (4.16):

F; —-Fy,,
M= |

e 4.26
Fy — o] 429

From Eq. (4.15)2, the vector given by (F — F3) is parallel to p, and adding and subtracting Fz ,,,
the following result is obtained:

(F = Fop)+ (Fa—Fap)| | w @27



Modelling and Analysis of High-damping Rubber Bearings for the Seismic Protection of Bridges 57

The second expression in parentheses is parallel to g from Eq. (4.26), which shows that the first
expression in parentheses is also parallel to p. Because g is a unit vector, the following equation is

obtained: R
F-F,,

IE — Fol

which does not require the current value of the damping force vector, Fa.

m (4.28)

For the damage parameters, Eqs. (4.19) and (4.21) are replaced with their equivalents in a discrete
time regime:

if U] > Dj,

D¢ = U
DE :Dgn—"_(D;:_D;n)
Ds = Dsy,
it Ul < D3, -
DE = DE &2
S Sn
Dy = U]l

Ds = Ds, — (Dg — Dg,,)
it U] < IO,
Dyr = Dupn + [|Un | — [T

The time discrete expressions in Eq. (4.29) are motivated by the desired response under arbitrary
time histories, such as in Fig. 4.3, and are not obtained by directly integrating the time continuous
equations. Note that the proposed form eliminates the need to consider the “crossing point” at
which the inequalities are first satisfied, although it will not correctly identify the accumulation of
damage for displacement histories that cross the origin in displacement space. In the implementation
of the model it is necessary to provide a check of the signs of U,, and Uy, and divide the time step

into unloading and reloading phases when this occurs.

The algorithm used to obtain the force for a given displacement at time ¢,,41 is summarised as

follows:

1. Update damage vatiables, Dg and D)y, and scragging thresholds, Dg’ and Dy, based on the

current displacement vector norm, using Eq. (4.29).

2. Calculate teduction factors, Kg1, Kg2 and K, based on new damage variables from
Egs. (4.20) and (4.22).

3. Calculate the elastic force, F1 (U, Kg1, K)r), from Eq. (4.11).
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4. Calculate bounding sutface radius, R(||U||, Kg2), from Eq. (4.13).
5. Calculate direction of velocity vector, 1, from Eq. (4.23), and hence F from Eq. 4.14).

6. Use Eq. (4.25) to calculate equivalent distance to bounding surface at start of time step, J;,
and update distance for time n + 1 from Eq. (4.24).

7. Calculate direction of change in hysteretic force, u, from Eq. (4.28), and hence update
hysteretic force, Fo using Eq. (4.18).

8. Calculate the updated force vector from Eq. (4.2), and store U, F3 and {Dg, D;, Dy, Dy}

for next time step.

For force-controlled problems, an iterative Newton—Raphson approach is used to calculate the
displacement vector for a given force. For quadratic convergence of the algorithm, a consistent
tangent matrix must be derived by differentiating the time discrete equations presented in this section

with respect to the displacement vector. The derivation is detailed in Appendix A.

4.3 PARAMETER SENSITIVITY STUDY

Using the time discrete version of the model presented in the previous section, a series of sensitivity
studies was carried out to examine how changes in the model parameters affect the response results.
The initial parameter set is presented in Table 4.1, and displacement orbit 2 (box orbit) at 200%
maximum strain were chosen for the sensitivity study. The parameter set was adapted from the model
calibration presented in Chapter 5, to represent realistic bearing behaviour. The force—deformation
response and force loci for the sensitivity studies are presented in Figs. 4.4—4.13. In Figs. 4.4-4.9,
parameters a; to as, describing elastic response, and b; to bs, desctibing hystetesis, were varied by
factors of 0.5 and 2.0, while fixing the parameters describing degradation, c; to ¢4 at zero. Clearly,
from Eq. (4.11), increasing parameters a1 and ag is expected to increase the shear force carried by
the bearing, while the opposite applies for ao, which is negative. Increasing the linear term, a1,
increases the stiffness across the range of displacements, while the higher order terms, a and as,
have an increasing effect at the higher strain levels. This is particularly evident in the third part of
each figure, where the higher order terms clearly account for the “spiky” nature of the force loci.

Increasing both by and bs can also be observed to increase the force response. Doubling the constant
term, by, has a very small effect on the overall response (Fig. 4.7), whereas doubling the quadratic
term, bo, significantly increases the hysteretic force acting in the direction of loading (Fig. 4.8).

Figures. 4.10 and 4.11, illustrate the effect of varying scragging parameters ¢; and cg, while holding
Mullins’ effect parameters c3 and ¢4 at zero. In these cases, the first cycle behaviour is the same

for each analysis, but the second cycle response is degraded. The material parameters ¢1 and ¢
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affect the elastic and hysteretic component of force, respectively. Finally, Figs. 4.12 and 4.13 show
the response for varying the Mullins’ effect parameters, holding scragging parameters at zero. This
case is similar to the scragging parameter study, as only two cycles on a virgin bearing are shown
here, and the distinction between Mullins’ effect and scragging is not observed until later cycles. The
difference between the two is that the former is bounded by a minimum (represented by the factor
c3) while the latter is not. Varying this minimum (Fig, 4.12) clearly reduces the residual response after
several cycles. It is evident from Fig, 4.13, however, that changing c4 does not affect the response
significantly. This is primarily because c3 is relatively close to unity, so that the residual response

under Mullins’ effect degradation is not significantly different from the first cycle response.

Table 4.1. Material parameters used in sensitivity study

aq ag as bl b2
1.0kip/in  —0.03 kip/in®  0.002 kip/in® 0.5kip 0.1 kip/in?

b3 C1 C2 C3 Cq
1.0 /in 0.002 /in® 0.006 /in® 0.8 0.02 /in®
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° °
Qo Qo
X 0 X 0
x >
[N [N
5 5
10 10
4 2 0 2 4 4 2 0 2 4 10 5 0 5 10
U, (inches) Uy (inches) F (kips)

Figure 4.4. Model response under variation of a;. Degradation parameters c1 = c2 = c3 = c4 = 0;
other parameters defined by Table 4.1.
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Figure 4.5. Model response under variation of az. Degradation parameters c1 = c2 = c3 = c4 = 0;
other parameters defined by Table 4.1.
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Figure 4.6. Model response under variation of a3. Degradation parameters c1 = c2 = c3 = c4 = 0;
other parameters defined by Table 4.1.

Figure 4.7. Model response under variation of b;. Degradation parameters c1 = c2 = ¢3 = c4 = 0;

other parameters defined by Table 4.1.
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Figure 4.8. Model response under variation of b2. Degradation parameters c; = c2 = c3 = ¢4 = 0;

other parameters defined by Table 4.1.
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Figure 4.9. Model response under variation of b3. Degradation parameters c; = c2 = ¢3 = c4 = 0;
other parameters defined by Table 4.1.
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Figure 4.10. Model response under variation of c;. Parameter co = 0 and Mullins’ effect parameters
c3 = c4 = 0; other parameters defined by Table 4.1.
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Figure 4.11. Model response under variation of c2. Parameter c; = 0 and Mullins’ effect parameters
c3 = c4 = 0; other parameters defined by Table 4.1.
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Figure 4.12. Model response under variation of c3. Scragging parameters c1 = c2 = 0; other

parameters defined by Table 4.1.
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Figure 4.13. Model response under variation of c4. Scragging parameters c; =
parameters defined by Table 4.1.
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4.4 EXTENSION OF MODEL TO RATE-DEPENDENCE

The model described in the previous sections is able to provide a good match of HDR bearing
response under bidirectional load paths at a fixed strain rate (see Chapter 5). It is well known,
however, that the behaviour of HDR bearings is strain rate-dependent under unidirectional and
bidirectional loading [Clark ez al, 1997; Morgan, 2000; Huang, 2002]. As discussed eatlier, the
proposed model is unable to describe this rate-dependence, and it must therefore be calibrated for

strain rates appropriate for earthquake loading,

As discussed in the previous chapter, existing phenomenological models of unidirectional bearing
response are either rate-independent, or, if rate-dependence is included in the model, they are
calibrated separately for every set of experimental data. There appears, however, to be little practical
value in including rate-dependent terms in a model if the calibrated parameter set cannot be used
to describe bearing response at a strain rate that differs from the experiment. In addition, the rate-
dependent terms adopted in the Huang [2002] (Egs. (3.1)—(3.3)) and Tsai ez 4/ [2003] (Eqs. (3.7)—(3.8))
models are inadequate for non-harmonic, bidirectional loading, and are thetefore inappropriate for

the proposed model described above.

Three-dimensional constitutive models of elastomers [Govindjee and Simo, 1992; Miehe and Keck,
2000; Haupt and Sedlan, 2001] typically describe rate-dependence and relaxation effects within
the framework of viscoelasticity. These models add a rate-dependent term in parallel with a rate-
independent term, with the latter comprising either an elastic [Govindjee and Simo, 1992], or an
elasto-plastic [Miche and Keck, 2000; Haupt and Sedlan, 2001] model. Rheologically, the rate-
dependent portion of these models can be represented by a number of Maxwell elements (illustrated
in Fig. 4.14) in parallel, with linear or nonlinear spring stiffness, K;, and dashpot viscosity, 7;.
Adopting this approach to the current model, the bearing force can be redefined:

F(U,n, Dg, Dys) = F1(U, Ds, Das) + Fo(U,n, Ds) + Y Fs,(Fy) (4.30)

where F'; and F9 are defined as before, and each of the n rate-dependent force terms are obtained

from the following evolutionary equation:

. . F
Fs, = K; (U - 77—3) (4.31)

The time discretisation and solution algorithm for the enhanced model fits into the same scheme
described above, with F'1 and F'3 obtained as in Section 4.2. Equation (4.31) is discretised according
to the backward Euler scheme, and solved for each 7 = 1 to n:

_ Fs,, + K;(U-1U,)

F3;
3 1—AtKZ/’I’h

(4.32)
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Figure 4.14. Maxwell element — one-dimensional rheological model of viscoelasticity.

where subscript n and no subscript represent the previous and present time step, respectively, and

At is the time step.

Unlike Eq. (4.17), the mixture of vectors and their time derivatives in Eq. (4.31) ensures that the
resulting force term is rate-dependent — this is especially evident from the presence of the time step
in Eq. (4.32).



5. VALIDATION OF PROPOSED MODEL

5.1 BIDIRECTIONAL CALIBRATION OF RATE-INDEPENDENT PARAMETERS

The bidirectional model described in the previous chapter uses ten material parameters to describe
the rate-independent response. An appropriate identification procedure must be used to determine
these parameters for a given bearing, In many studies of bearing models, a separate identification
procedure is carried out for each of a series of tests to show that a model can represent both
scragged and non-scragged response. For example, Hwang ¢ a/. [2002] determine parameter values
for a beating in the virgin state, followed by a separate parameter identification for a subsequent
test. Although good agreement is found between the measured and predicted hysteresis loops, there
are significant changes in the values of the parameters, including those parameters that describe
components that are not expected to degrade with cyclic loading, Because the degradation depends
on the history of loading, a better approach is to identify a set of parameters for a bearing that

represents the cyclic degradation over a series of loads.

In the bidirectional models defined in the previous section, the two damage parameters, Dg and
Dy, represent semi-permanent scragging and telatively short-term Mullins’ effect, respectively.
Experimental evidence suggests that the former degradation is recovered over a period of several
years, while the latter is fully recovered in approximately one day, although partial recovery occurs over
a shorter period [Thompson ¢f al., 2000]. In the experimental programme described in Section 2.1,
the tests were separated by time periods ranging from 5 minutes to 24 hours. To represent recovery
of bearing stiffness between tests, the damage parameter, Dy, was set to zero, while D g was retained

between tests.

The complete test programme of the HDR bearings is summarised in Table 5.1. The orbit number
(from Fig, 2.2) is given, as well as the maximum shear strain in the x- and y-directions (v, and 7y,
respectively), and testing rate. Note that the data for tests 13, 17 and 21 were not available nor

included in the subsequent analyses.

The parameter identification for the bidirectional model is carried out for the test series by using the
downhill simplex algorithm [Nelder and Mead, 1965]. The algorithm only requires evaluation of the
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Table 5.1. Tests of HDR bearings and weights and residuals from model calibration®

Test || Orbit | Rate (Hz) | 72(%) | 74(%) || wix | w2 | 652 wis | wia | Oia
@ 1s 0.01 25 25 — — | 1.1733 — — | 1.0402
@) 1s 0.01 250 250 0.4 0.5 | 0.2247 || 0.4 0.5 | 0.2088
3 1s 0.01 25 25 — — 1 0.7888 — — | 0.7324
O] 1s 0.01 100 100 — — | 0.4896 0.2 0.0 | 0.4299
®) 1s 0.01 200 200 — — | 0.4095 0.2 0.0 | 0.3658
©) 2s 0.01 25 25 — — 1 0.3323 — — | 0.4079
@ 3s 0.01 25 25 — — | 0.4638 — — | 0.6072
®) 4s 0.01 25 25 — — | 0.4762 — — | 0.5859
) 2s 0.01 25 100 — — | 0.3707 — — | 0.4448

(10) 3s 0.01 25 100 — — | 0.5695 — — | 0.7707

(11) 4s 0.01 25 100 — — | 0.4936 — — | 0.6796

(12) 2s 0.01 100 100 0.2 0.0 | 0.3453 — — | 0.3830

(13) 3s 0.01 100 100 — — — — — —

(14) 4s 0.01 100 100 — — 1 0.5329 — — | 0.5981

(15) 4r 0.50 100 100 — — | 0.3191 — — | 0.2134

(16) 2s 0.01 100 200 — — | 0.3361 — — | 0.3110

17 3s 0.01 100 200 — — — — — —

(18) 4s 0.01 100 200 — — ] 0.6258 — — | 0.6064

(19) 4r 0.50 100 200 — — | 0.2203 — — 1 0.1770

(20) 2s 0.01 200 200 — — | 0.1987 — — | 0.1764

en || 3s 0.01 200 | 200 || — | — | — || = | — | —

(22) 4s 0.01 200 200 — — | 0.5777 — — | 0.5375

(23) 4r 0.50 200 200 — — 1 0.2290 — — | 0.1964

(24) 2s 0.01 250 250 0.2 0.0 | 0.2334 — — | 0.4311

(25) 3s 0.01 250 250 — — | 0.3224 — — | 0.6541

(26) 4s 0.01 250 250 — — 1 0.2276 — — | 0.4851

27) 1s 0.01 25 25 — — | 0.5154 — — | 0.6644

(28) 1s 0.01 250 250 0.2 0.5 | 0.2409 || 0.2 0.5 | 0.2218

“Bold lines are tests used in model calibration.

objective function (not gradients), and it is computationally efficient. The function to be minimised
is the weighted sum of the residuals from a subset of the tests in the experimental programme, in

which the residual from test 7 is defined as:

I ’(F — Fim(a)"dU;
~ J[¥Lauj

0:(a) (5.1)

whete U; and F; . are the expetimental force and displacement from test ¢, and F; ,,(a) is

the resisting force determined by the model with parameters given in vector a. The residual is
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normalised with respect to the total work done in the test. Each residual is weighted by a scalar, w;,
with " w; = 1, so that the total residual is given by:

no. tests

0= > (wb) (.2

i=1
This form of the residual function allows flexibility in the identification algorithm. To assess the
predictive capabilities of the model, the weights for certain tests can be set to zero to remove this
data from the parameter optimisation. Note, however, that the change in the scragging parameter
must still be considered over the entire test regime for an appropriate determination of material

parameters.

Data for calibration are selected to be representative of the bearing response under different load
paths and strain levels. In this case, tests 2, 12, 24 and 28 were selected for the calibration. The first
two represent the high strain, unidirectional behaviour of the bearing under displacement orbit 1.
These give an indication of the bearing response in both the virgin state of the bearing and in the fully
degraded state. The latter two tests are representative of bidirectional response, under displacement
orbit 2, at both medium and high strain levels with total shear strain magnitudes of 140% and 350%,
respectively. Orbits 3 and 4 were not considered in the calibration, to give an indication of the
predictive power of the model. Furthermore, low strain tests were also ignored, as they are less

critical for earthquake engineering applications.

The calibration is carried out in two stages to separate the degradation into scragging and Mullins’
effect components. Of the tests included in the calibration, both tests 2 and 24 are expected to
induce scragging degradation, because they represent the highest strain for the bearing. In the first
stage of the calibration, only first half-cycle data are considered, and the minimisation is carried out
on material parameters (a1, az, as, b1, ba, bs, 1, ¢2), ignoring the degradation due to Mullins’ effect
(c3 = 1, ¢4 = 0). In the second stage, all cycles are used, and material parameters (c1, ¢35, ¢4) are re-
calibrated, holding the other parameters fixed. The parameter c; is included in the second calibration
to separate the scragging and Mullins® effects. The weights from each stage of the calibration, w; 1

and wj 2, are shown in Table 5.1.

The evolution of the degradation parameters, Dg and D)y, over the course of the experimental
programme, is shown in Fig, 5.1. The scragging parameter increases when the displacement vector
reaches a new peak value, whereas the Mullins’ parameter increases during each test, but is recovered

between tests. The material parameters obtained in the calibration procedure are shown in Table 5.2.

The experimental data from the tests included in the calibration are compared with the model
response in Figs. 5.2, 5.3 and 5.4, and the residuals are given in Table 5.1. The model response shows
an excellent fit of the orbit 1, unidirectional behaviour (Fig, 5.2), capturing both the strain stiffening
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Figure 5.1. Evolution of Ds (continuous line) and D) (discrete points) over test programme.

Table 5.2. Material parameters from displacement-controlled tests, calibrated for orbit 1 and 2 test
data.

aq a9 as bl b2
1.3387 kip/in ~ —0.0170 kip/in®  0.0006 kip/in®  0.7436 kip ~ 0.2022 kip/in>

b3 C1 C2 C3 C4
1.9431 /in 0.0018 /in® 0.0059 /in3 0.8847 0.0003 /in3

and degradation at the beginning and end of the test regime. The model response for the box orbit
2 also provides an accurate representation of medium strain level (Fig. 5.3) bidirectional behaviour,
in terms of both magnitude and direction of the force vector in the first cycle. The high strain
level (Fig, 5.4) response is also captured qualitatively, although degradation is slightly overestimated
in the second cycle response. It is interesting to note that the second, third and fourth ‘corners’ of
the orbit 2 experimental force locus are greater in magnitude than the first excursion, particularly
for the second and subsequent cycles. This unusual behaviour observed in tests may be caused by

anisotropy in the bearing at very large strain levels.

To assess the predictive capability of the model, the response for tests not included in the calibration
(although included in the calculation of Dg) can be examined. Representative comparisons of
experimental data and model response are presented in Figs. 5.5 to 5.8. The residuals for each test, as
defined in Eq. (5.1), are also given in Table 5.1. It can be observed that the residuals of the tests not
included in the calibration routine are greater, although not significantly, than for the tests included
in the calibration (shown in boldface). The exceptions are the residuals for the low strain level orbits,
tests 1, 3, 6, 7, 8 and 27, which are generally greater than the residuals from other tests. For these
tests, relatively small deviations from experimental behaviour in the model response represent a large
percentage of the total work done in the test, which leads to a large normalised residual. In most
cases, the medium to high strain behaviour is of more interest for design. The model response for
orbits 1 and 2 is particularly accurate, probably because other tests under these displacement orbits
had been included in the calibration. The model response for orbit 3 is also accurately described, but

bearing forces under orbit 4 are slightly overestimated by the calibrated model, particularly for the
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high strain test (corresponding to a maximum shear strain vector magnitude of 310%). However,

the direction of the force vector is still obtained accurately in these tests.

Finally, the results from the orbit 4, high strain rate tests are presented in Fig, 5.9, and compared with
the model response using material parameters calibrated for slow test data. The experimental results
(top half of Fig. 5.9) may also be compared with the slow tests (Fig. 5.8) to assess the strain-rate
dependence directly. For the maximum strain levels and strain rates considered, the 0.5 Hz tests result
in resisting force levels up to 30% greater than those observed in the 0.01 Hz tests. Consequently,
the rate-independent model response for a bearing calibrated to the slow rate tests underestimates
the forces in faster tests. In this case, however, where the slow rate forces have been overestimated

initially, the model provides a good fit of the data for the 100% and 200% strain tests.
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Figure 5.3. (a) Experimental response and (b) model response with parameters in Table 5.2, for test

12: orbit 2, v, = vy = 100%.
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Figure 5.5. (a) Experimental response and (b) model response with parameters in Table 5.2, for tests
4 (dotted line) and 5 (solid line): orbit 1, 7, = v, = 100% and v, = v, = 200%. Tests not included
in model calibration.
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Figure 5.6. (a) Experimental response and (b) model response with parameters in Table 5.2, for tests
16 (dotted line) and 20 (solid line): otbit 2, v, = v, = 100% and y, = 7, = 200%. Tests not included
in model calibration.
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Figure 5.7. (a) Experimental response and (b) model response with parameters in Table 5.2, for test
25: orbit 3, 7, = v, = 250%. Test not included in model calibration.
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5.2 UNIDIRECTIONAL CALIBRATION OF RATE-INDEPENDENT PARAMETERS

For practical use of the model for design, it would be preferable to calibrate material parameters
based only on unidirectional tests. Because of the vector summation involved in the model, it could
be expected that there may be difficulties using unidirectional calibrated parameters for bidirectional

analyses.

To examine this issue, the two-step calibration described in the previous section was repeated with
the weights, w; 3 and w; 4, given in Table 5.1. Note that only orbit 1 tests carry a non-zero weighting
in the two calibration phases, although the other tests are included in the analysis process for a proper
account of scragged and unscragged behaviour. Orbit 1, the cruciform orbit, includes loading in
both directions, but the two directions are loaded consecutively rather than simultaneously. This
means that the first half-cycle data used in the first phase of the calibration are unidirectional, and the
full data used in the second phase are equivalent to two full unidirectional cycles, if the assumption
of isotropic damage is valid. The tests included in the calibration represent a range of strain levels

from 100% to 250%, and virgin and scragged response.

The parameters obtained in this calibration are shown in Table 5.3. Comparing with Table 5.2,
and considering the sensitivity studies of Section 4.3, it can be observed that the only significant
changes from the first calibration are in the elastic component, governed by parameters a1, as and
a3. The residuals from this calibration routine, 6; 4, ate also presented in Table 5.1. In general, the
residuals are less than for the previous calibration for orbit 1 tests across the full range of strains
(tests 1-5, 28; exception test 27). For the orbits 2—4, low strain level tests (tests 6—14) the residuals
are 11%—-38% greater than for the first calibration, whereas at a medium to high strain level (tests
16-23) the residuals are 3%—20% less. At the highest strain levels (tests 24-20), the residuals from
the unidirectional calibration are again greater than for the bidirectional calibration. Finally, the rapid
tests (tests 15, 19 and 23) have lower residuals for the second calibration, although as discussed

above, without accounting for strain-rate dependence in the model, this has little significance.

Table 5.3. Material parameters from pseudo-static displacement tests, calibrated for orbit 1 test data
only.

ax az as by bo
1.5818 kip/in ~ —0.0665 kip/in®  0.0029 kip/in®  0.7930 kip ~ 0.2007 kip/in?
b3 c1 2 c3 ¢4
1.9081 /in 0.0018 /in® 0.0069 /in® 0.8652 0.0004 /in®

Figures 5.10-5.17 compare the experimental and model behaviour for selected tests from Table 5.1.
Comparing Figs. 5.2 and 5.10, it is apparent that, although the differences are slight, the unidirectional
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calibration captures the stiffening behaviour exhibited in tests 2 and 28 more accurately. For the tests
shown in Figs. 5.11, 5.13 and 5.14, the unidirectional calibration performs similatly to the bidirectional
data. However, Figs. 5.12 and 5.15, show that the model response for the second calibration greatly
overestimates the observed behaviour for these high strain level tests. As discussed earlier, the
parameters obtained from both calibrations suggest that, of the two components of force, only the
elastic skeleton is changed significantly. This observation can also be made from Figs. 5.12 and 5.15,

by decomposing the force vector into its components.

From the comparisons between unidirectional and bidirectional calibrations, it is apparent that neither
procedure provides uniform accuracy across the full range of strain levels and displacement orbits.
In particular, it is not true that a calibration procedure that includes bidirectional test data is better
suited for calibrating the proposed bidirectional model for all load paths. From the test residuals, it
seems that the principal difference between the two procedures was in the range of strains, and not
the displacement orbits, covered in the calibrated tests. The first calibration included a range of peak
strain magnitudes from 140% (test 12) to 350% (test 24), whereas the second calibration included a
range from 100% (test 4) to 250% (tests 2 and 28). Accordingly, the second calibration performed
worse for the tests at strain levels beyond this range. If unidirectional tests were available up to strain
levels of 350%, it may be possible to effectively calibrate the model across a larger range using only

unidirectional tests.
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Figure 5.10. (a) Experimental response and (b) model response with parameters in Table 5.3, for tests
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12: otbit 2, v, = vy = 100%. Test not included in model calibration.
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Figure 5.13. (a) Experimental response and (b) model response with parameters in Table 5.3, for tests
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78

Damian N. Grant, Gregory L. Fenves & Ferdinando Auricchio

FX (kips)

(b)

FX (kips)

15 0 15 3
U, (inches)

15 0 15
Uy (inches)

3

15 0o 15 3 3

U, (inches)

15 0 15

Uy (inches)

7

35

0 35 7
F  (kips)

Figure 5.14. (a) Experimental response and (b) model response with parameters in Table 5.3, for tests
16 (dotted line) and 20 (solid line): otbit 2, v, = v, = 100% and y, = 7, = 200%. Tests not included
in model calibration.
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Figure 5.15. (a) Experimental response and (b) model response with parameters in Table 5.3, for test
25: orbit 3, 7, = v, = 250%. Test not included in model calibration.
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Figure 5.17. (a) Experimental response and (b) model response with parameters in Table 5.3, for tests
15 (dotted line) and 23 (solid line): orbit 1, v, = v, = 100% and v, = 7, = 200%, rapid strain rate.

Tests not included in model calibration.
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5.3 RATE-DEPENDENT PARAMETER CALIBRATION

Ideally, the parameters describing rate-dependence of the proposed model, K; and ; fori = 1 to n,
could be calibrated in a third step, after parameters a1—c4 are obtained for rate-independent response.
The rate-dependent calibration fits into the same scheme described above, by fixing rate-independent
parameters at the values obtained above, assigning a non-zero weighting to the residuals from high
strain-rate tests, and carrying out the downhill simplex algorithm on the weighted residual. The
number of Maxwell springs, 1, adopted in the calibration would depend on the desired accuracy,
although one spring should be sufficient to describe behaviour at two strain-rates: pseudo-static rates
and those typical of earthquake excitation. This procedure assumes that the parameters obtained
for pseudo-static data do not already include a rate-dependent component, which is a reasonable

assumption for the slow strain-rate used in the testing programme described here.

Although conceptually simple, this rate-dependent parameter calibration was not carried out in
this work. The experimental programme contained only three tests at a strain-rate appropriate
for earthquake ground motion, and, for practical reasons, these tests were only performed with
displacement orbit 4. Tt would be difficult to calibrate three material parameters for this limited test
data. More importantly, however, the proposed model calibrated for bidirectional (orbits 1 and 2) or
unidirectional (orbit 1) data overestimate the slow strain-rate orbit 4 response (Figs. 5.8 and 5.10),
and calibrating the rate-dependent parameters for the rapid strain-rate tests would be meaningless. If
unidirectional test data at rapid strain-rates were available, the parameters d;—d3 could be determined

with more confidence.

5.4 SENSITIVITY OF CALIBRATION PROCEDURE TO INITIAL PARAMETER SET

The form of the objective function used in the parameter calibrations in the previous sections,
Eq. (5.1), does not permit analytical differentiation, and the evaluation of a gradient would require
numerical differentiation with respect to the model parameters. This procedure is computationally
demanding, because it requires multiple objective function evaluations for every trial parameter
set. For this reason, in Sections 5.1-5.3, the downhill simplex algorithm was used, which is a

computationally efficient procedure that does not require gradient evaluations.

As with other minimisation routines, the downhill simplex algorithm determines a local minimum of
the objective function in the neighbourhood of an initial trial point. For the objective function used
here, Eq. (5.1), multiple local minima exist, and it is important to determine an initial point in the
vicinity of the global minimum of the function. For a model with ten or more parameters, however,
this is difficult to determine a priori. The validation described in Section 5.1 reduces this difficulty
slightly, by separating the original parameter set into two smaller subsets. The issue of determining

an appropriate initial trial set, however, remains a problem.
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In Section 5.1, a trial parameter set was selected based on visual inspection of bidirectional test data.
When bidirectional data are available, the decomposition illustrated in Fig, 4.1 reduces the problem
dimension further, by separating elastic and hysteretic damping components of the force vector, and
the corresponding parameter subsets. It is also important to take into account the sensitivity of the
model to the individual parameters, as evaluated in Section 4.3. Using this information, the effort
in determining an initial parameter set may be focussed on those parameters which affect the model

response most significantly.

In the unidirectional validation described in Section 5.2, the bidirectional parameter set in Table 5.2
was used as an initial trial, except for parameters c3 and ¢4 which were set as 1.0 and 0, respectively.
This was appropriate for determining the sensitivity of the calibration to the weightings assumed in the
objective function (w; 1—w; 4 in Table 5.1), but it makes use of information about the bidirectional
data that would not usually be available in a set of unidirectional test data. For unidirectional
calibration, it is more difficult to visually separate the elastic and hysteretic damping components of

the force vector, and it is therefore more difficult to determine an appropriate initial parameter set.

Because of the difficulties in determining a set of trial parameters with which to begin the simplex
algorithm, it is important to evaluate the sensitivity of the proposed calibration procedure to the
model parameters. A systematic, quantitative evaluation of the sensitivity would require the evaluation
of objective function gradients, and higher order gradients would also allow the separation of local
and global minima. Due to the difficulties in determining these gradients, however, a qualitative
sensitivity study was carried out, by varying the trial parameter set and investigating the changes
in the converged parameters and test residuals. The initial parameter sets were selected based on
variations of the parameters in Table 5.2, and residual weightings were as for the two-step bidirectional
calibration in Table 5.1. The results from the sensitivity study are summarised in Table 5.4, which
shows the converged parameters, residuals from the tests included in the calibration (test numbers
2,12, 24 and 28), and the weighted residual from each calibration step, ©1 and Oa.

The weighted residuals shown in Table 5.4 correspond to local minima of the objective function
determined by the downhill simplex algorithm. Although there is some variation in the converged
parameter sets, the variation in the weighted residuals is relatively small. The final calibration,
with an initial parameter set corresponding to half the elastic component and twice the damping
component, converges to a local minimum neatly identical to that obtained in Section 5.1. The other
three calibrations converge to slightly different local minima of the objective function, with some
variations in the final parameters. Comparing the residuals for both individual tests and weighted
sums, however, it is clear that the differences in response of the converged parameter sets is small.
For engineering applications, any of the calibrations shown in Table 5.4 will adequately describe

bearing behaviour.
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Table 5.4. Converged parameters and residuals for different initial parameter sets.

Table 5.2, | 2.0 x (a1-b3), | 0.5 X (a1-b3), | 2.0 x (a1-as), | 0.5 x (a1—a3),

ai1—c4 clL=C =c4 clL=C =c4 0.5 x (b1=b3), | 2.0 x (b1-bs),

=0,c3=1 =0,c3=1 c1=C =c4 c1=C =c4

=0,ca=1 =0,ca=1

ay 1.3387 1.5516 1.2484 1.2233 1.3417
az | —0.0170 —0.0568 0.0042 0.0151 —0.0186
as 0.0006 0.0019 0.0000 —0.0003 0.0007
by 0.7436 0.7800 0.6871 0.6860 0.7467
ba 0.2022 0.1732 0.1984 0.1771 0.2023
b3 1.9431 1.8688 2.1518 2.6385 1.9184
c1 0.0018 0.0019 0.0020 0.0020 0.0018
C2 0.0059 0.0042 0.0061 0.0057 0.0059
c3 0.8847 0.8300 0.9061 0.9101 0.8823
C4 0.0003 0.0002 0.0003 0.0003 0.0004
02,2 0.2247 0.2331 0.2349 0.2376 0.2247
012,2 0.3453 0.3889 0.2952 0.2967 0.3461
0242 0.2334 0.2034 0.2691 0.2961 0.2314
02,2 0.2409 0.2967 0.2453 0.2737 0.2406
[Sht 0.1620 0.1940 0.1678 0.1759 0.1621
O 0.2328 0.2649 0.2401 0.2557 0.2326

To further illustrate this point, selected test results for the calibration shown in the second column of
Table 5.4 are presented in Figs. 5.18-5.21. This calibration corresponded to an initial parameter set
with double the elastic and damping parameters of Section 5.1, and the weighted residuals from each
stage of the calibration are the worst of those considered in Table 5.4. The plots show a similar match
of experimental data to the corresponding figures in Section 5.1 (Figs. 5.2, 5.6, 5.7, 5.8), although the
original calibration describes the high-strain test data more accurately (Figs. 5.7 and 5.20).

Table 5.4 and Figs. 5.18-5.21 suggest that, from initial parameters within the range of 50%—200% of
the values corresponding to the global minimum, a converged parameter set adequate for engineering
purposes may be obtained. Clearly, the values obtained in Section 5.1 may not correspond to a global
minimum of the objective function, but Figs. 5.2-5.8 show that the match of experimental behaviour
for this set of parameters is excellent. Although not a rigorous assessment of the robustness of the
calibration procedure, these results suggest that the validation protocol described in Sections 5.1 and
5.2 may be used to calibrate the proposed model in design applications.
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Figure 5.18. (a) Experimental response and (b) model response with parameters in second column of
Table 5.4, for tests 2 (solid line) and 28 (dotted line): otbit 1, v, = v, = 250%.
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Figure 5.19. (a) Experimental response and (b) model response with parameters in second column of
Table 5.4, for tests 16 (dotted line) and 20 (solid line): otbit 2, v, = v, = 100% and v, = v, = 200%.
Tests not included in model calibration.
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Figure 5.20. (a) Experimental response and (b) model response with parameters in second column of
Table 5.4, for test 25: orbit 3, 7, = v, = 250%. Test not included in model calibration.
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Figure 5.21. (a) Experimental response and (b) model response with parameters in second column of
Table 5.4, for tests 14 (dotted line) and 22 (solid line): orbit 4, v, = v, = 100% and v, = v, = 200%,
slow strain rate. Tests not included in model calibration.
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5.5 EXPERIMENTAL CALIBRATION PROTOCOL FOR PROPOSED MODEL

The mathematical model for bidirectional behavior of HDR bearings developed in Chapter 4 provides
a good representation of experimental data. Clearly, in an experimental programme specifically
designed for calibrating the model, 28 bidirectional tests would not be carried out. This section
discusses some minimum requirements of a series of experiments for effective calibration of the

bidirectional model.

A practical calibration protocol for the model would require, as a minimum, unidirectional testing at
different strain levels, to assess the stiffness and damping properties of the bearing, It was suggested
in Section 5.2 that unidirectional testing may be sufficient for calibrating bidirectional properties. 1f
unidirectional tests are used, it is necessaty to include tests at strain levels higher than the maximum
strain expected in dynamic analysis. Because the stiffness and degradation properties of model and
actual bearing response are dependent on the magnitude of the displacement vector, the maximum

strain should be calculated based on a vector norm, and not a maximum z- or y-direction component.

For assessment of the material parameters representing degradation, the timing of the test seties
must be controlled. Because the proposed model describes both the temporary Mullins’ effect, and
semi-permanent scragging, these effects should be carefully distinguished in the testing protocol. In
the calibration performed here, it is likely that some of the degradation included in the scragging
parameter was more appropriately described as short-term Mullins’ degradation. Although this did
not affect the accuracy of the model in this case, it would be useful to distinguish these effects for
analysis of the earthquake response of a bearing after the Mullins’ effect has recovered, and at various
stages of scragging recovery. For the purpose, it would be ideal to leave at least a full hour in between
testing at each strain level, so that the bearing can be considered completely recovered from Mullins’
effect (D = 0), while still ‘scragged’ (Ds; = Dg,i—1).

Finally, the strain-rate dependence of the bearing must be considered. In the current model, this
factor has not been adequately investigated, and the model should be calibrated at strain rates typical
of earthquake ground motion before it can be used for time history analyses. Alternatively, if the
extension of the model to include rate-dependent behaviour proposed in Section 4.4 is investigated

further, it is possible that fewer dynamic tests may be required.

Based on the above considerations, it is suggested that a standard unidirectional test programme,
with the following components can be used to define the material parameters for the proposed

bidirectional model:

o Cyclic loading at 100%, 200%, 250% and 350% maximum strain to describe behaviour across

a range of strains.
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e Three cycles at each strain level, to assess first-cycle degradation, and additional degradation,

if appropriate.
e Atleast one hour in between each strain level to allow for Mullins’ effect recovery.

o At least one dynamic test to assess rate-dependence.

The effects of temperature and axial load must be defined @ priori, by calibrating the model for a
range of temperatures and axial loads, and defining approptiate limits of applicability.

Aside from the dependence on temperature and axial load, and the addition of rate-dependence to
the model, several other factors need to be verified before this standard programme can be used for
the calibration of full-scale HDR bearings. The isotropic scragging parameter, although appropriate
for the Bridgestone KI.301 bearings considered here, may not be appropriate for other elastomeric
compounds [Thompson ¢# a/., 2000]. Additionally, the use of unidirectional calibration for high shear
strain bidirectional behaviour has not been conclusively validated. Finally, the bidirectional tests

carried out on scaled bearings in this thesis should be compared with prototype bearing behaviour.



6. ANALYSIS AND DESIGN OF SEISMICALLY
ISOLATED BRIDGES

As discussed in Chapter 1, HDR bearings are commonly used in the seismic protection of bridges.
The models for bearing response considered in the previous chapters are combined with appropriate
models for pier and superstructute response to obtain an accurate representation of global structural
behaviour for analysis and design. Because of the unique structural form of seismically-isolated
bridges, particularly in the distribution of structural stiffness and damping, their analysis and design
requires considerations in addition to those made in a ductile, non-isolated pier seismic design
philosophy. Some aspects of the design process are simplified, however, as isolation in some respects

leads to a more regular structural response, dominated by the fundamental mode of vibration.

In this chapter, existing design and analysis procedures for seismically-isolated bridges are sum-
marised, with emphasis on those features that are of particular relevance to HDR bearings. All of
the design methods described here are based on an equivalent linearisation of the bearing response,
as discussed in Section 3.1.1. Although elastic pier behaviour is typically assumed in both design and
analysis of isolated bridges, the possibility of explicitly designing for pier ductility limits at higher

earthquake intensity levels is also considered.

6.1 TIME-HISTORY ANALYSIS OF SEISMICALLY ISOLATED BRIDGES

This section summarises some of the most important considerations for the time-history analysis of
bridges, particularly those that are most relevant for bridges protected with seismic isolation. The
four components of the equation of motion — mass, stiffness, damping and input motion — are

considered individually.

The modelling of movement joints, flexible or yielding abutments, and foundation flexibility are
important for describing the response of real bridges. These aspects are beyond the scope of this
thesis, however, and are not discussed here. Priestley e a/. [1996] provide a more detailed discussion

of time history analysis, including these features.
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6.1.1 Mass of Structural Elements

Most of the inertial mass in bridge systems is concentrated in the supetstructure. It is for this reason
that isolation devices placed between the substructure and superstructure are effective at protecting
piers from excessive seismic demand. In the case of a rigid superstructure, the rotational moment of
inertia of the deck can be calculated for rotations about a vertical axis, and the mass can be lumped at
the centre-of-mass. For a flexible superstructure, tributary mass may be lumped above each isolation

device.

The consideration of substructure mass is particularly important for isolated bridge systems. For
relatively stiff piers, it will generally be adequate to consider a lumped mass at the top of the pier,
below the isolation system. Priestley ez a/ [1996] express the generalised mass of the substructure as:

meH,
3

m* = M + ©.1)

where M is the tributary mass of the superstructure, and m. and H, are the mass per unit height
and clear height of the pier, respectively. In isolated piers, it will be appropriate to separate the
two terms in Eq. 6.1 into two lumped masses, separated by the isolation system. For more slender
piers, where higher modes can influence the response, multiple lumped masses may be considered,

distributed over the height of the pier.

6.1.2 Substructure and Superstructure Modelling

The substructure and superstructure of isolated bridges are generally designed to behave elastically
under design level excitation. This can simplify time history analysis considerably, as all structural
nonlinearity is concentrated in the isolation devices. Furthermore, it can be expected that isolated
bridge response will be relatively insensitive to substructure stiffness, within an order of magnitude,
as the flexibility of the isolators dominates the response. This hypothesis is investigated in the
parametric studies in Chapter 7.

For reinforced concrete structures, even the appropriate determination of elastic stiffness properties
is not entirely straightforward. It is common in design and analysis to assume a cracked section
stiffness as a function of gross section moment of inertia and Young’s modulus, and to detail
reinforcing steel to accommodate the seismic demand in terms of forces. This procedure, however,
assumes that the amount of longitudinal steel does not influence the section stiffness, an assumption
that does not accurately describe reinforced concrete response [Priestley, 2003]. A more rational
approach based on this result is to assign elastic stiffness to reinforced concrete members as the ratio

of yield strength and yield deformation of the idealised bilinear force—deformation response.

The above discussion is of less significance for isolated bridges, in which the flexibility of the
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isolation bearings is expected to dominate the response of the system. For the purposes of time
history analysis, traditional methods based on a fixed proportion of the gross section stiffness should
be adequate. Because the more rational approach fits readily into a displacement-based design
procedure, at least for substructure response, this representation of elastic stiffness is adopted in the

design recommendations in Sections 6.2.3 and 6.2.4.

For ground motion intensities exceeding the design level, it may be necessaty to allow for pier
nonlinearity in the structural model. In the case of reinforced concrete piers under uniaxial bending,
the modified Takeda hysteresis rule [Otani and Sozen, 1972] is commonly used to describe the
nonlinear behaviour. The modified Takeda hysteresis rule is a bilinear version of the original trilinear
Takeda model [Takeda ¢z 2/, 1970], and includes degradation of loading and unloading stiffness under
cyclic loading, The bilinear version includes four model parameters; the first three are the same as
for the classical plasticity bilinear model (Fig. 6.1(a)), while the fourth parameter, o controls the
ductility-dependent unloading stiffness. The unloading stiffness, K, is given by:

K,=Kup® 62

where p is the maximum ductility previously obtained in the same direction (1 > 1).

On reloading, the hysteretic response is directed towards the previous maximum force—displacement
point. The behaviour of the bilinear Takeda rule under simple loading cycles is illustrated in
Fig. 6.1(b). For small loading and unloading cycles, several additional rules control the hysteretic
behaviour. Subsequent applications [Carr, 2004] have added an additional parameter, (3, to modify

the reloading stiffness of the model, and to increase the size of hysteresis loops.

The parameters corresponding to the bilinear skeleton curve of the modified Takeda hysteresis rule
may be determined by a moment—curvature analysis of the section that is being modelled. This
curve may be replaced by a bilinear approximation using appropriate definitions of yield curvature
and yield force [Priestley, 2003], and the curve defined by its three parameters: initial stiffness, yield
force and post-yield stiffness. Section analyses do not describe cyclic unloading and reloading as
accurately as monotonic loading, and the unloading parameter, o (and if appropriate, the reloading
parametet, (3) should be calibrated against experimental data. For bridge piets, cv values from 0.5 to
0.7 are appropriate, depending on the level of axial load, while 3 is generally taken as zero [Priestley
et al., 1990].

The modified Takeda model, if calibrated correctly, generally describes the uniaxial loading of
reinforced concrete members accurately. However, under real ground motion, axial loads may vary
in bridge piers due to vertical excitation or pier geometry, and piers may be loaded under biaxial
bending moments. It is possible to extend the Takeda framework to include the effect of axial load

on the yield force under uniaxial loading [Carr, 2004]; it is more difficult to extend the model to allow
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@

Figure 6.1. Hysteretic force—displacement response. (a) Bilinear model, and (b) modified Takeda
model.

for biaxial bending,

One option for describing the biaxial bending of reinforced concrete piers (although neglecting axial
load dependence) is to represent pier inelasticity with a bilinear coupled plasticity model (Section 3.1.1,
and Fig. 6.1(2)). This may provide a more accurate description of the yield force under simple biaxial
load paths, such as the first two branches of the box orbit in Fig. 2.2. The unloading behaviour of
the bilinear model will be significantly different from the Takeda model, however, and consequently
energy dissipation in cyclic loading will also differ. The bilinear classical plasticity model may be able
to give some indication of the importance of bidirectional earthquake motion in an isolated bridge

model, but it will probably not be adequate to describe pier inelastic response.

To more accurately model the axial load—bending moment interaction, and biaxial loading of rein-
forced concrete sections, several alternative models have been suggested. Saiidi ez 2/ [1989] suggested
that the response of a rectangular section may be represented by five uniaxial springs, with hysteretic
behaviour calibrated correctly to model section response. One spring in each of the four corners
represents the combined behaviour of concrete and reinforcing steel in that quadrant, including bar
slip. A fifth spring in the centre of the section models the central portion of concrete. Lai e a/. [1984]
separated the corner springs into separate concrete and steel springs, resulting in a nine-spring model.
Other authors [Li ez al., 1987] have introduced a more generalised multi-spring (MS) model with an
arbitrary number of springs used to define concrete response, and one steel spring per reinforcing
bar. Models consisting entirely of axial springs in parallel generally do not include the effect of shear

deformations on member response.

The original five and nine-spring models were elegant in their simplicity, and provided a reasonable
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match of reinforced concrete column biaxial bending and axial force interaction. The more springs
that are added to such a model, however, the closer it resembles a fiber model. In the latter, a section
integration is carried out over the section, with a certain integration rule and an arbitrary number of
integration points. If the midpoint integration rule is used, the “fiber” name is most apt, referring to
each section integration point integrated over the length of the member. This is the main difference
between MS and fiber models — in the former, the element inelasticity is restricted to pre-determined
sections, generally at member ends, while in the latter, the inelasticity is integrated over the member

length.

The element integration can be carried out in a stiffness or flexibility formulation [Spacone ez 4.,
1996]. In the formet, shape functions are assigned to the member deformation, generally based on
elastic, prismatic deflected shapes. The deformed shape of an inelastic or non-prismatic member
will not be described accurately by these shape functions, and several elements will be required
per member. In the flexibility formulation interpolation functions describe the force and moment
distribution along the member, which can be derived exactly from the end moments based on
equilibrium. This formulation will give a much more accurate deformed shape and an exact member

force profile, at the expense of increased computational effort.

6.1.3 Bearing Modelling

The unidirectional response of HDR bearings can be described using any of the mathematical models
described in Chapters 3 and 4. For time-history analysis, both the viscoelastic and bilinear models
(Section 3.1.1) will require iteration to determine strain-dependent properties. Some of the more
complicated models may not be able to describe bearing response @ priori, for reasons discussed in
Sections 3.1.2-3.1.4. In this case, it may be necessary to adopt an iterative approach to determine
model parameters appropriate for the level of shear strain, axial load, and strain rate experienced in

the bearing during the time history analysis.

The model proposed in Chapter 4 is the only one capable of describing the bidirectional response of
HDR bearings for a range of strain levels. The model can be calibrated for a given bearing using the
procedure described in Chapter 5. Axial load and temperature dependence have not been considered

however, and it will be necessary to calibrate the model for the appropriate level prior to the analysis.

6.1.4 Viscous Damping

In nonlinear time history analysis of multiple degree-of-freedom (MDOF) structural models, the
mass and stiffness matrices (M and K, respectively) are generally assembled from simple element
models, based on known material properties. It is, however, impractical to assemble the damping

matrix (C) in the same manner, from material and element dissipative properties. This difficulty
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is partly due to the fact that viscous damping is used in the equation of motion as a mathematical
convenience, and is used to represent energy dissipation in the structure from a number of sources.
It is not used to describe energy dissipation due to structural element hysteresis, which should be
accounted for in a hysteretic model (Sections 6.1.2 and 6.1.3). For this reason, a simplified model is

generally used to determine the viscous damping matrix for time history analysis.

Although more complicated expressions are sometimes suggested [Caughey, 1960; Wilson and
Penzien, 1972], the following equations represent some commonly-used models for the damping

matrix:

C =aM (6.3)
C=uK (6.4)
C= CLQM + alK (6.5)

The damping models expressed in Eqs. (6.3)—(6.5) are referred to as mass proportional damping, stiffuess
proportional damping and Rayleigh damping, respectively [Rayleigh, Lord, 1945; Chopra, 2001].

In Egs. (6.4) and (6.5), the initial stiffness matrix of the structural model, or the tangent stiffness
matrix may be used for K. The formet assumption results in a damping matrix that does not change
as the structure undergoes inelastic deformation. The latter assumption implies a damping matrix
which reduces in magnitude with structural nonlinearity. Cleatly, the choice of viscous damping model

should best represent energy dissipation in the real structure under a range of loading conditions.

Analysts often assume that the choice of viscous damping model will have little significance on the
maximum response of a nonlinear system. Priestley and Grant [2005], however, show that for a
nonlinear single degree-of-freedom (SDOF) system with a fraction of critical damping of 5%, the
damping model can have a large influence on the peak displacement. They suggest that the tangent
stiffness proportional damping model is the most justified physically, and recommend its use for

nonlinear time history analysis.

The tangent stiffness proportional model is potentially problematic when applied to a stiffening
system, such as the proposed HDR bearing model (Chapter 4). For low bearing strain levels, the
damping will decrease with increasing deformation, while at higher levels, the damping will increase.
Provided that the bearing deformation is not too far into the stiffening range, however, this increase in
damping coefficient will occur when the relative velocity is low, and the damping force should not be
affected significantly. The proposed model includes energy dissipation in hysteresis and in small load
reversals, and ideally no viscous damping would be assigned to the bearing deformation. However,
this would imply the use of a non-classical damping matrix, which increases the computational effort

significantly. 1f the bilinear model is used for bearing response (Section 3.1.1), then tangent stiffness
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proportional damping is less problematic.

6.1.5 Ground Motion

To catry out time history analysis, at least one input ground motion is required. In fact, for the
verification of a structural design, design provisions [AASHTO, 1999] frequently specify that a suite
comprising a minimum of three or seven records is used — for three records, the maximum of all
the peak values of a given response quantity for all analyses should be designed for, while for seven
records, the average may be taken. The selection and, if appropriate, modification, of ground motion
records for time history analysis will have a significant outcome on the design response quantities

obtained.

Typically, input ground motions are selected from a database of real earthquake accelerograms.
To provide an appropriate input energy content to the structural model, it is usually considered
important to select recordings of earthquakes with a similar magnitude and fault mechanism, and
recorded at a similar distance from the fault rupture, as the earthquake scenario that forms the
primary contribution to the seismic hazard at the site. This can be determined from a knowledge
of faults in the area, or from a deaggregation of a probabilistic seismic hazard assessment (PSHA).
The latter option will be necessary when many possible scenarios contribute to the seismic hazard.
It should also be recognised that different scenarios may dominate the hazard for different intensity
measures, such as peak ground acceleration, velocity and displacement. Bommer and Acevedo [2004]
suggest that the earthquake magnitude is the most important parameter, and that less consideration
should be given to the distance and fault mechanism in the selection of real records for time history

analysis.

For unidirectional time history analysis, it is generally permitted to scale ground motion records
in amplitude by multiplying by a constant scaling factor. Frequency scaling is also sometimes
allowed, although this may lead to ground motions with unrealistic frequency contents. According
to Vanmarcke [1979], factors in the range of 0.5-2.0 lead to physically realistic ground motions for
inelastic analysis — outside this range, the energy output of the record may not be compatible with
its duration. Bommer and Acevedo [2004] suggest that the upper limit of 2.0 may be difficult to
maintain for records that are scaled to a code design spectrum that has been determined from a
PSHA that includes the effect of scatter. In this case, code spectral ordinates will be representative
of hazard levels of a number of standard deviations above the median, and to obtain real records
compatible with this degree of scatter, in addition to seismological parameters such as magnitude

and distance, would require an extremely large ground motion database.

In any case, provided that the scaling factor is not too extreme, the record can be adjusted such that

the error with respect to some design spectrum is minimised across a range of petiods, or at a period
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corresponding to the fundamental period (or isolated period) of the structural model. The latter
approach may be more appropriate, as uniform-hazard design spectra contain the aggregation of
different sources of hazard, and it may be difficult to provide a good match of the design spectrum
across a range of periods. On the other hand, if only one modal period is considered, the demand on
higher modes may not be hazard-consistent. Numerical studies of isolation systems [e.g. Ryan and
Chopra, 2004] sometimes use the peak ground velocity as a parameter to which to scale records, as

it is representative of the ground motion demand at typical vibration periods of isolated structures.

Artificially-generated records are also often used for time history analysis. The advantage of artificial
records is that they can be generated directly for a given design spectrum, and are representative of
a code hazard-consistent demand level across a large range of periods. Design spectra, however, are
unlikely to be realistic for a single real earthquake recording, as they are an amalgamation of several
records and sources of seismicity. For this reason, artificial records ate often criticised for containing
an unrealistic frequency and energy content, that may not be appropriate for inelastic time history

analysis.

Bidirectional time history analyses require two horizontal components of ground motion. Two
individual artificial records will not exhibit the degree of correlation required for a realistic ground
motion pair; similarly, two real records from different events or different sites cannot, in general,
be combined to form a realistic bidirectional ground motion. The general approach in this case is
to use two ground motions recorded in orthogonal horizontal directions from the same instrument
and same event. If vertical input is also considered, a three component real ground motion pair will

provide the best representation of tridirectional demand.

An alternative approach to the specification of appropriately-correlated ground motion pairs is to
represent the bidirectional seismic demand in terms of principal directions, according to the definition
of Penzien and Watabe [1975]. In this model, the ground motion pair is rotated in a horizontal plane,
such that the two horizontal components are statistically uncorrelated. It is further assumed that the
vertical component is uncorrelated, and represents a third principal direction of the ground motion.
In this case, it is feasible that two artificial records, two real records from different earthquake events,
or a combination of a real and artificial record could be used to represent the principal hotizontal
components. In the case of real events, it would be important to consider records with approximately
the same magnitude, duration and energy characteristics, as otherwise the combined motion would
not be physically realistic. The use of artificial records in this manner does not remove the problems
associated with frequency and energy input, discussed earlier with respect to unidirectional seismic
demand. Furthermorte, when the ground motions have been specified in terms of principal directions,

it is unclear how these should be oriented with respect to the structural axes.

Assuming the first approach is used, in which matching ground motion recordings are used, it will
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be necessary to scale the components to match the seismic hazard appropriate for the site. Ground
motions measured in orthogonal directions will, in general, have different response spectral shapes
and intensity. If each record in a pair is scaled by a different factor, then the resulting bidirectional
ground motion may not be representative of a realistically attainable earthquake recording. For
this reason, generally a single scaling factor is used to amplify both horizontal components, and, if

appropriate, the vertical component, to match a design level hazard.

The scaling factor to use should take into account the way in which the design spectrum has been
defined, and what component of ground motion it is supposed to represent. Generally, code spectra
are defined by a PSHA, for which the principal ground motion intensity prediction is carried out
using attenuation relationships. Attenuation relationships are derived from a regression based on a
number of real ground motions, to determine the expected intensity of motion at a site based on
magnitude, distance (epicentral, or other measure), and other parameters of a hypothetical event.
Generally, either the maximum of two orthogonal horizontal, or their geometric mean is used in the
regression, with the latter case presumably representing a random direction of demand. Therefore,
it appears that design code spectra should also be representative of either peak or random directions
of ground motion, and pairs or triples of records should be scaled accordingly. For example, the
Eurocode 8 [CEN, 2003] design spectrum is considered to be representative of the peak ground
motion [Bommer and Acevedo, 2004].

It is clear, however, that if two components of ground motion are applied to a regular structural
model, the peak response of the structure will be governed neither by the geometric mean of two
randomly selected orthogonal components, nor by their peak, but by some “worst” component.
This will be generally be greater than both the average and “peak” demands, by an amount that will
depend on the earthquake and site characteristics. For near-fault motions, fault normal (FN) and
fault parallel (FP) components will differ greatly in terms of demand, and the response spectrum
determined from average or peak of two random components is a poor measure of design demand.
Even when near-fault effects are not important, a design spectrum that gives a measure of peak

bidirectional demand seems to be a useful design tool.

The 1999 AASHTO Guide Specifications for Seismic Isolation Design [AASHTO, 1999] state that
the square-root-sum-of-squares (SRSS) combination of the two component response spectra should
be scaled to match the design spectrum. Assuming that the intent of the SRSS combination is
to determine the peak bidirectional demand, it is clear from the discussion above that the code
spectrum is considered to represent the peak rather than the average demand. This is an important
consideration for the representation of bidirectional seismic demand for design (Section 6.2.1). In the
context of the current discussion, however, it will be interesting to determine if the SRSS combination

of two components of ground motion provides a good scaling measure for bidirectional time history



96 Damian N. Grant, Gregory L. Fenves & Ferdinando Auricchio

analyses.

For elastic time history analysis of regular structures, a bidirectional response spectrum can be
determined in the same manner as a unidirectional response spectrum. Recall that the latter may be
derived in the time domain by carrying out a series of elastic time history analyses of a SDOF system
for a range of structural periods, and determining the peak response in each case. Similarly, time
history analyses may be carried out on an uncoupled 2-DOF system, with the same period in each
direction. The vector demand is calculated at each time step, and the peak bidirectional response
is plotted against period. This bidirectional response spectrum gives a direct measure of the elastic

bidirectional demand for a regular structure.

Different representations of bidirectional spectral demand are compared in Fig. 6.2. The elastic
displacement spectrum is used, as it forms the basis of current displacement-based design methods,
as discussed in Section 6.2.1, and a viscous damping ratio of 5% is assumed. Figures 6.2(a) and (b)
show the spectra calculated for ground motion pairs LA11-12 and ILA17-18, respectively, from the
FEMA/SAC database [SAC, 1997], discussed in Section 7.1.4. In addition to the unidirectional dis-
placement spectrum for each component, the geometric mean (generally considered in the derivation

of attenuation relationships), the SRSS combination and the bidirectional spectrum are shown.
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Figure 6.2. Unidirectional elastic displacement response spectra, and various representations of
bidirectional spectral response. (a) LA11-12, and (b) LA17-18 ground motion pairs. Refer to Table 7.2,
but note that only the SAC scaling factor has been applied here.

The ground motion pairs used in Figs. 6.2(a) and (b) were selected from the LA ground motion
suite to demonstrate extremes in the representation of bidirectional demand. Figure 6.2(a) shows
the spectral demand of a ground motion pair for which the spectral intensity of the two components
are very different. For this pair of records, the maximum of the two unidirectional spectra is a good

measure of the bidirectional demand, while the geometric (or arithmetic) mean is a poor measure.
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Figure 6.2(b), however, is for a ground motion pair for which the unidirectional spectra are similar.
In this case, the bidirectional spectrum is greater than both individual components, but is closer to
the mean response. The other ground motion pairs in the LA suite exhibited behaviour in between

these two extremes.

Two important conclusions can be drawn from Fig, 6.2. The first conclusion is that the SRSS
combination rule provides a good, conservative measure of the bidirectional demand on regular
structures. This observation was generally valid for the other ground motions considered, although
not all were as close to the bidirectional response spectrum as those shown in Figs. 6.2(a) and (b).
The second conclusion is that, even though these records had been scaled to the same level of
average demand (see Section 7.1.4 for a description of the scaling process used in the preparation
of the FEMA/SAC database), the bidirectional demand is different. Compating the geometric
means in Figs. 6.2(a) and (b), it is apparent that for periods less than 3.0 seconds, the displacement
demand is approximately the same. The bidirectional demand, represented through either the SRSS
combination or bidirectional response spectrum, is higher across the entire period range in Fig. 6.2(a).
For near-fault recordings, the variability between the mean and bidirectional peak response could be

expected to be greater.

Although the bidirectional response spectrum is not difficult to derive, it is only applicable for
regular structures with the same period in all directions. It should be observed, however, that this
is also a limitation of the SRSS combination rule. Taking the square-root-sum-of-squares at each
vibration period only has any significance for structures with that period in both directions. To
determine the SRSS response of an irregular structure, with different periods in each direction, it
would be necessary to take the SRSS of spectral ordinates for each of the two periods. Similarly, the
bidirectional spectrum concept could be extended to irregular structures by deriving peak spectra for
combinations of different periods in each direction. Either of these representations of bidirectional
demand for irregular structures could possibly be presented in a three-dimensional plot or on several
two-dimensional plots for different ratios of periods. In any case, the bidirectional elastic response
spectra derived in this manner may not have the same applicability to inelastic design that the
unidirectional spectrum is assumed to have in current design methods (see Sections 6.2.1 and 6.2.2).
Furthermore, for application to MDOF time history analysis, where a number of modal vibration
periods may be of importance, either the SRSS or bidirectional spectrum approaches may be used as

an indication of bidirectional seismic demand.

Finally, the ground motion pairs or triples are used as the input in a time history analysis. Codes
typically specify that the worst orientation of the ground motion should be considered for design,
without giving guidelines on how this should be determined. Many studies of bidirectional response

of structures [e.g. Huang, 2002] rotate the input motion about a number of directions, and consider
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the maximum values of each response quantity of interest. Design ground motion combination
rules, such as the CQC3 rule and its derivatives, provide more guidance about how this worst case

direction should be obtained, and are discussed in more depth in Section 6.2.1.

6.2 DESIGN OF SEISMICALLY ISOLATED BRIDGES

Confidence in current design methods for seismically-isolated bridges has developed to such an extent
that modern design codes, such as the 1999 AASHTO Guide Specifications for Seismic Isolation
Design [AASHTO, 1999], only require time history analysis under certain circumstances. However,
there remain some unknown or controversial aspects in any of these design methodologies, especially
in the areas of the determination of maximum response quantities under bidirectional loading, and
the equivalent linearisation of nonlinear bearing and pier behaviour. Furthermore, there is a lack of
consistency in the specification of response modification factors, R, which determine the seismic

demand on piers when the full design load in isolation bearings is developed.

This section provides a summary of some of these design aspects, with particular reference to the
design methods of Priestley e 2/ [1996] and the AASHTO guide [AASHTO, 1999]. In addition,
an explicit method for determining appropriate pier design strengths is developed by considering

performance goals at more than one level of seismic hazard.

6.2.1 Representation of Bidirectional Seismic Demand

Traditionally, seismic demand has been represented by an elastic acceleration design spectrum,
evaluated for 2-5% viscous damping. Relationships between elastic and inelastic response that
approximately hold over a certain period range, such as the “equal displacement rule” [Veletsos
and Newmark, 1960], are used to determine the acceleration demand on an inelastic structure. This
spectral demand can be applied in an equivalent static analysis, or a multiple mode response spectrum

analysis.

In the last decade, several design methods based directly on peak structural displacements instead of
forces have been proposed. Sullivan ez 4/ [2003] provide a summary of a number of these methods,
and assess their performance at meeting design objectives. One of the methods, known as “direct
displacement-based design”, has been particularly well-developed for bridge applications [Kowalsky
et al., 1994; Priestley ez al., 1996; Alvarez-Botero, 2004]. This method uses a 5%-damped, elastic
displacement design spectrum, and adjustment factors to reduce the spectral ordinate for higher
values of damping. Effective structural period and damping are calculated from linearised structural
properties (Section 6.2.2). Similarly, the AASHTO [1999] Uniform Load Method, gives design
guidelines for peak bearing displacement, in addition to the elastic seismic coefficient (equivalent

to spectral acceleration). These methods allow the deformation of isolation bearings and other
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structural elements to be controlled directly.

The elastic displacement spectrum specified for displacement-based seismic design is given in several
different forms in the literature. A displacement spectrum derived directly from a design acceleration
response spectrum will increase linearly in the range of periods for which acceleration decreases with
the square of the period — the “equal velocity” region of the spectrum. The minimum period for which
this is applicable depends on soil type, and dominant magnitude considered in the seismic hazard
assessment for a region, but is typically around 0.5 seconds. Eurocode 8 [CEN, 2003], however,
introduces a limiting period, T'p, above which displacement spectral ordinates are constant. The
period T'p is specified as 1.2 seconds or 2.0 seconds, for low and high magnitude earthquake spectral
shapes, respectively. Faccioli ¢z a/. [2004], however, suggest that the displacement response spectrum
may continue increasing linearly up to periods in the range of 10 seconds, for high magnitude
earthquake recordings. This suggests that in regions for which the seismic hazard is governed by
large magnitude earthquake events, the Eurocode 8 design spectrum corner period could be increased

significantly for displacement-based design applications.

The elastic displacement design spectrum must be adjusted for equivalent viscous damping values
(Section 6.2.2) other than 5%. AASHTO [1999] provides adjustment factors, B, as a function of the
equivalent fraction of critical damping for the structure. Damping values in excess of 30% provide no
further reduction, unless a time-history analysis is carried out with an appropriate hysteresis model
for the bearing. For linearly viscoelastic systems, howevet, the reduction values may be extended to

a maximum of 50% damping,

Eurocode 8 [CEN, 2003] specifies the following reduction factor for the elastic design spectrum:

0.1
= — > 0. .
=1\ 505 ¢ =0 66

where &, the fraction of critical damping, is specified as a decimal. Reduction factors from AASHTO
[1999] and Eurocode 8 [CEN, 2003] are compared in Fig, 6.3. Note that in AASHTO, the 5%
spectrum is divided by B, whereas in Eurocode 8, it is multiplied by 7. Therefore, the AASHTO
values are inverted in Fig. 6.3. It is evident from Fig. 6.3 that the reduction of design spectra for

damping is similar in both codes for all damping values of practical interest.

The seismic demand at longer return periods must also be assessed when different performance
levels are considered. The AASHTO Guide Specifications for Seismic Isolation Design [AASHTO,
1999] state that design is for a 475-year return period, although it specifies limits on displacements
for vertical stability requirements based on a 2400-year “maximum credible event” (MCE). The
demand for the MCE, represented in terms of peak ground acceleration (PGA), is generally 5—
50% higher than the design level for high seismicity zones, and up to 170% higher for zones of
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Figure 6.3. Reduction factor for damped displacement design spectrum.

lower seismicity [Reaveley and Nordenson, 1992]. Isolated systems may be particularly vulnerable to
increased seismic demand, and it is important that bearings are able to withstand safely the MCE.

This issue is investigated thoroughly for isolated bridges in Chapter 7.

When unidirectional seismic demand is represented by a design spectrum, either in terms of accel-
erations or displacements, the effect of loading by two or three ground motion components is taken
into account in statistical combination rules. Typically, percentage rules, such as the “30%-rule”
or “40%-rule”, are specified for combining response quantities determined for each component.
In these methods, the two horizontal components are applied to the structure, using static proce-
dures, response spectrum modal analyses or unidirectional linear time history analyses. The total
bidirectional response quantities are calculated by adding 100% of the response calculated for the
most demanding component and a reduced percentage for the other horizontal component. For
example, the International Building Code [ICC, 2000] and Eurocode 8 [CEN, 2003], among others,
use a reduction factor of 30% for response spectrum modal analysis, although do not require the
consideration of bidirectional loading for the equivalent static analysis procedure. The latter speci-
fication also allows for a vertical component of seismic input in the 30%-rule, if vertical effects are

considered to be important.

As an alternative to simplified percentage combination rules, a square-root-sum-of-squares (SRSS)
or complete quadratic combination (CQC) may be performed to combine response quantities due to
orthogonal horizontal maxima. Based on the ground motion model of Penzien and Watabe [1975],
Smeby and Der Kiureghian [1985] developed the “CQC3 rule” to calculate the expected maximum of
a response quantity, 7, for three orthogonal components of ground motion. In the original method,
the two hotizontal components of ground motion must have identical spectral shapes (differing by a

constant factor, ), and be polarised into principal directions. The following expression is obtained
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for the expected maximum value of the response quantity (using the notation of Lépez ez al. [2000]):

r(0) = {[r2 + (yry)?] cos? O + [(yr2)* + rZ] sin® 0 + 2(1 — v%)r,, sinf cos  + 7"3}1/2
6.7)
where 0 is the angle of incidence of the major principal direction of ground motion with respect
to the structural axes, 7, (K = 2,9, 2) is the peak response to each of the three components of
ground motion, determined from a response spectrum modal analysis and the original CQC modal

combination rule [Wilson ez a/., 1981], and 7, is the cross-correlation of modal responses.

By differentiating Eq. (6.7), it can be shown [Smeby and Der Kiureghian, 1985] that the angle of

incidence that gives the maximum value of r is given by:

1 1| 2ray
0. = 3 tan [7‘% — 7"5] (6.8)

The “critical” value of r is then given by [Anastassiadis ef @/, 1998; Lépez ez al., 2000]:

1/2

r2 4 12 r2 —r2\?
Ter = 4 (L4+7%) (—12 L+ (1=7) <m2 y) +r2, 412 6.9)

The maximum response quantity for all angles of incidence of ground motion has some intuitive
appeal as a conservative value for design purposes. Except in near-fault regions, the orientation of
principal ground motion components is difficult or impossible to assess at the design stage, and
rotating the potential seismic demand through 360° ensures that the most demanding direction of
seismic input is accounted for. It could be argued, however, that this design criterion is inconsistent
with the concept of risk, and implies a much greater seismic hazard at the site than really exists.
Considering a uniform hazard design spectrum corresponding to a return period of 475 years, for
example, it is expected that the spectral ordinate will be obtained once every 475 years, on average.
The return period of an event with principal components rotated to the worst angle of incidence for
a given structure is much longer (infinitely long if the value of 7, is obtained for a single, discrete
value of § = 6,). For this reason, the expected value for all § may be a more appropriate measure

of design level demand:

T on

Equation (6.10) is impossible to solve in closed form for the () given by Eq. (6.7). It is relatively

2
E(r) ! / r(0) 4o (6.10)
0

straightforward, however, to numetically integrate, by evaluating () for a number of different ¢
values, and calculating the mean value. For structures that are regular in plan, the difference between

the mean and maximum values should be relatively small.

It should be noted that in the original presentation of the CQC3 rule [Smeby and Der Kiureghian,

1985], it was suggested that a random variable approach could be used to determine response
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quantities for a given statistical distribution of 6. This could be appropriate, for example, when a
known fault with well-defined geometry governs the seismic hazard in a region. In the more usual
case where the distribution of incidence angle is unknown, a uniform probabilistic distribution, with
0° < 0 < 360°, is appropriate, and Eq. (6.10) may be used to determine the expected value. Smeby
and Der Kiureghian [1985], however, give the root-mean-square (RMS) for a known distribution
of 6, which may be determined in closed-form from Eq. (6.7). Although the closed-form solution
makes the RMS value of r appealing from a mathematical and practical point-of-view, the expected
value given in Eq. (6.10) is consistent with the probabilistic definition of the hazard, and should

therefore be used in design applications.

Note that the problem of determining maximum response quantities for the worst case direction
of earthquake attack is different from the determination of bidirectional demand, considered in
Section 6.1.5. In that case, the peak demand was determined for a given orientation of the ground
motion components, based on the response of a regular structure. The determination of the worst-
case 0, however, considers the peak demand for an irregular structure with the ground motion
components rotated through 360°. As discussed in Section 6.1.5 and above, the former is consistent
with the hazard defined at the site, while the latter assumes a level of hazard greater than stated in

the code design spectrum.

6.2.2 Linearisation of Bearing and Pier Properties

Existing normative guidelines [BSSC, 1997; AASHTO, 1999] and other design methods [Priestley
¢t al., 1996] typically recommend the use of an equivalent linear viscoelastic model for bearing design
in isolated structures. Isolated piers are designed elastically, and sufficient reserve capacity is provided
to ensure linear behaviour under design level excitation. In this chapter, however, the possibility of
pier yielding at higher intensities is also considered, to assess the interaction of inelastic pier response
with the effectiveness of seismic isolation. In this case, pier nonlinearity is also represented by an
equivalent linear viscoelastic model, as assumed in design methods for non-isolated bridges [Priestley
et al., 1996] based on the “substitute structure” approach [Shibata and Sozen, 1976]. A consistent
approach to the modelling of bearing and pier nonlinearity allows the interaction between structural

elements and isolation devices to be studied at various performance levels in a rational manner.

Jacobsen [1930] first proposed using the energy dissipated in one cycle of harmonic response for
the equivalent linear representation of a nonlinear viscous damping term. The same author later
applied a similar approach to nonlinear hysteretic systems [Jacobsen, 1960], although in this reference,
the “equivalent viscous damping ratio” calculated was used for the quantitative evaluation of energy

dissipation only, and no corresponding stiffness value was assigned for predicting nonlinear response.
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Jacobsen used the following expression for the equivalent viscous damping:

Eof = — 6.11)

1 < Work done in half a cycle )
2m

Work area under skeleton curve

where the skeleton curve considered in the reference is an imaginary curve that traces out the
centre of the hysteresis loop. As noted by Jacobsen,“this definition introduces an element of artistic
judgment because in many practical cases the skeleton is not known ... [and] can be conjectured

only” [Jacobsen, 1960, p. 1032].

Rosenblueth and Herrera [1964] modified the approach of Jacobsen, by equating the energy dissipated
in a cycle of harmonic hysteresis with the same quantity for a linear viscoelastic system at resonance.
The linear system was assigned an “effective stiffness” equal to the secant stiffness to the point of
maximum displacement on the hysteresis loop. The value of equivalent viscous damping obtained
by this method is only the same as Eq. (6.11) if the skeleton curve is considered to be a straight
line connecting the origin to the point of maximum displacement on the hysteresis loop. Assigning
the effective stiffness and damping properties to a linear viscoelastic system allows the nonlinear

response to be estimated by solving the linear equation of motion.

The approach of Rosenblueth and Herrera [1964] has been widely adopted in design methods [e.g.
Shibata and Sozen, 1976; Priestley ez al., 1996] and forms the basis of several code design procedures
[AASHTO, 1999]. Some authors [Dwairi and Kowalsky, 2004; Blandon, 2004] refer to this method
as “Jacobsen’s approach”, although from the discussion above, it is evident that this may not be
appropriate. Following Jennings [1968], Rosenblueth and Herrera’s equivalent linearisation approach

is referred to as the “geometric stiffness method” herein.

Aside from the dependence of material properties on the displacement, other variations in bearing
behaviour must be taken into account in design. In the AASHTO Guide Specifications for Seismic
Isolation Design [AASHTO, 1999], bearing response is first expressed in terms of a bilinear force—
displacement model, and then converted to effective stiffness and equivalent viscous damping
parameters. For high-damping rubber bearings, property modification factors [Thompson ez a/., 2000]
are applied independently to the yield force and post-yield stiffness, to adjust material properties
for the effects of temperature, ageing, velocity, wear caused by travelling, and cyclic degradation
caused by Mullins’ effect and scragging. The original specifications of the modification factors for
elastomeric bearings were based on limited experimental data, and one of the primary goals of the
Caltrans Protective Systems Project, described in Section 2.1, was the reevaluation of these factors
[Thompson ez al, 2000]. Minimum and maximum adjustment factors are given for the post-yield
stiffness and zero displacement force intercept (equivalent to the yield force in Chapter 3), and are

used to calculate minimum and maximum effective linear properties.
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For an individual isolation bearing, or a number of bearings in parallel, the equivalent viscous damping
is calculated by equating the energy dissipated in a single cycle of hysteretic response and a linear
viscoelastic system with stiffness Kogr. Using the geometric stiffness method, discussed above, the

following equation is obtained for the bilinear parameters shown in Fig. 6.1(a):

2(p—1( —r)

Seffn = mu(l+rp—r)

(6.12)
where 1 is the bearing design ductility, Uq /Uy, and the subscript h refets to the hysteretic component
of energy dissipation. Considering minimum and maximum adjustment factors in turn, the linearised
viscoelastic model can then be used to provide expected upper and lower bounds for the maximum

displacement and force in the bearing in a given earthquake.

It is also possible to apply the geometric stiffness method to the model proposed in Chapter 4.

The following expressions for effective stiffness and equivalent viscous damping are derived in

Appendix B:
b
K = c3 (al + a2U§ + a3U§> exp (—chg’O) + (Fld + bgUd> exp (—CQD%O) (6.13)
1 1 4 3
= |4 (Ug— — |+ = KgaboU2 (Ug— — 6.14
S 21 Kepr wUg [ ! < 53) Rl < bs)] €19

where Uy is the design displacement of the bearing, Dy g is the level of prescragging, and all other
parameters are defined in Chapter 4. Equations (6.13) and (6.14) may used in the place of Eq. (6.12)
for HDR bearings that have been calibrated using the procedure outlined in Chapter 5. If K¢ and
&efr are calculated for multiple values of Dy, this could replace the property modification factor
concept, at least for modification of bearing properties due to scragging [Thompson e# /., 2000].
The accuracy of the equivalent viscoelastic model defined by Eqs. (6.13) and (6.14) is investigated in
Chapter 7.

The equivalent viscous damping for a hysteretic element, such as a bridge pier loaded into the
inelastic range, may be evaluated in a similar manner. Calculating the energy dissipated for the
modified Takeda hysteresis rule with a specified design ductility, assuming degraded response (cycle
6-7-8-9 in Fig. 6.1(b)), gives the following expression for hysteretic damping;

e = = (15 (1) (61

where « is a Takeda model parameter that controls the unloading stiffness. The equivalent viscous
damping for an equivalent linearisation of the Takeda model was calculated this way by Kowalsky
¢t al. [1994], although other authors such as Otani [1981] have used this expression as a measure of
energy dissipation in the modified Takeda model in the past.
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The calculation of equivalent viscous damping from Eqgs. (6.12) and (6.15), for bilinear or modified
Takeda hysteresis, respectively, is conceptually appealing for its simplicity, and has been incorporated
into several design methods [e.g. Priestley ez a/, 1996; Priestley, 2003] and codes [e.g. AASHTO,
1999] for bridge piers, seismic isolators, and other structural elements. However, the use of energy
dissipation in a full cycle of harmonic loading at the basis of the geometric stiffness method may
not give an adequate representation of response in some cases. In particular, Egs. (6.12) and (6.15)
assume that both the hysteretic oscillator and the equivalent viscoelastic model respond harmonically
at a frequency given by the fundamental frequency of the structure. It is readily apparent from typical
displacement histories for ground motion input that these conditions are met for neither linear nor

nonlinear structural response.

For these reasons, researchers [Hwang ez a/, 1996; Franchin ef /., 2001; Miranda and Jorge, 2002;
Blandon, 2004; Dwairi and Kowalsky, 2004] have investigated the accuracy of the geometric stiffness
approach for bilinear and modified Takeda hysteresis models. The results suggest that Eq. (6.12) tends
to lead to significantly lower peak displacements than the nonlinear analysis with bilinear hysteresis
(i.e. viscoelastic model overdamps), for a range of post-yield stiffness values. Equation (6.15) leads to
consistently higher peak displacements than analyses with modified Takeda hysteresis (i.e. viscoelastic
model underdamps), although for an elastic period greater than 1.0 seconds and target ductilities less
than 4.0, the error is within 10% [Miranda and Jorge, 2002]. The results of Miranda and Jorge [2002]
should be interpreted with caution, however: the viscous component of the equivalent damping,
Eeff,o = 5%, was not adjusted for ductility, using the cortections discussed below. This point is

revisited at the end of this section.

Other approaches have been proposed to derive equivalent linearised properties for bilinear and
modified Takeda hysteresis models. Jennings [1968] and Iwan and Gates [1979] evaluated a number
of these methods, based primarily on the response of elastoplastic systems, and, in the latter reference,
a degrading model more representative of reinforced concrete response. Franchin ef a/. [2001] and
Miranda and Jorge [2002] compate some of the recent alternatives for lineatising bilinear hysteresis,
while Blandon [2004] and Dwairi and Kowalsky [2004] investigate correction factors for Eq. (6.15)

at low periods.

Design methods that use the equivalent linearisation approach provide guidelines for determining
equivalent linear properties for the entire structure from the properties of individual elements. For a
series system, such as a simple pier-isolator with superstructure mass, design methods [e.g. Priestley
et al., 1996] specify that the effective stiffness may be taken as the series combination of the effective
stiffness of each element. The damping is determined from the ratio of total energy dissipated to
the energy dissipated by the substitute structure, as for an individual element. To take into account

other sources of energy dissipation in the structure, and for consistency with time history analysis,
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the total viscous damping is usually given by an expression of the following form:

geﬁ,v = geﬁ,v + geﬂ,h (616)

where e v and Eepr, 1, tepresent the total energy dissipation due to viscous damping and element

hysteresis, respectively.

Of the two components of Eq. (6.16), the dependence of the hysteretic term on ductility is more
evident, and has been discussed above. The viscous damping component of Eq. (6.16), however, has
received less attention in the literature. In the original applications [Gulkan and Sozen, 1974; Shibata
and Sozen, 1976] of the substitute structure approach, a value of 2% was assumed as representative
of a limit to the effective damping as the ductility tends to unity. Subsequent applications [Priestley,
2003] have used a fraction of critical damping of 5%, presumably to coincide with the value typically
assumed in nonlinear time history analyses. However, as with the choice of hysteretic model, the
damping model assumed in analysis has a significant effect on the appropriate amount of equivalent
viscous damping to specify in Eq. (6.16). In the nonlinear model, damping is typically assigned
with respect to initial structural properties (mass or initial stiffness), or instantaneous propetties
(tangent stiffness), and not secant stiffness as specified in the substitute structure approach. Cleatly,
the dependence on damping model is neglected when a constant value of g, is assumed for all

applications.

For this reason, a study was conducted on the appropriate dependence of the viscous component on
the damping model, hysteresis model and design ductility, for SDOF systems. Although a constant
damping coefficient is typically assumed in time history analysis, results for the models discussed for
MDOF systems in Section 6.1.4 were considered, for consistency with MDOF analysis. The substitute
structure method is based on the representation of nonlinear MDOF systems with equivalent linear
SDOF systems, and therefore the direct application of the SDOF results is applicable. The details
of this study are discussed more thoroughly elsewhere [Grant e a/., 2004; Priestley and Grant, 2005];

the results are summarised below.

Using a similar approach to Rosenblueth and Herrera [1964] for the viscous damping force, viscous
damping corrections for the three damping models given by Eqs. (6.3)—(6.5) were derived, based
on SDOF harmonic steady-state response. Damping was defined by either a constant damping
coefficient, or one that varies with the tangent stiffness. The modified Takeda and bilinear hysteresis

rules were used for the nonlinear behaviour.

For a constant damping coefficient, (Eq. (6.3), or Egs. (6.4)—(6.5) with the initial stiffness matrix),

the viscous component of the equivalent viscous damping is given by:

geﬁ,v = )\1 fv (617)
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where &, is the fraction of critical damping specified in the time history analysis, and Ay is a correction

factor:

K

)\ =
1 Kop

(6.18)

for both the bilinear and modified Takeda hysteresis rules. The dependence of A1 on both ductility

and the model parameter 7 is shown in Fig, 6.4.
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Figure 6.4. )\ correction factor for bilinear and modified Takeda models.

For “pure” tangent stiffness proportional damping (Eq. (6.4) using the tangent stiffness matrix for
K), the correction factor depends on the hysteresis model. For either model, the viscous damping
is given by:

feﬁ,v =MA2 & (6.19)

where A1 is obtained from Eq. (6.18). For bilinear and Takeda hysteresis, the correction factor g is
shown in Figs. 6.5(a) and (b), respectively. Figure 6.5(b) assumes that « is equal to 0.5, although the
dependence of Ay on this parameter is small. It can be observed from Figs. 6.4 and 6.5 that for all
values of ductility and post-yield stiffness, the total correction factor, A\j Mg, is less than unity.

For tangent stiffness proportional Rayleigh damping (Eq. (6.5) using the tangent stiffness matrix
for K), the resultant correction factor is a combination of the two models discussed above. The
post-yield stiffness, 7, must be replaced with an effective value, 7, which represents the ratio of the

inelastic to the elastic damping coefficient. For a bilinear SDOF system, this value is given by:

. _ Gom +airk

6.20
agm + ar k (6.20)

where ag and a; are the Rayleigh damping coefficients from Eq. (6.5), and m and k are the mass
and elastic stiffness, respectively. The effective post-yield stiffness from Eq. (6.20) may be used with
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Figure 6.5. )2 correction factor. (a) Bilinear model, and (b) modified Takeda model.

Fig. 6.5(a) for bilinear hysteresis to determine the appropriate correction factor for tangent stiffness
proportional Rayleigh damping. For modified Takeda hysteresis, Fig. 6.5(b) and Eq. (6.20), with

some modification, may be used to determine As.

The appropriate value of {¢f , to use for design depends on which of the damping models discussed
above best represents the real structural response. If “pure” tangent stiffness proportional damping
is specified, as recommended in Section 6.1.4, with modified Takeda hysteresis to a target ductility
of 4.0, and r = 5%, then, from Figs. 6.4 and 6.5(b), A\ = 1.87 and A2 = 0.28. For &, = 2%,
this results in a design viscous damping value of g, = 1.0%, while for &, = 5%, 7,0 = 2.6%
should be specified in Eq. (6.16). Although this correction will not make a large difference to the
response in the former case, it could be more significant for the higher damping value. In either case,

the correction is required for a consistent representation of viscous damping in analysis and design.

Taking into account the viscous damping correction, the results of Miranda and Jorge [2002] can
be reinterpreted. Miranda and Jorge performed a series of analyses to assess the performance of
Eq. (6.15), in addition to other models, by comparing the peak displacement response for nonlinear
and linearised viscoelastic hysteresis. As reported earlier, they found that Kowalsky’s equation tended
to underdamp the response, compared with nonlinear response under the modified Takeda model.
The viscous component of the fraction of critical damping was taken as equal for both nonlinear
and linearised analyses, {, = &eff v = 5%, and the viscous component of the damping coefficient
was not modified with structural yielding. A range of target ductility values from 1.5 to 6.0 was
considered, and the post-yield stiffness coefficient r = 0.

For this set of parametets, a range of A correction factors may be obtained from Fig, 6.4: for 4 = 1.5,
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A1 = 1.2, and for p = 6, \y = 2.4. From Eq. (6.17), values of {¢f ., between 6% and 12% should
have been used in Eq. (6.16), rather than a constant value of 5%. This would explain the tendency
of the equivalent linear model to consistently underdamp the structural response. The results of
Blandon [2004], in which a similar seties of analyses was cartied out with &, = 5., = 0%, albeit
for a smaller number of ground motions, support this explanation, although correction factors to the
hysteretic component of the equivalent viscous damping were still required to match the nonlinear

response. In both studies the prediction of Eq. (6.16) was consistently poor for low periods.

The A; correction factor, shown in Fig. 6.4, is detived from an exact relationship between viscous
damping specified based on initial stiffness (£,) and viscous damping specified in terms of secant
stiffness (§efr,0). The Ay factor, shown in Fig. 6.5(a) and (b), is based on the same assumptions as
Egs. (6.12) and (6.15) for the hysteretic component, and therefore requires validation. A numerical
validation procedure, described in more detail elsewhere [Grant ez al., 2004], shows that the analytical
values of Ay are consistently, although not significantly, low across a range of ductility values, petiods
and other model parameters. A simplified equation for the total correction factor for bilinear
hysteresis is suggested:

AMA2=1-011(p—1)(1 =) (6.21)
and for modified Takeda hysteresis:

AtA2 =1—-0.095(p — 1)(1 —7) (6.22)

Equations (6.21) and (6.22) are recommended for values of ;1 between 1.0 and 6.0, and a maximum
post-yield stiffness of 0.2 and 0.05, respectively. They can be used in place of Figs. 6.4 and 6.5(a)
or (b) to give an appropriate adjustment to the viscous damping value for use with “pure” tangent

stiffness proportional damping.

These results have been derived for SDOF systems, and it is not immediately evident how they will
apply to MDOF systems, in which different hysteresis models describe the response of each element,
and a given structural ductility corresponds to individual values of element ductility. For classically-
damped systems (Section 6.1.4), the viscous damping matrix is representative of energy dissipation
in the whole structure, and it is generally not possible to associate a level of viscous damping with an
individual bearing, superstructure or substructure element. It may, however, be appropriate to use
an expression like Eq. (6.16) for the pier response alone, and ignore viscous damping in the bearings.
If this is the case, then the correction factor given by Eq. (6.22) would apply. This approach, and the

application of these correction factors to MDOF structures in general, requires further investigation.

6.2.3 Displacement-Based Design of Isolated Bridges

The replacement of pier and bearing nonlinearity with equivalent viscoelastic models allows a rational

design methodology based directly on displacements to be developed. Priestley ez a/ [1996] gives
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a summary of the approach for a simple isolated bridge pier model, in which a target system
displacement and bearing ductility level are assumed, and the corresponding pier displacement and
bearing yield displacement are calculated from the effective stiffness ratios. They also suggest that
a regular bridge response, for which the effective stiffness of each pier-isolator system is equal, will
give the most efficient design, an assumption which allows each isolated pier and abutment to be
designed independently. Calvi and Pavese [1998] have suggested criteria for the optimal design of
an isolation system for the retrofit of existing bridges — an approach that also aims to regularise the
response of the bridge as much as possible. The Uniform Load Method in the Guide Specifications
for Seismic Isolation Demand [AASHTO, 1999] gives seismic demand in terms of an equivalent
seismic force, although because this is detived from the secant stiffness and spectral displacement of

the structure, it is equivalent to a displacement-based approach.

Because the limitation of bearing displacements is the primary design goal, and the equivalent
linearisation of bearing properties is carried out with respect to the design displacement level, it
appeats more rational to target the bearing displacement directly in the design process. Essentially
this is equivalent to the methods of Priestley ez a/ [1996] and AASHTO [1999], although it removes
the need to assume a bearing yield ductility, which has little meaning for HDR bearings. In this
section, the approach of Priestley ez a/ [1996] is restated in this form, for a single isolated pier system.
The design method is presented specifically for elastomeric bearings for which the relationship
between shear modulus and strain is known, and the total bearing displacement, Uy, is given by:

Uy = Witr (6.23)
where 7, is the shear strain in the bearing, and ¢, is the effective rubber thickness.

The range of effective periods expected for isolated bridges suggests that a lineatly increasing
displacement spectrum will generally be appropriate for design in regions where high magnitude
earthquakes govern the probabilistic seismic demand. Effective isolation periods will typically be in
the “constant velocity” portion of the response spectrum, provided that the recommendations of
Faccioli ¢t al. [2004] for extending the upper corner period for high magnitude spectral shapes are
adopted (see Section 6.2.1). This linear spectrum may be parameterised in terms of a single spectral
ordinate for 5% damping at a given period. The assumed design spectrum is illustrated in Fig. 6.6,
in which Tc and T'p ate the lower and upper bounds to the “constant velocity” range, and Uc and
Up are the corresponding spectral displacements. For periods outside this range, the dotted line
portions of Fig, 6.6 are more appropriate for design, although in the following it will be assumed
that the solid line holds for all periods. For these parameters and assumptions, the 5% displacement
spectral ordinate is given by:

U(T,5%) = Up (TE) (6.24)
D
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For lower magnitude events, or long isolated periods, it may be possible to assume that the effective
system petiod is greater than Tp, in which case U(T,5%) = Up will be a mote appropriate
expression for the spectral response. In the following, Eq. (6.24) will be assumed, although it will
be necessary to check this assumption at the conclusion of the design, and, if necessary, adjust the

spectral demand accordingly.

Spectral Displacemenitl(T,5%)

Period,T

Figure 6.6. Assumed design displacement spectrum. Bold line assumes linear with period; dotted line
is consistent with EC8 [CEN, 2003] acceleration spectral shape.

The Eurocode [CEN, 2003] damping adjustment factor, Eq. (6.6) will be assumed, giving the following

displacement spectral ordinate as a function of effective period and equivalent viscous damping:

0.1 T
U(T,&) =n-U(T,5%) :UD\/m <E> (6.25)

The proposed design methodology, therefore, aims to determine the effective rubber thickness, ¢,
for a number of high-damping rubber beatings in parallel, with a total cross-sectional area of A,

while maintaining the following performance objectives at the design intensity level:

D1. Rubber shear strain in the HDR bearing, Uy /., is equal to the assumed design shear strain,
Yod-

D2. Pier remains elastic, with a specified margin of safety.

To satisfy the second requirement, and to determine the elastic pier stiffness, it must be recognised
that pier stiffness is dependent on strength. In the traditional force-based design approach, a
reasonable pier stiffness is assumed for design before the required strength is determined. This
would theoretically require iteration — once the pier strength has been determined, the pier stiffness
should be adjusted — but this is seldom performed in practice. For isolated systems, in which

the response is dominated by the flexibility of the isolation device, iteration may be unnecessary.
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Nonetheless, it is more consistent within a displacement-based design framework to express the pier

stiffness in terms of strength:

F,
Ky =4 6.26
pd Upy ( )

where Fj,, and Uy, are the pier yield force and yield displacement, respectively.

The yield displacement may be determined from the yield curvature, ¢y, ; for zero moment at the
top of the pier, it is given by:
_ b H?

Upy 3

6.27)

where H is the pier height.

Priestley [2003] reports that the yield curvature for circular bridge piers may be determined from:

e (6:28)
where D is the pier diameter, and €, is the longitudinal reinforcement yield strain. For rectangular
columns: 9 10e

by = = (629

where h is the pier depth. Equations (6.28) and (6.29) ate cotrect to approximately 10% accuracy.

To satisfy design performance goal number D2, to ensure that the piers remain elastic, it will be
necessary to design for a pier yield force greater than or equal to the design force in the bearing,
Priestley ez al. [1996] note that the maximum expected variation in bearing design force should
be around 10%, based on code requirements for isolation devices, and therefore suggest that the

following equation should be adequate to ensure elastic pier behaviour:

F
Fpy = % = 1.18F)y (6.30)

AASHTO [1999] specify response modification factors, I?, that are 50% of the value used for non-
isolated piers, but not less than 1.5. This value is dependent on the pier bent configuration: for
single columns, the unadjusted R-factor is 3.0, while for multiple column bents, R = 5. Thetrefore,
the values appropriate for these bent configurations in an isolated bridge are R = 1.5 and R = 2.5,
respectively. The pier yield force is given by:

Fy, =2 (6.31)

The commentary [AASHTO, 1999] states that the intention of these response modification factors is

to target elastic substructure behaviour at design intensity (with a target pier ductility of unity), while
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allowing for an increase in pier capacity due to material overstrength and structural redundancy. It
notes that the yield force in Eq. (6.31) “represents an average value, which may be exceeded given
the inherent variability in the characteristics of the design-basis earthquake” [AASHTO, 1999, p. 23].
The value from Eq. (6.31) is the design value for the yield force, but the expected value is 50% higher

(for single piers), and is equal to the bearing design force.

The AASHTO [1999] method and the method of Priestley ez a/ [1996] represent very different
design philosophies. Although both methods target elastic pier behaviour at design level intensity,
the former method specifies an expected pier ductility of 1.0, while the latter method specifies a design
pier ductility of 0.85. If the expected strength is 50% or 150% higher than the design strength (for
single and multiple pier bents, respectively), then AASHTO [1999] proposes R values 1.8 and 3.0
times those implied by the suggestion of Priestley ez a/ [1996]. This difference could possibly be
explained by an increase in confidence in the use of seismic isolation for bridges between the dates
of publication of the two methods, and consequently less conservatism in the design approach. In
any case, the bridge piers will require ductile detailing in conjunction with capacity design principles,
and it is not likely that bridges designed according to AASHTO [1999] will collapse under design
level excitation. The major difference in behaviour may be expected at higher levels of excitation in
an extreme earthquake; this possibility is explored from a design point-of-view in the next section,

and numerically in a series of parametric studies in Chapter 7.

Assuming that the shear modulus of the elastomet, G(7p ), is 2 known function of the bearing shear

strain, 7yp, the bearing design shear force is:

Foa = G(ba) AbVod (6.32)
and the effective bearing stiffness is:

Fya  G(vpa)Ap
K = V—_— = —
" Uha ty

Alternatively, Eq. (6.13), or an appropriately calibrated bilinear model, may be used to determine the

(6.33)

bearing stiffness at the design level.

For an individual pier-isolator system, the total flexibility is equal to the sum of the pier and bearing
flexibilities. Inversely, the equivalent system design stiffness is given by:
KpaKypa

K

st -
pd + Kpd

(6.34)

Assuming inertial forces on the pier are much smaller than on the superstructure, the system period

is therefore:

My
sd

Tsd =27

(6.35)
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where M is the tributary mass of the superstructure, as before.

The equivalent viscous damping of the system is weighted in proportion to displacements:

K Ky K,
€t = Eod S pd + Epalod _ Ksa 60 636
Kyg + Kpq Kyq

where it has been assumed that the viscous damping in the substructure and superstructure is zero,
and that all energy dissipation occurs in the bearings. The equivalent viscous damping of an individual
bearing is independent of its thickness, as the critical damping level scales with the bearing, and may
be obtained from a known relationship of damping in terms of rubber strain, or from Eqgs. (6.12) or

(6.14), for the bilinear or proposed model, respectively.

From Egs. (6.32), (6.34) and (6.23), the total system design displacement may be expressed as:

K
Usd = Yoatr (1 + ﬂ) 6.37)
Kpa

Finally, the design condition that the system displacement at the design strain in the bearing is equal
to the spectral displacement for the linearised system may be enforced. Equating Egs. (6.25) and
(6.37), and solving Egs. (6.26) and (6.31)—(6.36), the following effective rubber thickness is obtained:

01
©0.05+ &g

(6.38)

T

M (%UD )2 _ 2RU,,
G(va)As \ vaTp Vod

where R = 0.85 if the recommendations of Priestley ¢z a/ [1996] are followed. The pier force design
level may be obtained from Egs. (6.31) and (6.32).

Although the design methodology outlined in this section was developed only for a simple pier-
isolator system, it is possible to extend the method to the design of bridges including variable length
isolated piers and isolated abutments. In this case, the assumption of single degree-of-freedom
response, inherent in the displacement-based design procedure, may not describe the real bridge
response accurately; the degree of coupling between the piers will be influenced by the superstructure
stiffness. If pier lengths are not too irregular, it should be possible to follow the design philosophy of
Priestley ez al. [1996], by setting the design displacements of each pier-isolator subsystem as equal, and
solving the system of design equations for each bearing rubber thickness. Equal design displacement
at each pier suggests that effective stiffness should be assigned in proportion to tributary mass.
Alvarez-Botero [2004] has investigated appropriate representations of continuous superstructure,

non-isolated bridge decks, and it is possible that these results may be extended to isolated bridges.

The equivalent viscous damping for the system may be evaluated using the same principles as before.
In AASHTO [1999], it is calculated from the total energy dissipated in all piers, normalised with
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respect to a linear viscoelastic system, as in Section 6.2.2. Priestley ez a/ [1996] evaluates the equivalent
viscous damping by weighting the individual pier-isolator subsystem with the corresponding tributary
mass, normalised by the total superstructure mass. The evaluation of effective stiffness and equivalent
viscous damping for the whole structure allows the computation of the displacement spectral ordinate,
and, consequently, the effective rubber thickness for each bearing, In the case that bent heights are
very irregular, it may be necessary to specify a different cross-sectional area of isolation bearings for
each bent, to obtain a physically realisable design solution. In extreme cases, it may not be possible

to ensure regular response, and more sophisticated design procedures may be necessary.

The design procedure discussed here also readily permits the inclusion of foundation flexibility.
Provided that the flexibility can be quantified in terms of an equivalent linear viscoelastic rotational
spring, this extra term can be added in series in Eq. (6.34), and the extra energy dissipation taken
into account in Eq. (6.36). Each foundation-pier-isolator subsystem can then be designed for regular

response, as before.

6.2.4 Design for Multiple Performance Levels

The design methodology summarised in the previous section allows a simple calculation of bearing
rubber thickness and pier yield force, based on some simplifying assumptions about seismic demand,
matetial properties, and pier overstrength requirements. The method does not, however, give
any indication of the behaviour of the system for higher intensity earthquakes. As discussed in
Section 6.2.1, this can be particularly important for regions of low to medium seismicity, for which
the maximum credible earthquake (MCE) is significantly higher in intensity than the design level event.
A measure of the performance under greater-than-design level intensity is also of particular interest
for bridges isolated with HDR bearings, for which the stiffness may increase for displacements
exceeding the design displacement, and lead to higher moment demands in piers. An explicit

consideration of demand corresponding to a longer return period earthquake is required.

In this section, the same simple isolator-pier system will be considered, with the possibility of
extending the methodology to include multiple piers and foundation flexibility, as discussed in the
previous section. Two performance levels will be identified, in a general sense, and design goals
for each level will be determined. The system of equations may be solved to determine the rubber
thickness and pier yield force (or, equivalently, the response modification factor, I?) that satisfies all
of these goals.

The spectral demand given by Eq. (6.25) is extended to allow multiple levels of intensity:

0.1 T
UT,&1)=1- UD,/m (T—D> (6.39)
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where I is a factor which represents the increased demand at the intensity level being considered.
In general, Up and Tp are specified for the design intensity level, for which I; = 1.0. For higher
values of I, the effective period and equivalent viscous damping of the system are also changing, and

the demand spectral ordinate will increase by a factor:

U(Toar €sas Ia) <Id) \/E <Tsd> (640)

which, in general, is not equal to 1.

Cleatly, it will not be necessary to enforce elastic pier behaviour for I > I;. For inelastic pier

response, the pier ductility is defined by:

U,

=L 6.41
IU’P Upy ( )

Assuming the modified Takeda model (Section 6.1.2) is representative of concrete pier response, the

pier effective stiffness for p,, > 1 is given by:

Fyq

N — 6.42
Upy Ry 642

Kp = Kpapi, " (1 + 1y — 1)

from Eqgs. (6.26) and (6.31), as 7, the post-yield stiffness ratio (see Fig. 6.1), is approximately zero
for reinforced concrete piers. The equivalent viscous damping ratio for p,, > 1 is determined from
Eq. (6.15), which depends only on the pier ductility and post-yield stiffness ratio, and not on the
elastic stiffness or yield force of the pier.

With the definitions given in Egs. (6.39)—(6.42), it is possible to define a set of performance goals
for the isolated bridge response. The aim is to determine the effective rubber thickness, ?,., and pier
yield force, I}y, such that:

D1. For I = Ig = 1, rubber shear strain in the HDR bearing, Uy /%, is equal to the assumed
design shear strain, Ysq.

D2. For I = I = 1, pier remains elastic.

M1. For I = I, rubber shear strain, Y4, does not exceed Yy, maz, determined from bearing

stability, or elastomer strength requirements.

M2. For I = I, pier ductility does not exceed fipm, a predefined limit.

Note that performance goals D1 and D2 correspond to design level intensity, and M1 and M2 are

defined with respect to intensity I,,,, which could represent the maximum credible event, or another
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level of seismic hazard. The following procedure assumes that goals D1 and M2 govern at their

respective intensity levels; goals D2 and M1 must be checked for the final design.

Equations (6.30) and (6.31) are not used in the design for multiple performance levels, as the pier
yield force is now a design variable. The other equations of the previous section, Eqs. (6.26)—(6.29)
and (6.32)—(6.37) are applied directly to the I = I intensity level. For I = I,,, the linearised pier
properties ate determined from Egs. (6.15) and (6.42), and the following equations are also defined:

Fym = G(Yom) Ay Yom
Fy — G(om)Ap
K m = —
b me tr
K mem
K. — __pm77om
o Kpm + Kbm
M (6.43)
Tsm =27 !
_ fmepm + gmebm
o Kbm + Kpm
K
Usm = mU 14 pm)
HpmUpy ( Ko

For general relations for elastomer stiffness, Eq. (6.32), and equivalent viscous damping in terms of
bearing strain, the system of equations defined above cannot be solved explicitly for ¢, and Fj,
The following quadratic equation for the pier yield force can, however, be determined to satisfy

performance goal M2:

27TImUD

2
i ) =0 (6.44)

(0.05 + &om) Eryy + (0.05 + Epm ) Koo pypm Upy Fpy — 0.1M1 Ky (

This suggests the following iterative procedure to determine Fj,, and ¢,.:

1. Determine &y, from Eq. (6.15).

2. Initially, assume that the shear stiffness and damping for the bearing at I = I,,, are equal to
the known design values, Kpq and &pq, respectively.

3. Solve Eq. (6.44) for I}, using the quadratic formula.

4. Calculate R from Eq. (6.32), and the effective rubber thickness from Eq. (6.38).
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5. For the assumption of zero post-yield stiffness, r = 0, I}, = F, = Fym, and therefore:

F,
by (6.45)

Yom = Kbmtr

Update values of Kpyp, and &y, and iterate from step 3.

6. Check that F,q < F,, (to satisfy requirement D2), and Fy,,;, < F} ynaq (to satisfy M1).

The procedure is implemented in a simplified form in the next chapter, and compared with the

results from time history analyses.



7. PARAMETRIC STUDIES OF ISOLATED BRIDGE
RESPONSE

7.1 INTRODUCTION

In this chapter, the proposed bearing model is used in a seties of parametric studies to investigate
the bidirectional response of bridges isolated with HDR bearings. Huang [2002] carried out a similar
study for softening bearing types using a bilinear coupled plasticity model (as in Section 3.2.1), but
did not investigate the dependence of the response on the input intensity of the ground motion. This
is of particular importance for isolation with HDR bearings, for which the stiffening effect is likely
to be influential beyond design level ground motion intensity. Other factors, such as pier inelasticity
and superstructure flexibility, are also considered in this study. The main objectives of the parametric

studies were:

1. To investigate the sensitivity of the response of isolated bridge systems to ground motion

intensity, particulatly if seismic demand exceeds design level.
2. To compare the effectiveness of common types of isolation devices with that of HDR bearings.

3. To test the robustness and applicability of the proposed bearing model and integration
algorithm.

4. To assess the displacement-based design procedure, particularly for multiple performance

levels, developed in the previous chapter.

5. Finally, to study the sensitivity of the peak system response to various modelling assumptions,
including the treatment of scragging and scragging recovery, the elastic pier period, the choice

of ground motion suite, and superstructure flexibility.

7.1.1 Bridge Configurations

The parametric studies were carried out on three bridge configurations, illustrated in Fig. 7.1.
Configuration 1 (Fig, 7.1(a)) is a simple pier and bearing model, with one lumped mass representing

the superstructure, and another for the mass of the substructure. The model can represent the
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behaviour of a bridge with all piers identical in stiffness, and free abutments. Alternatively, if bearings
have been designed to regularise the response of each (foundation)-pier-isolator subsystem, then
their response may be effectively decoupled, as in Configuration 1. Each lumped mass has one
degree-of-freedom (DOF) in each orthogonal horizontal direction, and therefore the total number
of DOFs is four. Tributary lumped weights of 10 MN for the superstructure and 1 MN for the

substructure are used.

Figure 7.1(b) is an elevation of bridge Configurations 2 and 3. Both models comprise a single, central
pier-isolator system, and isolated abutments at each end. In Configuration 2, the superstructure is
considered rigid, and the response is thus described by five DOFs — the four from Configuration
1, and a superstructure rotational DOF about the vertical axis. The fifth DOF is not excited in the
symmetric analyses considered here, however. In Configuration 3, the superstructure is considered
flexible, with a single generalised DOF [Chopra, 2001] used to describe its flexural deformation.
With x and L as defined in the plan view, Fig. 7.1(c), the deformation is described by a cosine

function:

Uss(x) = Us cos(ﬂ-x

ﬂ) (7.1

The equivalent mass (M) and stiffness (l~€) of the supetstructure may be determined [Chopra, 2001]:

m = mL 7.2)

and
Y ' L 73
- L (')

where T is the superstructure mass per unit length, and ET is the flexural stiffness of the super-
structure. Similarly, the equivalent ground motion influence scalar in the direction of Ug is given
by:

4mL
R

L= (7.4)

The use of an equivalent DOF for the response of the bridge simplifies the analysis considerably. For
a larger bridge model, however, it would be an oversimplified representation of the deck response,
as it removes the influence of the higher modes of the superstructure on the overall response of the
bridge. Alvarez-Botero [2004] conducted parametric studies of non-isolated bridges with flexible
abutments, and found that the sinusoidal deflected shape is a particularly poor representation of

superstructure deformation when central piers are stiff relative to the abutments.
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Figure 7.1. Bridge configurations for parametric studies. (a) Elevation for Configuration 1, (b) elevation
for Configurations 2 & 3, and (c) plan for Configuration 3.

7.1.2 Superstructure and Substructure Modelling

Pier behaviour was represented by a linear elastic model, with the same stiffness in each direction.
An initial pier stiffness of 71.5 MN/m is assigned, to give an elastic non-isolated pier petiod of
0.75 seconds, ignoring pier weight. This value was also varied for each configuration to assess the

sensitivity of the response to the pier stiffness.

Although piers are usually designed to remain elastic in isolated bridges, it is important to under-
stand how the effects of seismic isolation and pier yielding may interact for high seismic demand.
To investigate the effects of pier inelasticity, various inelastic models were adopted for the piets.
Although it is recognised that the initial stiffness of reinforced concrete (RC) elements varies with
strength Priestley [2003], in this study a constant inital stiffness equal to 71.5 MIN/m was adopted,
for simplicity. Because there are no simple models for the biaxial bending of RC piers, an uncou-
pled modified Takeda model was used to represent pier response in each direction (Section 6.1.2).

Parameters of @ = 0.5 and § = 0 were used, with a post-yield stiffness ratio of 5%.

To assess the sensitivity of response to bidirectional loading, two further plasticity models — coupled
and uncoupled bilinear — were also used. Although neither of these models is particularly appropriate
for RC piers, a comparison between the results of the two may give some indication of the error in
using an uncoupled Takeda model as the primary description of biaxial pier bending. In each case,

5% post-yield stiffness was assumed.
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7.1.3 Bearing Modelling

In all configurations, bidirectional bearing behaviour is represented by the model from Chapter 4.
Due to the fact that no full-scale, bidirectional test results were available for HDR bearings, data from
the scaled Bridgestone KI.301 bearing calibration, described in Chapter 5 were used. As discussed
earlier, these bearings were originally specified as 2.5 scale bearings for building seismic isolation,
with a diameter of 175 mm, and total rubber thickness (¢,-) of 45 mm. However, bearings scaled by

a factor of 4.0 are more appropriate for bridge applications.

The virgin parameter set in Table 5.2 was used as a basis for parameters a;—b3, while the parameters
accounting for stiffness and damping degradation were set to zero (with c3 = 1). To represent
the effects of pre-scragging of 250%, the virgin material parameter set was adjusted for an initial
Dg = 2.5t,. This initial scragging accounts for the fact that bearings are typically provided by
the manufacturer in a degraded state, and subsequent hysteretic behaviour within this limit may
be considered stable. The parameters were further adjusted to describe the total bearing system
behaviour of four bearings per pier, and converted to SI units. Finally, the scaling factor to convert
from scaled to prototype bearings, 1 was used as a variable in the bearing design process described
below. Parameters were scaled by assuming that shear stress-shear strain properties of the elastomer
remain constant; forces were multiplied by 1* and displacements were multiplied by 7. Scaling the
bearing size in all directions allows the first and second shape factors, S1 and S, to be maintained.
These are defined as [Clatk e7 4/, 1997]:

¢ ¢
S1=— So = — 7.5

LT 2T (7
where ¢ is the diameter of the steel shim, ¢ is the thickness of each rubber layer, and ¢, is the total

rubber thickness, as defined eatlier. For the Bridgestone beatings considered here, S1 = 20 and
Sy = 4.

Sensitivity studies were also carried out on the HDR bearing model for three additional cases. In
the first, the scragged bearing properties corresponding to 250% prescragging were retained, but
the degradation parameters were not set to zero. Clearly, because of the isotropic damage model
adopted in Section 4.1.3, this will only affect the response for intensity levels for which 250% strain
is exceeded in the bearing, The other two sensitivity studies considered virgin bearing parameters,
with scragging turned on and off in the model. As discussed previously, experimental evidence
[Thompson ef al., 2000] suggests that virgin parameters are recovered over a time frame well within

the design life of bridges. For this reason, it is important to consider this in the parametric studies.

To compare the effectiveness of HDR isolation systems with LR and FPS systems, another set
of analyses was carried out with a kinematic hardening, coupled plasticity model for the bearings

(Section 3.2.1). This model has been shown to describe bidirectional response of FPS bearings
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[Mosqueda ez al., 2004] effectively, and is also commonly applied to LR bearings. In the latter case,
model parameters are strain-dependent, at least for the lead core dimensions considered by Huang
[2002]. Furthermore, the bidirectional behaviour of LR beatings is not completely desctibed by the
classical kinematic hardening approach for all load paths. These limitations notwithstanding, the
bilinear model was adopted to contrast the behaviour of softening isolation devices such as FPS and

LR bearings, with the stiffening behaviour of HDR bearings at high strains.

Because the LR bearing parameters are strain-dependent, two base sets of parameters were considered,
from the calibrations of Huang [2002]. The two parameter sets correspond to bearing response for
maximum strain levels of 100% and 150% — the former level represents the design strain assumed
for the bearings in Section 7.1.5, while the latter is appropriate for the bearing demand at higher
intensities. Although it would be more accurate to use a model that described the transition between
these two representations, as well as LR bearing response at other strain levels, these two parameter
sets should provide some information about LR bearing response at least two levels of seismic

demand.

FPS bearing response is dependent on the level of axial load on the bearing — which can vary during
a single event — in addition to the friction coefficient of the bearing sutface, pt, and the bearing
radius, R. Simple bilinear representations of response based on these parameters, although crude,
provide a useful approximation to actual bearing response [Mosqueda ef 4., 2004]. A pseudo-yield
displacement of 0.01 inches (0.25 mm) was utilised for computational convenience, as recommended
by Constantinou e 2/ [1993]. Two parameter sets, corresponding to low friction (4 = 0.06) and
high friction (u = 0.12), were derived using the design process discussed in Section 7.1.5, with a
design displacement given by R/8. Priestley ef a/. [1996] recommend an absolute limit of R/5 for
FPS beatings, and a reduction factor of 5/8 for design purposes seems approptiate. In any case, it
would be possible to adapt the multiple-performance-level design process described in Section 6.2.4
to FPS bearings, and the R/5 tecommendation may be an approptiate performance goal for the

MCE intensity level.

7.1.4 Ground Motions

A set of ground motion records was selected from the FEMA/SAC database SAC [1997] to use
as input for the time history analyses. The database contains several suites of ground motion,
scaled to the 1997 United States Geological Survey (USGS) hazard maps for various seismic hazard
zones and the 1997 NEHRP spectral shape. The records are provided in orthogonal pairs, and
are rotated into fault normal (FN) and fault parallel (FP) components, which can influence the
intensity for near-fault recordings. The ground motions correspond to magnitude—distance pairs
that are characteristic of each area, as determined from deaggregations of the probabilistic seismic

hazard assessment (PSHA). Each pair of records is subsequently scaled by a single scaling factor to
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minimise the squared error between the USGS target spectrum and the average response spectrum
of the time histories at periods of 0.3, 1.0, 2.0 and 4.0 seconds, with weighting factors of 0.1, 0.3,
0.3 and 0.3, respectively. The spectral ordinate for 4.0 seconds was determined from a separate
(PSHA), conducted by Abrahamson [SAC, 1997] — the target acceleration spectral ordinates, and

corresponding displacement ordinates, are shown in Table 7.1.

Table 7.1. Target spectral ordinates for SAC [1997] ground motion scaling.
Period, T" (sec) | 0.3 1.0 2.0 4.0

Sa(T,5%) (g | 1.07 0.68 033 0.123
Sd(T,5%) (m) | 0.02 017 033 049

A suite of earthquake recordings corresponding to a 10% exceedance-in-50-year hazard for firm soil
sites in the Los Angeles (LLA) area was selected for the time history analyses. A summary of the LA
suite, including a description of each record, magnitude and distance information, and the scaling
factor applied in preparation of the database, is presented in Table 7.2. Because the regression
to determine the scaling factor for each record is carried out on the acceleration spectrum for a
range of periods, the displacement spectrum for longer effective periods appropriate for isolated
structures exhibit a large degree of scatter. For this reason, a second scaling factor has been applied
here such that the average displacement response spectral ordinate for each pair for a period of
3.0 seconds is equal to the average of the 2.0 second and 4.0 second displacement ordinate from
Table 7.1. Although it would be more consistent with the design procedure (discussed below) to use
the bidirectional spectral ordinate rather than the average, it is consistent with the use of random
ground motion components in the PSHA determination of hazard to use the average of the two.

The second scaling factor, and the product of the two factors, is shown in Table 7.2.

Table 7.2. Los Angeles (LLA) ground motion suite, and scaling factors for analyses.

SAC Record SAC Scaling 2™ Scaling | Total Scaling
Name Factor Factor Factor
LAO01-LAO02 | Imperial Valley, 1940, El Centro 2.01 0.78 1.56
LA03-LA04 | Tmperial Valley, 1979, Array #05 1.01 0.50 0.51
LAO05-LAO6 | Imperial Valley, 1979, Array #06 0.84 0.55 0.46
LAO7-1LAO8 | ILanders, 1992, Barstow 3.20 0.73 2.34
TLA09-1.A10 | Landers, 1992, Yermo 217 0.84 1.83
LA11-1LA12 | Loma Prieta, 1989, Gilroy 1.79 1.10 1.96
LA13-1.LA14 | Northridge, 1994, Newhall 1.03 1.07 1.10
LA15-LA16 | Northridge, 1994, Rinaldi RS 0.79 1.05 0.83
LA17-LA18 | Northridge, 1994, Sylmar 0.99 0.61 0.61
LA19-LA20 | North Palm Springs, 1986 2.97 1.26 3.75
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Note that the total scaling factors in Table 7.2 range from 0.46-3.75. As discussed in Section 6.1.5,
factors in the range of 0.5-2.0 may be more likely to lead to physically realistic ground motions for
inelastic analysis. It could also be argued that the deaggregation of the PSHA would give different
results (in terms of magnitude—distance pairs) for different spectral ordinates, and therefore the
records selected for the ILA suite may not be specifically appropriate for the long periods of interest
here. Nevertheless, it is assumed in this study, for both the reference level ground motion in Table 7.2
and subsequent scaling to represent different hazard levels, that accelerograms scaled by a constant
factor are representative of physically realisable ground motion. In any case, the scaling factors in
Table 7.2 generally lie within the recommended range, with three exceptions, and the ground motion
pairs obtained by such a scaling will be more physically realistic than spectrum-compatible, artificial
records. The maximum applied scaling factor (3.75) is also less than the upper limit of 4.0 proposed
by other authors [Krinitzsky and Chang, 1977].

The displacement response spectra for each of the 20 scaled records, derived for a viscous damping
ratio of 5% are shown in pairs in Fig, 7.2. The dotted line in each plot is the bidirectional response
spectrum, described in Section 6.1.5, and the dashed line is the displacement response spectrum
represented by the ordinates in Table 7.1. Tt is evident that the mean for each pair provides a
good representation of design level demand for the range of periods applicable to isolation design
(I" > 2.0 seconds). As observed in Section 6.1.5, the maximum demand from spectrum compatible
earthquakes will be greater than the unidirectional design demand, however, and the bidirectional
response spectrum will govern the maximum response under these ground motions. This represents
a greater level of seismic demand, as is apparent in each of the plots, and for this reason, the mean

of all ten bidirectional spectra is used for the bearing design described in Section 7.1.5.

To study the sensitivity of the analysis results and design procedure (discussed below), sets of ground
motions from a suite corresponding to a 10% exceedance-in-50-year hazard for Seattle (SE), and a
suite of unscaled near-fault (NF) recordings were also used. The SE suite was rescaled according
to the procedure described above for the LA suite, while the NF recordings were left unscaled. A
description of each ground motion considered in the analyses, and the scaling factors applied is
provided in Tables 7.3 and 7.4, for the SE and NF suites, respectively. More details of the ground
motions in each suite may be found in the SAC [1997] report.

As discussed below, the ground motions described by Table 7.2 and Fig. 7.2, in addition to the
scaled SE and unscaled NF suites of ground motion, are representative of design level hazard. Each
ground motion pair has been scaled to a comparable hazard level, and the displacement spectra
are used directly for the bearing and pier design (see Section 7.1.5). To investigate the response
of the isolated bridge models to intensities different from that considered in design, a third scaling
factor is applied to the ground motion pairs. For each bridge configuration, bearing type, ground
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Figure 7.2. LA ground motion suite, displacement response spectra for each pair, £ = 5% (solid lines),
target spectrum for scaling (dashed) and bidirectional spectrum for pair (dotted).

Table 7.3. Seattle (SE) ground motion suite, and scaling factors for analyses.

SAC Record SAC Scaling 2™ Scaling | Total Scaling
Name Factor Factor Factor
SE01-SE02 | Long Beach, Vernon CMD Bldg, 0.49 0.54 0.27
SE03-SE04 | Morgan Hill, 1984, Gilroy 2.84 1.02 291
SE05-SE06 | West Wa., Olympia, 1949 1.86 0.66 1.23
SE07-SE08 | West Wa., Seattle Army Base, 1949 5.34 1.61 8.58
SE09-SE10 | North Palm Springs, 1986 1.71 1.25 213
SE11-SE12 | Puget Sound, Wa., Olympia, 1965 4.30 1.19 5.12
SE13-SE14 | Puget Sound, Wa., Federal OFC, 5.28 1.33 7.04
1965
SE15-SE16 | Western Wa., Tacoma County, 8.68 1.04 8.99
1965
SE17-SE18 | Llolleo, Chile 1985 1.24 1.08 1.33
SE19-SE20 | Vinadel Mar, Chile, 1985 1.69 1.76 2.97

motion suite, and other sensitivity studies considered, analyses are carried out for ground motion
scaling factors of 0.1-2.0, in increments of 0.1. The higher scaling factors are of particular interest,

resulting in ground motions in excess of design levels. As discussed in Section 6.2.1, a factor of 2.0
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Table 7.4. Near-fault (NF) ground motion suite, and scaling factors for analyses.

SAC Record SAC Scaling 2™ Scaling | Total Scaling
Name Factor Factor Factor
NF01-NF02 | Tabas, 1978 1.00 1.00 1.00
NFO03-NF04 | Loma Prieta, 1989, Los Gatos 1.00 1.00 1.00
NFO05-NFO06 | Loma Prieta, 1989, Lex. Dam 1.00 1.00 1.00
NF07-NF08 | C. Mendocino, 1992, Petrolia 1.00 1.00 1.00
NF09-NF10 | Erzincan, 1992 1.00 1.00 1.00
NF11-NF12 | Landers, 1992 1.00 1.00 1.00
NF13-NF14 | Nothridge, 1994, Rinaldi 1.00 1.00 1.00
NF15-NF16 | Nothridge, 1994, Olive View 1.00 1.00 1.00
NF17-NF18 | Kobe, 1995 1.00 1.00 1.00
NF19-NF20 | Kobe, 1995, Takatori 1.00 1.00 1.00

above design intensity, or sometimes greater, may be representative of the “maximum considered”
hazard of 2% exceedance-in-50-years for low or moderate seismic intensity. Although the LA area is
certainly a high seismic zone, the results are nevertheless of interest, as bearings will in any case be

smaller in zones of lower seismicity, and the results will be qualitatively comparable.

7.1.5 Design of Bearings and Piers

To investigate the accuracy of the displacement-based design method discussed in Section 6.2, each
bridge configuration was designed to meet the appropriate performance goals under the suite of
input ground motions. The design approach was simplified slightly by assuming that the initial
stiffness of each pier, whether elastic or inelastic, was independent of its strength. Furthermore, the
use of scaled bearing parameters described in Section 7.1.3 suggested the use of the bearing scaling
factor, 7, as the primary design parameter. For the inelastic pier analyses, the yield strength of the
pier, I}, was used as a secondary design parameter, with the intention of satisfying performance
goals D2 and M2, from Section 6.2.4.

The AASHTO specifications for isolation design [AASHTO, 1999] prescribe a lateral displacement
limit for elastomeric bearings of 2.5¢,., in addition to limits for the total shear strain due to vertical
loads, rotation and lateral displacement. Stanton [1998] recommends a displacement limit of 2.0¢,.
to prevent delamination of the elastomer from the steel plates. To limit strains below this level for
design level ground motion, a bearing design displacement corresponding to 150% design strain was
considered in this study. As the scale bearing rubber thickness (45mm) scales with the scaling factor,
7, the bearing design displacement is given by:

Uq = (150%)(45mm) X n (7.6)
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from Eq. (6.23).

The effective stiffness of the bearing at the design level, Kpq, is calculated from the unscaled bearing
parameters obtained earlier, and also increases in proportion to the scaling factor. The equivalent
viscous damping, &g, is found from Eq. (6.14), and is independent of scaling factor; a value of
Epa = 10.4% was calculated for the model parameters used here. The system effective stiffness,
effective petiod and equivalent viscous damping are determined by considering the pier and isolator
in series, as in Eqgs. (6.34)—(6.30).

The average of the bidirectional ground motion spectra, detived for the equivalent viscous damping
of the system, was used as the design displacement spectrum. Although this is not consistent with
the use of any specific design code, it allows this approximation to be removed from the comparison
of analysis results with design goals, and obviates the need for bidirectional combination rules. A trial
scaling factor was assumed, and the structural period cortesponding to a displacement of Usq was
found from the design spectrum. The scaling factor was adjusted until the period was approximately
equal to the effective period of the system, Tsq. The above procedure converged for a scaling factor
of 1 = 5.6, which corresponds to a prototype bearing diameter of 975 mm and rubber thickness of
250 mm,

The design spectrum for {sq = 9.5%, along with each of the individual bidirectional spectra for
the same damping level, is shown in Fig. 7.3. The figure also shows the converged design point
at Tsq = 2.61 seconds, and Ugq = 0.42 metres. It can be observed that even at a period of 3.0
seconds, for which the average response spectrum for each pair was normalised to a single value,
there is some scatter about the mean. This scatter is due to the variability of the effects of damping
— transforming the spectra from 5% to 9.5% — and the variation in the bidirectional demand for
a given average displacement spectrum, as already observed in Fig, 7.2. For the design period of
2.61 seconds, the scatter is even greater, and some scatter in the analysis results can be expected.

However, the mean over all ten analyses should provide a good measure of design performance.

The design procedure was also carried out for the bidirectional bearing models, representing the
behaviour of LR and FPS bearings. For the LR bearing parameter set, calibrated parameters from
100% strain unidirectional loading tests by Huang [2002] were used, and scaled in the same way as for
the HDR bearings. The bearings were originally 180 mm in diameter, with a total rubber thickness
of 87 mm. An isolation system of four bearings, with a scaling factor of 4.3, was used to obtain a
design point for the LA suite averaged displacement response spectrum, corresponding to a design
displacement of Usqg = (100%)t, = 375mm. Parametets from the 150% strain unidirectional tests
were also used; these parameters were scaled by the same factor (4.3), as they were intended not to
represent a conscious design choice, but to account for reduced bearing stiffness for bearings greater

than design level displacement demand. Two parameter sets were derived for the FPS bearings,
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Figure 7.3. LA ground motion suite bidirectional displacement response spectra for 9.5% damping,
and averaged spectrum (bold), with displacement-based bearing design point (circled).

corresponding to friction coefficients of ;1 = 0.06 and pt = 0.12. Assuming a bearing design
displacement of one eighth of the bearing radius, design radiuses of 2.3 metres and 1.5 metres were

obtained.

Sensitivity studies on ground motion input and representation of bidirectional demand were also
carried out. The SE and NF ground motion suites were used, as described earlier, and the bearing
scaling factor was determined accordingly. Furthermore, a design spectrum corresponding to the
average of all twenty spectra from the LA suite, instead of the ten bidirectional pairs, was also used.
This last assumption corresponds to normal design practice, in which unidirectional design is carried
out with a design spectrum that corresponds to a random ground motion direction, instead of the
worst direction which will govern the response of a regular structure. In regular design, however,
bidirectional combination rules are used to account for this. A sensitivity study was also carried out

on designing the HDR bearings for a strain level of 200%.

In addition to these elastic pier design cases, piers were also designed inelastically using the procedure
discussed in Section 6.2.4. The methodology was adapted to the design parameters defined eatlier,
and values of I,, /I = 1.5 and 2.0, and ppy, = 4 wete used. Performance goal M2 was ignored so
that the goal of reaching target pier ductilities could be highlighted. Because the elastic pier stiffness
is assumed to be constant here, the bearing scaling factor is identical to the elastic pier design. Pier
yield forces of 0.77Fpq and 1.05Fy,4 were found for I, /I; = 1.5 and 2.0, respectively.

Finally, the designs were repeated for Configurations 2 and 3. In each case, two bearings were
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used at the abutments, and four at the central pier, in proportion to the tributary weight of the
superstructure. In Configuration 2, the central pier flexibility implies that the abutment bearings
will govern the bearing design, provided that the same scaling factor is used for each bearing. The
multiple performance level design methodology is difficult to adopt in closed form to the more
complicated bridge geometries, so the inelastic pier designs from Configuration 1 were used. It was
also impossible to design Configuration 3 without iteration on the deck displacement, so bearing
designs from Configuration 2 were used for every case. This design procedure could be improved
for more complicated bridge geometries by considering superstructure shape functions, such as that
proposed by Alfawakhiri and Bruneau [2000] for non-isolated bridges with flexible abutments, and
representing the abutment bearing and central pier-bearing ensemble by equivalent linear springs.
The parametric studies of Alvarez-Botero [2004], that considered an iterative procedure to determine

deflected shapes appropriate for displacement-based design, may also be applicable in this case.

The bearing scaling factors for each design case (or bearing radius for the FPS bearings) can be found
in the captions to the figures found at the end of Sections 7.2-7.4.

7.1.6 Analysis Parameters

Newmatk’s method [Newmark, 1959] with parameters 8 = 0.25 and 7 = 0.5 was used for
the solution of the equation of motion, and the nonlinear state determination was carried out
with Newton—Raphson iteration. The tangent stiffness matrix for the bearing model is derived in
Appendix A. For coupled plasticity modelling of the inelastic behaviour of piers, the tangent matrix
can be obtained by differentiating the governing equations in Section 3.2.1. For uncoupled models
the tangent matrix is trivial to determine, as the off-diagonal components are zero, and the diagonals

are obtained from the scalar stiffness in each direction.

Due to uncertainties in the application of viscous damping models for stiffening systems (Sec-

tion 6.2.2), no viscous damping is used in the analyses or design.

7.2 CONFIGURATION 1: IDENTICAL PIERS, RIGID SUPERSTRUCTURE

For each bidirectional analysis, the peak bearing displacement and pier force were determined from
the vector magnitudes at each time step. These maxima were normalised with the bearing design
displacement, Ug, and design force, Iy = KpqUqg, and are shown over the range of intensities in
Fig. 7.4. The mean of the maxima across the whole ground motion suite is shown in bold in each plot.
Although there is scatter in the individual ground motion results, it is comparable with the scatter in
the bidirectional displacement spectra (Fig. 7.3) that correspond to the actual level of demand on the
structure. Some general trends can be observed: at the design intensity level (I /14 = 1), the peak

displacements and forces are scattered about the design values (Upq and Fpq), and the mean value
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shows a good match of the target values. This observation validates the displacement-based design
procedure outlined above, and suggests that a nonlinear response spectrum that gives the maximum

response in any direction would be a useful design aid [Huang, 2002].

Figure 7.4 also illustrates the effect that the HDR bearing strain-stiffening phenomenon has on
seismic isolation. For displacement levels in excess of the design displacement, Fig. 7.4a shows that
the bearing deformation does not increase in direct proportion to the intensity, although the curvature
of the mean line is not large. However, Fig, 7.4b illustrates the trade-off of limiting the displacement;
the pier forces are increased significantly for the higher intensity levels. These observations will be
more evident when the strain-stiffening HDR model is compared with a bilinear model typical of
other bearing types.

To compare the effectiveness of HDR isolation systems with LR and FPS systems, another set of
analyses was carried out with a bilinear force—displacement model for the bearings. The average
maxima over all records are shown in Fig. 7.5. The response quantities from each bearing model
are normalised with the design displacement and design force of each bearing so that the results
can be compared. The exception is the LR model with parameters corresponding to 150% strain
(“ultimate”), which represents the ultimate level properties of the “design” LR bearing, and is
therefore normalised with respect to the corresponding design properties. The bearing models
have been designed for the design intensity individually, and the displacement and force response is
approximately the same at the design level of the beating (U/Uy = F/F4 = 1). The displacements
for the FPS model with high friction are slightly underestimated — for this model, the yield force is
high relative to the post-yield stiffness, and the equivalent linearisation is less applicable.

For intensity levels above I, the difference between stiffening and bilinear response continues to
diverge. The maximum displacement of the I.LR model exceeds 150% strain (1.5U) for a normalised
intensity of 1.3, and therefore the “ultimate” properties may be considered representative of real
LR bearing softening behaviour at this data point. This suggests that at a normalised intensity of
2.0, the normalised peak force may be even less than the 1.5 obtained here, and in any case will be
significantly less than the HDR bearing, The difference in the peak displacements at the highest
intensity values is not that significant, which suggests that the use of a bilinear model with one set of
model parameters may be appropriate for analysis where only peak displacement is of interest. The
differences among the three bearing types at high intensities again illustrates the trade-off discussed
earlier — the stiffening behaviour of HDR bearings limits the maximum displacements for high strain

levels, at the cost of higher forces developing in the piers.

A second sensitivity study was carried out on the inclusion of the scragging phenomenon in the
bearing model. The parameters corresponding to scragging in the proposed model were retained

from the calibration (Table 5.2), although the parameters corresponding to Mullins’ effect were not
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(c3 = 1, c4 = 0). The parameters were converted to SI units, scaled for four bearings, and further
modified for a scaling factor, 1. Furthermore, another two sets of analyses were carried out with
virgin material properties, including and excluding scragging effects, to investigate the effect on

bridge response if the original bearing properties are recovered.

The results from this set of analyses are summarised in Fig. 7.6. It can be observed that the
introduction of further scragging to the model does not affect the response until the prescragging
level of 250% strain (U = 5/3Uy) is exceeded, due to the isotropic softening model used for the
degradation, and even for these levels the peak forces are identical for I/I; < 2. This justifies the
use of no scragging in the other parametric studies in this chapter. The virgin parameter set results in
a slightly stiffer model, and this is reflected in the lower displacements in Fig, 7.6a and higher forces
in Fig, 7.6b. For the case of virgin parameters and scragging included, the peak force is probably
observed before the peak displacement, as the former cycle softens the bearing for subsequent cycles.
This is dependent on the properties of the ground motion, but it is reflected in Fig, 7.6, as the forces
are higher for the scragging model with virgin parameters at higher intensities, but the displacements

converge to the same value as the prescragged model.

The use of a different ground motion set for the bearing design and time history analyses was also
investigated. Ten paits of near-fault (NF) ground motion records from the FEMA/SAC database
were used, and the bearing was redesigned for the mean bidirectional displacement spectrum of all
ten ground motion pairs. Near-fault ground motions are considered to be particulatly demanding
for isolated systems, due to the high spectral response at long periods, and high amplitude velocity
pulses. The NF recordings in the FEMA/SAC database are not scaled to a design spectrum, and
consequently there is significantly more scatter in the response spectra. The bridge model was also
redesigned for the scaled Seattle (SE) ground motion, as discussed in Section 7.1.4, to represent a

region of more moderate seismicity.

The displacement and force response, normalised separately with respect to the values for each
bearing design, are shown in Fig. 7.7. Even if NF motions are more demanding for an isolated
system, it can be observed that this additional demand is included in the bidirectional demand
spectrum, and was therefore included in the design procedure. The design for the SE ground motion
suite led to a slight underestimation of the design displacement and force, and this discrepancy was
magnified at the high intensity levels. This is particularly noteworthy, in that the factor of I /I; = 2.0
is of more relevance for regions of moderate seismicity, and a ground motion corresponding to 2.0
times design intensity may be approximately representative of a 2%-exceedance-in-50-year hazard in
these areas. This hazard level is adopted as the “maximum considered event” in several design codes
[AASHTO, 1999].

Figures 7.8 and 7.9 consider the sensitivity of results to two assumptions in the design process. The
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first assumption (Fig, 7.8) deals with the representation of bidirectional demand by way of a response
spectrum calculated for a random ground motion component. Clearly, the actual peak bidirectional
response of a structure will be governed by the “worst component” of the earthquake motion. This
is not identical to taking the worst case angle of incidence of ground motion, 6, which, as discussed in
Section 6.2.1, is inconsistent with the design hazard level. In the former case, the hazard-consistent
ground motion and the structure are fixed in space, and the peak response is governed by the peak
displacement demand in a vector sense. In the latter, the given ground motion is rotated to determine
the maximum of all peak vector displacement values, for 0 < 6 < 360°. Figure 7.8 shows that the
design demand is largely underestimated by the unidirectional spectrum, by around 40% for peak
bearing displacements and forces. This also leads to corresponding differences in the demand curves

for intensity levels below and above the design intensity.

The second design assumption considered is the design strain specified for the HDR bearing. A
design strain of 200% was considered, following the upper limit recommended by Stanton [1998],
to contrast the value of 150% used in the main designs. Changing this value moves the design point
with respect to the stiffening range of the Bridgestone bearings, and could be expected to affect the
results particularly for I > I;. Figure 7.9 shows that the displacement demand is not significantly
different across the whole intensity range, although the forces for the 200% design strain case are
higher for higher intensity level. The demand levels reached in these analyses represent the maximum
range of applicability of the bearing parameters used here, which were calibrated for vector strain
levels up to 350% (Chapter 5).

Related to the issue of how to account for bidirectional seismic ground motion input is how
to determine bidirectional structural response from unidirectional analyses. Bidirectional analyses
requite extra modelling and computational effort on the part of the analyst. Ground motions are
typically applied in orthogonal directions in independent, unidirectional analyses, and the maximum
response, or some combination of response quantities from each analysis, are considered for design.
To determine if the maximum value is able to accurately capture the real peak response, the analyses
were repeated with ground motion pairs from the LA suite, applied independently. The maximum
displacement and force were calculated for each pair of records, and averaged over the suite. In
addition, the mean of all 20 unidirectional analyses was computed for each response quantity, to
investigate the difference between mean and peak input in the design approach that was discussed

earlier.

The results from this study are summarised in Fig. 7.10. The maximum displacements, averaged
over all ground motion pairs, do not significantly underestimate the bidirectional displacements
and forces across the range of intensities. The peak force for the maximum unidirectional case

describes the bidirectional force demand very well. These observations suggest that unidirectional
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analyses could be adequate for isolated bridge design. The bridge model used here, however, is an
idealisation of real bridges, and this may not apply for bridges with different stiffness in transverse
and longitudinal directions. The mean value of each pair of uniditrectional analyses underestimates
the peak bidirectional demand by an amount consistent with the difference observed between the
two curves in Fig. 7.8.

The remaining parametric studies in this section are concerned with pier modelling, for both elastic
and inelastic behaviour. The first such sensitivity study was carried out considering different values of
elastic pier stiffness. Non-isolated pier periods of 0.75, 1.0 and 1.5 seconds were used, corresponding
to pier stiffness values of 702, 394 and 175 MN/m, respectively, considering only the superstructure
mass in the calculation. Figure 7.11 shows that the series system behaviour is relatively insensitive to
the pier stiffness, as the flexibility of the bearing dominates the response. Of more interest for flexible
bridges is how effective seismic isolation can be at reducing the demand. The data in Fig. 7.11 could
be compared with a non-isolated, elastic pier analysis, although this would require a more realistic

representation of damping in the pier.

Figures 7.12 and 7.13 show the bearing displacements and forces, and pier ductility for different
hysteresis models of nonlinear pier behaviour. A response modification factor of 1.0 was used, such
that the pier yield strength was equal to the bearing design force, I,y = Fpq. The modified Takeda
model is representative of unidirectional reinforced concrete response, but response in orthogonal
directions is uncoupled, which may not describe biaxial pier response accurately. The bilinear models
have “fatter” hysteresis loops, and are expected to dissipate more energy in analyses for which the
demand exceeds the yield level. Comparing the two uncoupled pier models in Figs. 7.12 and 7.13, the

bilinear model exhibits lower demand in terms of bearing displacements and forces, and pier forces.

The coupled bilinear model gives results that are similar to the modified Takeda model, and greater
than the uncoupled bilinear model, for all response quantities. The implication of this is that analyses
using two uncoupled modified Takeda model in orthogonal directions may underestimate the real
bidirectional demand slightly. Although it is not possible to extend the Takeda model to bidirectional
action, it would be possible to conduct a series of analyses with the ground motion input rotated
through a angles, 0 < § < 360°. This is not the same approach as calculating the worst case direction
for the CQC3 method, discussed earlier, as here it is used to make up for modelling limitations rather
than to account for different directions of possible earthquake attack. This approach would only be
appropriate for regular structures, as otherwise the orientation of the ground motion with respect
to structural axes will affect the response. In any case, the difference between the coupled and
uncoupled bilinear results in Figs. 7.12 and 7.13 is not large, and qualitative conclusions can still be

drawn from the uncoupled Takeda analyses.

Of more significance are the large pier ductilities observed for ground motions exceeding design level
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intensity, regardless of hysteresis model. For seismic demand greater than approximately 1.2 times
design demand, the pier ductility increases rapidly. As observed in the commentary of the AASHTO
design provisions [AASHTO, 1999], if the post-yield stiffness of the pier is significantly less than the
tangent stiffness of the bearing, then after pier yielding, most of the subsequent seismic demand will
be carried in the piers. Allowing pier ductility at design level will eliminate the benefit derived from
isolation, and require ductile detailing of piers. It should be noted that the response modification
factor of 1.5 or 2.5 specified in AASHTO (and discussed in Section 6.2.3) allows the possibility of
some pier yielding at design level, while Priestley ez a/. [1996] use a capacity design approach to ensure
that this is not likely. Figure 7.13 shows that the latter approach may be prudent for safe design if

greater hazard levels are not considered explicitly in the design process.

The performance-based design approach discussed in Section 6.2.4 aims to directly control pier
yielding by designing for multiple performance levels. In addition to the normal design requirements,
the performance goals chosen to demonstrate this procedure were a target pier ductility of 4.0 at
1.5 and 2.0 times the design level hazard. This resulted in pier forces of F},, = Fyq = 0.77 and
Fyq = 1.05, respectively.

The results from the analyses using these designs are shown in Figs. 7.14 and 7.15. Figure 7.14 shows
the predictable result that allowing for more pier ductility at design level limits bearing demand at
design intensity and beyond. Figure 7.15 shows that the designs attain the target ductility levels well,
except that the Fpq = 1.05 obviously allow for some pier yielding at design level which may not be
allowable. Both designs were slightly unconservative, and it will be necessary to increase these levels
for safe design. To be consistent with the design philosophy of Priestley 7 a/ [1996], an additional
factor of 1.15 would also be appropriate, allowing for up to 15% variation in bearing properties. It
is also possible that pier ductilities in excess of 4.0 will be allowable for ultimate level design — any

variation of performance goals can be taken into account explicitly in the design process.
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Figure 7.4. Configuration 1: Peak bearing response, all records and mean. (a) Peak displacement, and
(b) peak force. n = 5.6.
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Figure 7.5. Configuration 1: Peak bearing response, different bearing models. (a) Peak displacement,
and (b) peak force. n = 5.6 (HDR), 7 = 4.3 (LR), and R = 2.3 and 1.5m (FPS, low and high friction).
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Figure 7.6. Configuration 1: Peak bearing response, different models of scragging. (a) Peak displace-
ment, and (b) peak force. n = 5.6.
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Figure 7.7. Configuration 1: Peak bearing response, different ground motion suites. (a) Peak displace-

ment, and (b) peak force. n = 5.6 (LA), n = 3.7 (SE), n = 8.8.
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Figure 7.8. Configuration 1: Peak bearing response, different types of design spectra. (a) Peak
displacement, and (b) peak force. 7 = 5.6 (bidirectional) and n = 4.5 (average).

w

— Design strain = 1509
=== Design strain = 2009

— Design strain = 1509
Design strain = 200%

N
G
N
Gq

N
N

[
[

o
G

Normalised Peak Forcef|| /Fd
o =
& &

Normalised Peak Deformatiori)|| /Ud
P
¢

OC)

0'5N l dll i /|1'5 ! 0'SN li dll i /|1'5
ormalised Intensityl, ormalised Intensityl,
@ *la ®) *la

Figure 7.9. Configuration 1: Peak bearing response, different design strains. (a) Peak displacement,
and (b) peak force. n = 5.6 (150%) and 1 = 4.5 (200%)
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Figure 7.10. Configuration 1: Peak bearing response, different bidirectional ground motion combina-
tion rules. (a) Peak displacement, and (b) peak force. 7 = 5.6.
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Figure 7.11. Configuration 1: Peak bearing response, different unisolated pier periods. (a) Peak
displacement, and (b) peak force. 7 = 5.6.
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Figure 7.12. Configuration 1: Peak bearing response, different nonlinear pier models. (a) Peak
displacement, and (b) peak force. n = 5.6.
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Figure 7.13. Configuration 1: Peak pier ductility, different nonlinear pier models. n = 5.6.
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Figure 7.14. Configuration 1: Peak bearing response, different pier yield forces. (a) Peak displacement,
and (b) peak force. n = 5.6.
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Figure 7.15. Configuration 1: Peak pier ductility, different pier yield forces. n = 5.6.
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7.3 CONFIGURATION 2: ISOLATED PIER AND ABUTMENTS, RIGID SUPERSTRUCTURE

The same parametric studies described above were carried out for a bridge model of Configuration 2
(Fig. 7.1), with span length, L = 10 m. The normalisations in the figures in this section are carried
out with respect to the individual design displacement and design force for each bearing, Because the
abutment bearings govern the design, the design values for those bearings are known. The design
values for the central bearings are calculated such that the stiffness of the pier-isolator system ate the
same as the abutment bearing, This requires iteration, as the bearing properties are dependent on

the displacement, but the process converges in only a few steps.

Figures 7.16 and 7.17 show the abutment and central bearing demands for all of the Configuration 2
analyses. Comparing with Fig. 7.4, the superstructure behaviour does not significantly affect the peak
bearing response. The degree of scatter and the mean of the normalised peak bearing displacement
for the central bearing are slightly larger than for the abutment bearing, These results show that
the design procedure provides adequate designs for meeting the performance goals, even for slightly

more complicated bridge geometries.

Figures 7.18-7.31 show the results for the elastic pier designs of Configuration 2, corresponding to the
Configuration 1 results in Figures 7.5-7.13. The same general observations made in Section 7.2 can be
made here. Figure 7.29, however, shows that the central bearing response is more sensitive to the use
of bidirectional or unidirectional analyses. The maximum of two orthogonal unidirectional analyses
underestimates the bidirectional demand on the bearing, particulatly in terms of normalised bearing
force. For irregular, or more complicated bridge designs, it is expected that this underestimation
would be further emphasised. The 30%-rule, or more complicated combination rules, could be

assessed here.

For inelastic pier designs (Figs. 7.32—7.37), the response of Configuration 2 is clearly different from
Configuration 1 (Figs. 7.12-7.15). The abutment bearing demand is not reduced significantly by pier
yielding, as the total displacement demand on the central bearing-pier system must be carried by the
abutment bearing alone, coupled by a rigid superstructure. For real abutment bearing design, this
suggests that either larger bearings will be necessary, or the foundation may also be designed to yield.
The latter option is more difficult than it is for piers, for which the behaviour can be more readily

controlled.

The central bearing demand and pier ductility demand for Fj,, = Fjpq is approximately the same
as for Configuration 1 which suggests that the uncoupled modified Takeda model is again adequate
for representing bidirectional structural demand. In addition, the multiple performance level design
meets the objectives to an acceptable degree of accuracy (Fig. 7.37), although it can be observed that
a pier yield force of Fj,y, = Fq/1.0 results in a better match of the target pier ductility of 4.0 at an
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intensity of 1.5/ than F),, = Fpq/1.05.
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ment, and (b) peak force. 7 = 5.8.
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Figure 7.18. Configuration 2: Peak abutment bearing response, different bearing models. (a) Peak
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high friction).
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Figure 7.20. Configuration 2: Peak abutment bearing response, different models of scragging. (a)
Peak displacement, and (b) peak force. n = 5.8.
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Figure 7.21. Configuration 2: Peak central bearing response, different models of scragging. (a) Peak
displacement, and (b) peak force. n = 5.8.
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Figure 7.22. Configuration 2: Peak abutment bearing response, different ground motion suites. (a)
Peak displacement, and (b) peak force. 7 = 5.8 (LA), n = 3.8 (SE), n = 9.4 (NF).
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Figure 7.23. Configuration 2: Peak central bearing response, different ground motion suites. (a) Peak
displacement, and (b) peak force. n = 5.8 (LA), n = 3.8 (SE), n = 9.4 (NF).
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Figure 7.24. Configuration 2: Peak abutment bearing response, different types of design spectra. (a)
Peak displacement, and (b) peak force. 77 = 5.8 (bidirectional), 7 = 4.6 (average).
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Figure 7.25. Configuration 2: Peak central bearing response, different types of design spectra. (a)
Peak displacement, and (b) peak force. 7 = 5.8 (bidirectional), n = 4.6 (average).
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Figure 7.26. Configuration 2: Peak abutment bearing response, different design strains. (a) Peak
displacement, and (b) peak force. n = 5.8 (150%), n = 4.7 (200%).
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Figure 7.27. Configuration 2: Peak central bearing response, different design strains.
displacement, and (b) peak force. 1 = 5.8 (150%), n = 4.7 (200%).
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Figure 7.28. Configuration 2: Peak abutment bearing response, different bidirectional ground motion
combination rules. (a) Peak displacement, and (b) peak force. n = 5.8.
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Figure 7.29. Configuration 2: Peak central bearing response, different bidirectional ground motion
combination rules. (a) Peak displacement, and (b) peak force. n = 5.8.
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Figure 7.30. Configuration 2: Peak abutment bearing response, different unisolated pier periods. (a)
Peak displacement, and (b) peak force. n = 5.8.
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Figure 7.31. Configuration 2: Peak central bearing response, different unisolated pier periods. (a)
Peak displacement, and (b) peak force. 7 = 5.8.
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Peak displacement, and (b) peak force. 7 = 5.8.
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Figure 7.35. Configuration 2: Peak abutment bearing response, different pier yield forces. (a) Peak
displacement, and (b) peak force. 7 = 5.8.
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7.4 CONFIGURATION 3: ISOLATED PIER AND ABUTMENTS, FLEXIBLE SUPERSTRUC-
TURE

The parametric studies from the previous section were repeated for a bridge of Configuration 3,
with a superstructure flexural stiffness, Bl = 2 X 107 kNm?, and span length, L = 10 m. This
value is of the approximate order of magnitude for box girder bridge decks, although slab decks
may be significantly more flexible. For a relatively stiff bridge deck, it may be possible to neglect
the superstructure deformation and design for the same displacement in each abutment-isolator and
pier-isolator system. This has been carried out in this section, by using exactly the same bearing and

pier designs as in Section 7.3.

Figures 7.38 and 7.39 demonstrate that this design assumption is appropriate in this case. The
normalised mean demand quantities for the abutment and central bearings are both approximately
equal to 1.0 at the design level intensity. Furthermore, the results for other intensity levels are similar
to Configurations 1 and 2, with slightly more scatter in the central pier force values at high intensities.
Cleatly, the superstructure deformation does not have a significant effect on bridge response for the

stiffness value selected.

This observation also holds for the other parametric studies (Figs. 7.40-7.66). In addition to the
bearing and pier demand quantities, average peak superstructure deformations for each set of analyses,
normalised with respect to the abutment bearing design displacement, are shown (Figs. 7.42, 7.45,
7.48, 7.51, 7.54, 7.57, 7.60, 7.63(b), 7.66(b)). The superstructure deformation is equal to the total
transverse displacement of the central deck, minus the transverse displacement of the deck at the

displacements (i.e. rigid body displacement removed).

The response of different bearing types in terms of these response quantities is shown in Figs. 7.40—
7.42. It can be observed that the difference between the HDR model and other bearing types
is even more pronounced than in Configurations 1 and 2 (Figs. 7.5, 7.18 and 7.19). The HDR
model behaviour is similar among the three configurations, but the bilinear models exhibit higher
displacement and force demand in Configuration 3, particularly in the central bearing, In particular,
the designs for the low friction FPS model and LR model with ultimate parameters are unconservative,
and the central bearings are subjected to extreme normalised peak displacements at higher intensities.
The reason for this extra demand can be observed in Fig. 7.42. For these bearing types, the
superstructure displacement is higher than the other designs across the range of intensities, which
implies greater deformation in the pier-isolator subsystem than in the abutment isolator. In these
cases, the central bearing will probably reach the design displacement level before the abutment
bearing, and should govern the design process. For abutment and central bearings of different sizes,

it will be possible to provide a more regular design that minimises superstructure deformation.
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Another parametric study that exhibited results that were significantly different from the other con-
figurations was the ground motion suite sensitivity study (Figs. 7.46—7.48). Unlike Configurations 1
and 2, for which the response was relatively unaffected by the choice of ground motion suite, the
difference in deck displacements observed among the three cases (Fig. 7.48) leads to significantly
different demand on the central bearing, Specifically, the NF and SE suites result in lower and higher
normalised superstructure displacements, respectively, with the corresponding effect on central bear-
ing demand. Because response quantities are normalised by the respective demand values, this
corresponds to conservatism and unconservatism in the design process for these suites, respectively.
The results for the SE suite, for which the higher intensity values are representative of MCE demand,
are particularly alarming, and it is apparent that the superstructure flexibility needs to be included in
the structural model and equivalent linearisation, even for simple bridges of this nature. In this case,
it is possible that the response spectra for the SE suite are of such a shape that a change in structural
period due to the addition of superstructure flexibility leads to a significant increase in demand.

Figures 7.55-7.57 compate the results using unidirectional maximum or mean values to apptroxi-
mate the bidirectional demand. The maximum unidirectional value significantly underestimates the
bidirectional response in this case, more so than the discrepancy observed for Configuration 2.
Figure 7.57 shows that this is not due to a difference in superstructure deformation. In any case, this
observation helps to confirm the hypothesis that the unidirectional maximum becomes increasingly

inappropriate as the bridge configuration becomes more complex or irregular.

The introduction of inelasticity into pier tesponse has a large effect on bearing and pier response
quantities (Figs. 7.61-7.66). The central bearings experience an increased displacement and force
demand compared to Configuration 2, especially for I > I; (Fig. 7.62). The effect of the hysteretic
rule is approximately unchanged, but the normalised displacements and forces are up to around
0.15U,4 and 0.35F; gteater than for the rigid deck case at an intensity of I/I; = 2. Neither the
abutment bearing response for all intensity levels, nor the central bearings for I < I are affected
significantly (Fig. 7.61-7.62).

The most significant difference between Configurations 2 and 3 with inelastic piers can be observed
in Fig, 7.63(a) (cf. Fig, 7.34). The pier ductility demands for each hysteretic model are between 25%
and 100% greater than the corresponding values from Configuration 2 at I/I; = 1, and at least
35% greater at I/I; = 2. Clearly, the increased demand in the central pier-isolator system due
to the introduction of superstructure flexibility (Fig. 7.63(b)) is accommodated entirely in inelastic
deformation of the pier. This is consistent with the observation of the AASHTO provisions
[AASHTO, 1999] that, for low post-yield stiffness of the pier, additional deformation beyond pier
yielding will be carried almost entirely in the pier. This highlights the need to restrict pier yielding at
design level, and suggests that the reduction factors adopted by the code [AASHTO, 1999] may be
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too low if higher performance levels are not specifically addressed.

Similar observations can be made from Figs. 7.64-7.66, which show the results for different response
modification factors, as for the previous configurations. Central bearing (Fig, 7.65) and pier demands
(Fig. 7.66(a)) are increased by the introduction of superstructure flexibility (Fig. 7.66(b)), while
abutment bearing demand is not increased significantly (Fig. 7.64). It can be observed that the
multiple performance level design process, which did not take into account superstructure flexibility,
was unconsetvative for the pier ductility target of 4.0 at I/I; = 1.5 and 2.0. The ductility
performance targets were exceeded by approximately 90% in each case, while for Configuration 2
the overestimation was less than 10%. It is apparent that the inclusion of superstructure flexibility

in the design process is essential, at least for the superstructure stiffness considered here.

To investigate the dependence of response quantities on the superstructure stiffness, a further
sensitivity study was conducted with Els values one order of magnitude above, and up to two
orders of magnitude below, the original value selected. Elastic pier behaviour, with the same
properties used earlier, was assumed. The results from these studies are shown in Figs. 7.67-7.69.
It is interesting to observe that, although the superstructure deformation reduced significantly by
decreasing Fls from 2 x 107 to 2 x 10% kNm?, the bearing response quantities are not affected
significantly. This suggests that stiffness of this magnitude may be considered essentially rigid for
elastic pier response. The observations of the previous paragraphs, however, suggest that this is not

the case with inelastic piers.

Decreasing the stiffness of the superstructure, the abutment bearing demand reduces, and central
bearing demand increases. For a value of around ET,s = 2 x 10° kNm?, the bearing responses are
essentially uncoupled, and the assumption of an infinitely flexible superstructure is not unwarranted.
Note that because the response quantities are normalised with respect to the rigid deck design values,
the lines on Figs. 7.67 and 7.68 do not converge to the same value — instead the ratio of the latter to
the former is given by the ratio of design displacements for the abutment and central bearings. In

this case, the ratio is approximately 1.7.

From the superstructure sensitivity study, two further observations can be made. Firstly, the difference
in behaviour from 2 x 10° to 2 x 107 kNm? flexural stiffness is particularly marked, which represents
a transition from flexible to stiff deck behaviour. Secondly, the stiffness values used here must also
be related to the span length of 10 m, and conclusions will only be appropriate for other spans by
adjusting for the effective stiffness of the deck in Eq. (7.3).
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Figure 7.41. Configuration 3: Peak central bearing response, different bearing models. (a) Peak
displacement, and (b) peak force. 7 = 5.8 (HDR), n = 4.4 (LR), R = 2.4 and 1.6m (FPS, low and
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Figure 7.42. Configuration 3: Peak superstructural deformation, different bearing models. 7 = 5.8
(HDR), n = 4.4 (LR), R = 2.4 and 1.6m (FPS, low and high friction).
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Figure 7.43. Configuration 3: Peak abutment bearing response, different models of scragging. (a)
Peak displacement, and (b) peak force. n = 5.8.
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Figure 7.44. Configuration 3: Peak central bearing response, different models of scragging. (a) Peak
displacement, and (b) peak force. 7 = 5.8.
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Figure 7.45. Configuration 3: Peak superstructural deformation, different models of scragging. 17 =
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Figure 7.46. Configuration 3: Peak abutment bearing response, different ground motion suites. (a)
Peak displacement, and (b) peak force. 7 = 5.8 (LA), n = 3.8 (SE), n = 9.4 (NF).
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Figure 7.47. Configuration 3: Peak central bearing response, different ground motion suites. (a) Peak
displacement, and (b) peak force. n = 5.8 (LA), n = 3.8 (SE), n = 9.4 (NF).

w

2

o)

= — LA records

= === NF records|

% 2571 . SE records |
£

Q

g 2 7
o

2

S 15 |
° N
L7}

°

¥ o1 )
i3

Q

3

2 0.5r

©

£

o

z

OO

0.5 1 ] 15
Normalised intensity, / [

Figure 7.48. Configuration 3: Peak superstructural deformation, different ground motion suites.
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Figure 7.49. Configuration 3: Peak abutment bearing response, different types of design spectra. (a)
Peak displacement, and (b) peak force. 7 = 5.8 (bidirectional), 7 = 4.6 (average)..
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Figure 7.50. Configuration 3: Peak central bearing response, different types of design spectra. (a)
Peak displacement, and (b) peak force. 7 = 5.8 (bidirectional), n = 4.6 (average).
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Figure 7.51. Configuration 3: Peak superstructural deformation, different types of design spectra.
1 = 5.8 (bidirectional), 7 = 4.6 (average).
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Figure 7.52. Configuration 3: Peak abutment bearing response, different design strains. (a) Peak
displacement, and (b) peak force. n = 5.8 (150%), n = 4.7 (200%).
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Figure 7.53. Configuration 3: Peak central bearing response, different design strains. (a) Peak
displacement, and (b) peak force. 1 = 5.8 (150%), n = 4.7 (200%).
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Figure 7.54. Configuration 3: Peak superstructural deformation, different design strains. 7 = 5.8
(150%), n = 4.7 (200%).
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Figure 7.55. Configuration 3: Peak abutment bearing response, different bidirectional ground motion
combination rules. (a) Peak displacement, and (b) peak force. 7 = 5.8.
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Figure 7.56. Configuration 3: Peak central bearing response, different bidirectional ground motion
combination rules. (a) Peak displacement, and (b) peak force. n = 5.8.
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Figure 7.57. Configuration 3: Peak superstructural deformation, bidirectional ground motion combi-
nation rules. 7 = 5.8.
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Figure 7.58. Configuration 3: Peak abutment bearing response, different unisolated pier periods. (a)
Peak displacement, and (b) peak force. n = 5.8.
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Figure 7.59. Configuration 3: Peak central bearing response, different unisolated pier periods. (a)
Peak displacement, and (b) peak force. n = 5.8.
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Figure 7.61. Configuration 3: Peak abutment bearing response, different nonlinear pier models. (a)
Peak displacement, and (b) peak force. 7 = 5.8.
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Figure 7.62. Configuration 3: Peak central bearing response, different nonlinear pier models. (a) Peak
displacement, and (b) peak force. n = 5.8.
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Figure 7.63. Configuration 3: (a) Peak pier ductility, and (b) peak superstructural deformation;
different nonlinear pier models. 77 = 5.8.
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Figure 7.64. Configuration 3: Peak abutment bearing response, different pier yield forces. (a) Peak
displacement, and (b) peak force. n = 5.8.
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Figure 7.67. Configuration 3: Peak abutment bearing response, different superstructure stiffness. (a)
Peak displacement, and (b) peak force. n = 5.8.
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Figure 7.68. Configuration 3: Peak central bearing response, different superstructure stiffness. (a)
Peak displacement, and (b) peak force. n = 5.8.

Figure 7.69. Configuration 3: Peak superstructural deformation,

n =5.8.
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8. CONCLUSIONS

8.1 MODELLING OF BIDIRECTIONAL RESPONSE OF HIGH-DAMPING RUBBER BEAR-
INGS

The behaviour of high-damping rubber bearings is complex, even in a unidirectional setting, HDR
bearing response is characterised by stiffening behaviour at high strain levels, nonlinear damping,
and degradation of stiffness and damping over successive cycles of loading. Cutrent models for
unidirectional response suffer from several major limitations and are difficult to extend to general,
bidirectional load paths. To the author’s knowledge, no phenomenological models have been
developed specifically for the bidirectional response of HDR bearings. Some developments based on
classical plasticity theory were discussed here, although they were unable to describe the experimental

response with any accuracy.

For this reason, a new phenomenological model has been developed to describe the bidirectional

shear force—deformation response of HDR bearings. Key features of the model are:

e An additive decomposition of the force vector into components parallel to the displacement

vector and velocity vectot.

o An elastic force defined by an odd, fifth order polynomial in the shear displacement, motivated

by a generalised Mooney—Rivlin free energy equation.

e A nonlinear damping envelope, with general hysteretic response defined within this envelope

by an approach similar to bounding surface plasticity.

e Degradation of bearing stiffness and damping due to both long-term scragging degradation,

and short-term Mullins’ effect.

A calibration procedure was also developed in order to obtain a unique set of material parameters
for a given bearing, Calibration of the model was carried out over a series of tests, with appropriate

damage parameters retained between tests to model the degradation of the bearing over the entire
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test programme. The calibrated model response provided an excellent match of stiffness, damping

and degradation characteristics of the bearing behaviour for slow strain rate tests.

Although an extension of the model was proposed, the model was not able to accurately describe
the rate-dependence of HDR bearings. The high strain rate tests included in the Caltrans Seismic
Protective Systems Project were limited to one displacement orbit, which generally resulted in an
increase of up to 30% in the total force vector over the slower tests. However, for this orbit the
prediction of the model already overestimated the observed response, and the calibration of rate-
dependent parameters would not be effective. Further research needs to be conducted to ascertain
whether the strain-rate dependent component is able to predict the earthquake response of HDR

bearings from slow strain rate tests.

In order to make use of the model in dynamic analysis of full-scale HDR bearings, a practical
calibration procedure must be developed. It was suggested that unidirectional testing at various
strain magnitudes, up to the peak bidirectional excursions used here (350%), would be sufficient.
In any case, such a calibration protocol would need to address the possibility of axial load and
temperature dependence of HDR bearing behaviour, in addition to the strain rate effects discussed

above.

The proposed model effectively describes the bidirectional shear force—deformation response of
a HDR bearing. The model can be used to help understand the importance of material nonlin-
earity, bidirectional behaviour and cyclic degradation of HDR bearings on the system response of

seismically-isolated structures under strong ground motion.

8.2 ANALYSIS AND DESIGN OF ISOLATED BRIDGES

The analysis and design of isolated bridges, with particular emphasis on the consideration of bidirec-
tional demand and response, the equivalent linearisation of structural properties, and displacement-
based design methodologies were summarised. Some results and recommendations are discussed

below.

The treatment of viscous damping in analysis and design is a problem not only for isolated bridges,
but for all dynamic structural analysis. For design based on an equivalent linearisation of bearing and
pier properties, it was shown to be important to adjust the level of viscous damping according to
the assumed hysteresis and damping models, and the target ductility level. Expressions were given
for the corrected viscous damping component for bilinear and modified Takeda hysteresis models,
based on a some simple models for the viscous damping coefficient, consistent with those specified
for multiple degree-of-freedom systems. The correction factors, however, were derived based on the

response of single degree-of-freedom systems, and their use in multiple degree-of-freedom analyses



Modelling and Analysis of High-damping Rubber Bearings for the Seismic Protection of Bridges 171

requires further investigation.

The assessment of bidirectional earthquake demand and structural response was discussed. In
dynamic analysis of structures for which the bidirectional response is required, time history analysis
is often carried out with the simultaneous application of a pair of ground motions in orthogonal
directions. These ground motions are usually scaled to a code spectrum that is representative of
hazard in a given area. In cases where the uniform hazard spectra are derived from a probabilistic
seismic hazard assessment that considers a random ground motion component, it was recommended
that the average of the two components should be amplitude scaled to the code spectrum, rather than
the SRSS combination suggested by the AASHTO Guide Specifications for Seismic Isolation Design
[AASHTO, 1999]. Alternatively, it was suggested that a bidirectional response spectrum defined by
the maximum vector response of a single degree-of-freedom oscillator to two components of ground

motion, could be used to give a more exact measure of seismic demand.

The evaluation of bidirectional demand in design is often carried out by combining unidirectional
response quantities with an appropriately defined combination rule. Simple rules such as the “30%-
rule” are often specified by design codes. More rigorously, peak response quantities resulting from
three directions of simultaneous earthquake input can be obtained from the CQC3 combination rule,
for a given orientation of horizontal components. It was suggested that the practice of taking the
maximum of all possible orientations when using the CQC3 approach is not only overly conservative,
but is also inconsistent with the level of hazard presented in the code spectrum. Instead, the expected

value of a response quantity over all orientations should be used for design.

Existing design methods for isolated bridges target elastic pier response at design level hazard. This
is achieved by specifying pier yield forces greater than the bearing design forces, by a factor equal
to the inverse of a response modification factor, R. The design methods differ, however, in the
value specified for R, and there is little consideration of bridge response for ground motion intensity
in excess of the design level intensity. A design methodology was presented here as an extension
of existing displacement-based design methods, that explicitly considers the performance of the
structure at two hazard levels. This could be particularly important for HDR bearings, which may
exhibit stiffening behaviour at strains greater than the design strain.

The design method is based on linearisation of bearing and pier properties at two different levels of
response, corresponding to design and maximum credible seismic hazard. Performance goals are
defined to prevent pier yielding at the design hazard level, and to limit pier ductility at the maximum
credible level, while also limiting bearing strains to specified limits. A simple iterative algorithm was

proposed to assign bearing and pier properties based on these design goals.
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8.3 PARAMETRIC STUDIES OF ISOLATED BRIDGES

Parametric studies of a number of simple isolated bridge configurations were presented. The studies
investigated the response of isolated structures for a range of ground motion scaling factors, to

represent different levels of earthquake hazard.

The first bridge configuration considered a simple pier-isolator system, to represent a bridge with no
superstructure coupling. It was shown that the stiffening behaviour of HDR bearings is effective at
reducing the displacement demand on bearings at high earthquake intensity levels, when compared
with softening systems such as LR and FPS bearings. The trade-off is that the pier forces may be
significantly higher, particularly when compared with a bilinear model calibrated for ultimate level
LR bearing response. Designers of isolated bridges should be aware of the possibility of excessively

large pier forces for extreme ground motions.

Although allowed for in the mathematical model, degradation of bearing properties was shown to
have little impact on structural response over a range of intensity levels. Bridge response quantities
were also relatively insensitive to the elastic pier stiffness, when pier inelasticity was not included in the
analysis, which justified the assumption that pier stiffness was independent of yield strength. Bearing
yield strain assumed in the design process also had little effect on normalised bearing displacements,
but the assumption of 200% design strain was shown to lead to excessively large elastic pier forces.
It was suggested that 150% strain is a more appropriate design limit, at least for the Bridgestone

bearings considered in this thesis.

Pier inelasticity was also modelled in the parametric studies to more accurately describe structural
response under ground motion exceeding design level. Two uncoupled Takeda models were con-
sidered in orthogonal directions, and compared with coupled and uncoupled bilinear models. The
difference between the latter two models was generally less than 10-15%, which suggests that the
use of an uncoupled Takeda model, which cannot be extended to bidirectional response but provides

a good description of reinforced concrete behaviour in unidirectional loading, was adequate.

The yield strength of the pier was also varied, assuming two designs carried out according to the
multiple performance level method described herein. Tt was shown that the proposed method
achieved the design goals adequately, and provides an improvement over existing methods in which
higher levels of earthquake hazard are not explicitly considered. The pier yield strength should also
be adjusted for design purposes by a factor of 1.15 to ensure elastic pier behaviour at the design
level under a 10% vatiation in bearing properties, in common with the capacity design philosophy of
Priestley ez al. [1996].

These conclusions did not change significantly when more complicated bridge geometries were
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considered. Because identical bearings were considered at the abutments and piers, pier yielding
reduced the response of the latter without affecting the response of the former significantly. For real
bridge design, it will be more appropriate to design abutment bearings with the same design stiffness
as the series combination of the pier and bearing stiffness. The multiple performance level design

approach could also be extended to consider different bearing sizes with similar performance goals.

The introduction of supetstructure flexibility to the system had a large effect on bearing and pier
response. A range of superstructure stiffness values was considered, with limits corresponding to fully
coupled and uncoupled bearings. The multiple performance level design procedure did not perform
adequately in this case, although the design was carried out for the original bridge configuration,
and did not include superstructure flexibility. The performance of the design method could be
improved by extending the procedure to more complicated geometries, although the simplicity of
the expressions for bearing thickness and pier yield force would be sacrificed, and more iteration

would be required.

8.4 AREAS FOR FUTURE RESEARCH

Although the proposed model was able to describe the slow strain behaviour of HDR bearings
accurately, strain rate effects were not included in the model. Tt would be desirable to add rate-
dependence to the model, to allow the accurate dynamic analysis of bearings calibrated for slow
strain data.

The multiple performance level design method did not allow for superstructure flexibility, or irregular
distributions of pier and bearing stiffness. The results of studies such as Alvarez-Botero [2004], which
considers appropriate deflected shapes for bridge superstructures, could be used to extend the method

to include coupling of the superstructure and pier response.

Finally, the parametric studies performed in this thesis were limited to simple bridge geometries, and
simple hysteresis models for nonlinear pier response. More complicated geometries, including more
spans with regular or irregular distributions of pier stiffness, could be considered, along with a more

accurate representation of pier nonlinearity.
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A. DERIVATION OF THE CONSISTENT TANGENT
MATRIX FOR THE PROPOSED MODEL
The consistent tangent matrix for the integration algorithm presented in Section 4.2 is defined as:
C dF  dF;  dF,

=40 au tau A

Differentiating Eq. (4.11) with respect to the displacement vector and damage parameters, the
derivative of F'; is obtained:
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Similatly, differentiating Eq. (4.18) gives the derivative of F5:
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The partial derivatives in Eqgs. (A.2) and (A.3) are summarised below:
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where I is the identity matrix. These expressions may be substituted into Egs. (A.2), (A.3) and (A.1)
to give the tangent matrix consistent with the linearisation.



B. DERIVATION OF EQUIVALENT LINEAR
PROPERTIES FOR THE PROPOSED MODEL

For unidirectional, monotonic loading, neglecting the effects of strain-rate dependence, Egs. (4.2),
(4.1), (4.11), (4.13), (4.15), (4.16), (4.18) reduce to:

F(U) =N+ F = KSJKM (a1 + ClQU3 + CL3U5> + KS72 (bl + b2U2) B.1)

where I, F'1, F5 and U are the unidirectional equivalents of the corresponding vectors in bidirectional

loading, Equation (B.1) assumes that when U = Uy, § = 0, an assumption that is verified below.

As discussed in Chapter 6, in the geometric stiffness method, the effective stiffness of an equivalent
linear visco-elastic model is taken as the secant stiffness to the design point, (F'(Uy), Uqg). The
Mullins’ effect reduction factor, may be expressed from Eq. (4.22) as the stabilised value for large
D, Ky = c3. The scragging reduction factors are a function of the prescragging level specified
by the manufacturer, or the level of scragging assumed at the start of the design process (if recovery
of virgin behaviour is considered). The scragging parameter, Dg = Dg g is specified in units of
displacement (or strain, multiplied by the rubber thickness, ¢,.), and Kg 1 and Kg 2 are determined
from Eq. (4.20). Finally, the effective bearing stiffness at design level is found from:

F (U,
Kegp = gjdd) B.2)

which gives:

Keﬁ,b =c3 ((Ll + CLQU(? + (lgU;) exp (—Cng’O)
) B.3)
+ (U_; + b2Ud> exp (—CQD?S’D)

The equivalent viscous damping is often calculated from the area under the hysteresis loop describing
one complete stabilised cycle, Ap. This is representative of the hysteretic energy dissipated in a peak

cycle, and may be equated with the energy dissipated in one cycle of an equivalent linear visco-elastic
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oscillator. Assuming F does not change over the period (i.e. Ky and Dg are constant), then this
area may be obtained from twice the integral of I between —Uy and Uy:

Ap = 2/Ud Fo(U)dU = 2 /Ud (R(U) - 5(U)) U (B.4)

—Uq —Uq

The parameter 0 may be evaluated explicitly in this case, as the unidirectional displacement, U,

increases monotonically from —Uy to Uy. The variation of § over this half-cycle is given by:
(U) = Cexp(—bsU) (B.5)

where C' is a constant of integration. Note that Eq. (B.5) is a general solution of the unidirectional
version of Eq. (4.17).

For stabilised hysteretic response:
6(Ua) = 2R(=Uq) — 6(-Ua) (B.6)

which specifies that the half-cycle from Ug to —Uy is identical to the half-cycle from —Uy to Uy,

taking into account the discrete change of § with change in load direction.

Substituting Eq. (B.5) into Eq. (B.6), and rearranging, gives the following expression for the constant
of integration:
2R(=Ua)

C p—
exp(bsUa) [ 1+ exp(—2bsU4)

B7)

For realistic values of b3 and Uy the exponential term, exp(—2b3Uy) < 1. For example, with
bs ~ 2 per inch from Table 5.2, and Ug = 200% X 1.8in., the exponential term, exp(—2bsUy,) =
6 x 10~ 7. This suggests that the force point is almost touching the bounding surface for this level
of displacement, as was assumed in the bidirectional decomposition of F' in Section 4.1, and again
above when calculating the effective stiffness at U = Uy. Taking into account this assumption, and

substituting from Eq. (B.7) into Eq. (B.5), gives:

§ = 2R(~Uy) exp ( —by(U + Ud)) B.8)

Finally, Eq. (B.8) is substituted back into the integral, and Eq. (B.4) is evaluated to obtain the total
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hysteretic area over a full cycle:
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The hysteretic area, Ay, is equated with the energy dissipated in a single cycle of linear viscoelastic
hysteresis. This leads to the following expression, which is routinely used in calculating viscous
damping from experimental data:

Eoprp = An 10
eﬁ’b_27TKeﬁ’bUd2 (8.10)

The effective stiffness and hysteretic area may be substituted from Eqgs. (B.3) and (B.9) respectively,
to obtain the equivalent viscous damping for use with the HDR bearing model.

Note that the assumption that Dg does not change over the response is equivalent to assuming that
the prescragging level, D g is greater than Uy. This will generally be true for prescragged bearings
obtained directly from the manufacturer, and specifying reasonable levels of design displacement.
However, when scragging recovery is being taken into account, the stabilised hysteresis will no
longer be representative of the maximum response cycle under general earthquake excitation up to

the design displacement, and Eq. (B.10) will, in general, underestimate the dissipated energy.

It should be noted that different approaches for determining the effective stiffness and equivalent
viscous damping have been discussed in the literature. For isolation devices for which a bilinear
hysteretic model is appropriate, Franchin ez 2/ [2001] give a summary of some of the expressions
that have been derived for these parameters. The equivalent visco-elastic parameters calculated in
this appendix are relevant for calibrating design approaches with the proposed mathematical model,
although experimental curves of effective stiffness and equivalent viscous damping versus maximum

shear strain may be more appropriate for design and analysis of a real bearing.



