




“We are all faced throughout our lives with agonizing decisions, moral
choices. Some are on a grand scale. Most of these choices are on lesser
points.
But we define ourselves by the choices we have made.
We are in fact the sum total of our choices.
Events unfold so unpredictably, so unfairly, human happiness does
not seem to have been included in the design of creation. It is only
we with our capacity to love that give meaning to the indifferent
universe.
And yet most human beings seem to have the ability to keep trying
and even to find joy from simple things like their family, their work,
and from the hope that future generations might understand more.”
-Dr. Levy

Woody Allen’s “Crimes and Misdemeanors”, 1989
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Sommario

Il tema di ricerca su cui verte questa tesi è connesso alla modellazione costi-
tutiva di materiali a comportamento inelastico non lineare. Il filone che si è
scelto di approfondire riguarda lo studio, lo sviluppo e l’implementazione di
nuovi algoritmi di integrazione per problemi algebrico-differenziali non lineari,
inerenti la modellazione costitutiva di materiali elastoplastici tipo von-Mises
con incrudimento.

La teoria della plasticità è, come noto, un argomento classico della Mecca-
nica dei continui e si caratterizza per essere una disciplina che attrae l’interesse
sia di ingegneri che di matematici. Tale caratteristica è sostanzialmente dovuta
a ragioni di carattere storico e, nella fattispecie, allo sviluppo della teoria delle
equazioni differenziali a derivate parziali e della teoria delle disequazioni vari-
azionali riscontrato nella seconda metà del secolo scorso. Tale sviluppo ha
infatti permesso una più profonda comprensione dei caratteri fisici fondamen-
tali dei fenomeni elastoplastici ed ha messo a disposizione strumenti idonei
alla analisi dei modelli costitutivi e delle formulazioni variazionali dei problemi
meccanici di interesse ingegneristico.

È nota la elevata complessità ed il carattere prettamente nonlineare dei
modelli matematici in discorso. Un filone di ricerca ormai di rilievo in questo
settore è quindi quello dello sviluppo di robusti schemi di integrazione di tali
modelli, in grado di fornire un’accurata approssimazione numerica del com-
portamento del materiale. Detti metodi risultano infatti essenziali nell’ imple-
mentazione di codici di calcolo (ad esempio codici commerciali agli elementi
finiti) per la risoluzione approssimata di problemi a valori iniziali e dati al
bordo per materiali a comportamento elastoplastico.

Questo lavoro si colloca all’interno di questo ultimo settore di ricerca ed
è strutturato in modo da fornire una introduzione al problema elastoplastico
quanto più completa possibile. Il primo capitolo propone alcuni richiami es-
senziali di Meccanica dei solidi deformabili e di teoria dell’elasticità. Il sec-
ondo capitolo riguarda la cosiddetta teoria classica o teoria matematica della
plasticità e si concentra sulla formulazione della legge costitutiva per materiali
a comportamento elastoplastico di tipo von-Mises con incrudimento lineare e
non lineare.

Il terzo capitolo propone la formulazione variazionale del problema a valori
iniziali e dati al bordo dell’equilibrio di un continuo tridimensionale costituito
da materiale elastoplastico. In tale capitolo sono forniti alcuni risultati di
buona posizione del problema. Il quarto capitolo introduce alla risoluzione
numerica del problema variazionale, utilizzando il metodo degli elementi finiti
per la discretizzazione spaziale e schemi basati su metodi alle differenze finite
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per la discretizzazione temporale.

Il capitolo quinto costituisce la parte innovativa della tesi ed è incentrato
sulla famiglia di metodi d’integrazione cosiddetta a base esponenziale. La tec-
nica alla base di questi metodi prevede la riscrittura del modello costitutivo di
von-Mises a partire dalla sua formulazione classica, mediante l’adozione di un
opportuno fattore integrante scalare, che governa l’evoluzione temporale del
flusso plastico. Il sistema dinamico governante, cos̀ı riformulato, ammette una
forma evolutiva caratteristica di tipo quasi-lineare e, sotto opportune ipotesi,
può essere integrato nel tempo e risolto al passo, utilizzando la tecnica delle
mappe esponenziali. I vantaggi offerti dalla nuova classe di metodi esponen-
ziali sono evidenziati dall’analisi delle proprietà numeriche e dal confronto con
i classici metodi alle differenze finite su esempi numerici. Il capitolo sesto
presenta una serie di test numerici che hanno lo scopo di valutare la preci-
sione e l’accuratezza dei nuovi algoritmi e quindi validarne l’applicabilità nella
simulazione di problemi di interesse ingegneristico.

Completano la tesi due brevi appendici inerenti elementi introduttivi di
Analisi funzionale e di teoria delle disequazioni variazionali. I contenuti delle
appendici possono risultare utili nello studio della teoria matematica della
plasticità affrontato nei Capitoli 2,3 e 4.

Abstract

The research theme upon which this thesis is based regards the constitutive
modeling of nonlinear inelastic materials. The main topic is concerned with
the analysis, the development and the implementation of a new class of inte-
gration algorithms for differential-algebraic nonlinear problems arising in the
constitutive modeling of von-Mises elastoplastic hardening materials.

The theory of plasticity, as it is well known, is a classical part of continuum
Mechanics and is characterized by being a discipline which attracts both the
scientific interest of engineer scientists and mathematicians. This fact is mainly
due to historical reasons and, in particular, to the development of the theory
of partial differential equations and of the theory of variational inequalities
taken place in the second half of the last century. This development has in
fact made it possible a deeper comprehension of the fundamental physical
meanings of elastoplastic phenomena and has provided useful theoretical tools
for the analysis of the constitutive models and of the variational formulation
of the mechanical problems of interest.

Given the high complexity and the preeminent nonlinear nature of such
mathematical models, another relevant research challenge in this area is the
development of rubust numerical methods for the integration of such models.
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The numerical schemes in argument need to be as precise as possible in order
to accurately reproduce the constitutive response of real elastoplastic materials
in computational enviroments (such as commercial finite element codes).

This work is set within this last research field and is structured in such a
way that the introduction of the elastoplastic constitutive problem remains as
complete as possible, in order to carry out both the engineering and the math-
ematical aspects of the problem. The first chapter proposes some fundamental
concepts of Mechanics of deformable material bodies and of theory of elastic-
ity. The second chapter is centred on the so-called classical or mathematical
theory of plasticity. This chapter focuses in particular on the formulation
of the von-Mises constitutive law for elastoplastic materials with linear and
nonlinear hardening.

The third chapter proposes the analysis of the variational formulation of the
initial boundary value problem of equilibrium for three-dimensional continuum
bodies constituted of elastoplastic material. In this chapter also some theo-
retical results on the well-posedness of the variational problem are exposed.
The fourth chapter introduces to the numerical solution of the variational pro-
blem of elastoplastic equilibrium, within the context of a finite element space
discretization and of classical finite difference time discretization schemes.

Chapter 5 constitutes the innovative part and, being the core of the thesis,
focuses on the new class of exponential-based integration schemes for von-
Mises elastoplastic models. The basic technique underneath the application
of these schemes prescribes the rewriting of the original constitutive model
using a suitable integration factor which governs the evolution of plastic flow.
The ensuing differential-algebraic dynamical system results in a characteristic
quasi-linear evolutive equation which, under proper hypotheses, may be inte-
grated and solved stepwise, using exponential maps. The advantages granted
by the new family of methods are made evident by the theoretical analysis of
their numerical properties and by the comparison on numerical tests with the
classical finite difference schemes. Chapter 6 presents an extensive series of
numerical tests which aim to evaluate the precision and the order of accuracy
of the new exponential-based algorithms and hence to validate them as feasible
tools in practical simulation of problems of engineering interest.

The thesis is completed by two brief appendices concerning mathematical
elements of functional analysis and of theory of variational inequalities. The
contents of these last two sections may be of some value in the study of the
mathematical theory of plasticity carried out in chapters 2, 3 and 4.
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Chapter 1

Continuum Mechanics and

Elasticity

Introduzione

Questo capitolo è dedicato ai concetti fondamentali della Meccanica dei solidi
deformabili e della elasticità lineare. Segue un breve sommario dei contenuti
del capitolo.

La Sezione 1.2 richiama gli elementi di algebra vettoriale e tensoriale che
vengono utilizzati nella tesi. La Sezione 1.3 riguarda la Cinematica del corpo
materiale. In detta sezione si definiscono le fondamentali misure di defor-
mazione e viene messo in evidenza il caso delle deformazioni infinitesime. La
Sezione 1.4 riguarda la formulazione dell’equilibrio per un corpo materiale.
Vengono qui presentati gli assiomi dell’equilibrio statico e dell’equilibrio di-
namico, le leggi di bilancio del momento lineare ed angolare, la forma locale
dell’equazione di equilibrio. La Sezione 1.5 costituisce una breve presentazione
della legge costitutiva per materiali a comportamento elastico lineare isotropo
con un accenno alle proprietà fondamentali del tensore dei moduli elastici.

La Sezione 1.6 è incentrata sulla prima e sulla seconda legge della Ter-
modinamica e tratta, in particolare, il caso di solidi costituiti da materiale
elastico lineare isotropo soggetti a trasformazioni isoterme. La Sezione 1.7
presenta la formulazione locale negli spostamenti per il problema a valori in-
iziali e dati al bordo dell’equilibrio, per solidi deformabili di materiale elastico
lineare isotropo. Da ultimo, la Sezione 1.8 introduce i concetti utilizzati nel
capitolo seguente riguardante la teoria classica della plasticità. In tale sezione
si presenta una trattazione termodinamica generale, adatta allo studio di ma-
teriali a comportamento inelastico non lineare. In particolare viene introdotta
la cosiddetta teoria termodinamica a variabili interne. Per ovvie ragioni, la

3



4 1. CONTINUUM MECHANICS AND ELASTICITY

trattazione di questa sezione si limita al caso della elasticità lineare.

Gli elementi di Meccanica del continuo ed elasticità richiamati nel pre-
sente capitolo sono tratti preminentemente da [14, 20], mentre gli argomenti
di Termodinamica seguono principalmente la trattazione in [41].

1.1 Introduction

This chapter is devoted to fundamental concepts of Mechanics of deformable
solids and of linear elasticity. In what follows we give a brief outline of the
contents of the chapter.

In Section 1.2 we recall the elements of vector and tensor algebra that are
used throughout the thesis. Section 1.3 is concerned with the kinematics of a
deformable material body. In this section the fundamental strain measures are
defined and special emphasis is given to the small deformation case. Section
1.4 regards the formulation of equilibrium for a material body. Here we present
the axioms of static and dynamic equilibrium, the balance laws of linear and
angular momentum and the local form of the equilibrium equation. Section 1.5
is a concise review of the constitutive law for linear elastic isotropic materials.
In this section we briefly examine the basic properties of the elastic tensor and
the form of the linear elastic constitutive law.

Section 1.6 focuses on the first and second laws of Thermodynamics and
particularly on the special case of linear elastic bodies undergoing isothermal
transformations. Section 1.7 presents the classical displacement local formu-
lation of the equilibrium boundary value problem for a deformable body con-
stituted of linear elastic material. Finally, Section 1.8 sets the stage for the
later developments on the elastoplastic theory developed in Chapter 2. In fact,
in this section, we give a general framework which is particularly suitable for
studying nonlinear inelastic materials. For obvious reasons the treatment is
momentarily dedicated to linear elasticity. In particular the so-called thermo-
dynamic theory with interval variables is addressed. In this chapter the ele-
ments of continuum Mechanics and elasticity are basically taken from [14, 20],
while the Thermodynamics arguments are presented following [41].

1.2 Preliminaries and notation

Vectors and tensors

In this work, we deal with different types of mathematical objects, namely
with scalars, second-order tensors and fourth-order tensors as well as with
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generalized vector and matrix operators. Scalars are indicated by italic letters
like

a, α, A

Vectors, second-order tensors and generalized vector operators are denoted by
boldface letters like

a, α, A, Σ

while fourth-order tensors and generalized matrix operators are indicated with
uppercase boldblackboard letters like

A, G

The summation convention for repeated indices, or Einstein convention, will
be used in our developments1

We refer to a three dimensional Euclidean space R3 and thus make use of
a Cartesian coordinate system equipped with an orthonormal basis (e1, e2, e3)
chosen once and for all. Components of vectors and tensors are systematically
referred to such a basis. The vector a of the space R3 is identified by the
ordered set {ai}T , 1 ≤ i ≤ 3, which defines its coordinates with respect to the
above canonical basis and where i is the free index varying between 1 and 3,
such that

a = aiei

In the following we adopt the following notations for vectors of R3:

• Compact
a

• Indicial
ai = a|i

• Engineering
{a} = {a1, a2, a3}T

The scalar product of two vectors a and b is denoted by a · b and is defined
by:

a · b = aibi

1The summation convention requires that a repeated index in a multiplicative term implies
the presence of a summation over the possible index range. Consistently, a non-repeated
index in a multiplicative term implies that it may assume indifferently any value in the
possible index range.
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The Euclidean norm of a vector a is defined according to:

‖ a ‖= (a · a)1/2

The Euclidean space R3 with the natural operations introduced above forms
a vector space, indicated in the following as lin.

The cross product or vector product c of two vectors a and b is a vector
c = a × b, orthogonal to both a and b, with length equal to the area of the
parallelogram defined by the vectors a and b and direction defined according
to the right-hand rule. We then have the following expression in terms of
components

c = a × b = (aiei) × (ajej) = aibj(ei × ej) = aibjEijkek

where, for 1 ≤ i, j, k ≤ 3, Eijk is the permutation symbol, i.e. Eijk = +1 for
(i, j, k) a cyclic permutation, Eijk = −1 for (i, j, k) an anticyclic permutation
and Eijk = 0 otherwise. The cross product returns a vector which is orthogonal
to the plane containing the two original vectors. Second-order tensor are
objects defined to generalized such a property in the sense that they operate
on a vector returning a vector.

A second-order tensor τ is defined as a linear operator mapping vectors into
vectors. Clearly, dealing with a three-dimensional space, to completely define
the action of a second-order tensor, it is necessary to consider at least the action
on three independent vectors of lin, such as the three basis vectors. Since
the action of the second-order tensor on the three basis vectors is to return
three new vectors, we may conclude that second-order tensors are in general
identified through a set of nine scalar components. The space of second-order
tensors with the natural operation defined in the following form a vector space,
indicated in the sequel as Lin

The fundamental operation to construct the space of second-order tensor
is the tensor product of two vectors a and b, indicated as a ⊗ b and defined
as

(a ⊗ b)c = (b · c)a ∀a,b, c ∈ lin

The tensor products ei ⊗ej of the basis vectors of lin are a set of second-order
tensors, providing a suitable basis for expressing the components of a second-
order tensor of the space Lin. In particular we define the ijth component of a
tensor τ as

τij = ei · τej
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which implies that the second-order tensor τ can be expressed in component
form as

τ = τij(ei ⊗ ej)

In this work we adopt the following notations for a second-order tensor of the
space Lin:

• Compact
τ

• Indicial
τij = τ |ij

• Engineering

[τ ] =




τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33





The transpose of a second-order tensor τ is indicated in compact notation by
τT and defined by the following relation

τ T |ij = τji

The trace of a second-order tensor τ is a scalar-valued function defined as

tr(τ ) = τii

We use the symbol Linsym to indicate the subspace of Lin of symmetric second-
order tensors, i.e.

Linsym = {τ ∈ Lin : τ = τT } (1.1)

We use the symbol Linsym
0 to indicate the subspace of Lin of symmetric second-

order traceless tensors, i.e.

Linsym
0 = {τ ∈ Linsym : tr(τ ) = 0} (1.2)

The action of a second-order tensor τ onto a vector a is a vector b ∈ lin

b = τa

defined according to

bi = (τa) · ei = [(τlmel ⊗ em)(akek)] · ei = τlmak[(el ⊗ em)ek] · ei

= τlmak[el(em · ek)] · ei = τlmak(el · ei)δmk = τlkakδli = τikak
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The scalar product or double-dot product of two second-order tensors σ and
τ

σ : τ

is a scalar defined by

σ : τ = σijτij

It is noted that

σ : τ = tr(τ T σ)

The multiplication or combination of two second-order tensors σ and τ is a
second-order tensor η

η = στ

defined in the following manner

ηij = σikτkj

The Euclidean norm of a second-order tensor τ induced by the above scalar
product is

‖ τ ‖= (τ : τ )1/2

The second-order identity tensor I is defined by the relation Ia = a,∀a ∈ lin.
The components of the identity tensor are the Kronecker delta, that is

δij =

{
1 if j = i

0 otherwise

A unique additive decomposition of any second-order tensor τ is given by
the sum of its deviatoric part τdev and its volumetric or spherical part τ vol,
respectively defined as

τ vol =
1

3
tr(τ )I τ dev = τ − 1

3
tr(τ ) (1.3)

This definition implies

τ = τ vol + τ vol (1.4)

A fourth-order tensor is defined as a linear operator mapping the space of
second-order tensors Lin onto itself. To properly define the action of a fourth-
order tensor, it is necessary to consider the action on a second-order tensor
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basis; since the action of a fourth-order tensor on a second-order tensor is to
return a second-order tensor, we may conclude that fourth-order tensors are
in general defined by a set of eighty-one scalar components. The space of
fourth-order tensors with the natural operations introduced in the following
form a vector space, indicated in the sequel by Lin.

The fundamental operation to construct the space of fourth-order tensor
is the dyadic product of two second-order tensors τ and σ, indicated as τ ⊗σ

and defined as to return a fourth-order tensor:

D = (τ ⊗ σ) (1.5)

with D ∈ Lin and such that

Dη = (τ ⊗ σ)η = (σ : η)τ = tr(ηT σ)τ ∀η ∈ Lin (1.6)

The tensor products between the second-order basis tensor provide a suitable
basis for expressing the components of a fourth-order tensor of the space Lin.
In particular we define the ijklth component of a tensor D as

Dijkl = (ei ⊗ ej) : D(ek ⊗ el)

such that the fourth-order tensor D can be expressed in component form as

D = Dijkl(ei ⊗ ej) ⊗ (ek ⊗ el)

In the following we will adopt the following notations for fourth-order tensor
of the space Lin:

• Compact
D

• Indicial
Dijkl = D|ijkl

The action of a fourth-order tensor D on a second-order tensor τ is denoted
by

σ = Dτ (1.7)

with the following indicial representation

σij = [Dτ ] : (ei ⊗ ej) = [(Dabcd ea ⊗ eb ⊗ ec ⊗ ed) (τkl ek ⊗ el)] : (ei ⊗ ej)

= [(Dabkl τkl) ea ⊗ eb] : (ei ⊗ ej) = Dabkl τkl

(1.8)
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Besides the dyadic tensor product between second-order tensors, the so-called
square tensor products can be also introduced as:

E = A ⊠ B

F = A ⊠̂ B

defined, according to Del Piero [29], such that:

(A ⊠ B)C = ACBT

(A ⊠̂ B)C = ACTBT
∀C ∈ Lin

or, equivalently,

(A ⊠ B)|ijkl = AikBjl

(A ⊠̂ B)|ijkl = AilBjk

∀A,B ∈ Lin

The fourth-order identity tensor I, is defined to satisfy the relation Iτ = τ , for
any second-order tensor τ . The fourth-order identity tensor, in components
form, can be shown to be given by

I = ei ⊗ ei ⊗ ei ⊗ ei

or, equivalently

I = δikδjlei ⊗ ej ⊗ ek ⊗ el

Therefore we have

Iijkl = δikδjl

The fourth-order symmetrized identity tensor I
I , is defined to satisfy the rela-

tion I
Iτ = 1

2(τ +τ T ), for any second-order tensor τ . Accordingly, I
I is defined

as:

I
I =

1

2

[
I ⊠ I + I ⊠̂ I

]

or, in indicial notation as:

I
I
ijkl =

1

2
[IikIjl + IilIjk]

Therefore we have

I
IA = 1

2(A + AT ) ∀A ∈ Lin
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A splitting into volumetric and deviatoric parts of the fourth-order identity
tensor of the form

I = Ivol + Idev (1.9)

is achievable by setting

Ivol =
1

3
(I ⊗ I)

Idev = I − 1

3
(I ⊗ I)

(1.10)

With the above positions, the volumetric and deviatoric part τ vol and τdev of
any second-order tensor τ are respectively given by:

τ vol = Ivolτ =
1

3
tr(τ ) I =

1

3
(τ : I) I

τ vol = Idevτ = σ − τ vol

(1.11)

Other than vectors and second-order tensor defined over the Euclidean space
R3, in some selected cases we make use of algebraic vectors or m-tuples. For
instance, the m-component algebraic vector ξ can be equivalently indicated in
compact notation or in algebraic notation as ξ = (ξk) = (ξ1, ..., ξk, ...ξm). It is
noted that the components ξk (1 ≤ k ≤ m) of such a vector may be objects of
different type, namely scalars, vectors or tensors. The use of algebraic vectors
will be specified whenever needed in order to avoid confusion. Similarly, in
some cases, use will be made of algebraic or matrix operators. Such matrix
operators will be in general represented in engineering notation as

[G] =

[
G11 G12

G21 G22

]

It is noted that the components Gij of a matrix operator may be objects of
different type, namely scalars, second-order tensors or fourth-order tensors.
The use of matrix operators will be specified whenever needed in order to
avoid confusion.

Invariants of second-order tensors

The algebraic problem of finding every scalar λ and every nonzero vector q
such that

τq = λq
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leads to the standard eigenvalue problem. This consists of solving the charac-
teristic equation

det(λI − τ ) = 0

This equation can be written equivalently as

λ3 − I1λ
2 + I2λ − I3 = 0

where I1(τ ), I2(τ ) and I3(τ ) are the principal scalar invariants of τ . The
principal scalar invariants are respectively defined by

I1 = tr(τ ) = λ1 + λ2 + λ3

I2 =
1

2

[
tr(τ )2 − tr

(
τ 2
)]

=
1

2
(τiiτjj − τijτji) = λ1λ2 + λ2λ3 + λ3λ1

I3 = det τ = λ1λ2λ3

where the scalars λ1, λ2 and λ3 are the eigenvalues of τ as well as the roots
of the characteristic equation (a multiple root is counted repeatedly according
to its multiplicity). The eigenvalues of a matrix τ are often referred to as the
principal components of τ .

The gradient of a scalar field φ(x) defined on lin is denoted by ∇φ and it
is the vector defined by

∇φ =
∂φ

∂xi
ei

The divergence divu and the gradient ∇u of a vector field u(x) defined on lin
are respectively a scalar and a second-order tensor field defined by

divu =
∂ui

∂xi

∇u =
∂ui

∂xj
ei ⊗ ej

The divergence of a second-order tensor τ defined on lin is a vector defined by

divτ =
∂τij

∂xj
ei
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For a scalar-valued function f(τ ) defined on Lin, the derivative with respect
to τ is defined as a second-order tensor of the following form

∂f(τ )

∂τ
=

∂f(τ )

∂τij
ei ⊗ ej

For a time-dependent quantity z, we will denote with ż its partial derivative
with respect to time t.

1.3 Kinematics

Material body

We consider a body B that at the macroscopic level may be regarded as
composed of material that is continuously distributed in space. Assume that
at any time instant t the body B can be identified with a closed subset, Ω, of
the tridimensional real space R3:

B ≡ Ω ⊂ R3 (1.12)

Accordingly, it is possible to associate any material point X ∈ B with a point
X ∈ Ω ⊂ R3:

X ∈ B → X ∈ Ω ⊂ R3 (1.13)

The above identification procedure allows to treat the material body as a
continuum, that is, as a mathematical entity which inherents the continuum
power property of the R3 space [38]. In particular, we may define functions
of position and time over the configuration, perform real analysis, differen-
tial calculus operations on such functions and so on. It is also possible to
construct a mathematical model corresponding to experimental observations,
that is, perform experimental observations and assign the measured averaged
properties to a point of the body.

In the present context we start by addressing the kinematics of the body
which is the common starting point to describe the behavior of general con-
tinuous media. As it is well known, this framework remains independent of
what acts on the body and of the constitution of the body itself.

Change of configuration

Let us consider two distinct time instants t0 and t, such that t0 < t. We refer t0
as the initial time instant, while we refer t as the current time instant. At time
t0 the material body B can be identified with a subset Ω0 ∈ R3, indicated
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u X

x X
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X

Figure 1.1: Current and reference configurations of a material body

as initial or reference configuration, such that at the same time instant the
generic material point X ∈ B can be identified with a corresponding point
X ∈ Ω0. At time t, the material body B can be identified with a subset
Ω ∈ R3, indicated as current configuration, such that at the same time instant
the generic material point X ∈ B can be identified with a corresponding point
x ∈ Ω. In the above specifications we have set the convention of indicating the
reference position vector, X, with an upper case boldface letter and the current
position vector, x, with a lower case boldface letter. More generally, either
using a compact or an indicial notation, quantities relative to the reference
configuration are indicated with upper case letters and quantities relative to
the current configuration are indicated with lower case letters.

In view of the identification represented by relation (1.13), it is possible
to construct a map between the reference and the current configuration, indi-
cated, in general, as change of configuration or deformation map ϕ. Adopting
in the following both a compact and an indicial notation, we can express the
deformation map ϕ as follows:

x = ϕ(X)

xi = ϕi(XJ )
(1.14)

or more precisely as:

ϕ : X ∈ Ω0 ⊂ R3 → x ∈ Ω ⊂ R3

Observing Equation (1.14) it is noted that the conventions on the use of upper
and lower case letters to denote respectively reference and current configura-
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tions quantities is applied also to the subscript relative to the components of
the reference position vector (indicated with an upper case index (J)) and to
the components of the current position vector ( indicated with a lower case
index (i)).

The analytical requirement on the deformation map is that it has to respect
the body continuity. This condition can be split in external requirements and
internal requirements, i.e. in requirements relative to the body boundary and
to the body interior. In particular, if the body configuration is assigned on
a portion of the boundary, indicated as ∂Ωϕ

0 (for example, x = X on ∂Ωϕ
0 ,

∀t ≥ t0), then the map should respect such an assignment on such a boundary
portion. Moreover, in the body interior the map should respect the body
continuity; from a mathematical point of view this is expressed through the
following conditions:

• the map ϕ is a function

• the map ϕ is continuous

• the map ϕ is differentiable with continuous derivatives (class C2)

• the map ϕ is invertible

The gradient of the deformation map, or deformation gradient, F, is defined
as:

F = ∇Xϕ

FiJ =
∂ϕi

∂XJ

(1.15)

and, without distinguishing between the deformation map, ϕ, and the current
position, x, (i.e. x ≡ ϕ) the deformation gradient can be also written as:

F = ∇Xx =
∂x

∂X

FiJ =
∂xi

∂XJ

(1.16)

It can be shown that ϕ maps an infinitesimal vector dX, with origin in X,
into a vector, dx, with origin in x, as follows:

dx = FdX

dxi = FiJdXJ
(1.17)

Accordingly, the deformation gradient is a two-point second-order tensor; in
fact, it is a second-order tensor since it maps vectors into vectors, but it is
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two-point since one component is relative to the reference configuration and
one component is relative to the current configuration. This is consistent with
the fact that F operates on vectors defined in the reference configuration and
it returns vectors defined in the current configuration. In fact, the indices of
F are still indicated with a lower case letter and with an upper case letter
respectively.

The deformation gradient F = F(X) is in general function of position,
since the deformation map is in general non uniform. Likewise, ϕ is in general
a nonlinear map in space and F results as its pointwise linearization.

Strain

It is possible to prove that the deformation gradient F = F(X), being a
pointwise-defined second-order tensor, characterizes the strain status of the
point X neighborhood. In particular, given F it is possible two compute the
relative change in length of a generic fiber emanating from X, as well as the
change in angle between two fibers emanating from X.

The above statement can be derived with the following reasoning. Consider
an infinitesimal vector dS, with origin in X and expressed as dS = NdS with N
unit vector (i.e. ‖N‖ = 1). Let us indicate with ds the vector with origin in x,
obtained from dS through the deformation map ϕ, that is: ds = FdS = FNdS.
Defining the stretch of the vector dS as the elongation of the vector through
the deformation map, that is, as the ratio between the norm of the vector after
and before the mapping:

λ =
‖ds‖
‖dS‖ (1.18)

and recalling that ‖N‖ = 1, it holds:

λ2 =
ds · ds
dS · dS =

(FNdS) · (FNdS)

(NdS) · (NdS)
=

(FN) · (FN)

N ·N = CN · N = λ2(N)

(1.19)
where C is the right Cauchy-Green deformation tensor, defined as:

C = FTF

CIJ = FaIFaJ

(1.20)

Accordingly:

λ = λ(N) = ‖FN‖ =
√

CN · N (1.21)

that is, given F and hence C, we can compute the elongation of any fiber with
origin in X and extremum in a sufficiently small neighborhood of X. Such
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an elongation is just a function of the direction N. Consider two infinitesimal
vectors, dS1 and dS2, with origin in X and expressed as

dS1 = N1dS1

dS2 = N1dS2
(1.22)

with N1 and N2 unit vectors. Then, indicate with ds1 and ds2 the vectors
with origin in x, defined through the deformation map:

ds1 = FdS1 = FN1dS1

ds2 = FdS2 = FN2dS2

If θ0 is the angle between dS1 and dS2 and θ is the angle between ds1 and ds2,
the difference γ = θ − θ0 represents the angle variation. We may note that
also this quantity can be expressed in terms of F since:

cos(θ) =
ds1 · ds2

‖ds1‖‖ds2‖
=

FN1 ·FN2

‖FN1‖‖FN2‖
=

CN1 · N2

λ(N1)λ(N2)

Despite the fact that F and C represent a correct tool to calculate the local
state of strain, neither of them is an appropriate strain measures. In fact, in
the undeformed configuration F = C = I, while one would expect a proper
strain measure to be zero in the undeformed configuration. This lacking can
be avoided by introducing the Lagrangian or Green strain tensor E, defined
as:

E =
1

2
(C − I) =

1

2

(
FTF − I

)

EIJ =
1

2
(CIJ − IIJ) =

1

2
(FaIFaJ − IIJ)

(1.23)

This definition is suggested in a straightforward manner by considering the
following change in scalar product:

ds1 · ds2 − dS1 · dS2 = (FdS1 · FdS2) − dS1 · dS2

= FTFdS1 · dS2 − dS1 · dS2

=
(
FTF − I

)
dS1 · dS2

= 2EdS1 · dS2

which is also amenable of the following representation :

ds1 · ds2 − dS1 · dS2 = ds1 · ds2 −
(
F−1ds1 ·F−1ds2

)

= ds1 · ds2 − F−TF−1ds1 · ds2

=
(
I − F−TF−1

)
ds1 · ds2

= 2eds1 · ds2
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The second-order tensor e is called Eulerian or Almansi strain tensor and is
defined as:

e =
1

2

(
I − b−1

)

eij =
1

2

(
Iij − b−1

ij

) (1.24)

where the second-order tensor b is the left Cauchy-Green or Finger deforma-
tion tensor, defined as:

b = FFT

bij = FiAFjA

(1.25)

such that:

b−1 = F−TF−1

b−1
ij = F−T

iA F−1
jA

(1.26)

The scalar product can still be takes as a measure of deformation. Take for
example dS1 = dS2 = dS, such that dS = NdS, with N unit vector in the
direction of dS. Similarly, ds = nds, with n unit vector in the direction of ds.
With these positions, the initial (material) length dS and the current (spatial)
length ds are respectively:

dS2 = dS · dS
ds2 = ds · ds

Hence:
ds2 − dS2

dS2
= 2 EN ·N

ds2 − dS2

ds2
= 2 en · n

which respectively return the change in square length of the fiber dS with
respect to the initial and current length.

Particular choices of the unit vectors N1 and N2 appearing in (1.22) to-
gether with the above calculations induce to recognize the geometrical meaning
of the components of the Lagrangian and Eulerian tensors relative to the local
state of deformation. For instance, taking N1 = N2 = ei (i = 1, 2, 3) it is
found that the components Eii, eii (i = 1, 2, 3), respectively, represent the
relative elongation of a fiber initially oriented along the ith basis vector with
respect to the initial and to the current length. Similarly, taking N1 = ei and
N2 = ej (i, j = 1, 2, 3) it is found that the components Eij , eij (i, j = 1, 2, 3)
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with i �= j, respectively, represent the relative change in angle between the
fibers initially oriented along the ith and jth reference axis with respect to the
initial and to the current angle between them.

It is convenient to describe the change of configuration introducing the
displacement field u, defined as the pointwise difference between the current
and the reference vector position:

u(X) = x(X) − X (1.27)

Then the current position vector is given by the sum of the reference position
vector and of the displacement vector:

x = ϕ(X) = X + u(X)

The expression of the deformation map in terms of displacement gives rise
to alternative expressions of the strain tensors introduced previously. For
example, the deformation gradient becomes:

F =
∂x

∂X
=

∂

∂X
(X + u) = I + ∇Xu (1.28)

which, defining H = ∇Xu, can be written as:

F = I + H (1.29)

Moreover, we may write:

C = FTF = I + H + HT + HTH

E =
1

2
(C − I) =

1

2

(
H + HT + HTH

) (1.30)

The Eulerian strain tensor (1.30)2 admits the splitting:

E = E1 + E2 = εεε + E2

which identifies the linear and the nonlinear parts of E, respectively as E1 =
εεε = (H + HT )/2 and E2 = (HTH)/2.

Small displacement gradient

In many structural engineering problems the deformations can be regarded as
small in some sense. This assumption, which is rigorously formalized, obvi-
ously introduces an approximation in the treatment but, nevertheless, permits
to simplify the problem formulation and thus remains of notable interest.
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Consider the case of a motion with a small displacement gradient ∇u, that
is:

‖∇Xu‖ = ε with ε ≪ 1

Recalling (1.30), the additive decomposition of the strain tensor E in a linear
and a nonlinear term, we may prove the following theorem [37].

Theorem 1.3.1 Assume ||∇u|| = ε ≪ 1. Then:

2E = C− I + O(ε) = b− I + O(ε) = 2E1 = 2εεε

Furthermore, if F corresponds to a rigid motion, then:

∇u = −∇uT + O(ε)

This proposition asserts that to within an error of order O(ε):

• if the displacement gradient ∇Xu is sufficiently small then the nonlinear
term in (1.30) can be neglected

• the tensors E and εεε coincide as well as the tensors C and b coincide

• the displacement gradient corresponding to a rigid deformation is skew

Under the same assumptions it is also possible to prove that:

det(F) − 1 = div (u) + O(ε) (1.31)

In the following we indicate a deformation map characterized by a small dis-
placement gradient field as a small deformation map or simply we talk about
small deformations, that is:

Small deformation ⇔






‖∇Xu‖ ≪ 1

εεε = 1
2

[
∇Xu + (∇Xu)T

]

Volume change

We are now interested in the evaluation of the unit volume change produced in
the change of configuration of the body by means of the deformation map. To
begin with it is worth recalling that the volume V of a parallelepiped defined
by the vectors a, b and c is given by:

V (a,b, c) = (a × b) · c

Moreover, the following theorem holds:
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Theorem 1.3.2 Let {a,b, c} be any triad of non-collinear vectors in the
three-dimensional space and let T be any second-order tensor. Then, the fol-
lowing identities hold:

[(Ta) × (Tb)] · Tc = det(T) [(a × b) · c]
TT [(Ta) × (Tb)] = det(T) (a × b)

Let us consider a parallelepiped of material described by a triad of infinitesimal
vectors {dS1, dS2, dS3}, expressed respectively as a product of the unit vectors
N1,N2,N3 and of the infinitesimal lengths dS1, dS2, dS3. Accordingly, the
volume dV of the parallelepiped is given by:

dV = [(N1 × N2) · N3] dS1dS2dS3

The deformed parallelepiped is described by the vectors {FN1,FN2,FN3}
multiplied respectively by the quantities dS1, dS2, dS3. Accordingly, the cor-
responding volume dv is given by:

dv = [(FN1 × FN2) · FN3] dS1dS2dS3

which can also be rewritten as:

dv = det(F) [(N1 × N2) · N3] dS1dS2dS3

Hence, we get:
dv

dV
= det(F) = J (1.32)

where we also used the classical notation J = det(F) indicating the Jacobian
of the deformation gradient.

The above formula can be specialized in the case of small deformations
[25]. Recalling (1.31) and omitting higher order terms, it holds:

J = det(F) = det(I + ∇u) = 1 + divu (1.33)

A body transformation such that it produces no volume change is said top be
isochoric and observing (1.32) in this case one has

J = 1 ∀x ∈ Ω (1.34)

Accordingly, for an isochoric infinitesimal deformation process and to within
an error of O(ε), the displacement field satisfies the condition

tr(εεε(u(x))) = divu(x) = 0 ∀x ∈ Ω (1.35)

A material that cannot undergo any transformation that is accompanied by
change in volume is called incompressible. For such a material, relations (1.34)
and (1.35) represent a constraint on the admissible deformation field.
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1.4 Equilibrium

1.4.1 Static equilibrium

This section investigates body static equilibrium conditions, relative either to
the whole body or to body subsets. In particular, the equilibrium is com-
prehensive of the relations introducing proper quantities measuring internal
forces, i.e. actions exchanged between neighborhood body subsets.

Given a body B in a configuration Ω, we postulate that the interaction
between the external world and the body can be described through two force
fields:

• a surface force field, or contact force field, t, with dimension of force by
unit area and defined on a portion of the current boundary surface, ∂Ωt

2;

• a volume force field, or body force field, b, with dimension of force by
unit volume and defined on the current configuration, Ω.

We also postulate that:

• the interaction between any portion of the body Ω′ internal to the body

(i.e. such that Ω′ ⊂
◦
Ω) and the remaining part of the body Ω \Ω′ can be

described through a surface force field, indicated also as traction force
field, with dimension of force by unit area and defined on ∂Ω′. These
interaction forces are assumed to be function of the local outward normal
to Ω′, and, accordingly, we indicate this field with tn, with the subscript
to express the dependency from the normal n.

Given any portion Ω′ of the body in the current configuration Ω, we can define
the force resultant, r, and the moment resultant, m, relative to Ω′ ⊆ Ω as:

r(Ω′) =

∫

Ω′

bdv +

∫

∂Ω′

tnda

m(Ω′) =

∫

Ω′

(x× b) dv +

∫

∂Ω′

(x× tn) da

(1.36)

where x is the current position vector and where the resultant momentum is
computed with respect to a generic origin o.

Now, defined the force and moment resultants, we may state the

2In general, we set ∂Ωt = ∂Ω \ ∂Ωϕ with ∂Ωϕ the part of the boundary where we assign
the deformation map ϕ; accordingly, we have: ∂Ω = ∂Ωt ∪ ∂Ωϕ .
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Static Equilibrium Axiom. A deformable body is in equilibrium if and
only if the force resultant and the force momentum on each portion of
the body are zero, that is, a body B in a configuration Ω is in equilibrium if
and only if:

r(Ω′) = 0 ∀Ω′ ⊆ Ω

m(Ω′) = 0 ∀Ω′ ⊆ Ω
(1.37)

or, in a more explicit format, a body B in a configuration Ω is in equilibrium
if and only if:

∫

Ω′

bdv +

∫

∂Ω′

tnda = 0 ∀Ω′ ⊆ Ω

∫

Ω′

(x× b) dv +

∫

∂Ω′

(x× tn) da = 0 ∀Ω′ ⊆ Ω

(1.38)

Equation (1.38) are also indicated as linear momentum and angular momen-
tum balance laws. Moreover, for the case Ω′ ≡ Ω, the above equations spe-
cialize as:

r(Ω) =

∫

Ω
bdv +

∫

∂Ωϕ

tnda +

∫

∂Ωt

tda = 0

m(Ω) =

∫

Ω
(x× b) dv +

∫

∂Ωϕ

(x × tn) da +

∫

∂Ωtn

(x × t) da = 0

(1.39)

where we note that the quantity tn in the surface integral on ∂Ωϕ is unknown.
We now want to investigate the actions that internal parts of the body

mutually exchange. To do so, let us introduce a surface Σ, ideally dividing the
body Ω in two parts, Ω′

1 and Ω′
2, such that Ω′

1∪Ω′
2 = Ω, and let us also define:

Γ1 = ∂Ω′
1 \ Σ and Γ2 = ∂Ω′

2 \ Σ, such that: ∂Ω′
1 = Γ1 ∪ Σ and ∂Ω′

2 = Γ2 ∪ Σ.
Assuming that the whole body is in equilibrium, by the equilibrium axiom, we
have that each single part of the body should be in equilibrium, hence, also
Ω′

1 and Ω′
2. Without showing all the calculations (refer for instance to [14])

the last statement amounts to the following fundamental result:

∫

Σ
(tn + t−n) da = 0

which, recalling the arbitrariness of the surface Σ, implies

tn = −t−n (1.40)

The above equation is known as action-reaction principle or as Cauchy recip-
rocal principle or as first Cauchy theorem.
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Stress tensor

Let us introduce a right-angle tetrahedron T contained in the body (T ⊂
◦
Ω)

and a coordinate system with origin o in the tetrahedron right-angle vertex
and axes given by the tetrahedron edges, respectively with lengths along the
coordinate axes equal to ε1, ε2, ε3. Moreover, let us indicate with pi (with
i = 1, 2, 3) the other tetrahedron vertices, with ei the unit vector along the ith
coordinate axis, with ai the area of the face with unit normal −ei, and with
an the fourth area describing the tetrahedron, having normal n.

We now consider the tetrahedron equilibrium, taking into account the trac-
tion vector fields acting on the four sides and the body force field acting on
the volume. This amounts to studying the following integral force balance:

∫

v
bdv +

3∑

i=1

∫

ai

t−ei
da +

∫

an

tnda = 0

Omitting, for brevity, the mathematical manipulations and using the action-
reaction principle it is possible to state that the above equilibrium condition
for the tetrahedron implies the following relation for the traction field

tn =
3∑

i=1

(n · ei) tei
=

[
3∑

i=1

(tei
⊗ ei)

]
n (1.41)

This relation shows how the traction vector acting on the oblique face is related
to the traction vectors on the faces orthogonal to the coordinate axes; in
particular, setting:

σ =

[
3∑

i=1

(tei
⊗ ei)

]

(1.42)

we have:

tn = σn (1.43)

which is known as second Cauchy theorem, valid for any point internal to

the body (i.e. ∀x ∈
◦
Ω). It is interesting to emphasize how, starting from

the assumption that the traction vector tn depends on n, we prove that this
dependency is linear through a second-order tensor σ, known as Cauchy stress
tensor. Accordingly, knowing σ in a point, it is possible to compute the stress
vector tn acting on any surface of normal n, which is equivalent to say that σ

contains all the information relative to the local state of stress.
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From Equation (1.43), it is possible to obtain a physical interpretation for
the components of the stress tensor, noting that:

σij = ei · σej = ei ·
[

3∑

i=1

(tei
⊗ ei)

]
ej = ei · tej

(1.44)

Hence, the ijth component of σ is the ith component of the traction vector
acting on the face with normal vector ej. The reader should be warned that
some authors reverse the convention [3, 38, 53].

It is also interesting to note that Equation (1.42) indicates that σ is fully
determined once we know the three vectors te1

, te2
, te3

; accordingly, σ is
known once we know nine independent components, which are exactly the
number of components in a second-order tensor.

Static equilibrium equations

We now want to transform the equilibrium requirements from the global inte-
gral format of Equation (1.38) to a local differential format. To do so, we start
recalling that, given any tensor field G defined on a region Ω′ with normal n
and boundary ∂Ω′, the divergence theorem of a tensor field states:

∫

∂Ω′

Gnda =

∫

Ω′

div (G)dv (1.45)

Applying this equality to Equation (1.38)1, we get:
∫

Ω′

bdv +

∫

∂Ω′

tnda =

∫

Ω′

bdv +

∫

∂Ω′

σnda =

∫

Ω′

(b + div σ) dv = 0

and since this equality must hold for all Ω′ ⊆ Ω, we get the corresponding
local form of the equilibrium equation:

div σ + b = 0

σij,j + bi = 0
(1.46)

where the subscript comma indicates differentiation. Accordingly, this is a set
of three linear partial differential equations.

To derive the local form of the angular momentum balance, we start mul-
tiplying Equation (1.38)2 with an arbitrary and constant vector field h:

∫

Ω′

[(x × b) · h] dv +

∫

∂Ω′

[(x× tn) · h] da =

∫

Ω′

[(x × b) · h] dv +

∫

∂Ω′

[(x× σn) · h] da = 0

(1.47)
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Now, recalling the cyclic nature of the triple product, the definition of trans-
pose for a second-order tensor and the equality:

div
(
GTv

)
= v · div G + G : ∇v

valid for any tensor field G and any vector field v, we may note that:

∫

∂Ω′

[(x× σn) · h] da =

∫

∂Ω′

[(h× x) · σn] da

=

∫

∂Ω′

[
σT (h× x) · n

]
da

=

∫

Ω′

div
[
σT (h× x)

]
dv

=

∫

Ω′

[(h× x) · div σ + σ : ∇ (h× x)] dv

=

∫

Ω′

[(x× div σ) · h + σ : ∇ (h× x)] dv

Accordingly, Equation (1.47) becomes:

∫

Ω′

[(x× b) · h] dv +

∫

Ω′

[(x × div σ) · h + σ : ∇ (h × x)] dv =

∫

Ω′

[x× (div σ + b) · h + σ : ∇ (h × x)] dv =

∫

Ω′

[σ : ∇ (h × x)] dv = 0

(1.48)

where we used the balance of linear momentum, i.e. div σ + b = 0. Noting
that ∇x = I, we have:

∇ (h× x) = H

with H a skew-symmetric tensor such that: Hv = h × v for any vector v.
Moreover,

σ : H = tr(σTH) = ei · σTHei

hence, Equation (1.48) reduces to:

∫

Ω′

[h · (ei × σei)] dv = 0

with an implied sum on i. Recalling that h and Ω′ are arbitrary, we finally
get:

ei × σei = 0 (1.49)
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To understand the real implication of Equation (1.49), we may consider the
kth component of the previous equation, expressing also the tensor σ in com-
ponents:

ek · [ei × σei] = ek · [ei × (σabea ⊗ eb) ei] = ek · [ei × σabeaIib]

= ek · [ei × σaiea] = [σai (ek · ei × ea)] = σaiEkia

The above equaiton can be written in a more explicit format as:

σai = σai (a �= i) (1.50)

or in compact notation as:
σ = σT (1.51)

Therefore, the balance of angular momentum implies the symmetry of stress
tensor σ. In conclusion, the local form of the balance equations are respec-
tively:

div σ + b = 0 in Ω

σ = σT in Ω

t = σn on ∂Ωt

(1.52)

or in indicial notation

σij,j + bi = 0 in Ω

σij = σji in Ω

ti = σijnj on ∂Ωt

(1.53)

1.4.2 Dynamic equilibrium

Given a motion ϕ of a body B, the linear momentum, l, and the angular
momentum, a, of any body portion Ω′ ⊆ Ω at time t are defined as:

l(Ω′, t) =

∫

Ω′

ρu̇dv

a(Ω′, t) =

∫

Ω′

(x× ρu̇) dv

(1.54)

where the angular momentum is computed with respect to a generic origin o
and with the mass density ρ uniform at any point in the body.

Deriving in time it follows that for every portion Ω′:

l̇(Ω′, t) =

∫

Ω′

ρüdv

ȧ(Ω′, t) =

∫

Ω′

(x × ρü) dv

(1.55)
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Recalling that for any portion Ω′ ⊆ Ω we can define a force resultant, r, and
a moment resultant, m, given respectively by:

r(Ω′) =

∫

Ω′

bdv +

∫

∂Ω′

tnda

m(Ω′) =

∫

Ω′

(x× b) dv +

∫

∂Ω′

(x× tn) da

(1.56)

it is possible to state the

Dynamic Equilibrium Axiom. A deformable body is in equilibrium if and
only if the force resultant and the force momentum on each portion satisfy
the linear and angular momentum balance laws. Accordingly, a body B in a
configuration Ω is in equilibrium if and only if:

r(Ω′) = l̇(Ω′) ∀Ω′ ⊆ Ω

m(Ω′) = ȧ(Ω′) ∀Ω′ ⊆ Ω
(1.57)

where we neglect to indicate time dependency and where l̇ and ȧ are the rate
of the linear and of the angular momentum, as defined in (1.55). Accordingly,
(1.57) can be rewritten as:

∫

Ω′

bdv +

∫

∂Ω′

tnda =

∫

Ω′

ρüdv ∀Ω′ ⊆ Ω

∫

Ω′

(x× b) dv +

∫

∂Ω′

(x× tn) da =

∫

Ω′

(x× ρü) dv ∀Ω′ ⊆ Ω

(1.58)

Dynamic equilibrium equations

Consider first the law of balance of linear momentum (1.58)1. Taking into
consideration relationship (1.43) and using again the divergence theorem (1.45)
one can rewrite the surface integral extended to the boundary ∂Ω′ as

∫

∂Ω′

tnda =

∫

∂Ω′

σnda =

∫

Ω′

div σdv

so that Equation (1.58)1 becomes
∫

Ω′

[ρü − b− div σ] dv = 0 (1.59)

Since the portion Ω′ is arbitrary, the integrand in (1.59) must vanish. This
condition gives the local form of the equation of motion

div σ + b = ρü (1.60)
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For the cases in which all the given data are independent of time, we have
u = u(x), σ = σ(x) and the response of the body will be independent of time
as well and the equation of motion recovers the equation of static equilibrium
(1.46). Examining the law of balance for the angular momentum, we may
perform similar manipulations to those that lead to Equation (1.60) and find
again the symmetry of the Cauchy stress tensor:

σT = σ

σij = σji

Remark 1.4.1 All the equilibrium considerations presented so far are relative
to the natural configuration where equilibrium should hold, hence they are all
relative to the current configuration Ω and written in terms of geometrical
quantities relative to the current configuration Ω. However, thanks to the
invertibility of the map x = ϕ(X) presented in Equation (1.14) and relating
the current configuration Ω to the reference configuration Ω0, we can also write:

• equilibrium equations relative to the current configuration Ω in term of
geometrical quantities relative to the reference configuration Ω0

• equilibrium equations relative to the reference configuration Ω0 in term
of geometrical quantities relative to the reference configuration Ω0

In particular, when a small deformation regime is considered, the distinction
between reference and current configuration may be ignored. In this case the
alternative forms of equilibrium listed above coincide.

1.5 Constitutive relation

Basic relations

We have so far described the equations of motion and the strain-displacements
relations within the framework of infinitesimal deformation. In component
form these equations are given by a set of nine partial differential equations:
three from the balance law and six from the strain-displacement relation (ad-
mitting the symmetry of εεε). Correspondingly, we have a total of fifteen un-
knowns represented by the six independent components of the strain and of
the stress and by the three displacement components. It is clear that six
additional equations are needed in order to have a well defined problem.

From physical considerations we may infer that the missing equations
should regard the behavior of the material constituting the body. This further
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set of equations are the constitutive equations. In the present section we will
be involved in summarizing the basic equations and properties related to linear
elastic materials.

A material body is said to be elastic if the stress is entirely determined by
the current state of deformation. Assuming the strain tensor εεε as a measure
of the local state of deformation we have

σ = σ(εεε)

σij = σij(εab)
(1.61)

This position implies that the stress cannot depend on the deformation history
and, in particular, on the path followed to reach the actual state. However,
introducing the density of internal work done in going from an initial strain,
εεεi, to a final strain, εεεf , on a path Γεεε as:

W int
Γεεε

=

∫

Γεεε

σ(εεε) : dεεε

it is in general possible that W int
Γεεε

may depend on the specific strain path Γεεε.
In the absence of internal constraints and under proper mathematical con-

ditions, Equation (1.61) can be inverted:

εεε = εεε(σ)

εij = εij(σab)
(1.62)

It is also interesting to consider an incremental format of relation (1.61), in
the form:

σ̇ = C
tgε̇εε (1.63)

where the superposed dot indicates a time derivative and C
tg is the tangent

elastic tensor defined as:

C
tg =

∂σ

∂εεε
(1.64)

An elastic material is said to be linear if the stress and the strain are related
through a (linear) relation of the type:

σ = Cεεε

σij = Cijklεkl
(1.65)

where the fourth-order tensor C is termed the elastic tensor.
Given the symmetry of the second-order tensor εεε, we may write

σij = Cijklεlk = Cijlkεkl
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Exploiting the symmetry of the stress tensor σ, we have

σji = Cjilkεlk = Cjiklεklεkl

which implies the following equalities

Cijkl = Cijlk = Cjikl = Cjilk

The above relation states that the elastic tensor which by definition relates
symmetric second-order tensors, possesses the the so-called minor symmetries

Cijkl = Cijlk = Cjikl

and thus presents, at most, 21 independent components.

In addition, the elastic tensor C is said to be positive definite if

εεε : Cεεε > 0 ∀εεε ∈ Linsym (1.66)

while it is said to be strongly elliptic [60, 75] if

(a ⊗ b) : C (a ⊗ b) > 0 ∀a,b ∈ lin (1.67)

Finally, C is said to be pointwise stable [60] if there exists a constant α > 0
such that

εεε : Cεεε ≥ α ‖ εεε ‖2 ∀εεε ∈ Linsym (1.68)

Clearly pointwise stability implies, but is not implied, by strong ellipticity.
Moreover, pointwise stability is equivalent to pointwise positive definiteness,
under the assumption that C is continuous on Ω̄.

Inverting relationship (1.65), we may obtain the strain as a function of
stress

εεε = Aσ (1.69)

and define the fourth-order compliance tensor A, inverse of C. Equivalently

A (Cεεε) = εεε ∀εεε, εεεT = εεε

and

C (Aσ) = εεε ∀σ, σT = σ
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Isotropic elasticity

A material that has no preferred directions in a way that it resists to exter-
nal agencies independently of its orientation is said to be isotropic [41]. The
property of isotropy for a linear elastic material reduces the twenty-one in-
dependent components of the elastic tensor to two and from a mathematical
standpoint amounts to say that the elastic tensor C presents also the so-called
major symmetries

Cijkl = Cklij

In this hypothesis the elastic tensor admits the following representation [57]

C = λ (I ⊗ I) + 2µI
I (1.70)

where the constants λ and µ are called Lamé moduli and depend on the ma-
terial. This corresponds to a linear elastic relation between stress and strain
in the form:

σ = λ(tr(εεε))I + 2µεεε (1.71)

Bearing in mind the previous definition and recalling the volumetric/deviatoric
splitting of the fourth-order identity tensor (cf. (1.10)), we may perform the
decoupling into volumetric and deviatoric parts of the elastic tensor as well.
Thus, the following relationship is derived

C =
[
λ (I ⊗ I) + 2µI

I
]

= [(3λ + 2µ)Ivol + 2µIdev]

= [3KIvol + 2µIdev]

with 3K = 3λ + 2µ, such that:

σ = Cεεε = [3KIvol + 2µIdev]εεε

= 3KIvolεεε + 2µIdevεεε

Recalling the split of a second-order tensor into its volumetric and deviatoric
components (cf. (1.11)), we may write:

σ = pI + s

εεε =
1

3
θI + e

where p = (1/3)tr(σ) and θ = tr(εεε) are respectively the pressure and the
volumetric deformation, while s and e are respectively the stress and strain
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deviator. The uncoupled volumetric and deviatoric constitutive equations thus
read:

p = Kθ

s = 2µe
(1.72)

The scalar coefficient µ is referred to as the shear modulus, while the material
coefficient K = (λ+2/3µ) is called the bulk modulus and represents a measure
of the ratio between the spherical stress and the change in volume [57]. The
shear modulus µ is often denoted by G, especially in the engineering literature.
With the above specifications, the isotropic linear elastic constitutive equations
(1.72) can be rewritten as follows

p = Kθ (1.73)

s = 2Ge (1.74)

where s and e are the deviatoric stress and strain, respectively. The quantities
p = 1/3tr(σ) and θ = tr(εεε) are associated to the volumetric part of the
stress and of the strain and are respectively called pressure and volumetric
deformation.

It is worth trying to see if it is possible to find another choice of coeffi-
cients that define the linear isotropic elastic behavior of a material. We may
try to find another set of parameters that play the same role as the Lamé
moduli coefficients, from studying the mechanical behavior of an isotropic lin-
ear elastic rod subjected to uniaxial stress. Suppose that the rod lies aligned
with the x1 axis and that it is subjected to a uniform stress σ11 �= 0, being
the remaining stress components zero. Limiting our investigation to the ra-
tios σ11/ε11 and ε33/ε11, or equivalently, ε22/ε11 we may define the following
material parameters

Young’s modulus E =
σ11

ε11

Poisson’s ratio ν = −ε22

ε11

which measure, respectively, the slope of the stress-strain curve pertaining
to the material which the rod is made of and the lateral contraction of the
rod. Physical and experimental considerations suggest that the preceding are
positive quantities. In what follows it will be seen how further restrictions,
induced by thermodynamic considerations, hold on the quantities E and ν.
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Using relation (1.70) and recalling the form of the stress and of the strain
tensors in pure tension

[σ] =




σ11 0 0
0 0 0
0 0 0



 [εεε] =




ε11 0 0
0 ε22 0
0 0 ε33





it is possible to correlate the pairs {λ, µ} and {E, ν}. Omitting the complete
calculation, one obtains

E =
µ (3λ + 2µ)

(µ + λ)
(1.75)

µ =
λ

2 (µ + λ)
(1.76)

With the above relation, it is possible to invert relationship (1.71) and obtain
a useful expression of strain in terms of stress involving E and µ

εεε = E−1 [(1 + ν) σ − νtr (σ) I] (1.77)

The above linear relationship between strain and stress, valid for isotropic
media, is commonly referred to as Hooke’s law. Applying the definitions of
pointwise stability and of strong ellipticity to the fourth-order elastic tensor
(see (1.67) and (1.68)), a set of bounds on the material parameters can be
derived for the material parameter Young’s modulus E [60]. These conditions
allow to state that a linear elastic isotropic material is

• pointwise stable if and only if µ > 0 and 3λ + 2µ > 0 or, equivalently, if

and only if E > 0 and −1 < ν <
1

2

• strongly elliptic if and only if µ > 0 and λ + 2µ > 0 or, equivalently, if

and only if E > 0 and ν <
1

2
or ν > 1

1.6 Thermodynamic setting for elasticity

A common procedure in Mechanics of solids is to introduce a constitutive
model as a set of relations that hold from a thermodynamic standpoint [4, 57,
41]. Precisely, the most favorable context is within a thermodynamic theory
with internal variables. In this section, we present the linear elastic material
behavior in this fashion. The treatment of the elastoplastic case is carried out
in Chapter 2.
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Suppose that a material body is subjected to a body force b in its interior
and to a surface traction t upon its boundary. Analogously, the body will
be acted by thermal equivalents of the previous mechanical sources: a heat
source r per unit volume in the interior and a heat flux q across its boundary
unit area. The first law of Thermodynamics, which essentially is a balance of
energy statement, indicates that for any part Ω′ of the body Ω, the rate of
change of total energy plus kinetic energy equals the amount of work done on
that part by the mechanical forces plus the heat supply. Mathematically, the
law can be formulated in the form

d

dt

∫

Ω′

(e +
1

2
ρ ‖ u̇ ‖2)dv =

∫

Ω′

b · u̇dv +

∫

∂Ω′

tn · u̇da +

∫

Ω′

rdv −
∫

∂Ω′

q · ṅda

(1.78)

where e is the internal energy density, u̇ is the velocity field, while ∂Ω′ rep-
resents the boundary of Ω′. The minus sign before the last integral in (1.78)
appears, since the heat flux vector q points outward the surface Ω′ as well as n.
The preceding formulation can be simplified applying the divergence theorem
to the term involving the surface traction which, invoking the symmetry of σ,
becomes (cf. (1.52)3)

∫

∂Ω′

tn · u̇da =

∫

∂Ω′

σn · u̇da =

∫

Ω′

σ : ∇u̇dv +

∫

Ω′

divσ · u̇dv

=

∫

Ω′

σ : ε̇εεdv +

∫

Ω′

divσ · u̇dv

Substituting the last result in (1.78) and recalling the equation of balance of
linear momentum (1.58), the first law can be rewritten as

d

dt

∫

Ω′

edv =

∫

Ω′

σ : ε̇εεdv +

∫

Ω′

rdv −
∫

∂Ω′

q · nda (1.79)

where it is implicitly assumed that ε̇εε = εεε(u̇). The local form of the above
balance law follows from the requirement that all the involved field variables
are sufficiently regular. This hypothesis allows to convert the surface integral
on ∂Ω′ appearing in (1.79) using the divergence theorem. Thus we are lead to

∫

Ω′

(ė − σ : ε̇εε − r + divq)dv = 0

which, for the arbitrariness of the portion Ω′, gives

ė = σ : ε̇εε + r − divq (1.80)
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It is useful to introduce also the notions of entropy η per unit volume or
entropy density. This notion is given through the absolute temperature θ > 0.
Accordingly, it is assumed that the entropy flux across the bounding surface
∂Ω′ into a material body Ω′ is given by

∫

∂Ω′

θ−1q · nda

while the entropy supplied by the exterior is
∫

Ω′

θ−1rdv

The second law of Thermodynamics states that the rate of increase in entropy
in the body is not less than the total entropy supplied to the body by the heat
sources. The second law can thus be formalized as an integral inequality of
the form

d

dt

∫

Ω′

ηdv ≥
∫

Ω′

θ−1rdv −
∫

∂Ω′

θ−1qnda (1.81)

The local form of the second law can be derived with some calculations of the
same type of those carried out in finding the local form of the first law (1.80).
Thus we have

η̇ ≥ −div(θ−1q) + θ−1r (1.82)

The inequalities (1.81) and (1.82) are known as the Clausius-Duhem form of
the second law of Thermodynamics.

Introducing the Helmoltz free energy ψ, defined by

ψ = e − ηθ (1.83)

and recalling the local form of the first law (1.80), we may rewrite (1.82) as

ψ̇ + ηθ̇ − σ : ε̇εε + θ−1q · ∇θ ≤ 0 (1.84)

Relation (1.84) is known as the local dissipation inequality.
Since the arguments of the subsequent sections will always refer to isother-

mal processes, it is convenient to specialize the previous fundamental laws to
such a case. Assume that the body temperature is uniformly constant and
that the reference material body does not experience any exterior heat supply.
Under these hypotheses, the local form of the dissipation inequality simplifies
to

ψ̇ − σ : ε̇εε ≤ 0 (1.85)
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Linear elastic material

It is possible to give a characterization of the linear elastic material behav-
ior in the thermodynamic framework developed hitherto. In this sense, it is
customary to define a linear elastic material as one for which the constitutive
equations take the form

ψ = ψ(εεε) (1.86)

σ = σ(εεε) (1.87)

that is with the free energy and the stress field depending only on the strain.
Dependence on time is also dropped. It is assumed that the functions ap-
pearing in (1.86) and in (1.87) are sufficiently regular with respect to their
argument so that they can be differentiated as many times as required.

Substituting (1.86) into the local dissipation inequality, it is immediate to
derive

(
∂ψ

∂εεε
− σ

)

: ε̇εε ≤ 0 (1.88)

Hence, admitting that inequality (1.88) holds for all ε̇εε, the stress is expressed
through the Helmoltz free energy ψ as

σ =
∂ψ

∂εεε
(1.89)

The stress-strain relationship (1.65), which is the characterizing feature of
linear elastic materials, is obtained as a special case of Equation (1.89), when
the free energy is a quadratic form of the strain, i.e.

ψ(εεε) =
1

2
εεε : Cεεε (1.90)

According to the previous definition, ψ represents an elastic potential for the
state variable σ. In component form we may write

ψ(εεε) =
1

2
Cijklεijεkl (1.91)

The above equation implies a relationship between the elastic tensor C and
the elastic potential ψ. of the following type

C =
∂2ψ

∂εεε∂εεε
(1.92)
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which holds if the elastic tensor possesses the major symmetries, already in-
troduced in Section 1.5 for discussing the symmetry properties of the isotropic
elastic tensor. Namely, it is required that

Cijkl = Cklij (1.93)

The above condition grants the existence of the strain energy function [57] and
must be fulfilled for relation (1.90) to be valid.

1.7 Initial boundary value problem of equilibrium

in linear elasticity

Following the previous arguments, it is possible to formulate the mathematical
problem that describes the deformation and the stress state of an isotropic
linear elastic material body under an assigned set of external actions. For
simplicity, the treatment is limited to isothermal static processes in which
the effects of temperature variations and of heat flux exchanges are neglected.
This problem is modeled by a set of partial differential equations posed on the
domain Ω plus a set of boundary conditions assigned on the boundary ∂Ω of
the body and a set of initial conditions.

Given a body with current configuration Ω ⊂ R3, we indicate for com-
pactness its boundary ∂Ω with Γ such that Γ = Γ̄D ∪ Γ̄S, with Γ̄D ∩ Γ̄S = ∅.
Suppose that, for t ∈ [0, T ], a body force b(x, t) is assigned in Ω, a displace-
ment field ū(x, t) is assigned on Γ̄D and a surface traction t̄(x, t) is assigned
on Γ̄S. Initial values for the displacement u(x, 0) = u0 and the velocity field
v(x, 0) = v0 are known data as well. With the above specifications, the for-
mulation of the initial boundary value problem for the isotropic linear elastic
body under consideration is: find the displacement field u(x, t) which, for any
x ∈ Ω and any t ∈ [0, T ], solves the

• equation of dynamic equilibrium

divσ + b = ρü (1.94)

• strain-displacement relation

εεε(u) =
1

2

[
∇u + (∇u)T

]
(1.95)

• constitutive relation

σ = Cεεε (1.96)
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and satisfies the

• boundary conditions

u = ū on ΓD and σn = t̄ on ΓS (1.97)

• initial conditions

u(x, 0) = u0(x) and u̇(x, 0) = u̇0(x) (1.98)

Equations (1.94)-(1.98) are known as governing equations of the linear elas-
tic initial boundary value problem. Taking the displacement u as the pri-
mary unknown, the problem can be reduced to one singular partial differential
equation, by solving successively for the stress and the strain. With these
manipulations, the equation of motion becomes

div (Cεεε(u)) + b = ρü (1.99)

while the second boundary condition in (1.97) is replaced by

(Cεεε(u))n = t̄ on ΓS (1.100)

When the problem data ū(x, t), b(x, t) and t̄(x, t) are such that the accelera-
tion term can be omitted in (1.99), the problem is defined as quasi-static [73].
Accordingly, the statement of this problem becomes: find a displacement field
u(x, t) that satisfies the equation of equilibrium

divσ + b = 0 (1.101)

and Equations (1.95)-(1.97).
A formulation of equilibrium in terms of the displacement field u only can

equally be obtained for the quasi-static initial boundary value problem, leading
to Equation (1.99) with the right hand side equal to zero.

1.8 Thermodynamics with internal variables

The continuum thermodynamic theory briefly presented in Section 1.6 is a suit-
able tool for the discussion of elasticity and Thermoelasticity, but the same
does not hold true when more “complicated” mechanic phenomena are taken
into consideration. For example, in order to model physical processes involv-
ing chemical reactions, it often results necessary to equip the thermodynamic
model with a finite number of internal variables that serve to account for the
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evolution and advancement of each single reaction. These variables, which are
intended to describe irreversible processes, may be regarded either as scalar
or tensorial entities. A similar situation arises if the thermodynamic frame-
work presented so far is extended to the mathematical modeling of mechani-
cal elastoplastic phenomena. In this section a short introduction is given on
the argument, in order to present an extension of the thermodynamic theory
adopted in Section 1.6. In this case the theory is referred to as Thermodynam-
ics with internal variables and may be conveniently adopted as a plasticity
theory. More information regarding this kind of approach and its mathemati-
cal foundations may be found in [28, 36, 37, 40].

The first and second laws of Thermodynamics as stated in the forms (1.80)
and (1.82) remain valid, as well as the thermodynamic hypotheses of isothermal
process with no heat flux nor change in temperature in the body.

We consider a material for which the Helmoltz free energy and the stress are
functions of the strain and of a particular set of strain-like internal variables,
collected in the generalized m-component vector ξ = (ξk), (1 ≤ k ≤ m).
These quantities may be regarded either as scalars or tensors, depending on the
particular elastoplastic model under consideration. The constitutive equations
are thus of the form

ψ = ψ(εεε, ξ) = ψ(εεε, ξ1, ..., ξm) (1.102)

σ = σ(εεε, ξ) = σ(εεε, ξ1, ..., ξm) (1.103)

Differing from elasticity, in which the loading history of the material is not rele-
vant, modeling inelastic phenomena implies introducing constitutive equations
in rate form, i.e. involving time derivatives of the internal variables. These
equations are intended to define the irreversible plastic effects in terms of the
internal variables. Therefore, the model represented by Equations (1.102)-
(1.103), is endowed with the following evolutive constitutive equations

ξ̇k = βk(εεε, ξ) = βk(εεε, ξ1, ..., ξm) (1.104)

In the next chapter, Equations (1.104) will be specialized for some significant
case models. Introducing (1.102) and (1.103) into (1.84) it is easy to derive

(
∂ψ

∂εεε
− σ

)
: ε̇εε +

∂ψ

∂ξk

: ξ̇k ≤ 0 (1.105)

which, recalling the arbitrariness of the strain rate ε̇εε, gives

σ =
∂ψ

∂εεε
(1.106)
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In correspondence to the internal variables ξk (1 ≤ k ≤ m), the thermody-
namic forces or thermodynamic affinities χk (1 ≤ k ≤ m) are defined by

χk = − ∂ψ

∂ξk

1 ≤ k ≤ m (1.107)

and are said to be the conjugate to the internal variables ξk. The thermody-
namic forces are collected in the generalized m-component vector χ = (χk),
(1 ≤ k ≤ m) and may be regarded either as scalars or tensors, depending on
the particular elastoplastic model under consideration. Obviously, the kth in-
ternal variable ξk and the kth thermodynamic force χk have the same algebraic
dimension.

For later use we define the scalar product between the generalized internal
variable and thermodynamic force vectors

χ · ξ = χk : ξk 1 ≤ k ≤ m (1.108)

In agreement with relations (1.105) and (1.106), it is found that

χ · ξ̇ = χk : ξ̇k ≥ 0 (1.109)

The l.h.s. quantity in the above inequality is a scalar product between force-
like variables and strain rate-like variables, which can be interpreted as a rate
of work dissipated in the time unit, acted by the thermodynamic forces and
due to the time variation of those agencies modeled by the internal variables.
In the following chapter, it is shown that inequality (1.109) plays a key role in
the mathematical formulation of elastoplasticity.



42 1. CONTINUUM MECHANICS AND ELASTICITY



Chapter 2

Elastoplasticity

Introduzione

Questo capitolo presenta i lineamenti essenziali del comportamento meccanico
del materiale di tipo elastoplastico e della teoria matematica che modella tale
comportamento. Il capitolo risulta suddiviso in tre distinte sezioni.

La Sezione 2.2 è dedicata al noto modello elastoplastico unidimension-
ale. La discussione è intesa, in questo contesto, ad affrontare i caratteri tipici
del comportamento elastoplastico nel semplice caso di una provetta di ma-
teriale elastoplastico soggetta a prova di trazione monoassiale. Viene anche
presentata, per il semplice caso monoassiale, la modellazione secondo la teoria
termodinamica a variabili interne introdotta nel Capitolo 1.

Lo studio di un modello elastoplastico unidimensionale è presentato onde il-
lustrare alcune caratteristiche fondamentali del comportamento elastoplastico
riscontrabili nel caso tridimensionale, mantenendo pur sempre una semplice
trattazione.

La Sezione 2.3 concerne il modello elastoplastico tridimensionale, che viene
sviluppato mediante generalizzazione dei concetti introdotti nella sezione prece-
dente. In particolare, vengono presentate le equazioni del modello elastopla-
stico tipo J2, o di von-Mises, ad incrudimento lineare isotropo e cinematico e
ad incrudimento non lineare cinematico.

La Sezione 2.5 può considerarsi come un capitolo a sè stante. È, infatti,
dedicata alla riformulazione delle leggi costitutive della plasticità mediante gli
strumenti matematici essenziali della Analisi convessa. I risultati e gli sviluppi
analitici presentati in questa sezione costituiscono il punto fondamentale per la
analisi del problema a valori iniziali e dati al bordo dell’equilibrio elastoplastico
affrontata nel successivo Capitolo 3. I concetti matematici sviluppati nella
Sezione 2.5 sono affiancati dai richiami di Analisi funzionale e di Teoria degli

43
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spazi di funzioni fatti nella Appendice A.

La trattazione sulla teoria della elastoplasticità presentata in questo capi-
tolo segue, tra gli altri, anche alcuni testi classici sull’argomento quali [41,
69, 70]. La dissertazione sulla riformulazione analitico-convessa è presentata
traendo spunto da [41].

2.1 Introduction

This chapter is intended to present some fundamental concepts on the classical
elastoplastic material behavior and on the mathematical modeling of such
phenomenon. The chapter is divided in three main sections.

In Section 2.2 we address a well known one-dimensional elastoplastic model.
The discussion in this context is intended to offer the basic features of the
elastoplastic material response in the simple case of a uniaxial test. Also the
first elements of the mathematical modeling of an elastoplastic phenomenon
in terms of the thermodynamic theory with internal variables addressed in
Chapter 1 are presented. The study of a uniaxial model is accomplished in
order to illustrate peculiarities of the model at hand that are mirrored in the
three-dimensional case yet maintaining the treatment as simple as possible. In
Section 2.3 we address the three-dimensional elastoplastic model. The model
is developed as a generalization of the concepts enlightened in the previous sec-
tion. In particular, the J2, or von-Mises, elastoplastic constitutive model with
linear isotropic and kinematic and nonlinear kinematic hardening mechanisms
is addressed in detail.

Section 2.5 represents a chapter of its own at some extents. It is in fact
dedicated to the recasting of the mathematical theory of elastoplasticity an-
alyzed so far within a convex-analytic context. The fundamental derivations
presented in this section result the key point for the analysis of the initial
boundary value problem of elatoplastic equilibrium that is the object of the
next Chapter 3. The mathematical concepts used in this section are sup-
ported by the definitions and the fundamental results on functional analysis
and function spaces which are reported in Appendix A at the end of the work.

The treatment of classical elastoplasticity exposed in this chapter follows
[41, 69, 70]. The convex-analytic framework for the elastoplastic constitutive
relations is derived by [41].
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Figure 2.1: (a) Uniaxial tension of an elastoplastic rod; (b) Stress-strain
curve with hardening; (c) Stress-strain curve with hardening and softening;
(d) Stress-strain curve with hardening and stiffening; (e) Stress-strain curve
for a typical mild steel; (f) Stress-strain curve for an elasto-perfectly-plastic
material

2.2 A one-dimensional elastoplastic model

Basic features of a one-dimensional model

We begin with the study of a simple one-dimensional model which enlightens
the basic features of the elastoplastic behavior. This makes it easier to discuss
the three-dimensional case as a generalization of the concepts addressed in the
one-dimensional context.

Let us consider for example the uniaxial stress state of the thin bar illus-
trated in Figure 2.1(a) subjected to uniform distributions of forces per unit
area σ ≡ σ11 applied at its ends. We suppose to report the graph of stress σ
versus strain ε ≡ ε11 in order to record the history of behavior during a loading
in which, for instance, the applied force is gradually increased. The observer
may thus encounter different situations as represented in Figures 2.1(b)-(d).
All the cases illustrated in Figures 2.1(b)-(d)) have common peculiarities which
characterize the elastoplastic behavior. In fact, a relationship between stress
and strain of the form represented by the branch OA can be observed in Fig-
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ures 2.1(b)-(d), up to a stress value σy,0, corresponding to a strain level εy,0.
If the stress σ is reset to zero from any level σ ≤ σ0, the material recovers its
strain completely. This part of the curve is known as the linear elastic path in
that upon unloading the material returns to the unstressed and undeformed
state and the relationship between stress and strain is linear.

Then, as the stress increases, one observes a deviation from the linear
relation between stress and strain. This part of the curve represents the plastic
or, more generally, the inelastic behavior of the material. A common feature
along the path past the deviation is a decrease in the slope of the stress-
strain curve as represented in Figure 2.1(b). Such a circumstance is known as
hardening behavior. As the experiment proceeds, a variety of phenomena may
be encountered. In Figure 2.1(c), for instance, one finds that, after a strain
value ε̄ is reached, the curve slope progressively diminishes up to a negative
value and the plastic behavior is referred to as a softening one. This particular
behavior is typically viewable in materials such as soil and concrete, which as
it is well known are elastoplastic materials. In Figure 2.1(d), past a first path
showing hardening, the slope of the stress-strain curve progressively increases.
This behavior is known as stiffening and is typical of some metallic materials.
The threshold between elastic and inelastic behavior is characterized by the
stress level σy,0, known as initial yield uniaxial stress.

In practice, a material can show a stress-strain curve which encompasses
more than one of the single effects analyzed above. For instance, consider the
stress-strain curve of a typical mild steel, given in Figure 2.1(e). It is evident
that such a material presents a complex series of elastoplastic features. In the
range OA it shows linear elastic behavior which upon loading is followed by a
sudden drop of the stress along AB, with no significant increase of elongation.
After that, the stress-strain curve BC presents an almost zero slope which
afterwards increases following CD and finally decreases along DE. In Figure
2.1(f) a simple idealization of the real behavior just illustrated is represented:
the stress-strain curve in this case is usually referred as the one of an elasto-
perfectly-plastic material in that it is the sequence of a pure linear elastic part
followed by a purely plastic branch with no hardening.

A proper feature possessed by elastoplastic materials can be appreciated
in Figure 2.2(a) which shows that the response in compression does not nec-
essarily mirror the one observed in tension. In fact, the initial compressive
uniaxial stress σ′

y,0 may differ in magnitude from the tensile value σy,0 as well
as the post-elastic part of the stress-strain curve (σ < σ′

y,0) may not equal the
curve pattern for σ > σy,0.

Another distinctive character of plastic materials is shown in Figure 2.2(b)
and is irreversibility or path-dependence. By this it is meant that, unlike the
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elastic materials, the original zero stress-strain state is not recovered upon re-
moval of applied forces, once the yield threshold has been passed. As can be
inspected in Figure 2.2(b), if the direction of loading is inverted at σy,1 > σy,0

(point B), the path followed is not the original curve BAO (this case would ac-
tually imply simple nonlinear elastic behavior). Instead, the material behaves
elastically, but on the stress path represented by the straight line BC, parallel
to OA. This phase is referred to as elastic unloading ; its peculiarity relies in
the fact that after the loading has been completely removed the material shows
a residual strain which is not elastically recovered (point B′). A new elastic
behavior path is seen if the stress is further decreased down to the yield stress
value σ′

y,1, which in general differs from the uniaxial compressive initial yield
stress σ′

y,0. Finally, the curve follows the branch CD if the stress were to be
decreased more.

Thus we may recognize an initial elastic range, i.e. the interval E0 =
(σ′

y,0, σy,0), bounded by the initial yield surface given by the set B0 = {σ′
y,0, σy,0}.

The initial elastic range E0 includes the unstressed, undeformed state (the ori-
gin). As a consequence of plastic flow, subsequent expanded and shifted elastic
ranges, such as the interval E1 = (σ′

y,1, σy,1), bounded by the yield surface
B1 = {σ′

y,1, σy,1}, can be observed. These new configurations of the elastic
range are reached only as a result of plastic deformation having taken place,
i.e. as a consequence of irreversible phenomena.

It is the above feature of irreversibility that sets elastoplastic materials
apart from elastic ones, since it implies that no longer a one-to-one relation-
ship exists between stress and strain. In order to compute the state of stress
corresponding to a given strain level it is necessary to know the loading history
prior to the actual state, as shown by Figure 2.2(b).

A further feature that is peculiar of the elastoplastic behavior is rate-
dependence. Repeating the uniaxial test shown previously with different load-
ing application rates, it is found that the elastic response is unchanged, while
the plastic response (σ > σy,0) actually differs in a manner such as the one
shown in Figure 2.3(a). Nevertheless, the elastoplastic theory that is develo-
ped in the following section in general omits to consider this effect. Thereby, in
this work, attention is restricted to materials for which rate-dependence is not
a significant phenomenon, or materials for which the loading histories occur at
sufficiently low rates that rate-dependent effects can be neglected. The above
considerations clearly indicate material nonlinearity as a fundamental quality
of plastic behavior.

The irreversible phenomenon of plastic deformation analyzed at the micro-
scopic scale enlightens two typical ways of material deformation, characteriz-
ing, respectively, a recoverable elastic part and an irreversible plastic part of
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Figure 2.2: (a) Nonsymmetric uniaxial behavior in tension and compression;
(b) Path dependence of the plastic behavior

Figure 2.3: (a) Loading rate dependence of plastic behavior; (b) Additive strain
decomposition into elastic and plastic parts for an elastoplastic material with
nonlinear hardening; (c) Additive strain decomposition into elastic and plastic
parts for an elastoplastic material with linear hardening



2.2. A ONE-DIMENSIONAL ELASTOPLASTIC MODEL 49

the total deformative effects [41]. Following this concept and the evidence of
residual plastic strain (see Figures 2.3(b)-(c)), the material inelastic behavior
is generally represented with an additive strain decomposition [14] of the form

ε = εe + εp

where

• εe is the so-called elastic strain, defined as the part of the strain related
to the stress through an elastic relation or as the part of the strain which
is function only of the stress, i.e. εe = εe(σ)

• εp is the so-called plastic strain, defined as the difference between the
total strain and the elastic strain, i.e. εp = ε − εe

The elastic strain εe is still given by the Hooke’s law

σ = Eεe = E(ε − εp) (2.1)

where E is the Young’s modulus. The plastic strain εp is instead to be deter-
mined with account of the stress history. The elastoplastic problem can thus
be formulated in the following way: given the stress state and the history of
the material point, express the plastic strain rate as a function of stress and
of the loading history. This approach induces a consistent representation of
the elastoplastic behavior with the stress-strain curve of Figure 2.3(c) which
shows the additive decomposition of the strain, the shifting of the elastic range
in terms of stress (i.e. the hardening mechanism) and the path dependence of
the plastic strain. In the following we present a simple uniaxial model able to
describe this kind of elastoplastic behavior.

Constitutive law for the one-dimensional model

We initially refer to an elasto-perfectly-plastic material for which the ini-
tial tensile and compressive uniaxial yield stresses coincide in magnitude, i.e.
σ′

y,0 = −σy,0 (see Figure 2.4). Then it is assumed that ε, εp and σ are functions
of time in the interval [0, T ] ⊂ R. In particular we let

εp : [0, T ] −→ R

An elastoplastic flow takes place only if ε̇p �= 0. To characterize this circum-
stance, for the model represented in Figure 2.4, it is possible to draw the
following considerations.
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y

y

Figure 2.4: Stress-strain curve for an elasto-perfectly-plastic material

First, the stress is constrained within the closed interval S = [−σy, σy]
which represents the union of the elastic region E plus the yield surface B
and can be regarded as the region of admissible stresses. This set is defined
through a scalar function φ = φ(σ) known as the yield function. We have

S = {σ ∈ R : φ(σ) = |σ| − σy ≤ 0}

In general, φ depends on the stress and on the vector of thermodynamic forces
(cf. (1.107)) and can be further modified to account for hardening phenomena.
With the above definition at hand, we may distinguish between the following
cases

φ < 0 ⇐⇒ elastic range

φ = 0 ⇐⇒ elastoplastic threshold

Referring to the model illustrated in Figure 2.4, the plastic strain evolves
according to

ε̇p = 0 if






φ < 0

or

φ = 0 and φ̇ < 0

(2.2)
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and

ε̇p �= 0 if






φ = 0

and

φ̇ = 0

(2.3)

Case (2.2) implies an elastic response of the material, according to which we
have

σ̇ = Eε̇

while the plastic strain rate is zero. Because, by assumption, stress states σ
such that φ(σ) > 0 are not admissible and ε̇p = 0 for φ(σ) < 0, a change in
εp can take place only if φ(σ) = 0. When condition (2.3) is met the material
experiences plastic flow in the direction of the applied stress, with constant
rate. This equals to say that (see Figure 2.4)

ε̇p =






γ̇ ≥ 0 if σ = σy > 0

or

−γ̇ ≤ 0 if σ = −σy < 0

(2.4)

It is noted that the two cases shown by (2.4) can be recast into the following
single equation

ε̇p = γ̇ sign (σ) iff φ(σ) = |σ| − σy = 0 (2.5)

where the scalar γ̇, called the plastic multiplier, is always nonnegative. Whether
γ̇ ≥ 0 is actually positive or zero depends on further conditions involving the
applied strain rate ε̇ which are known as loading/unloading conditions.

It is possible, with the above positions, to show that the evaluation of
εp : [0, T ] → R can be completely described, for any admissible stress state
with the single evolutionary Equation (2.5) provided that γ̇ and σ are restricted
by certain unilateral constraints. First, it is noted that σ must be admissible,
i.e. σ ∈ S, and γ̇ must be nonnegative by assumption. Consequently

γ̇ ≥ 0

φ(σ) ≤ 0
(2.6)

Second, by assumption, γ̇ = 0 if φ(σ) < 0. On the other hand, ε̇p �= 0 and,
therefore, γ̇ > 0 only if φ(σ) = 0. These observations imply the conditions

φ(σ) ≤ 0 ⇒ γ̇ = 0

γ̇ > 0 ⇒ φ(σ) = 0
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and the requirement that

γ̇φ(σ) = 0 (2.7)

The conditions (2.6)-(2.7) express the physical requirements for the model
under consideration that the stress must be admissible and that the plastic
flow, in the sense of nonzero plastic strain rate ε̇p �= 0 can take place only
when the stress lies on the yield surface B. These conditions (i.e. (2.6)-(2.7))
are classical in the convex mathematical programming literature [58] and go
by the name of Kuhn-Tucker conditions.

A further relation which enables to determine the actual value of γ̇ at
any given t ∈ [0, T ] is known as consistency or persistency condition. First,
an introductory observation is in order. Let {ε(t), εp(t)} be given at time
t ∈ [0, T ], so that σ(t) is also known by the elastic relationship (2.1), i.e.
σ(t) = E[ε(t) − εp(t)]. Assume that we prescribe the total strain rate ε̇(t) at
time t. Further, consider the case where σ(t) ∈ B ⇐⇒ φ̂(t) ≡ φ(σ(t)) = 0 at

time t. Then, it follows that
˙̂
φ(t) ≤ 0, since should

˙̂
φ(t) be positive it would

imply that φ̂(t + ∆t) > 0 for some ∆t > 0, which violates the admissibility

condition φ ≤ 0. Further, we specify that γ̇ > 0 only if
˙̂
φ(t) = 0 and set γ̇ = 0

if
˙̂
φ(t) < 0, that is, dropping the hat to simplify the notation, we set

γ̇ > 0 ⇒ φ̇ = 0

φ̇ < 0 ⇒ γ̇ = 0

We are left with the following condition

γ̇φ̇(σ) = 0 (2.8)

which is known as consistency condition in that it corresponds to the physical
requirement that for ε̇p to be nonzero (i.e. γ̇ > 0) the stress point σ ∈ B must
“persist” on B, so that φ̇(σ(t)) = 0.

For the constitutive model under examination, once the condition (2.8)
holds, the expression of γ̇ takes a particular simple form. Applying the chain
rule and considering (2.1) and (2.5), we have

φ̇ =
∂φ

∂σ
E(ε̇ − ε̇p) =

∂φ

∂σ
E ε̇ − γ̇

∂φ

∂σ
E sign (σ) (2.9)

It is noted that

∂|σ|
∂σ

= sign (σ) ⇒ ∂φ

∂σ
= sign (σ) (2.10)
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and that, being [sign (σ)]2 = 1, (2.9) and (2.10) imply

φ̇ = 0 ⇒ γ̇ = ε̇ sign (σ) (2.11)

Substitution of (2.11) into (2.5) yields the result

ε̇p = ε̇ for φ(σ) = φ̇(σ) = 0 (2.12)

which essentially affirms that the plastic strain rate equals the applied strain
leading to a rate form of the constitutive equation (cf. (1.63)) of the type

σ̇ =

{
Eε̇ if γ̇ = 0

0 if γ̇ > 0
(2.13)

which allows to define the continuous elastoplastic tangent modulus as the
constant scalar E.

The flow rule given by (2.5) is related to the yield condition expressed by
the function φ = |σ| − σy through the potential relationship

ε̇p = γ̇
∂φ

∂σ
(2.14)

since the second of (2.10). In the three-dimensional theory, for the case in
which (2.14) holds, one speaks of an associative flow rule and of associative
elastoplastic model.

As a next step in our presentation of the one-dimensional mathematical
theory of elastoplasticity, we examine an enhancement of the model discussed
so far which illustrates an effect experimentally observed in many metals, called
strain hardening. For the perfectly plastic model, the plastic flow takes place
at a constant value of the applied stress σ, such that |σ| = σy, leading to the
stress-strain response shown in Figure 2.4. A strain-hardening model, on the
other hand, leads to a stress-strain curve of the type idealized in Figure 2.5(a)
or Figure 2.5(b). The essential difference between the two models lies in the
fact that for perfectly plastic materials the closure of the elastic range, i.e. the
yield surface B, remains unchanged, whereas for the strain hardening model B
expands with the amount of plastic flow in the system. A mathematical model
that capture this effect is considered here.

Our basic assumptions on the additive strain decomposition and on a
Hooke-type elastic relation are still valid. To illustrate the mathematical struc-
ture of strain-hardening we consider the simplest situation illustrated in Figure
2.5(a), which shows an expansion of the elastic range that obeys two condi-
tions:
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(a) The hardening is isotropic in the sense that at any state of loading, the
center of E remains at the origin.

(b) The hardening is linear in the amount of plastic flow (i.e. linear in |ε̇p|)
and independent of sign (ε̇p).

The first condition leads to a new yield function of the form

φ(σ, χ) = |σ| − σy(χ) = |σ| − (σy,0 + Hisoē
p) (2.15)

where the thermodynamic force χ = −Hisoē
p. The constant Hiso depends on

the material and is called the isotropic hardening modulus. The variable ēp is
a nonnegative function of the amount of the plastic flow called accumulated
plastic strain and is defined according to ˙̄ep = |ε̇p|. The variable ēp plays the
role of a strain-type internal hardening variable. The flow rule in terms of
plastic strain, the Kuhn-Tucker complementarity conditions and the consis-
tency conditions expressed respectively in the forms (2.11), (2.6)-(2.8) remain
unchanged. With some developments analogous to the ones carried out for the
perfectly plastic constitutive model, it is possible to express the plastic rate
parameter γ̇ in terms of the total strain rate. Thus we have

φ = φ̇ = 0 ⇒ γ̇ =
sign (σ)Eε̇

E + Hiso
(2.16)

while the rate form of the constitutive relation becomes

σ̇ =






Eε̇ if γ̇ = 0

EHiso

E + Hiso
ε̇ if γ̇ > 0

(2.17)

In this case the continuous elastoplastic tangent modulus consists of the scalar
EHiso

E + Hiso
.

A further refinement of the hardening mechanism is concerned with kine-
matic hardening. This effect which is of particular interest for metals can be
used alone or in conjunction with isotropic hardening and provides an im-
proved means of representing the behavior of metals under cyclic loading.
The basic phenomenological law is credited to Prager [66] with subsequent
improvements of Ziegler [78]. Within the present one-dimensional context the
model can be illustrated as follows. In many metals subjected to cyclic load-
ing, it is experimented a shifting of the yield surface in the direction of the
plastic flow. Figure 2.5(b) reproduces an idealization of this hardening be-
havior closely related to a phenomenon known as the Bauschinger effect [57].
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A simple phenomenological model that captures the aforementioned effect is
constructed by introducing an additional internal variable which is indeed the
plastic strain to which it corresponds a thermodynamic force α referred to as
the backstress. The backstress defines the actual location of the center of the
yield surface and enters the form of the yield function as a shifting stress term,
i.e.

φ = φ(σ, α) = |σ − α| − σy (2.18)

According to Ziegler, the evolution of α is defined by

α̇ = Hkinε̇p (2.19)

where Hkin is called the kinematic hardening modulus and is a constant de-
pending on the material. Usually the variable Σ = σ − α is introduced and
called relative stress. In this way the yield function takes the form

φ(Σ) = |Σ| − σy (2.20)

which will be recalled in the following section in the three-dimensional context.
The addition of the Kuhn-Tucker conditions of the form (2.11) along with a
consistency condition analogous to (2.6)-(2.8) completes the formulation of the
model with linear kinematic hardening under consideration. In the present
case it is found that

φ = φ̇ = 0 ⇒ γ̇ =
sign (Σ)Eε̇

E + Hkin
(2.21)

which implies the following rate constitutive equation

σ̇ =






Eε̇ if γ̇ = 0

EHkin

E + Hkin
ε̇ if γ̇ > 0

(2.22)

admitting
EHkin

E + Hkin
as the continuous elastoplastic tangent modulus.

In the case where both linear isotropic and kinematic hardening mecha-
nisms are considered, we obtain a yield function of the form

φ(Σ, χ) = |Σ| − (σy,0 + Hisoē
p) (2.23)

with a combined relations for the plastic multiplier given by:

φ = φ̇ = 0 ⇒ γ̇ =
sign (Σ)Eε̇

E + Hiso + Hkin
(2.24)
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Figure 2.5: (a) Stress-strain curve for linear isotropic hardening; (b) Stress-
strain curve for linear kinematic hardening

The rate form of the constitutive equation reads

σ̇ =






Eε̇ if γ̇ = 0

E(Hiso + Hkin)

E + Hiso + Hkin
ε̇ if γ̇ > 0

(2.25)

and the continuous elastoplastic tangent modulus becomes
E(Hiso + Hkin)

E + Hiso + Hkin
.

2.3 Three-dimensional elastoplastic behavior

2.3.1 Thermodynamic foundations of elastoplasticity

The stage is ready for presenting the theory of elastoplasticity in the three-
dimensional case. This is achieved by setting up a generalization of the basic
features of the one-dimensional elastoplastic behavior discussed in the previous
section. There are more complex features, not appearing in the uniaxial situa-
tion, that are appropriately incorporated in this part of the development. Since
we are “constructing” the constitutive model, in what follows we present each
specific feature as an independent ingredient. The aim is to cast the elasto-
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plasticity theory within the Thermodynamics with internal variables setting
initially presented for elastic materials in Section 1.8.

Isothermal behavior

In the theory in argument it is assumed that all transformations are isothermal,
i.e. such that thermal effects as temperature variation or flux of heat are
negligible.

Rate-independence

The theory of plasticity developed in the following sections refers to a quasi-
static transformation (see Section 1.7) of a material body. In other words, the
material body transformation considered takes place sufficiently slow so that
the inertial term appearing in Equation (1.94) is negligible. Moreover, our
discussion is here limited to the case of a body undergoing a sufficiently slow
process such that the rate independent material response can be taken as a
good approximation of the real behavior.

Primary variables

In order to apply the internal variables thermodynamic theory (see Section 1.8)
to the context of elastoplasticity herein studied, it is appropriate to identify
the variables used to describe the constitutive behavior of the material. A
distinction following from the theoretical framework is also made between
primary variables and internal variables which, in turn, may have a kinematic
nature or a force-like nature.

The primary or fundamental kinematic variable is the strain εεε, which, as
already pointed out in Section 2.2, can be decomposed into two parts: the
elastic strain εεεe, due to the elastic behavior of the material and the plastic
strain εεεp, which represents the inelastic or irreversible part of the deformation
process. Along with these variables, the theory accounts for a set of inter-
nal variables ξ = (ξk) (1 ≤ k ≤ m) which are intended to describe internal
kinematic irreversible phenomena such as, for instance, material hardening.
It is to be remarked that the vector of strain-like internal variable can be in
general constituted of objects of different nature, namely second-order tensors
and scalars. For example, in the case in which the model presents three in-
ternal variables which are, in order, two scalars and a second-order tensor,
the generalized vector of the internal variable is defined as ξ = (ξ1, ξ2, ξ3). In
general we may define the space of the generalized vectors ξ as

Ξ = {ξ = (ξk) : ξk ∈ Linsym, 1 ≤ k ≤ m}
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In compact notation and generalizing the above definition, one may refer to
the kinematic variables representing irreversible internal phenomena with the
ordered pair P = (εεεp, ξ) called generalized plastic strain.

The choice of not grouping the plastic strain within the internal variables
class turns out to be a consequence of the thermodynamic theory adopted,
even if there are instances in which the specific model is so simple that εεεp can
be identified as an internal variable. This is for instance the case of pure linear
kinematic hardening behavior (see Section 2.3.2).

Following thermodynamic arguments, the stress-like primary and internal
variables are the thermodynamically conjugates of the kinematic variables.
Then, we assume as stress-like primary and internal variables, respectively,
the stress σ and the internal forces χ = (χk) (1 ≤ k ≤ m). According to the
above reasonings developed for the variables ξ, the forces χ are defined in the
space

Υ = {χ = (χk) : χk ∈ Linsym, 1 ≤ k ≤ m}

Hence, the ordered pair S = (σ,χ) is collectively referred to as generalized
stress. In this fashion, it is found that the scalar product S · Ṗ, defined as:

S · Ṗ = σ : ε̇εεp + χ · ξ̇ = σ : ε̇εεp + χk : ξ̇k (2.26)

represents either a rate of work done or the dissipation taking place as a result
of plastic deformation. In this sense we consider S and P thermodynamically
conjugate variables of the model under consideration.

Thermodynamic assumptions

As explained in Section 1.8, we assume in our developments that the free
energy and the stress are functions of the strain and of the strain-like internal
variables, which are thus regarded, in the following, as driving variables

ψ = ψ(εεε, ξ) (2.27)

σ = σ(εεε, ξ) (2.28)

Moreover, in what follows, it is deduced that the free energy can be equivalently
written in terms of the elastic strain and of the internal variables.

In order to account for nonlinear irreversible effects, the model takes into
account an evolution law of the strain-like internal variables in terms of the
dependent variables

ξ̇ = β(εεε, ξ) (2.29)
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Recalling again the derivations of Section 1.8 it is found that, as a consequence
of the second law of Thermodynamics, the stress is related to the free energy
function as

σ =
∂ψ

∂εεε
(2.30)

Furthermore, the internal forces χ = (χk) are defined as conjugate quantities
to the internal variables in the following sense

χk = − ∂ψ

∂ξk

, 1 ≤ k ≤ m (2.31)

or, by recognizing that these variables enter the expressions χk : ξ̇k, appearing
in the second law of Thermodynamics (1.105), as internal dissipation contri-
butions. The variation

χ : ξ̇ = χk : ξ̇k 1 ≤ k ≤ m (2.32)

which is defined as internal dissipation results nonnegative (cf. (1.109)).

Additive decomposition of strain

It is possible to show that the strain decomposition into elastic and plastic
parts can be viewed as a consequence of the thermodynamic framework herein
adopted. The approach followed is similar to the one presented in [56]. We
start by introducing the Gibbs free energy function

h(σ, ξ) = σ : εεε − ψ (2.33)

defined through a Legendre transformation of the Helmoltz free energy, assum-
ing the stress as the independent variable. The relation conjugate to (2.30)
is

εεε =
∂h

∂σ
(2.34)

Defining the fourth-order tensors

A =
∂εεε

∂σ
; Bk =

∂εεε

∂ξk

, 1 ≤ k ≤ m (2.35)

the strain rate is given by

ε̇εε = Aσ̇ + Bkξ̇k 1 ≤ k ≤ m (2.36)
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It is known that for crystalline materials the elastic compliance matrix A is
independent of irreversible processes and hence its dependence on the variables
ξ can be neglected [57]. Assuming A = A(σ), it follows that Bk = Bk(ξ),
1 ≤ k ≤ m, since

0 =
∂

∂ξk

∂εεε

∂σ
=

∂

∂σ

∂εεε

∂ξk

=
∂Bk

∂σ
1 ≤ k ≤ m

It is then possible to decompose additively the strain tensor in the form

εεε = εεεe(σ) + εεεp(ξ) (2.37)

in which the elastic strain εεεe depends only on the stress and the plastic strain
εεεp is a function of the internal variables only. Integrating in time Equation
(2.36), we obtain the above strain quantities as

εεεe(σ)(t) =

∫ t

0
A(σ(s))σ̇(s)ds ≡

∫ σ(t)

0
A(σ)dσ

and

εεεp(ξk)(t) =

∫ t

0
Bk(ξk(s))ξ̇k(s)ds ≡

∫ ξk(t)

0
Bk(ξ)dξk

In the case where A is independent of σ, the elastic strain is given as a linear
function of the stress by

εεεe = Aσ or σ = Cεεεe (2.38)

and it is clear from the inspection of relation (1.69) that the fourth-order
compliance tensor A is the inverse of the elastic tensor C.

Free energy as a function of elastic strain and internal variables

Since Equations (2.30) and (2.37) imply that

∂εεεe

∂σ
=

∂εεε

∂σ
=

∂εεεT

∂σ
=

∂(εεεe)T

∂σ

recalling a multivariable calculus theorem [41], we may assert the existence of
a scalar potential function he = he(σ) such that

εεεe =
∂he

∂σ
(2.39)
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The above potential function in turn admits the Legendre transform ψe defined
by

ψe = σ : εεεe − he (2.40)

which satisfies the following relation

σ =
∂ψe

∂εεεe
(2.41)

Since (cf. (2.40))

σ : εεεe = ψe(εεεe) + he(σ)

we have the following representation of the Gibbs free energy

h(σ, ξ) = σ : (εεεe + εεεp) − ψ(εεε, ξ) = he(σ) + σ : εεεp(ξ) − ψp(ξ) (2.42)

by which the inelastic part of the free energy ψp results defined as

ψp(ξ) = ψ(εεε, ξ) − ψe(εεεe)

It is noted that the function ψp depends only on the internal variables, since

εεε =
∂h

∂σ
=

∂he

∂σ
+ εεεp(ξ) − ∂ψp

∂σ

whence it results that ∂ψp/∂σ = 0. In conclusion, the Helmoltz energy func-
tion ψ and the Gibbs energy function h can be additively decomposed into
elastic and plastic parts, respectively, as

ψ(εεε, ξ) = ψe(εεεe) + ψp(ξ) ≡ ψ̂(εεεe, ξ) (2.43)

h(σ, ξ) = he(σ) + hp(ξ) (2.44)

where εεεe = εεε − εεεp.
Recalling the second law of Thermodynamics (1.85) and using definition

(2.43), we obtain (2.41) which leads to the reduced dissipation inequality in
the alternative form

σ : ε̇εεp + χk : ξ̇k ≥ 0 1 ≤ k ≤ m (2.45)

The above inequality, in view of (2.26), can be written in compact notation as

S · Ṗ ≥ 0 (2.46)
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Plastic incompressibility

The physical evidence shows that, for metallic materials, volume changes occur
almost exclusively as a consequence of elastic deformation [14]. Hence, it
is reasonable to assume that the plastic part of the deformation is only of
deviatoric or shearing type. Following the development of Section 1.3 and
recalling relation (1.35) we are lead to assume that the quantity

tr (εεεp) = εp
ii (2.47)

is zero which implies that the tensor εεεp coincides with its deviatoric part. In
the rest of the work we then refer to the plastic strain tensor as the traceless
deviatoric tensor ep.

Using the above arguments on the additive decomposition of strain into an
elastic and a plastic part and the assumption on plastic incompressibility, it
is possible to generalize the linear elastic relations (1.73)-(1.74) developed in
Section 1.5 for the isotropic elastic material response. We have, in fact

p = Kθ (2.48)

s = 2G(e − ep) = 2Gee (2.49)

where, ee is the elastic strain deviatoric part, that is

ee = e − ep

Elastic region and yield surface

Here we generalize to a three-dimensional context the basic concepts regarding
the elastoplastic behavior presented in Section 2.2 for the one-dimensional
case. In order to introduce the concepts of elastic region E and yield surface B
within the three-dimensional framework, it is worth recalling Equation (2.18)
which represents the form of the yield function for the uniaxial elastoplastic
constitutive model with linear kinematic and isotropic hardening. Such a limit
function was shown to represent a constraint on the evolution of the stress
and of the thermodynamic forces, i.e. a constraint on the generalized stress
evolution.

The above discussion can be extended to the three-dimensional case stating
that at all times, the generalized stress S must lie in the closed connected set
S, the admissible generalized stress region. The interior of this set is called the
elastic region and is denoted by E , while its boundary is denoted by B and is
known as the yield surface. The set Sc represents the complement of the set of
the admissible stresses domain and is not attainable by the generalized stress.
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Whenever S lies within the interior of S, purely elastic behavior takes place,
while plastic loading may be observed only if S evolves on the boundary of S.

A convenient way to represent the constrained evolution mechanism of the
generalized stress tensor is to assume the yield surface to be described by a
scalar function φ such that

E = {S : φ(S) < 0}
B = {S : φ(S) = 0}

With the above formalism we may collect a total of three possible cases in
regard to the evolution of the generalized stress S with respect to the region
of admissible generalized stresses. The first one, named purely elastic loading,
takes place when the evolution of S is such that S ∈ E ; the second case refers to
S moving from B to E and is referred to as elastic unloading. In both the above
cases the material response is elastic. The third case refers to an evolution
of the generalized stress according to which S ∈ B and goes by the name of
plastic loading. Clearly, the different kinds of movements described above and
characterizing the material point loading history can be subsequently coupled
leading to a sequence of loading and unloading phases, which are referred in
the sequel as elastoplastic or mixed phases.

With the above definitions, recalling the simple uniaxial case discussed in
Section 2.2 (cf. (2.2)-(2.3)), we can make the following assumptions about the
rate of change of generalized plastic strain

Ṗ = 0 if






φ(S) < 0

or

φ(S) = 0 and φ̇ < 0

Ṗ �= 0 if






φ(S) = 0

and

φ̇(S) = 0

(2.50)

The above positions implies that during plastic loading

φ = φ̇ = 0

which is a fundamental requirement known as the plastic consistency condi-
tion. Another interesting feature characterizing the three-dimensional plasti-
city theory here developed is achievable with the following reasoning. Let us
consider the yield surface projection onto the stress space, i.e. the function
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Figure 2.6: The yield surface φ(σ, χ) = 0 and its projection on the stress space

φ̄(σ) ≡ φ(σ,χ) for fixed χ. Assume, for instance, that φ(σ,χ) = 0 and that
the stress rate is such that

∂φ

∂σ
: σ̇ > 0 (2.51)

Since for plastic loading it is

φ̇ =
∂φ

∂σ
: σ̇ +

∂φ

∂χ
· χ̇ = 0 (2.52)

it is clear that both a time variation of the forces χ and of the projection of
the yield surface onto the stress space must occur. This change is interpreted
as the evolution of the yield surface in generalized stress space (see Figure 2.6
for a visualization of this argument in the case where χ ≡ χ is a single scalar
variable). On the other hand, if φ(σ,χ) = 0 and elastic unloading takes place,
then by the definition of elastic behavior there is no change in the internal
variables, nor in the forces conjugate to these variables. Consequently, from
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(2.50), it is found that

φ̇ =
∂φ

∂σ
: σ̇ < 0 (2.53)

meaning that the yield surface does not modify and that all χ̇k (1 ≤ k ≤ m)
are zero.

In Section 2.3.2, in relation to specific kinds of hardening mechanisms, we
present a geometric interpretation of the evolution of the surface φ̄ = 0 under
conditions of plastic loading. For completeness, it should be added that the
proper nature of a perfectly plastic material is that the yield surface depends
on the stress only. Hence, in this case, we have φ(σ) = φ̄(σ). When φ(σ) = 0,
plastic behavior takes place when

0 = φ̇ =
∂φ

∂σ
: σ̇ (2.54)

which implies that the stress evolves lying on the yield surface, while the yield
surface remains unchanged in the stress space. Such a behavior is known as
neutral loading to distinguish it by the situations in which, due to hardening,
the surface φ̄ = 0 changes during plastic deformation.

The above considerations readily apply to the one-dimensional example
discussed earlier. In fact, as can be seen in Figure 2.2(b), the initial elastic
region in the stress space is simply the interval (σ′

y,0, σy,0), but upon plastic
loading the elastic boundary expands to the new interval (σ′

y,1, σy,1).

We can thus admit the double interpretation of the yield surface as a fixed
region in the generalized stress space or equivalently as an evolving closed
convex set in the space of stress.

Principle of maximum plastic work

The last law that is needed to complete the theory has its origin in the work
of von-Mises, Taylor, Bishop and Hill [56] and can be justified from the phys-
ical point of view by appealing to the behavior of crystals undergoing plastic
deformations. In its original version it can be stated as follows: given a stress
state σ such that φ̄(σ) = 0 and a plastic rate ėp associated with σ, then

σ : ėp ≥ τ : ėp (2.55)

for all admissible stresses τ satisfying the yield constraint φ̄(τ ) ≤ 0. An
alternative form of the postulate of maximum plastic work follows by the
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definition of rate of plastic work W (ėp) = σ : ėp associated with a plastic
strain rate ėp and reads

W (ėp) = max{τ : ėp : φ̄(τ ) ≤ 0} (2.56)

The principle of maximum plastic work is a key point of the theory of
plasticity. Depending on the viewpoint adopted, it may be regarded as a
postulate, as stated by (2.56), or as a consequence of the classical stability
postulate by Drucker (for such a deduction, see for example [30, 57, 61]).

In the present context, the postulate of maximum plastic work is presented
in a more general fashion [41], which incorporates the dissipation function D
due to the internal variables, defined by

D = D(Ṗ) = S · Ṗ (2.57)

First, we assume that the zero generalized stress point S = 0 belongs to S
and second we extend the classical form of the postulate of maximum plastic
work by stating the following: given a generalized stress state S ∈ S and an
associated generalized strain rate Ṗ, the inequality

S · Ṗ ≥ T · Ṗ (2.58)

holds for all the admissible generalized stresses T ∈ S. Choosing T = 0, which
is an admissible state by assumption, (2.58) gives

S · Ṗ ≥ 0

or, in terms of dissipation D,

D ≥ 0 (2.59)

It is noted that the reduced dissipation inequality in the form (2.46) is re-
covered by (2.59). A mathematical proof of the principle of maximum plastic
dissipation, as stated by relation (2.59), is presented in Section 2.5, where it is
carried out in the framework of a convex-analytic recasting of the fundamental
equations of elastoplasticity.

There are two major consequences arising from the above postulate. First,
it can be shown that the plastic strain rate Ṗ associated with a generalized
stress S lying on the yield surface B is normal to the tangent hyperplane at
the point S to the the yield surface B. This result is generally referred to as
normality law which, in the case of a non-smooth limit surface, states that Ṗ
belongs to the cone of normals at S. Second, it results that the region E (or S)
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is convex. A rigorous mathematical proof of these two properties is presented
in Section 2.5.

For the time being, following [41], we present a deduction of the normality
law in the simple case of a smooth yield surface. Let S′ be a unit tangent vector
of the tangent hyperplane of the yield surface at S. Consider a sequence of
generalized stresses T = S + S′

ε that lie on the yield surface and satisfy the
property

S′
ε → 0 and

S′
ε

‖ S′
ε ‖

→ S′ as εεε → 0

Applying (2.58) to the above relation one finds

S′
ε · Ṗ ≤ 0

which, dividing by ‖ S′
ε ‖, gives

S′
ε

‖ S′
ε ‖

· Ṗ ≤ 0

Taking the limit of the above expression for εεε → 0, shows that

S′ · Ṗ ≤ 0

which, observing that −S′ is also a unit tangent vector, implies

−S′ · Ṗ ≤ 0

From the last two conditions, it is concluded that

S′ · Ṗ = 0

for any vector S′ tangent to the yield surface at S. The above equation states
that Ṗ is normal to the yield surface at S.

To demonstrate that S is a convex set we must show that S lies to one
side of the tangent plane at any point S ∈ B, as illustrated in Figure 2.7.
Equivalently, given the normality law, it suffices to show that the product
(S−T) · Ṗ is always non-negative for any T ∈ S, which is easily derived from
(2.58)
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Figure 2.7: Convexity of the yield surface and normality law

Associative plasticity

When the yield surface is smooth, i.e. it presents a well-defined gradient at
each point, recalling that Ṗ lies parallel to the normal to B at S, we may write
the following important form of the normality law [57, 69, 79]

Ṗ = γ̇∇φ(S) (2.60)

where γ̇ is the non-negative scalar plastic multiplier. Separating the tensorial
components of the above evolution equation we obtain [4]

ėp = γ̇
∂φ

∂σ
(2.61)

ξ̇ = γ̇
∂φ

∂χ
(2.62)

Equations (2.61)-(2.62) state that φ represents a flow potential for ep and
ξ. The above flow rule is said to be associated with the yield function in
generalized stress space. For convenience, we report here Equation (2.31),
written in compact form

χ = −∂ψ̂

∂ξ
= −∂ψp

∂ξ
(2.63)

which, in rate form, reads

χ̇ = −∂2ψp

∂ξ2 ξ̇ (2.64)



2.3. THREE-DIMENSIONAL ELASTOPLASTIC BEHAVIOR 69

Introducing the evolutive relation (2.62) into (2.64) and defining the fourth-
order tensors

Dk =
∂2ψp

∂ξ2
k

1 ≤ k ≤ m (2.65)

we can recast the rate form of the hardening law (2.64) in the form

χ̇k = −γ̇Dk

∂φ

∂χk

(2.66)

or, equivalently

χ̇ = −γ̇D
∂φ

∂χ
(2.67)

where D is the (diagonal) generalized matrix operator containing the tensors
Dk. In view of the previous definitions, (2.66) can be regarded as a hardening
law associated with the function ψp, which clearly reveals to be a harden-
ing potential. Equivalently, (2.64) represents the rate form of the mentioned
hardening law which, admitting the normality law, leads to the generalized
associative hardening law in stress space (2.66). A constitutive model charac-
terized by the flow rule (2.61) and by the two evolutive Equations (2.62) and
(2.67) regarding the internal hardening variables is then referred to as associa-
tive plasticity [17]. In the following sections we present a yield function and
a set of hardening laws which readily satisfy the above notion of associative
elastoplastic model.

To complete the statement of our problem we need only to give the condi-
tions on the plastic multiplier γ̇ and on the yield function φ in concise form.
We have

γ̇ ≥ 0, φ ≤ 0 γ̇φ = 0 (2.68)

which are known as complementarity conditions or Kuhn-Tucker conditions
[4, 57, 69]. The first two conditions in (2.68) constrain the signs of γ̇ and φ,
while the third one states that the above quantities are not simultaneously
nonzero; positive values for γ̇ require φ = 0, in which case plastic deformation
takes place, while negative values for φ imply that γ̇ is zero, that is the plastic
deformation rate is zero. In the case where φ = 0, the consistency condition
(2.68) can be equivalently formulated in terms of time derivative of the yield
function as

When φ = 0, γ̇ ≥ 0, φ̇ ≤ 0, γ̇φ̇ ≤ 0 (2.69)
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since by the second inequality appearing in (2.68) the generalized stress is
always constraint to evolve towards the interior of S or at most to remain on
the yield surface, that is to say φ̇ ≤ 0 [69]. The above consistency formulation
results of great importance in the derivation of integration schemes for the
elastoplastic model under consideration. These schemes are addressed in detail
in Chapter 4 and Chapter 5.

2.3.2 von-Mises yield criterion

Perfect plasticity

In this paragraph we first introduce the definition of the von-Mises yield func-
tion, indicated henceforth with F , for the simplest case of perfect plasticity.
Hence we choose F = F (σ). In the subsequent section, when different harden-
ing mechanisms are described, we generalize the expression of the von-Mises
yield criterion and of the relative flow and hardening laws to the case of harden-
ing materials. In this context, we also draw some considerations on the ensuing
form assumed by the flow rule and by the elastic and plastic potentials.

The primary consideration that needs to be drawn on the outset is that,
regardless of the type of hardening, the von-Mises yield function is independent
of the mean stress or pressure p = 1/3tr(σ) and is an isotropic function. The
first assumption implies that the F depends on the stress deviator only:

F = F (s)

while the second hypothesis indicates that, given any proper orthogonal second-
order tensor Q ∈ Lin, it holds

F (s) = F (QsQT )

The von-Mises yield function then is defined by

F (s) =‖ s ‖ −σy (2.70)

with σy the yield stress. Equivalently, denoting by J2 = 1
2 (s : s) the second

scalar invariant of s, the von-Mises yield function may be expressed as

F (s) =
√

2J2 − σy (2.71)

In view of the last expression, a perfect elastoplastic model with a von-Mises
yield surface is usually referred to as J2 plasticity model. In the above expres-
sion the scalar quantity σy represents the initial uniaxial yield stress and is
therefore a quantity depending on the material.
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Applying (2.61), we can derive the plastic flow rule, which reads

ėp = γ̇
∂F (s)

∂σ
= γ̇

∂F (s)

∂s
= γ̇n (2.72)

where n indicates the second-order normal tensor to the yield surface at s,
which with simple considerations [17], results

n =
s

‖ s ‖ (2.73)

In the case of perfect J2 plasticity just presented the strain-like internal vari-
able can be identified with the plastic strain ep.

Linear isotropic hardening

This type of hardening is characterized by a single scalar strain-like internal
variable, denoted here by ξ and by a single scalar thermodynamically conjugate
force indicated with χ. In most cases, ξ represents a measure of accumulated
plastic deformation. A typical choice is the accumulated plastic strain, defined
as [57]

ēp(t) =

∫ t

0
‖ ėp(τ) ‖ dτ (2.74)

The above quantity indicates the total plastic strain accumulated from the
beginning of the loading history. The von-Mises yield function becomes

F (s, χ) =‖ s ‖ −σy(χ) (2.75)

where σy is not constant, rather it depends on the internal variable χ through
a relation of the form

σy = σy,0 + G(χ) (2.76)

where σy,0 is as usual the uniaxial initial yield stress, while G(χ) is a monoton-
ically increasing function satisfying G(0) = 0. According to this rule, isotropic
hardening is viewable as the yield surface projection on the stress space which
expands retaining its original shape by an amount which is proportional to the
accumulated plastic deformation through the function G(χ). Setting

ψp(ξ) = ψp(ēp) =
1

2
Hiso(ē

p)2 (2.77)
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where the material constant Hiso is known as the isotropic hardening modulus,
the expression of the free energy is thus

ψ(εεεe, ep) =
1

2
εεεe : Cεεεe +

1

2
Hiso(ē

p)2 (2.78)

Invoking the definition (2.63), we immediately derive χ as

χ = −∂ψp

∂ξ
= −∂ψp

∂ēp
= −Hisoē

p (2.79)

Admitting, for simplicity, that G = −χ, (2.75) becomes

F (s, χ) =‖ s ‖ −σy,0 − Hisoē
p (2.80)

The associated flow rule and hardening laws thus read

ėp = γ̇
∂F (s, χ)

∂σ
= γ̇

∂F (s, χ)

∂s
= γ̇n (2.81)

˙̄ep = ‖ ėp ‖ (2.82)

χ̇ = −Hiso ˙̄ep (2.83)

As a possible further generalization, we may take into consideration the case
of a yield surface that expands isotropically with a nonlinear dependence on
χ. This possibility is anyway beyond the scope of this work and then is not
studied in detail.

Linear kinematic hardening

The kinematic hardening mechanism has been briefly presented for the one-
dimensional situation in Section 2.3.1. It was stated that, differing from
isotropic hardening which causes the yield domain to expand homogenously,
kinematic hardening produces a shifting of the initial yield surface in stress
space. Such a characteristic is still valid in the three-dimensional context. We
start by the case of linear kinematic hardening, whose description implies a
single internal tensorial variable ξ. Usually, ξ is taken to be the plastic strain
tensor ep, with an expression of the free energy in the form

ψ(εεεe, ep) =
1

2
εεεe : Cεεεe +

1

2
ep : Dep (2.84)

where

D = HkinI (2.85)
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The term Hkin is the linear kinematic hardening modulus, a material property.
In correspondence to the internal variable ξ = ep, we have the conjugate force

χ = −∂ψp

∂ξ
= −∂ψp

∂ep
= −Hkine

p (2.86)

The yield condition is obtained by introducing the thermodynamic force χ in
the yield function [41], according to

F (s,χ) =‖ s + χ ‖ −σy (2.87)

Introducing the new internal stress variable

α = −χ (2.88)

a deviatoric tensor defined in stress space called backstress, the yield function
(2.87) becomes

F (s,α) =‖ s− α ‖ −σy =‖ Σ ‖ −σy (2.89)

The backstress tensor α represents the shifting of the center of the yield surface
in stress space due to the kinematic hardening effect. The tensor Σ = s − α

appearing in the yield function (2.89) is called the relative stress and, de facto,
defines the generalized stress space also referred to as the relative stress space.
Applying (2.61) we can easily derive the plastic flow rule, which reads

ėp = γ̇
∂F (s,α)

∂σ
= γ̇

∂F (s,α)

∂s
= γ̇n (2.90)

where n indicates the second-order normal tensor to the yield surface in stress
space. With some algebra, it can be shown that

n =
s− α

‖ s− α ‖ =
Σ

‖ Σ ‖ (2.91)

The associated flow rule and the hardening law are easily determined to be

ėp = γ̇
∂F (s,α)

∂σ
= γ̇

∂F (Σ)

∂Σ
= γ̇n (2.92)

α̇ = Hkinė
p = γ̇Hkinn (2.93)
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Combined linear isotropic and kinematic hardening

To assemble the effects of both linear kinematic and linear isotropic hardening
into a single model, it is necessary to sum up the hardening potential, in terms
of internal variables, relative to each single mechanism. The ensuing form of
the free energy is given by

ψ(εεεe, ep, ēp) =
1

2
εεεe : Cεεεe +

1

2
Hiso(ē

p)2 +
1

2
ep : Dep (2.94)

which depends in an uncoupled manner on the internal variables ep, ēp. The
conjugate forces are derived as done previously and are exactly the same ones
found in the case of pure isotropic and kinematic linear hardening mechanisms
as well as the flow rule which is still expressed by (2.90). The form of the
hardening law remains unchanged and, in compact notation, reads

χ = −Hξ (2.95)

or, adopting the engineering notation also for the internal variables vectors
and for the hardening moduli operator,

{χ} =

{
−χ
−α

}
; [H] =

[
Hiso 0
0 Hkin

]
; {ξ} =

{
ēp

ep

}
(2.96)

The diagonal 2 × 2 matrix operator H appearing in (2.95) is known as linear
hardening operator or briefly linear hardening moduli and (cf. (2.96)) allows
to rewrite the total potential energy (2.94) as

ψ(εεεe, ep, ēp) =
1

2
εεεe : Cεεεe +

1

2
ξ · Hξ (2.97)

With the above specifications, the yield function takes the form

F (s,α,χ) = F (Σ,χ) =‖ Σ ‖ −σy,0 − Hisoē
p (2.98)

with the flow rule and the hardening laws still given by

ėp = = γ̇
∂F (Σ,χ)

∂Σ
= γ̇n (2.99)

˙̄ep = ‖ ėp ‖= γ̇ (2.100)

α̇ = Hkinė
p = γ̇Hkinn (2.101)

For the combined linear isotropic and kinematic hardening model under dis-
cussion the dissipation function (2.57) takes the following form

D = S · Ṗ = σ : ėp + χ · ξ̇
= σ : ėp − ēpHiso ˙̄ep − α : Hkinė

p
(2.102)
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Combined linear isotropic and linear/nonlinear kinematic hardening

The Thermodynamics with internal variables framework adopted so far needs
to be slightly generalized in order to include a nonlinear kinematic hardening
mechanism. The treatment, however, remains general inasmuch the preceding
case is perfectly recovered by canceling the nonlinear kinematic hardening
term. The thermodynamic setting that is presented mainly follows the work
of Chaboche and Jung [23] which applies to a wider class of viscoplasticity
models.

We begin by specifying the general form of the total Helmoltz free energy
which, in isothermal conditions, is still

ψ = ψ(εεεe, ξ) (2.103)

In the present case the internal variables vector is not represented by (2.96)
but in a more general form

{ξ} =

{
ēp

ξ̄

}
(2.104)

where ξ̄ is a tensorial strain-like variable that corresponds to the thermody-
namic force α and in this case is distinguished by the traceless plastic strain
tensor ep. The above potential gives the stress and the thermodynamic forces
by means of the usual definitions

σ =
∂ψ

∂εεεe
(2.105)

χ = −∂ψ

∂ξ
(2.106)

The basic assumption, at this point, regards the thermodynamic forces χ.
These are taken to be the entities corresponding to the hardening variables
that, in stress space, describe the present elastic domain and the relative
(nonlinear) plastic potential. According to the quasi-standard material the-
ory [24, 40], the von-Mises yield function F remains unchanged, while a new
elastoplastic potential Ψp = Ψp(F,χ) is introduced [23] in order to establish a
generalized normality rule in the form

ėp = γ̇
∂Ψp

∂σ
(2.107)

ξ̇ = γ̇
∂Ψp

∂χ
(2.108)
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The total potential, corresponding to elastic deformation and plastic deforma-
tion taking place due to linear hardening only reads

ψ(εεεe, ep, ēp) =
1

2
εεεe : Cεεεe +

1

2
ξ · Hξ (2.109)

by which we infer the classical constitutive equations

σ = Cεεεe (2.110)

χ = −Hξ (2.111)

The plastic potential, according to the nonlinear kinematic hardening mecha-
nism by Armstrong and Frederick [5] is expressed by

Ψp = F (Σ, χ) +
1

2
α :

(
Hnl

Hkin

)
α

=‖ Σ ‖ −σy,0 − Hisoē
p +

1

2
α :

(
Hnl

Hkin

)
α

(2.112)

where Hnl is a nondimensional material parameter known as nonlinear kine-
matic hardening modulus. The choice for the plastic potential Ψp leads to the
following evolutive equations (cf. (2.107)-(2.108))

ėp = γ̇
∂Ψp

∂σ
= γ̇n (2.113)

˙̄ep = ‖ ėp ‖= γ̇ (2.114)

˙̄ξ = γ̇n − γ̇
Hnl

Hkin
α (2.115)

The evolution of the backstress tensor α can be found by taking the rate form
of (2.111). We have:

α̇ = Hkin
˙̄ξ = Hkinė

p − Hnlγ̇α = γ̇(Hkinn − Hnlα) (2.116)

As observed at the outset, whenever the nonlinear hardening modulus Hnl

is zero, the tensor ξ̄ coincides with ep and the linear hardening mechanisms
presented above are recovered by the previous combined model.

2.3.3 General von-Mises plasticity model

It is convenient to resume here the general version of the von-Mises constitutive
model analyzed hitherto. Combining the three hardening mechanisms, the
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equations which define the model are the following [17]

p = Kθ (2.117)

s = 2G[e − ep] (2.118)

Σ = s − α (2.119)

F = ‖Σ‖ − σy (2.120)

ėp = γ̇n (2.121)

σy = σy,0 + Hisoγ (2.122)

α̇ = γ̇(Hkinn− Hnlα) (2.123)

γ̇ ≥ 0 , F ≤ 0 , γ̇F = 0 (2.124)

where p is the pressure and θ the volumetric part of the strain tensor, K is
the material bulk elastic modulus, G is the material shear modulus, ep is the
traceless plastic strain, Σ is the relative stress in terms of the backstress α,
the latter introduced to describe a kinematic hardening mechanism. Moreover,
F is the von-Mises yield function, n is the normal to the yield surface, σy is
the yield surface radius, σy,0 the initial yield stress, Hiso and Hkin are the
linear isotropic and kinematic hardening moduli, Hnl is the nonlinear kine-
matic hardening modulus. Finally, Equations (2.124) are the Kuhn-Tucker
conditions; in particular, the second equation limits the relative stress within
the boundary defined by the yield surface F = 0, while the other two are nec-
essary to determine the plastic behavior. With a slight over-simplification of
the model complexity, we may say that when γ̇ = 0 the system is in an elastic
phase, while when γ̇ > 0 we say that the system is in a plastic phase.

For later convenience, we fix some labeling conventions taken from [17].
The above constitutive model, when encompassing all the three kinds of harden-
ing mechanisms, namely linear isotropic/kinematic hardening and nonlinear
kinematic hardening is labeled as NLK model. Instead, whenever the term
corresponding to nonlinear kinematic hardening is zero, the model is briefly
addressed as LP model.

Rate form of the stress-strain relation

The rate form of the stress-strain relation plays a key role in the discrete
approximation of the variational problem of elastoplastic equilibrium that is
addressed in Chapter 3. We find it appropriate to present such a form here,
for the associative models studied in Section 2.3.1.

Recall the flow rule in the form

Ṗ = γ̇∇φ(S) (2.125)
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where the plastic multiplier γ̇ and the yield function φ are related through the
complementarity conditions

γ̇ ≥ 0 , φ ≤ 0 , γ̇φ = 0 (2.126)

and satisfy the consistency condition that when φ = 0

γ̇ ≥ 0 , φ̇ ≤ 0 , γ̇φ̇ = 0 (2.127)

Consider the rate form of the constitutive law (2.38) and (2.95) which read

ėp = εεε(u̇) − C
−1σ̇ (2.128)

ξ̇ = −H
−1χ̇ (2.129)

The inverse of the elastic tensor is guaranteed by its positive-definiteness and
the same holds true for H, in view of its definition (2.96). Combining (2.125),
(2.128) and (2.129) it is found that

ε̇εε(u) − C
−1σ̇ = γ̇

∂φ

∂σ
(2.130)

−H
−1χ̇ = γ̇

∂φ

∂χ
(2.131)

Checking (2.126) and (2.127), it is evident that γ̇ = 0 if φ < 0 or, if φ = 0 and
φ̇ < 0. The aim is then to deduce an expression for the plastic rate parameter
γ̇ in the case φ = φ̇ = 0. In such a case it is

φ̇(S) =
∂φ

∂σ
: σ̇ +

∂φ

∂χ
· χ̇ = 0

which, introducing (2.128) and (2.129), implies

γ̇ =

∂φ

∂σ
: Cεεε(u)

∂φ

∂σ
: C

∂φ

∂σ
+

∂φ

∂χ
· H ∂φ

∂χ

(2.132)

The preceding formula is derived under the assumption that γ̇ ≥ 0. Being the
tensors C and H positive definite this correspond to check if the numerator in
(2.132)

∂φ

∂σ
: Cεεε(u) ≥ 0
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is nonnegative. There are three cases that may arise:

Case 1. The numerator is negative. Then γ̇ can only be zero. In fact, it is

φ̇(S) =
∂φ

∂σ
: σ̇ +

∂φ

∂χ
· χ̇ =

∂φ

∂σ
: Cεεε(u) − γ̇

(
∂φ

∂σ
: C

∂φ

∂σ
+

∂φ

∂χ
· H ∂φ

∂χ

)

< 0

and, by the consistency condition (2.127), γ̇ = 0.

Case 2. The numerator is positive. Then γ̇ > 0. This can be shown supposing
by contradiction that γ̇ = 0. Then

φ̇(S) =
∂φ

∂σ
: σ̇ +

∂φ

∂χ
· χ̇ =

∂φ

∂σ
: Cεεε(u) > 0

which is not allowed, since φ = 0.

Case 3. The numerator is zero. Then γ̇ = 0 obviously in view of (2.132).
The above discussion, in which the consistency conditions plays a key role

in the determination of the plastic multiplier λ, amounts to the following
formula

γ̇ =






(
∂φ

∂σ
: Cεεε(u)

)

+

/

(
∂φ

∂σ
: C

∂φ

∂σ
+

∂φ

∂χ
· H ∂φ

∂χ

)
if φ(σ,χ) = 0

0 if φ(σ,χ) < 0

(2.133)

where (·)+ = max{0, ·}. This formula, which has a general validity, was men-
tioned but not proved in [68] and is reported here following [41].

Recalling relations (2.133) and (2.130), is is found that when φ(σ,χ) < 0

or when φ(σ,χ) = 0 and
∂φ

∂σ
: σ̇ ≤ 0, then

ε̇εε(u) = C
−1σ̇

whilst, when φ(σ,χ) = 0 and
∂φ

∂σ
: σ̇ > 0, then

ε̇εε(u) = C̃
−1σ̇

where

C̃ = C −
C

∂φ

∂σ
⊗ C

∂φ

∂σ

∂φ

∂σ
: C

∂φ

∂σ
+

∂φ

∂χ
· H ∂φ

∂χ
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is an invertible fourth-order tensor, given the assumptions on C and H. The
rate form of the stress-strain relation is

σ̇ = C
ep
contεεε(u̇) (2.134)

with

C
ep
cont =






C if φ(σ,χ) < 0 or φ(σ,χ) = 0 and
∂φ

∂σ
: σ̇ ≤ 0

C̃ if φ(σ,χ) = 0 and
∂φ

∂σ
: σ̇ ≥ 0

(2.135)

The continuous elastoplastic tangent operator C
ep
cont can be computed in com-

pact explicit expression following [17], for the J2 elastoplastic model with
hardening under examination. It holds:

C
ep
cont = K(1⊗ 1) + 2G[Idev − Acont(n ⊗ n)] (2.136)

The fourth-order tensor C
ep
cont is specialized with a distinction between the LP

model and the NLK model

• LP model

Acont = ALP
cont =

G

G1
(2.137)

• NLK model

Acont = ANLK
cont =

2G

2G1 − Hnl[n : α]
(2.138)

where

2G1 = 2G + Hiso + Hkin

2.4 Initial boundary value problem of equilibrium

in J2 elastoplasticity

In the same fashion adopted in Section 1.7, it is possible to formulate the initial
boundary value problem of quasi-static equilibrium for an isotropic material
body characterized by a J2 elastoplastic model. This problem is modeled by
a set of partial differential equations posed on the domain Ω plus a set of
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boundary conditions assigned on the boundary ∂Ω of the body and a set of
initial conditions.

Given a body with current configuration Ω ⊂ R3, we indicate for com-
pactness its boundary ∂Ω with Γ such that Γ = Γ̄D ∪ Γ̄S, with Γ̄D ∩ Γ̄S = ∅.
Suppose that, for t ∈ [0, T ], a body force b(x, t) is assigned in Ω, a displace-
ment field ū(x, t) is assigned on Γ̄D and a surface traction t̄(x, t) is assigned
on Γ̄S. Initial values for the displacement u(x, 0) = u0 and the velocity field
v(x, 0) = v0 are known data as well. With the above specifications, the formu-
lation of the problem in argument for the material body under consideration
is: find the displacement field u(x, t) which, for any x ∈ Ω and any t ∈ [0, T ],
solves the

• equation of equilibrium

divσ + b = 0 (2.139)

• strain-displacement relation

εεε(u) =
1

2

[
∇u + (∇u)T

]
(2.140)

• constitutive relation represented by relations (2.117)-(2.124) together
with the rate form of the stress-strain relationship (2.134)

and satisfies the

• boundary conditions

u = ū on ΓD and σn = t̄ on ΓS (2.141)

• initial conditions

u(x, 0) = u0(x) (2.142)

It is observed that this problem results highly nonlinear for two main reasons.
First, the (time-)integration of the rate constitutive equations requires careful
consideration of the loading/unloading conditions relative to the choice of the
correct tangent operator. Second, the stress and the internal variables are con-
strained during their evolution by the yield limit. The object of investigation
of the next chapters is mainly concerned with the numerical solution of the
above stated problem, posed in variational form.
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2.5 Elastoplasticity in a convex-analytic setting

2.5.1 Results from convex analysis

Let X be a normed vector space, with its topological dual X ′, the space of
the linear continuous functionals on X. For x ∈ X and x∗ ∈ X ′, the action of
x∗ on x is denoted by 〈x∗, x〉. In the finite dimensional case the space X ′ is
isomorphic to X and thus can be identified with X itself. This is indeed the
case, for instance, of the Euclidean space Rd for which the action of a vector
v ∈ (Rd)′ on a vector u ∈ Rd is usually defined to be the scalar product

〈v,u〉 = v · u
Examples of infinite dimensional spaces and their duals, in particular function
spaces, are given in Appendix A.

Convex sets

Let Y be a subset of X. The interior and the boundary of Y are denoted
respectively by int(Y ) and bdy(Y ). The subset Y is said to be convex if

for any x, y ∈ Y and 0 < θ < 1, θx + (1 − θ)y ∈ Y (2.143)

that is to say if and only if any line segment joining any two elements of Y
lies entirely in Y .

The normal cone to a convex set Y at its point x is a set in X ′ defined as

NY (x) = {x∗ ∈ X ′ : 〈x∗, y − x〉 ≤ 0 ∀y ∈ Y } (2.144)

The set NY (x) is indeed a cone since for any x∗ ∈ NY (x) and any λ > 0,
λx∗ ∈ NY (x). When the point x belongs to the interior of Y the normal cone
clearly reduces to the null set, while at least in the finite-dimensional case,
x ∈ bdy(Y ) identifies NY (x) as the cone of normals at x in the space X.
These definitions are illustrated in Figure 2.8, where the two cases of smooth
boundary point x and non-smooth boundary point y are presented. In the
former case the normal cone degenerates to the one-dimensional set spanned
by the outward normal at x, while in the latter NY (y) is a non-trivial cone.

Convex functions

In what follows it is admitted for a function f to attain the values ±∞. Let
f be a function on X, with values in R̄ ≡ R ∪ {±∞}, the extended real line.
The effective domain of f , denoted by dom(f) is defined by

dom(f) = {x ∈ X : f(x) < ∞}
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Figure 2.8: Normal cone to a convex set

The epigraph of f , denoted by epi(f), is the set formed by ordered pairs in
X ×R defined by

epi(f) = {(x, α) ∈ X ×R : f(x) ≤ α}

that is the set of points that lie above the graph of f .
A function f is said to be convex if

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) ∀x, y ∈ X, ∀θ ∈ (0, 1) (2.145)

and it is said to be strictly convex if the strict inequality in (2.145) holds
whenever x �= y. We note that a function is convex if and only if its epigraph
is a convex set.

Also the following definitions, regarding functions defined on normed spaces,
will be of notable importance in subsequent paragraphs. A function f is said
to be positively homogeneous if

f(αx) = αf(x) ∀x ∈ X, ∀α > 0

proper if

f(x) < +∞ for at least one x ∈ X and f(x) > −∞ ∀x ∈ X

and lower semicontinuous (l.s.c.) if

lim
n→∞

f(xn) ≥ f(x) (2.146)
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Figure 2.9: (a) Strictly convex function; (b) Positively homogeneous function;
(c) Lower semicontinuous function

for any sequence {xn} converging to x. The last notions are illustrated in
Figure 2.9 where the space X coincides with R. We observe that a continuous
functions is lower semicontinuous, but the converse is not true.

It can be seen that a function f is l.s.c. if and only if its epigraph is
closed and that every proper convex function in a finite-dimensional space is
continuous on the interior of its effective domain.

A sequence {xn} in a normed space X converges weakly to an element
x ∈ X if and only if

lim
n→∞

〈x∗, xn〉 = 〈x∗, x〉 ∀x∗ ∈ X ′

The concepts of weak and strong convergence coincide whenever X is a finite-
dimensional space. Moreover a function is said to be weakly lower semicon-
tinuous (weakly l.s.c.) if the inequality (2.146) holds for any sequence {xn}
converging weakly to x. Obviously, a weakly l.s.c. function is l.s.c. Inversely,
the following statement holds: if f is convex and l.s.c., then it is weakly l.s.c.

With a slight extension of the classical definition, which does not include
lower semicontinuity, we call a function g : X → [0,∞] a gauge if

g(x) ≥ 0 ∀x ∈ X

g(x) = 0

g(x) is convex, positively homogeneous and l.s.c.

(2.147)

For any set S ⊂ X, we define the indicator function IS of S as

IS(x) =

{
0 x ∈ S

+∞ x /∈ S
(2.148)
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The support function of S, σS, is a function on X ′ defined by

σS(x
∗) = sup{〈x∗, x〉 : x ∈ S} (2.149)

If f is a function on X with values in R̄, the Legendre-Fenchel conjugate
(or simply conjugate) function f∗ of f is defined by

f∗(x∗) = sup
x∈X

{〈x∗, xn〉 − f(x) x∗ ∈ X ′} (2.150)

which allows to establish the equivalence

I∗S = σS (2.151)

between the support function and the conjugate to the indicator function.
Moreover, if f is proper, convex and l.s.c. then so is f∗, i.e.

(f∗)∗ ≡ f∗∗ = f (2.152)

In particular, if S is nonempty, convex and closed, its indicator function IS is
proper, convex and l.s.c.. For such a set, we then have

IS = σ∗
S = I∗∗S (2.153)

Given a convex function f on X, the subdifferential ∂f(x) of f at any x ∈ X
is defined as the (possibly empty) following subset of X ′

∂f(x) = {x∗ ∈ X ′ : f(y) ≥ f(x) + 〈x∗, y − x〉 ∀y ∈ X} (2.154)

An element of ∂f(x) is called a subgradient of f at x. According to the
definition, when f(x) = +∞, ∂f(x) = ∅. In f is a functions defined on Rd

and differentiable at x, then

∂f(x) = {∇f(x)}

At a corner point (x0, f(x0)), the subdifferential ∂f(x0) results in the set of the
slopes of all the lines lying below the graph of f and passing through the point
(x0, f(x0)) (see Figure 2.10). It is clear from (2.144) that the subdifferential
of the indicator function is given by

∂IS(x) = NS(x) ∀x ∈ S (2.155)

A result of great importance in later developments is that, for a proper,
convex and l.s.c. function f it holds true that

x∗ ∈ ∂f(x) iff x ∈ ∂f∗(x∗) (2.156)

We have the following fundamental results.
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Figure 2.10: Subgradient of a nonsmooth, convex function of a single variable

Lemma 2.5.1 Let f be a proper, convex, l.s.c. function defined on a normed
space X. Define

dom(∂f) = {x ∈ X : ∂f(x) �= ∅}

Then

(a) dom(∂f) �= ∅ and dom(∂f) is dense in dom(f)

(b) for any proper, convex, l.s.c. functions f and g, defined on X

∂f(x) = ∂g(x) ∀x ∈ X

if and only if

f(x) = g(x) + constant

Lemma 2.5.2 Let g be a gauge on a reflexive Banach space X. Define a
closed convex set K in X ′ by

K = {x∗ ∈ X ′ : 〈x∗, x〉 ≤ g(x) ∀x ∈ X}

Then
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(a) g is the support function of K

(b) the function g∗ conjugate of g is the indicator function of K:

g∗(x∗) =

{
0 x∗ ∈ K

+∞ otherwise

(c) K = ∂g(0)

(d) x∗ ∈ ∂g(x) ⇔ x ∈ ∂g∗(x∗) = NK(x∗)

Maximal responsive relations

It is proper to consider and analyze the properties shared by a special class of
multivalued maps. Thanks to the concept exposed herein it will be possible to
cast the basic flow rules of elastoplasticity in the present analytic setting. Let
us consider a map G : x �→ G(x) that associates with each x ∈ X a (possibly
empty) set in X ′. The map G is said to be

• responsive if

0 ∈ G(0) (2.157)

and if for any x1, x2 ∈ X

〈y1 − y2, x1〉 ≥ 0 and 〈y2 − y1, x2〉 ≥ 0 (2.158)

whenever y1 ∈ G(x1) and y2 ∈ G(x2).

• maximal responsive if the following condition

〈y1 − y2, x1〉 ≥ 0 and 〈y2 − y1, x2〉 ≥ 0 ∀y2 ∈ G(x2), ∀x2 ∈ X(2.159)

implies that y1 ∈ G(x1) or equivalently if there is no other responsive
map whose graph properly include the graph of G (see Figure 2.11).

We have the following important theorem regarding the significance of maximal
responsive maps in the present framework

Theorem 2.5.3 [33] If G is a multivalued map on X, with G(x) ⊂ X ′ for any
x ∈ X, then the following statements are equivalent

(a) the mapping G is maximal responsive
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Figure 2.11: Example of a maximal responsive map

(b) there exists a gauge g on X such that

G(x) = ∂g(x) ∀x ∈ X

Furthermore, when G is maximal responsive, it determines g uniquely.
Setting dom(G) = {x ∈ X : G(x) �= ∅}, g(x) is given by

G(x) =

{
〈x∗, x〉 ∀x∗ ∈ G(x), x ∈ dom(G)

+∞ ∀x /∈ dom(G)
(2.160)

Polar functions

From the viewpoint of convex analysis herein adopted, the admissible elastic
region can be conveniently interpreted as a closed convex set K whose bound-
ary (the yield surface) is the level set of a convex function g. K is hence
defined by

K = {x∗ ∈ X ′ : g(x∗) ≤ c0}

with c0 a positive scalar. It results possible to construct g in a way that this
function is a gauge such that its epigraph is a closed convex set containing the
origin. Furthermore, it is found that the function g has an evident connection
to the support function σS. Thus, g is defined according to

gK(x∗) = inf{µ > 0 : x∗ ∈ µK} (2.161)

where µK = {µy : y ∈ K}. Lemma 2.5.2(a) and definition (2.161) suggest the
following alternative form for gK

gK(x∗) = inf{µ > 0 : 〈x∗, x〉 ≤ µσK(x) ∀x ∈ X} (2.162)
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Figure 2.12: Representation of the gauge gK corresponding to a set K ⊂ R

An illustration of the function gK is provided in Figure 2.12. Note that when
x∗ /∈ µK, for any µ > 0, then gK(x∗) can take the value +∞. Assuming also
that σk(x) = 0 if and only if x = 0, the following relationship is derived

gK(x∗) = sup
x∈dom(σK )\{0}

〈x∗, x〉
σK(x)

(2.163)

or, equivalently, we are left with the following inequality relating gK and σk

〈x∗, x〉 ≤ gK(x∗)σK(x) ∀x ∈ dom(σK), x∗ ∈ dom(gK) (2.164)

Taking x∗ ∈ bdy(K), one finds that

sup
y∈dom(σK )\{0}

〈x∗, y〉
σK(x)

= 1 (2.165)

which properly returns the supremum if y = x, the conjugate to x∗ according
to Lemma 2.5.2 (d). Relation (2.163), for x∗ ∈ K and x∗ ∈ ∂σK(x), x �= 0,
then gives

〈x∗, x〉 = gK(x∗)σK(x) (2.166)

The functions σK and gK are defined as polar conjugates of each other when-
ever the relationships (2.164) and (2.166) hold, whereas IK and σK are con-
jugate according to (2.151). With the symbolism gK = σ◦

K it is meant that
gK is the polar function of σK . Moreover, when σ∗∗

K = σK with σK a l.s.c.
function, it also holds that σ◦◦

K = σK . The previous notions of polar conjugate
functions between pairs of functions have already been investigated by Hill
[43] who referred to such pairs as dual potentials.
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Figure 2.13: Support function D corresponding to the map G shown in Figure
2.11

We have the following important result which, in the next section, will
allow to state the normality law in a form involving the yield function (for the
proof refer to [41]).

Lemma 2.5.4 Let g be nonnegative and convex, with g(0) = 0 and x ∈
int(dom(g)) such that g(x) > 0. Set C = {z : g(z) ≤ g(x)}. Then y ∈ NC(x)
if and only if there exists a scalar γ̇ ≥ 0 such that y ∈ γ̇∂g(x).

2.5.2 Basic flow relations of elastoplasticity

With the mathematical instruments introduced in the previous section avail-
able, it is possible to re-examine the elastoplastic thermodynamic theory stud-
ied hitherto. In particular, adopting the standpoint of convex analysis we are
able to derive basic results like the yield function convexity, the normality law
in a more rigorous and more general fashion. As a result the yield surface
smoothness constraint can be avoided, permitting to obtain a set of alterna-
tive forms of the plastic flow law, which become of great importance for the
analysis of the variational problem of elastoplasticity carried out in Chapter
3.

For later developments and in view of the previous section notation we
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convene to establish the following substitutions

X ←→ set of generalized plastic strain rates

�
x ←→ Ṗ =

(
ėp, ξ̇

)

X ′ ←→ set of generalized stresses

�
x∗ ←→ S = (σ,χ)

Moreover, it is assumed that K represents a closed set in the space of genera-
lized stresses S such that it admits the following representation

K = {S : φ(S) ≤ 0}
through the yield function φ. As done in Section 2.3.1, we refer the zone for
which φ < 0 as the elastic domain, while those points of K satisfying φ = 0
constitute the yield surface.

With these positions we are able to apply the results on maximal respon-
siveness and convex sets to the existence of a convex yield surface. Let us recall
Theorem 2.5.3 and consider a maximal responsive map G having as its values
subsets of X ′. First, it is found by (2.157) that the zero generalized stress
is contained within the set of thermodynamic forces S corresponding to zero
generalized plastic strain rate. Second, relation (2.158) constitutes a general-
ization of the maximum plastic work inequality (2.58) in the case of perfectly
plastic materials and, admitting σ0 ∈ G(ėp

0) and σ1 ∈ G(ėp
1), becomes

(σ0 − σ1) : ėp
0 ≥ 0 and (σ1 − σ0) : ėp

1 ≥ 0

that parallels (2.55).
Going a step further, we may inquire whether the maximal responsiveness

condition which permits deducing yield surface convexity can be derived as a
consequence of the Principle of maximum plastic dissipation inequality (2.59).
Apply Theorem 2.5.3 and Lemma 2.5.2. By the maximal responsiveness condi-
tion we are led to recognize the existence of a closed convex set K of admissible
generalized stresses and of a generalized normality rule stated in the form

Ṗ ∈ NK(S) (2.167)

Theorem 2.5.3, moreover, implies the equivalence between the normality rule
(2.167) and the following

S ∈ G(Ṗ) (2.168)
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Since

S ∈ int(K) ⇒ NK(S) = {0}

it is clear from (2.167) that in the elastic region Ṗ = 0. Hence, it is stated
the equivalence between the existence of a convex yield surface satisfying the
normality rule and the property of maximal responsiveness.

At this point it is possible to draw some considerations on the dissipation
function. The dissipation function D, defined by (2.57) in Section 2.3.1, in the
present context becomes the function g that appears in Lemma 2.5.2 and is
characterized by being the support function of the set K. With this association
and inspecting (2.59) we are left with

D(Ṗ) = sup{T : P : T ∈ K} = S : Ṗ (2.169)

which indicates that S represents the point which returns the supremum of
the set of admissible plastic work rates.

If we consider the Legendre-Fenchel conjugate D∗ of the function D, that
is the indicator function of the set K; applying Lemma 2.5.2(d), we arrive at
the equivalent condition

S ∈ ∂D(Ṗ) (2.170)

which provides the connection existing between the support function D and
the maximal responsive map G through Theorem 2.5.3.

Going back for a moment to the example presented in Figure 2.11 which
shows the support function corresponding to G, we can derived the relationship

G = ∂D (2.171)

The last equation qualifies D as a pseudopotential for S [23].
The analytical considerations carried out in Section 2.5.1 make it possible

to derive the following equivalent formulations of the flow law in plasticity

(a) G maximal responsive
S ∈ G(Ṗ)
�

(b) G convex, positively homogeneous, l.s.c.
D(Ṗ) ≥ 0, D(0) = 0
S ∈ ∂D(Ṗ)
�
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(c) K closed, convex, containing 0
D∗ = indicator function of K
Ṗ ∈ ∂D∗(S) = NK(S)

Relationship between the yield and dissipation functions

The analysis on polar functions presented in Section 2.5.1 permits to recognize
an enlightening relationship between the yield and dissipation function. Equa-
tion (2.161) authorizes to define a gauge function g (we omit for brevity the
subscript K with no ambiguity) corresponding to which the set of admissible
generalized stress can be expressed as

K = {S : g(S) ≤ c0}

The above representation of the yield function through a gauge is usually
termed the canonical yield function. The gauge g is defined according to

g(S) = inf{µ > 0 : S ∈ µK}

and, by generalization, we infer that any yield surface may be represented in
this manner. In the sequel it is be assumed that f represents an arbitrary
representation of the yield function, while g refers to the canonical represen-
tation.

Assume that the dissipation D(Λ) = 0 (for convenience, we indicate mo-
mentarily the argument of D by Λ, a generalized plastic strain rate) if and
only if Λ = 0. It results clear from (2.163) that g and D are related by

g(S) = sup
Λ∈dom(D)\{0}

S : Λ

D(Λ)

In the case where S ∈ ∂K, the boundary of K, then

sup
Λ∈dom(D)\{0}

S : Λ

D(Λ)
= 1

The above expression reaches the supremum when Λ = Ṗ, being Ṗ conjugate
to S in the sense of an equality in (2.169). Hence, for S ∈ K ∩ ∂D(Ṗ) and
Ṗ �= 0, it holds

S : Ṗ = g(S)D(Ṗ) (2.172)
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Figure 2.14: Relationship between the admissible set K and its support func-
tion D

by which when D and D∗ are Legendre-Fenchel conjugate, D and g are polar
in the sense of (2.172).

The above polarity condition for the canonical form of the yield function
g enables to derive a generalized version of the classical flow rule (2.60), using
Lemma 2.5.4. Consider the following

Lemma 2.5.5 Let g be non-negative and convex, with g(0) = 0 and S a point
in the interior of dom(g) such that g(S) > 0. Set K = {T : g(T) ≤ g(S)}.
Then Ṗ ∈ NK(S) if and only if there exists a constant γ̇ ≥ 0 such that

Ṗ ∈ γ̇∂g(S) (2.173)

Equation (2.60) is readily seen to coincide with (2.173) as soon as g is smooth.
Moreover, we can write

Ṗ ∈ γ̇∂g(S) ⇔ γ̇g(T) ≥ γ̇g(S) + Ṗ : (T − S) ∀T

Considering sequentially the cases T = 0 and T = 2S and using the properties
of the gauge g, yields the following characterization of the plastic multiplier

γ̇ = D(Ṗ)

The above fundamental relation simply qualifies the scalar quantity γ̇ as the
dissipation corresponding with a particular generalized plastic strain rate. In-
deed, Lemma 2.5.5 also applies to the particular case g = D. Setting

C = {Q : D(Q) ≤ D(Ṗ)}
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for Ṗ �= 0, it is readily found that there exists a strictly positive γ̇ (excluding
γ̇ = 0 since S �= 0 by hypothesis) such that

S ∈ NC(Ṗ) or S ∈ γ̇∂D(Ṗ)

whenever a relation like (2.170) insists between S and Ṗ. A clear visualiza-
tion of the previous concept can be seen in Figure 2.14 which shows the pair
(S, Ṗ) ∈ X ′ such that the rate Ṗ is in the normal cone to K (the level set
g(S) ≤ 1) at S. Instead, it is evident that in X, the point S lies in the normal
cone to C (the level set D(Q) ≤ D(Ṗ) at Ṗ).
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Chapter 3

Variational Formulation of

the Elastoplastic Equilibrium

Problem

Introduzione

Il presente capitolo è incentrato sulla formulazione variazionale o formulazione
debole del problema a valori iniziali e dati al bordo dell’equilibrio per solidi
di materiale elastoplastico. Il capitolo è strutturato in maniera da soddisfare
due istanze. La prima è quella di presentare le due classiche formulazioni vari-
azionali del problema elastoplastico, cosiddette primale e duale. La seconda
è quella di fornire, senza addentrarsi eccessivamente nella dimostrazione ma-
tematica, i risultati essenziali sulla buona posizione del problema variazionale
in discorso. Il capitolo è suddiviso in due sezioni.

La Sezione 3.2 riguarda la cosiddetta formulazione primale del problema
dell’equilibrio elastoplastico. La caratteristica di tale formulazione risiede nella
adozione di una particolare forma della legge costitutiva. Detta scelta si ri-
flette sul tipo di spazi funzionali su cui il problema è formulato. In partico-
lare, le grandezze incognite, secondo la formulazione primale, risultano essere
lo spostamento ed il tensore di deformazione plastica generalizzato. In rife-
rimento al modello elastoplastico trattato tipo von-Mises, sono presentati i
risultati classici di buona posizione del problema primale.

La Sezione 3.3 riguarda la cosiddetta formulazione variazionale duale del
problema dell’equilibrio elastoplastico. Tale problema si dimostra equivalente
al problema in forma primale, eccetto che per la forma della legge costitutiva
adottata. Tale scelta induce una posizione del problema su spazi funzionali
differenti rispetto a quelli su cui è posto il problema in forma primale. In questo

97
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caso, infatti, le grandezze incognite sono rispettivamente lo spostamento ed il
tensore delle tensioni generalizzato.

La forma duale del problema dell’equilibrio elastoplastico rappresenta la
versione più comune di formulazione debole per tale problema riscontrabile
in letteratura. Essa costituisce infatti l’oggetto del capitolo successivo che ne
affronta la approssimazione numerica.

Le definizioni fondamentali sulle disequazioni variazionali ellittiche e para-
boliche e relative proprietà di esistenza ed unicità della soluzione sono breve-
mente richiamate nella Appendice B.

La trattazione matematica svolta in questo capitolo trae maggiormente
spunto da [41].

3.1 Introduction

The present chapter is devoted to the variational or weak formulation of the
initial boundary value equilibrium problem of elastoplastic material bodies or
simply elastoplastic equilibrium problem. The chapter has two main purposes.
The first one is to present the structure of the classical weak formulations of
elastoplastic problems. The second one is to provide the basic results on well-
posedness for the above problems. This latter part is carried out without
going into the mathematical details of the theoretical results. The chapter is
subdivided in two sections.

Section 3.2 regards the so-called primal variational formulation of the
elastoplastic equilibrium problem. The characterizing feature of this formu-
lation is the form of the flow rule which is adopted. This choice reflects also
the spaces on which the problem is posed. Particularly, the unknowns of the
problem are the displacement and the generalized plastic strain. Following
[41], we present the fundamental results on the well-posedness of the problem
under consideration for the relevant case of von-Mises plasticity with linear
hardening.

Section 3.3 regards the so-called dual variational formulation of the elasto-
plastic equilibrium problem. This is by any means the same physical problem
but with a different choice of the flow rule. In this way the space on which the
problem is formulated results different than that of the primal formulation.
In this case, in fact, the unknowns are respectively the displacement and the
generalized stress. The results on well-posedness of the dual problem are still
derived from [41] in a very sharp manner. The dual variational problem is
probably the most common version of the elastoplastic equilibrium weak for-
mulation and remains of primary importance. Indeed, it is the one which is
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addressed in the following chapter where its numerical solution is considered.
The basic definitions on elliptic and parabolic variational inequalities to-

gether with the elementary properties of existence and uniqueness of solution
used in this chapter are collected briefly in Appendix B.

The mathematical arguments presented in this chapter mainly derive from
[41].

3.2 The primal variational formulation

Basic relations

We briefly recollect here all the “ingredients” necessary in order to obtain a
variational formulation of the boundary value problem of quasi-static equili-
brium for an elastoplastic solid. It is assumed in the following developments
that all the governing equations are given on a Lipschitz domain Ω with bound-
ary Γ.

The unknown variables of the problem are respectively the displacement
vector u, the plastic strain tensor ep and the internal variables ξ. The equa-
tions governing the problem in the domain Ω at any instant t ∈ [0, T ] (cf.
Section 1.7) are the

• equilibrium equation
divσ + b = 0 (3.1)

• the strain-displacement relation

εεε(u) =
1

2

[
∇u + (∇u)T

]
(3.2)

• the constitutive law

σ = C(εεε(u) − ep) (3.3)

χ = −Hξ (3.4)

with the flow rule and the maximum plastic dissipation inequality in the form
(cf. (2.167) and (2.58))

(ėp, ξ̇) ∈ Kp

D(q,η) ≥ D(ėp, ξ̇) + σ : (q − ε̇εε) + χ : (η − ξ̇) ∀(q,η) ∈ Kp

(3.5)

where Kp = dom(D) (1). The dissipation D, due to the considerations made
in the previous chapter, is a gauge, i.e. it is a nonnegative, convex, positively
homogeneous and l.s.c. function with D(0) = 0.

1For a detailed derivation of the expression (3.5)2 refer to [41]
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Material parameters

Some assumptions on the material parameters are necessary for the well posed-
ness of the problem and to assure a realistic representation of elastoplastic
materials.

The elastic tensor C has the following symmetries

Cijkl = Cjikl = Cklij (3.6)

and it is pointwise stable, that is, for some constant C0 > 0 it holds

ζ : C(x)ζ ≥ C0 ‖ ζ ‖2 ∀ζ ∈ Linsym, a.e. in Ω (3.7)

For obvious reasons, C has bounded and measurable components,

Cijkl ∈ L∞(Ω) (3.8)

The hardening moduli matrix H, which can be viewed as a linear operator
from the space of the internal variables ξ into itself (cf. 2.95), is taken to be
symmetric in the sense that

ξ · Hλ = λ · Hξ (3.9)

for any couple of vectors of internal variables ξ and λ. Finally, we admit that
H has bounded and measurable components which satisfy

Hij ∈ L∞(Ω) (3.10)

and it is positive definite, in the sense that there exists a constant H0 such
that

ξ · Hξ ≥ H0 ‖ ξ ‖2 (3.11)

for all the vectors of internal variables ξ = (ξk) s.t. ξk ∈ Linsym, (1 ≤ k ≤ m).
In addition, we admit that the compliance tensor C

−1 exists, it possesses the
same symmetry properties as C and it is also pointwise stable. This implies
that there exists a constant C0 such that

ζ : C
−1(x)ζ ≥ C0 ‖ ζ ‖2 ∀ζ ∈ Linsym, a.e. in Ω (3.12)

Indeed, the inverse H
−1 of the hardening moduli matrix exists and it shares

the same properties of H, i.e. it is symmetric, it has bounded measurable
components and it satisfies the pointwise stability property:

ξ · H−1ξ ≥ H ′
0 ‖ ξ ‖2 (3.13)

for all the vectors ξ.
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Initial and boundary conditions

For brevity, we only consider homogeneous Dirichlet-type boundary conditions
for the problem under consideration. This choice does not affect the generality
of treatment by any means and the results presented in the following sections
can readily be extended to mixed type of boundary conditions [41]. Hence, we
assume that

u = 0 on Γ (3.14)

The initial condition on the displacement is of the form

u(x, 0) = 0 in Ω (3.15)

Function spaces

The variables of the problem need be collocated within appropriate function
spaces. Accordingly, we define the space of admissible displacements by

V =
[
H1

0 (Ω)
]3

The space of plastic strains is taken as

Q0 = {q ∈ Q : tr(q) = 0 a.e. in Ω}
a closed subspace of the space Q defined by

Q =
{
q : q ∈ Linsym, qij ∈ L2(Ω)

}

The space Q is endowed with the inner product and the norm of the space
[L2(Ω)]3×3. We have then the space M of internal variables, defined by

M =
{
η = (ηk) : ηk ∈ Linsym, ηk|ij ∈ L2(Ω), 1 ≤ k ≤ m

}

which is endowed with the usual L2(Ω)-based inner product and norm.
The statement of the problem makes use of the following space

Z = V × Q0 × M

which becomes a Hilbert space with the inner product

(w, z)Z = (u,v)V + (ep,q)Q + (ξ,η)M

and the norm ‖ z ‖Z= (z, z)
1/2
Z , where w = (u, ep, ξ) and z = (v,q,η). Letting

Kp = dom(D), it is also defined the set

Zp = {z = (v,q,η) ∈ Z : (q,η) ∈ Kp a.e. in Ω} (3.16)

which is a nonempty, closed, convex cone in Z.
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Bilinear form and functionals

We introduce the bilinear form a : Z × Z → R, defined by

a(w, z) =

∫

Ω
[C(εεε(u) − ep) : (εεε(v) − q) + ξ · Hη] dv (3.17)

the linear functional ℓ(t) : Z → R given by

〈ℓ(t), z〉 =

∫

Ω
b · vdv (3.18)

and the functional j : Z → R such that

j(z) =

∫

Ω
D(q,η)dv (3.19)

where w = (u, ep, ξ) and z = (v,q,η).

Due to the symmetry properties of C and H, the bilinear form a(·, ·) is
symmetric as well. By the definition and properties of the dissipation D,
the functional j(·) is a convex, positively homogeneous, nonnegative and l.s.c.
functional. It is noted that in general j is not differentiable.

Primal formulation

First, integrating relation (3.5)2 over the domain Ω and substituting in the
ensuing integral inequality respectively (3.3) and (3.4) we obtain

∫

Ω
D(q,η)dv ≥

∫

Ω
D(ėp, ξ̇)dv +

∫

Ω

[
C (εεε(u) − ep) : (q − ėp) − Hξ · (η − ξ̇)

]
dv

∀(q,η) ∈ Zp

(3.20)

Next, taking the scalar product of relation (3.1) with v − u̇ for an arbitrary
v ∈ V , integrating over Ω and performing sequentially an integration by parts
and the substitution of expression (3.3) for the stress σ, we arrive at the
following equation

∫

Ω
C [εεε(u) − ep] : [εεε(v) − εεε(u̇)] dv =

∫

Ω
b · (v − u̇)dv ∀v ∈ V (3.21)

Summing relations (3.20) and (3.21), we obtain the variational inequality

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) ≥ 〈ℓ(t), z − ẇ(t)〉 (3.22)
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which holds on the space Zp. Formally, the primal variational formulation of
the elastoplastic initial boundary value problem of equilibrium can thus be
stated as [41]

Problem Prim. Given a linear functional ℓ ∈ H1(0, T ;Z ′), ℓ(0) = 0, find
w = (u, ep, ξ) : [0, T ] → Z, w(0) = 0, such that for almost all t ∈ (0, T ),
ẇ ∈ Zp and

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) ≥ 〈ℓ(t), z − ẇ(t)〉 ∀z ∈ Zp (3.23)

It is noted that if w is a classical solution of the problem defined by (3.1)-(3.5)
and (3.14)-(3.15), then it is a solution of the problem Prim (See Appendix B).
Conversely, inverting the developments which leads to the inequality (3.23) it
is possible to recognize that if w is a smooth solution to problem Prim, then
it is also a classical solution of the problem posed in local form. Hence the
two formulation are formally equivalent.

For the applicability of theoretical results in the analysis of the initial
boundary value problem in argument, it is more convenient to view the in-
equality (3.23) as one posed on the whole space Z, instead than on its sub-
space Zp. Recalling that j(z) = ∞ when z /∈ Zp and invoking the requirement
ẇ ∈ Zp, (3.23) can be rewritten equivalently in the form

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) ≥ 〈ℓ(t), z − ẇ(t)〉 ∀z ∈ Z (3.24)

The subdifferential of j(·) is defined as

∂j(ẇ) =
{
w∗ ∈ Z ′ : j(z) ≥ j(ẇ) + 〈w∗, z − ẇ〉 ∀z ∈ Z

}
(3.25)

and with the aid of (3.24) it is possible to restate the original problem (3.23)
as an equation and an inclusion. Setting the new auxiliary variable w∗, we are
lead to the new problem of finding a couple of functions w : [0, T ] → Z and
w∗ : [0, T ] → Z ′ satisfying, for almost all t ∈ (0, T ) the following relations

a(w(t), z) + 〈w∗(t), z〉 = 〈ℓ(t), z〉 ∀z ∈ Z (3.26)

w∗(t) ∈ ∂j(ẇ(t)) (3.27)

Consequently, noting that j is positively homogeneous, it follows that Equation
(3.27) is equivalent to the couple of conditions

〈w∗(t), z〉 ≤ j(z) ∀z ∈ Z (3.28)

and

〈w∗(t), ẇ(t)〉 = j(ẇ(t)) (3.29)
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Ultimately, we can see that, setting to zero all the above plastic and hardening
variables appearing in the formulation of problem Prim, one is left with the
following variational equation

∫

Ω
Cεεε(u) : εεε(v)dv =

∫

Ω
b · vdv ∀v ∈

[
H1

0 (Ω)
]3

which recovers exactly the boundary value problem of linear elasticity (B.14)
examined in Appendix B, i.e.

∫

Ω
Cεεε(v) : εεε(v)dv =

∫

Ω
b · vdv ∀v ∈

[
H1

0 (Ω)
]3

with Dirichlet homogeneous boundary conditions on the whole boundary.

Combined linear kinematic and isotropic hardening with von-Mises
yield function

We now address the formulation of the problem Prim in the special case of
combined linear kinematic and isotropic hardening with the von-Mises yield
function. In this context the unknowns of the problem can be identified by
the triplets u, ep, ēp, namely the displacement, the plastic strain and the ac-
cumulated plastic stain. The spaces V and Q0 remain unchanged, while the
space of internal variables M reduces to L2(Ω). With this position, we may
write the admissible set Zp as

Zp = {z = (v,q, µ) ∈ Z : ‖ q ‖≤ µ a.e. in Ω}

The bilinear form a(·, ·) : Z × Z → R becomes

a(w, z) =

∫

Ω
[C(εεε(u) − ep) : (εεε(v) − q) + Hkine

p : q + Hisoē
pµ] dv (3.30)

where, obviously, w = (u, ep, ēp) and z = (v,q, µ). The functional j is defined
according to (3.19) and reads

j(z) =

∫

Ω
D(q, µ)dv

whilst the dissipation D, in the case of the von-Mises yield criterion, can be
expressed in the following alternative form (cf. (2.102) and refer to [41] for a
detailed explanation of this expression)

D(q, µ) =

{
c0 ‖ q ‖ if ‖ q ‖≤ µ

+∞ if ‖ q ‖> µ
(3.31)
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The linear functional ℓ(t) simply remains as in (3.18). The above specifica-
tions produce the following formulation of the problem with combined linear
kinematic-isotropic hardening [41].

Problem Prim1. Given a linear functional ℓ ∈ H1(0, T ;Z ′), ℓ(0) = 0, find
w = (u, ep, ēp) : [0, T ] → Z, with w(0) = 0, such that for almost all t ∈ (0, T ),
ẇ ∈ Zp and

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) ≥ 〈ℓ(t), z − ẇ(t)〉 ∀z ∈ Zp (3.32)

The problem just formulated, being a special case, shares with its general
counterpart Problem Prim. all of its properties, in particular it results
equivalent to its local form.

Linear kinematic hardening with von-Mises yield function

The elastoplastic problem of a material experiencing purely linear kinematic
hardening and characterized by a von-Mises type yield function can be for-
malized as a degenerate case of Problem Prim1, with Hiso = 0. The solution
space is now simply Z = V × Q0 with the inner product

(w, z)Z = (u,v)V + (ep,q)Q

and the usual norm ‖ z ‖Z= (z, z)
1/2
Z . Here, w = (u, ep) and z = (v,q). The

dissipation function D becomes

D = c0 ‖ q ‖ ∀q ∈ Q0

so that the function

j(z) =

∫

Ω
D(q)dv for z = (v,q) ∈ Z

is finite on the entire space Z. The bilinear form is now

a(w, z) =

∫

Ω
[C(εεε(u) − ep) : (εεε(v) − q) + Hkine

p : q] dv (3.33)

The linear functional ℓ(t) is still given by (3.18). The statement of the initial
boundary value problem is then

Problem Prim2. Given a linear functional ℓ ∈ H1(0, T ;Z ′), ℓ(0) = 0, find
w = (u, ep) : [0, T ] → Z, with w(0) = 0, such that for almost all t ∈ (0, T ),
ẇ ∈ Zp and

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) ≥ 〈ℓ(t), z − ẇ(t)〉 ∀z ∈ Z (3.34)
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Existence, uniqueness and stability of the primal formulation

In this short section we aim to give a hint at the properties of existence,
uniqueness and stability of the solutions to the variational problems given
hitherto in the so called primal formulation. For brevity’s sake the proofs of
the properties herein exposed are not presented and the reader is referred again
to [41] for the complete derivation of results. Following [41], it is seen that
the proper way to study the primal variational formulation of the elastoplastic
equilibrium problem is that of recasting the ensuing variational inequality into
a more general framework which may be stated as follows:

Problem ABS. Find w : [0, T ] → H, w(0) = 0, such that for almost all
t ∈ (0, T ), ẇ(t) ∈ K and

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) ≥ 〈ℓ(t), z − ẇ(t)〉 ∀z ∈ K (3.35)

where H denotes a Hilbert space and K a nonempty, closed, convex cone in
H. As can be checked in Appendix B, (3.35) is a variational inequality of the
mixed kind because it shows peculiarities of both variational inequalities of
the first kind (convex set K on which the test functions are taken) and of the
second kind (nondifferentiable term j).

The suitable hypotheses under which the above problem shows unique solv-
ability and stability have been studied by Han, Reddy and Schroeder [42] for
the elastoplastic problem with combined linear isotropic and kinematic harden-
ing. These hypotheses concern, respectively, the bilinear form a(·, ·) which is
required to be H-elliptic and the functional ℓ which must be a H1(0, T ;H ′),
function with j(0) = 0. Moreover, the functional j is required to be nonneg-
ative, convex, positively homogeneous and Lipschitz continuous (even if not
necessarily differentiable). When the above conditions are fulfilled, it is possi-
ble, with some mathematical manipulations, to show that the original abstract
variational inequality (3.35) is equivalent to

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) ≥ 〈ℓ(t), z − ẇ(t)〉 ∀z ∈ H

The preceding relation implies that it is possible to choose the test functions z
in H instead of K. In this way, Theorem B.2.3, the standard solvability result,
is applicable.

We are now in a position to introduce the following fundamental result
which plays a key role in the subsequent specializations of the abstract pro-
blem in argument to its elastoplasticity counterpart in the vest of the primal
formulation. Under a proper set of fundamental assumptions on the bilinear
form a and on the linear functional it results possible to state general results
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of existence, uniqueness and stability of the solution to the problem Abs. As a
special case we may have the problem Prim and its specializations Prim1 and
Prim2. It is therefore possible to extend the results on the abstract problem
to the practical elastoplastic problems examined hitherto.

Theorem 3.2.1 Existence and Uniqueness of Problem Abs. [41] Let
H a Hilbert space; K ⊂ H a nonempty, closed, convex cone; a : H × H → R
a bilinear form that is symmetric, bounded and H-elliptic; ℓ ∈ H1(0, T ;H ′)
with ℓ(0) = 0 and j : K → R a nonnegative, convex, positively homogeneous
and Lipschitz-continuous function. Then, there exists a unique solution w of
Problem Abs satisfying w ∈ H1(0, T ;H). Furthermore, w : [0, T ] → H is the
solution to problem Abs if and only if there is a function w∗(t) : [0, T ] → H ′

such that for almost all t ∈ (0, )

a(w(t), z) + 〈w∗(t), z〉 = 〈ℓ(t), z〉 ∀z ∈ H (3.36)

w∗(t) ∈ ∂j(ẇ(t)) (3.37)

Following [41] we are also provided of the following stability result

Theorem 3.2.2 Stability of Problem Abs. [41] Under the assumptions
of Theorem 3.2.1, the solution of Problem Abs depends continuously on ℓ. In
particular, given two linear functionals ℓ(1), ℓ(2) ∈ H1(0, T ;H ′) with ℓ(1)(0) =
ℓ(2)(0) = 0, the corresponding solutions w(1) and w(2) are related by the fol-
lowing estimate

‖ w(1) − w(2) ‖L∞(0,T ;H)≤ c ‖ ℓ̇(1) − ℓ̇(2) ‖L1(0,T ;H′) (3.38)

The preceding theorems permit to extend the results made clear for the ab-
stract variational problem (3.35) to the physical problem under consideration,
i.e. the primal variational formulation Prim together with its particular cases
Prim1 and Prim2. Relatively to the definition (3.17), we first note that in
general the bilinear form a(·, ·) cannot be expected to be Z-elliptic, since

a(z, z) =

∫

Ω
[C(εεε(v) − q) : (εεε(v) − q) + η · Hη] dv

for z = (v,q,η) ∈ Z and since it is at most

a(z, z) ≥ c
(
‖ εεε(v) − q ‖2

[L2(Ω)]3×3 + ‖ η ‖2
[L2(Ω)]m

)

On the other hand, the variational inequality (3.23) is posed on the set Zp,
defined by (3.16) and the requirement z ∈ Zp produces a constraint on the
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relation between the components q and η. We are then lead to make the
following assumption

z = (v,q,η) ∈ Kp ⇒ β ‖ q ‖2≤ η · Hη for some constant β > 0 (3.39)

This crucial assumption can be shown, with an application of the Korn’s in-
equality, to make the bilinear form a(·, ·) Z-elliptic on Zp [41], in the sense
that there exists a constant c0 > 0 such that

a(z, z) =

∫

Ω
[C(εεε(v) − q) : (εεε(v) − q) + η · Hη] dv ≥

c0

(
‖ v ‖2

V + ‖ q ‖2
Q + ‖ η ‖2

M

) (3.40)

The last result is of great importance since in the practical cases analyzed
previously the assumption (3.39) is satisfied. Thus we have the following
result.

Theorem 3.2.3 [41] Under the assumption (3.39), the problem Prim has a
solution

The proof of this last statement, which is omitted here for brevity’s reasons,
parallels the existence proof of the abstract problem (3.35), but makes use of
Proposition B.1.2, instead of Theorem B.2.3, which results unapplicable here
since the bilinear form is not elliptic on the whole space.

In conclusion, it is to be pointed out that lacking the ellipticity of a(·, ·)
over the whole space Z, uniqueness and stability of a problem solution cannot
be proved. In the two particular cases seen above regarding combined linear
isotropic and kinematic hardening and of pure linear kinematic hardening, it
is found that the bilinear form ellipticity is granted on the entire space Z.
The remainder of this section is devoted to important results valid in such two
situations. We have then the following theorems

Theorem 3.2.4 Existence and Uniqueness - Problem Prim1. [41] Un-
der the assumptions made on the data for Problem Prim, the quasi-static
elastoplastic equilibrium problem Prim1 has a unique solution w = (u, ep, ēp) ∈
H1(0, T ;Z). Furthermore, if w(1) and w(2) are the solutions corresponding to
ℓ(1), ℓ(2) ∈ H1(0, T, Z ′), with ℓ(1)(0) = ℓ(2)(0) = 0, then the following estimate
holds

‖ w(1) − w(2) ‖L∞(0,T ;Z)≤ c ‖ ℓ̇
(1) − ℓ̇

(2) ‖L1(0,T ;Z′) (3.41)

A similar result holds for the other special case of the primal problem. Indeed,
we have
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Theorem 3.2.5 Existence and Uniqueness - Problem Prim2. [41] Un-
der the assumptions made on the data for Problem Prim, the quasi-static
elastoplastic equilibrium problem Prim2 has a unique solution w = (u, ep) ∈
H1(0, T ;Z). Furthermore, if w(1) and w(2) are the solutions corresponding to
ℓ(1), ℓ(2) ∈ H1(0, T, Z ′), with ℓ(1)(0) = ℓ(2)(0) = 0, then the following estimate
holds

‖ w(1) − w(2) ‖L∞(0,T ;Z)≤ c ‖ ℓ̇
(1) − ℓ̇

(2) ‖L1(0,T ;Z′) (3.42)

3.3 The dual variational formulation

The variational formulation examined in this section makes use of the flow law
in the form (2.167). This choice leads to a problem in which the unknown
variables are the displacement vector u and the generalized stress vector S =
(σ,χ). We begin, as done in Section 3.2 with the proper space setting of the
fields involved in the formulation. The space of admissible displacement is still
indicated by

V =
[
H1

0 (Ω)
]3

while the space of stresses is defined as

S =
{
τ : τ ∈ Linsym, τij ∈ L2(Ω)

}

The space of conjugate forces is given by

M =
{
µ = (µk) : µk ∈ Linsym, µk|ij ∈ L2(Ω), 1 ≤ k ≤ m

}

For later purposes, we set

T = S × M

and implicitly endow this space with the inner products naturally induced
by the inner products defined respectively on S and M . Recalling that the
admissible generalized stresses are those belonging to the set K pointwise, we
may define the following convex subset

P = {T = (τ ,µ) ∈ T : (τ ,µ) ∈ K a.e. in (Ω)} (3.43)

We are now in a position to introduce the following bilinear forms which define
the elastoplastic dual problem

ā : S × S → R, ā(σ, τ ) =

∫

Ω
σ : C

−1τdv (3.44)
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b : V × S → R, b(v, τ ) = −
∫

Ω
εεε(v) : τdv (3.45)

c : M × M → R, c(χ,µ) =

∫

Ω
χ · H

−1µdv (3.46)

together with the bilinear form

A : T × T → R, A(S,T) = ā(σ, τ ) + c(χ,µ) (3.47)

with S = (σ,χ) and T = (τ ,µ). It is remarked that both the compliance
tensor C

−1 and the inverse of the hardening moduli operator H
−1 possess the

same material properties of symmetry, pointwise stability and boundedness
stated in the previous section. Moreover, in view of the above properties, the
bilinear form A(·, ·) results symmetric, continuous and T -elliptic, i.e. there
exist two positive constants αA and βA such that

|A(S,T)| ≤ αA ‖ S ‖T ‖ T ‖T ∀S,T ∈ T (3.48)

A(T,T) ≥ βA ‖ T ‖2
T ∀T ∈ T (3.49)

The bilinear form b(·, ·) is continuous or equivalently, there exists a positive
constant αb such that

|b(v, τ )| ≤ αb ‖ v ‖V ‖ τ ‖S ∀v ∈ V, τ ∈ S (3.50)

Moreover, for some constant βb > 0, it holds

sup
τ∈S\0

|b(v, τ )|
‖ τ ‖S

≥ βb ‖ v ‖V ∀v ∈ V (3.51)

The above bound can be easily proved taking τ = εεε(v) and applying Korn’s
inequality (A.18). The linear functional of the load is as usual defined by

ℓ(t) : V → R, 〈ℓ(t),v〉 = −
∫

Ω
b(t) · vdv (3.52)

It is then possible to derive the dual formulation of the elastoplastic problem
by applying the standard procedure and recalling, respectively, the local form
of the equilibrium equation

div σ + b = 0 in Ω

and the flow law in the form

(σ̇E − σ̇) : C
−1(τ − σ) − χ̇ · H

−1(µ − χ) ≤ 0 ∀(τ ,µ) ∈ K
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derived from (2.167) in which σ̇E = Cεεε(u̇) is the elastic stress rate. The
variational statement reads as follows:

Problem Dual. Given a linear functional ℓ ∈ H1(0, T ;V ′), with ℓ(0) = 0,
find (u,S) = (u,σ,χ) : [0, T ] → V × P, with (u(0),S(0)) = (0,0), such that
for almost all t ∈ (0, T )

b(v,σ(t)) = 〈ℓ(t),v〉 ∀v ∈ V (3.53)

A(Ṡ(t),T − S(t)) + b(u̇(t), τ − σ(t)) ≥ 0 ∀T = (τ ,µ) ∈ P (3.54)

The formal equivalence of Problem Dual to the classical problem can be easily
established. It is also immediate to show that the above problem, setting to
zero all the elastoplastic internal forces χ and letting σ, τ ∈ S, reduces to the
linear elastic initial boundary value equilibrium problem (B.20)-(B.21) with
homogeneous displacement boundary conditions.

The issue of proving existence and uniqueness of the solution of the dual
form is addressed in detail in [41]. Here, for brevity, we give just a brief clue
of the concepts necessary to pose such a result.

First, we may observe that the bilinear form b(·, ·) : V ×S → R, appearing
in (3.53) and defined by (3.45), satisfies the Babuska-Brezzi condition by means
of (3.51). Hence, this bilinear form induces two bounded linear operators
B : S → V ′ and B′ : V → S′ defined as

b(v, τ ) = 〈Bτ ,v〉 = 〈B′v, τ 〉 for v ∈ V, τ ∈ S (3.55)

The above properties lead to the following

Lemma 3.3.1 The operator B defined by the bilinear form b(·, ·) through re-
lation (3.55) is an isomorphism from (KerB)⊥ onto V ′ and the operator B′ is
an isomorphism from V onto (KerB)◦, where

KerB = {τ ∈ S : b(v, τ ) = 0 ∀v ∈ V }
(KerB)◦ = {f ∈ S′ : 〈f, τ 〉 = 0 ∀τ ∈ KerB}

Thus, we have the following important equivalence result

Theorem 3.3.2 Assume b ∈ H1(0, T ;V ′). Then (u, ep, ξ) ∈ H1(0, T ;Z) is a
solution of the problem Prim if and only if (u,σ,χ) ∈ H1(0, T ;V × T ) is a
solution of the problem Dual, where (u, ep, ξ) and (u,σ,χ) are related by the
(constitutive) equations

σ = C(εεε(u) − ep)

χ = −Hξ
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or

ep = εεε(u) − C
−1σ

ξ = −H
−1χ

The well-posedness of the dual variational formulation of the elastoplastic
problem is then inferred by that of the primal problem.

If we are not to follow this route for proving well-posedness of Problem
Dual, we can instead follow another argument which can be regarded as inde-
pendent of the developments carried out with respect to the primal formulation
to the equivalence result, Theorem 3.3.2. Again, in the same fashion adopted
for the primal version of the elastoplastic variational problem, some apriori
assumptions have to be taken, in order to show existence and uniqueness “ab
initio”. The first assumption concerns the set P and requires that there exists
a constant c > 0 such that for any generalized stress S1 = (σ1,χ1) ∈ P and
any σ2 ∈ S, it corresponds a χ2 ∈ M which satisfies

‖ χ2 ‖≤ c ‖ σ2 ‖ and S1 + S2 ∈ P
with S2 = (σ2,χ2). This assumption is satisfied in practical situations as
that of combined linear isotropic and kinematic hardening. With some math-
ematical manipulations and recalling Lemma 3.3.1, it is found that the above
assumptions grants nonemptyness, convexity and closedness of the set P(t).
The previous requirement is accompanied by an hypothesis on the structure
of the set K, whose definition is recalled here for convenience

K = {S ∈ S × M : φ(S) ≤ 0}
It is then assumed that for any S ∈ K and any scalar κ ∈ [0, 1), it follows that
κS ∈ K and

inf
x∈Ω

dist(κS(x), ∂K) > 0

The last statement is satisfied for materials characterized by combined lin-
ear isotropic and kinematic hardening as soon as the function φ is positively
homogeneous and Lipschitz continuous.

Under the above assumptions, the following result [41] holds true.

Theorem 3.3.3 [41] The variational problem Dual has a unique solution
(u,S), with u ∈ H1(0, T ;V ) and S ∈ H1(0, T ;T ).

Remark 3.3.4 The cases of the primal and dual variationals formulation for
a constitutive model including nonlinear kinematic hardening are omitted here
for brevity. The same results on existence, uniqueness and stability apply also
to such cases and can be deduced with similar reasonings starting from the
principle of maximum dissipation (see, for instance, [4, 69, 70, 79]).



Chapter 4

Discrete Variational

Formulation of the

Elastoplastic Equilibrium

Problem

Introduzione

Il tema trattato dal presente capitolo riguarda la risoluzione del problema
variazionale dell’equilibrio elastoplastico in forma duale attraverso un metodo
numerico. Nella letteratura scientifica è possibile trovare, per diversi casi par-
ticolari del problema in discorso, soluzioni in forma chiusa [57]. Si osserva,
tuttavia, che tali casi riguardano geometrie regolari, condizioni al bordo es-
tremamente semplici e comportamento del materiale di tipo semplificato. È
quindi evidente che tali situazioni risultano di minore interesse pratico. La
soluzione approssimata per via numerica, per problemi inerenti modelli mag-
giormente aderenti al vero, ovvero meno semplificati, risulta quindi la via da
seguire onde ottenere risultati ingegneristicamente significativi.

Un notevole impulso alla ricerca in questo senso è venuto anche dallo
sviluppo di calcolatori elettronici sempre più potenti.

L’approssimazione del problema in esame implica, come ben noto, sia una
discretizzazione rispetto alla variabile spaziale che una discretizzazione tem-
porale. Nel seguito del capitolo, maggiore attenzione è rivolta al secondo
punto, dato che questo costituisce l’argomento fondamentale di questo lavoro.
Nell’immediato vengono presentati brevemente i concetti generali riguardanti
il primo tipo di discretizzazione spaziale per mezzo del metodo degli elementi
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finiti. Questo permette di introdurre la terminologia standard dell’analisi per
elementi finiti senza entrare nel dettaglio degli aspetti matematici inerenti tale
tecnica numerica applicata alla Meccanica dei solidi. La scelta emerge dalla
necessità di introdurre alcuni concetti di base della discretizzazione spaziale,
che vengono richiamati brevemente nella trattazione relativa alla discretiz-
zazione temporale che constituisce l’argomento principale di questo capitolo.

Nella Sezione 4.2 viene presentata la discretizzazione spaziale e temporale
del problema elastoplastico posto in forma duale, insieme ai risultati inerenti
l’esistenza della soluzione per il problema cos̀ı approssimato ed inerenti la
convergenza del metodo numerico. Nella Sezione 4.3 vengono introdotti alcuni
tra i più comuni schemi di integrazione temporale basati rispettivamente sulla
formula di Eulero all’indietro e sulla formula generalizzata di punto medio. Gli
schemi di integrazione temporali, specializzati al caso del legame costitutivo
elastoplastico in esame, generano una famiglia di metodi che possono essere
caratterizzati come metodi alle differenze finite. In relazione a tali metodi sono
presentati i principali risultati inerenti stabilità e ordine di accuratezza.

Nella Sezione 4.4 vengono infine proposti due classici algoritmi risolutori
del problema elastoplastico nella forma discretizzata rispetto alla variabile
temporale. I due algoritmi in esame sono basati sullo schema a doppio passo
denominato “predictor-corrector” (previsione-correzione). Il primo adotta un
passo di previsione semplicemente elastico, mentre il secondo adotta un passo
di previsione tangente.

Il presente capitolo trae spunto principalmente da [41, 70].

4.1 Introduction

The subject of this chapter is the numerical solution of the elastoplastic equili-
brium boundary value problem posed in the dual weak form (see Section 3.3).
In the literature it is possible to find a number of solutions to such a problem
in closed form (see for instance [57]). It is noted, however, that these situ-
ations involve only extremely simple cases consisting of highly regular body
shape, simple boundary conditions and idealized material behavior. Models
that approximate the behavior of real bodies are mostly feasible for approxi-
mate solutions which, especially in the recent past, have increasingly become
the focus of research due to the development of high-speed digital computers.

As it is well known, the approximation of the problem under consideration
involves both a space discretization issue and a time discretization issue. In
what follows we focus the discussion on the second issue, since it constitutes
the central theme of this work. In the immediate following a brief hint of
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what concerns the first discretization issue is proposed, referring to one of
the most commonly used tool in this context: the finite element method.
This is done in order to provide the minimum necessary familiarity with the
standard terminology of finite element analysis without entering into a detailed
presentation of the mathematical aspects of the finite element technique in
Mechanics of solids. This choice emerges from the necessity of having a basic
knowledge of the space discretization when dealing with the time discretization
issue which remains the centre of this chapter

In Section 4.2 the space and time (fully) discretization of the dual weak
form of the elastoplastic equilibrium is presented and general results on ex-
istence of the solution and on convergence are provided. In Section 4.3 we
introduce the most common time integration schemes based on the backward
Euler’s rule and on the generalized midpoint rule. The integration rules are
specialized to the case under consideration stemming into a family of inte-
grators which may be grouped into a set of finite difference-based methods.
Results on stability and order of convergence are also given. In Section 4.4 we
propose two solution algorithms for the discrete variational formulation of the
elastoplastic dual problem based on the predictor-corrector philosophy. The
first one adopt a purely elastic predictor, while the second one, the Newton’s
method, adopts a tangent predictor.

The present chapter basically follows the treatment of [41, 70].

4.1.1 Basics of the finite element method

In the following sections we deal with different general solution strategies of
the elastoplastic equilibrium problem. As it will be made more evident, a key
point of such strategies is the spatial discretization of the weak formulation of
the problem. This is assumed to be carried out by the finite element method.
Accordingly, since this part of the problem discretization does not represent
the center of our discussion, it proves useful to provide some basic notions
on the method together with some elementar terminology. This is indeed the
target of this paragraph. By no means this introductory excursion claims to be
mathematically rigorous or theoretically exhaustive and the interested reader
is referred to fundamental standard books on the argument.

The development of a finite element scheme for solving an initial boundary
value problem involves four main steps. First, the boundary value problem is
reformulated into an equivalent variational problem. Second, the domain of the
independent variables (or usually the spatial variables, for a time-dependent
problem as the one under consideration) is partitioned into subdomains called
finite elements and then a finite-dimensional space, called the finite element
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space, is constructed as a collection of piecewise smooth functions with a cer-
tain degree of global smoothness. Third, the variational problem is projected
to the finite element space and in this way a finite element system is formed.
Finally, the solution of the system is searched, say with a proper iterative
method, and various consideration are drawn from the solution of the finite
element system.

The mathematical theory of the finite element method addresses many
other issues such as a priori and a posteriori error estimation, convergence,
stability and so on. Here we are not interested in entering within such details.
With the following lines we simply aim to introduce basic notations and op-
erational aspects that will be recalled in the later developments regarding the
time discretization issue. A reader familiar with the basic terminology and
theoretical results of the finite element method may skip this section in toto.
For detailed information on the finite element method the reader may refer to
the standard textbooks and among others [19, 26, 48, 62, 79].

Let us now consider, as an example, the finite element method discretiza-
tion of the weak formulation associated to a linear elliptic boundary value
problem defined on a Lipschitz domain Ω:

u ∈ V, a(u, v) = 〈ℓ, v〉 ∀v ∈ V (4.1)

where V is a Sobolev space on Ω. For a second-order differential equation pro-
blem, V = H1(Ω) if the given boundary condition is natural and V = H1

0 (Ω)
if the homogeneous Dirichlet boundary condition is specified over the whole
boundary. As it is shown in Appendix B, a problem with a nonhomogeneous
boundary Dirichlet condition on a part of the boundary ΓD ⊂ ∂Ω can be con-
verted to one with the homogeneous Dirichlet boundary condition on ΓD after
a change of the dependent variable. In this case, then, the space V = H1

ΓD
(Ω).

The form a(·, ·) is assumed to be bilinear, continuous, V -elliptic, while ℓ is a
given linear continuous operator on V .

Since V is infinite-dimensional, it is usually impossible to find the solution
of the problem (4.1) in closed form. The idea of the Galerkin method is to
approximate the weak formulation expressed by (4.1) by its discrete analogue

uN ∈ VN , a(uN , v) = 〈ℓ, v〉 ∀v ∈ VN (4.2)

where VN ⊂ V is a finite-dimensional space and is used to approximate the
space V . When VN consists of piecewise polynomials associated with a parti-
tion of the domain Ω, the Galerkin method (4.2) becomes the classical Galerkin
finite element method.
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Convergence of the finite element method may be achieved by progressively
refining the mesh or by increasing polynomial degrees or by doing both simul-
taneously: then we get the h-version, the p-version or the h-p-version of the
finite element method, respectively. It is customary to use h as the parame-
ter for the mesh-size and p as the parameter for the polynomial degree. An
efficient selection among the three versions of the method depends on the a
priori knowledge about the regularity of the exact solution of the problem.

In the following sections we consider only the h-version of the method,
mainly because the solution of an initial boundary value problem of equilibrium
in elastoplasticity does not show high regularity. Conventionally, for the h-
version finite element method, we use V h instead of VN to denote the finite
element space. Thus, with a finite element space V h chosen, the finite element
method is

uh ∈ V h, a(uh, vh) = 〈ℓ, vh〉 ∀v ∈ V h (4.3)

Expressing the trial function uh in terms of a basis of the space V h and taking
each of the basis functions for the test function vh, we obtain an equivalent
linear system, called the finite element system, from (4.3) for the coefficients in
the expansion of uh with respect to the basis. Once the finite element system
is solved, we can resort to the finite element solution uh.

The quality of the finite element solution uh, i.e. the degree of accuracy in
the approximation of the exact solution u granted by uh relies on the regularity
of the exact solution u, the construction of the finite element space V h and
eventually on the solver we adopt for the system resulting from (4.3). Again,
we do not get into deep discussion on these details for they do not represent
our aim at this stage.

For the moment it results useful to examine the basic notions and relative
terminology of the construction of the finite-dimensional space V h. We start
by defining a partition Th = {Ωe} (1 ≤ e ≤ Nel) of the domain Ω̄ into a finite
number Nel of closed subsets, called elements. By this it is meant that the
following properties are satisfied:

• Each Ωe is a closed nonempty set, with a polygonal continuous boundary

• Ω̄ =
⋃Nel

e=1 Ωe

•
◦
Ωe1

∩
◦
Ωe2

= ∅ ∀e1 �= e2

Over each element Ωe we associate a finite-dimensional function space Xe

such that each function v ∈ Xe is uniquely determined by its values at a finite

number of points in Ωe : x
(e)
i 1 ≤ i ≤ I, called the local nodal points. For
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example, in the two-dimensional case, if Ωe is a triangle and Xe is the space of
linear functions on Ωe, then we may choose the three vertices of the triangle
as the nodal points; if Xe consists of all the quadratic polynomials on Ωe,
then we can use the three vertices and the three side midpoints as the nodal
points. It is required that any two neighboring elements Ωe1

and Ωe2
share

the same nodal points on Ωe1
∩ Ωe2

. This last requirement usually leads to
a regularity condition on the finite element partition that the intersection of
any two elements must be empty, a vertex or a common side (or face).

For convenience in practical implementation as well as in theoretical anal-
ysis it is assumed that there exists one (or sometimes more) closed polygonal
domain, ambiguously represented by the symbol Ω̂, such that for each ele-
ment Ωe, there is a smooth mapping function Fe with Ωe = F (Ω̂). A finite
dimensional function space X̂ is introduced on Ω̂, together with the nodal
points on Ω̂ used to uniquely determine functions in X̂. Then the local func-
tion space Xe on Ωe will be obtained through the mapping function Fe from
X̂ by Xe ◦ Fe = X̂ . For example, X̂ can be taken to be a space of polyno-
mials of certain degrees. In the case of a two-dimensional polygonal domain
Ω, the partition consists of triangles or quadrilaterals, while in the case of
a three-dimensional domain, the partition consists of tetrahedrals or hexahe-
drals. Then, the finite element space can be defined as

V h = {vh ∈ V : vh ◦ Fe ∈ X̂ ∀e : 1 ≤ e ≤ Nel} (4.4)

We observe that if X̂ consists of polynomials, then a function from the space V h

is a piecewise image of polynomials. When Fe is linear, vh|Ωe , the restriction
of a function vh ∈ V h on Ωe is a polynomial, while if Fe is nonlinear (e.g.
bilinear for quadrilateral elements), vh|Ωe is in general not a polynomial.

A few indications are in order on the requirements of vh ∈ V . For sim-
plicity, we consider the case of a second-order initial boundary value problem
with V ⊆ H(Ω). Since the restriction of vh on each element Ωe is a smooth
function, a necessary and sufficient condition that vh ∈ V is vh ∈ C(Ω̄) and
vh satisfies any possible Dirichlet boundary condition specified in V [26].

As a consequence of the defining relations (4.1) and (4.3) for u and vh,
together with the continuity and V -ellipticity of the bilinear form a(·, ·), we
have the following result (Cea’s lemma [26]) which estimates the error of the
finite element solution according to

‖ u − uh ‖V ≤ c inf
vh∈V h

‖ u − uh ‖V (4.5)

which informs that, up to a multiplicative constant, the finite element solu-
tion uh is an optimal approximation to u among the functions from the finite
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element space V h. Thus, the problem of estimating the finite element solution
error can be reduced to one of estimating the approximation error

‖ u − uh ‖V ≤ c ‖ u − Πhu ‖V (4.6)

where Πhu is any finite element interpolant of u.

4.2 Fully discrete approximation of the dual pro-

blem

In this section a family of spatial and time (fully) discrete approximations to
the problem Dual (see Section 3.3) is presented. It is remarked that, under
certain assumptions made clear in Chapter 3, the problem Dual has a unique
solution. For convenience the statement of the variational formulation under
consideration is reported here:

Problem Dual. Given a linear functional ℓ ∈ H1(0, T ;V ′), with ℓ(0) = 0,
find (u,S) = (u,σ,χ) : [0, T ] → V × P, with (u(0),S(0)) = (0,0), such that
for almost all t ∈ (0, T )

b(v,σ(t)) = 〈ℓ(t),v〉 ∀v ∈ V (4.7)

A(Ṡ(t),T − S(t)) + b(u̇(t), τ − σ(t)) ≥ 0 ∀T = (τ ,µ) ∈ P (4.8)

with

V = [H1
0 (Ω)]3

P = {T = (τ ,µ) ∈ T : (τ ,µ) ∈ K a.e. in Ω}
S =

{
τ ∈ Linsym : τij ∈ L2(Ω)

}

M =
{
µ = (µk) : µk ∈ Linsym, µk|ij ∈ L2(Ω), 1 ≤ k ≤ m

}

and

T = S × M

The bilinear forms A(·, ·) and b(·, ·) are defined according to:

A : T × T → R, A(S,T) =

∫

Ω
σ : C

−1τdv +

∫

Ω
χ · H

−1µdv

b : V × S → R, b(v, τ ) = −
∫

Ω
εεε(v) : τdv
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while the linear form ℓ(t) reads:

ℓ(t) : V → R, 〈ℓ(t),v〉 = −
∫

Ω
b(t) · vdv

Assume that a uniform partition of the reference time interval [0, T ] into N
subintervals is given, with constant step size ∆t = T/N . Assume also that
a finite element mesh Th = {Ωe} (1 ≤ e ≤ Nel) of the spatial domain is
constructed in the usual way, with the mesh-size parameter defined by h =
max1≤e≤E(he), where he is the diameter of the element Ωe, a general element
of the triangulation. It is also assumed that the finite element subspace V h

consists of piecewise linear functions in V , while Sh and Mh are the subspaces
of S and M , respectively, comprising piecewise constants. Define:

T h = Sh × Mh

and

Ph =
{
Th = (τh,µh) ∈ T h : Th ∈ K a.e. in Ω

}

by which it is recalled that admissible generalized stress states are those that
belong to the set K pointwise.

Next we have a family of fully discrete schemes for the problem Dual [41].

Scheme Dualh∆t. Let α ∈
[

1
2 , 1
]

be a scalar parameter. As before, we divide
the time interval [0, T ] into N steps of equal size ∆t = T/N . The partition
nodes are tn = n∆t, the midpoints are tn+α = (n+α)∆t, with n = 0, ..., N −1.
Find (wh∆t,Sh∆t) = {(wh∆t

n+1,S
h∆t
n+1), 0 ≤ n ≤ N − 1} ⊂ V h × Ph, with

(wh∆t
0 ,Sh∆t

0 ) = (0,0) such that for n = 0, ..., N − 1

b(vh,σh∆t
n+α) = 〈ℓ(tn+α),vh〉 ∀vh ∈ V h (4.9)

Ah(∆Sh∆t
n+1,T

h − Sh∆t
n+α) + b(wh∆t

n+α, τ h − σh∆t
n+α) ≥ 0 ∀Th = (τ h,µh) ∈ Ph

(4.10)

In the above statement we have defined ∆Sh∆t
n+1 = ∆Sh∆t

n+1 − ∆Sh∆t
n and have

introduced the generalized midpoint formula

Sh∆t
n+α = αSh∆t

n+1 + (1 − α)Sh∆t
n

used to approximate the time derivatives. The symbol wh∆t
n+α ∈ V h is used to

denote the approximation of the velocity w(t) = u̇(t) at t = tn+α. Likewise,
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the bilinear form Ah : T × T → R represents an approximation to A(·, ·)
defined by:

Ah(S,T) =

∫

Ω
σ : C

−1
h τdv +

∫

Ω
χ · H

−1
h µdv (4.11)

in which the approximate moduli C
−1
h and H

−1
h are piecewise constant approx-

imations of C
−1 and H

−1 over each element. Also C
−1
h and H

−1
h are assumed to

satisfy the material properties requirements possessed by C
−1 and H

−1, given
in Section 3.2, with the constant there independent of h (cf. (3.12)-(3.13)).

It is found that under the discrete counterpart of the assumptions required
in Section 3.3 to show the uniqueness of solution property for the problem
Dual, it is possible to show that the discrete problem Dualh∆t has a solu-
tion. Without going into further details and referring to [41] for a complete
derivation of the result, we give here two basic theorems respectively regarding
the error order estimate and the stability of the previously presented schemes
under minimal regularity conditions.

Theorem 4.2.1 Assume S ∈ W 2,1(0, T ;T ), w ∈ L∞(0, T ; [H2(Ω)]3), Cijkl ∈
W 1,∞(Ω) and Hij ∈ W 1,∞(Ω) (1 ≤ i, j, k, l ≤ 3). Then for the fully discrete
solutions defined in Scheme Dualh∆t, the following estimate holds:

max
0≤n≤N

‖ S(tn) − Sh∆t
n ‖T = O(h + ∆t)

Additionally, if α = 1
2 and S ∈ W 3,1(0, T ;T ) it holds:

max
0≤n≤N

‖ S(tn) − Sh∆t
n ‖T = O[h + (∆t)2]

Theorem 4.2.2 Under the basic regularity condition (u,S) ∈ H1(0, T ;V ×
T ), the fully discrete solution defined in the Scheme Dualh∆t converges:

max
0≤n≤N

‖ S(tn) − Sh∆t
n ‖T → 0 as ∆t, h → 0

4.3 Time integration schemes for the dual problem

based on finite difference methods

We now focus our attention only on the time discretization of the dual problem.
The extension of the discussion to fully discrete schemes as the one presented
in the previous section is straightforward and requires only to change infinite-
dimensional spaces or their subsets to corresponding finite element spaces or
their subsets in the argument.
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The following schemes can be generally casted within the set of genera-
lized midpoint integration schemes in that time derivatives are approximated
stepwise using a generalized midpoint rule with respect to time. In the follow-
ing we present three time integration schemes. The first is the well established
backward Euler’s scheme which results a particular case of the general integra-
tion scheme for a specific choice of the scalar integration parameter. The other
two integration schemes are properly based on the generalized midpoint inte-
gration rule and form two distinct families since we have a variable integration
parameter for each one of them.

For convenience and to make notation lighter we omit the dependence of
the nodal variables on the time step ∆t which, unless differently specified, is
assumed constant for each time step of the interval [0, T ] and equal to T/N .
Accordingly, we admit the identification (·)∆t

n = (·)n for the generic nodal
variable.

Scheme Dual1 (Backward Euler’s rule).
Find (w,S) = {(wn+1,Sn+1), 0 ≤ n ≤ N−1} ⊂ V ×P, with (w0,S0) = (0,0),
such that for n = 0, ..., N − 1

b(v,σn+1) = 〈ℓ(tn+1),v〉 ∀v ∈ V (4.12)

A(∆Sn+1,T − Sn+1) + b(wn+1, τ − σn+1) ≥ 0 ∀T ∈ P (4.13)

More generally, it is possible to form a family of generalized midpoint integra-
tion schemes, based on the following generalized midpoint formula

Sn+α = αSn+1 + (1 − α)Sn

wn+α = αwn+1 + (1 − α)wn

where α ∈
[
1
2 , 1
]

is the scalar discretization parameter. Accordingly we have
the following family of integration procedures [69, 71].

Scheme Dual2 (One-stage Generalized Midpoint Rule).

Find (w,S) = {(wn+1,Sn+1), 0 ≤ n ≤ N−1} ⊂ V ×P, with (w0,S0) = (0,0),
such that for n = 0, ..., N − 1

b(v,σn+α) = 〈ℓ(tn+α),v〉 ∀v ∈ V (4.14)

A(∆Sn+1,T − Sn+α) + b(wn+α, τ − σn+α) ≥ 0 ∀T ∈ P (4.15)

It is noted that such a scheme grants that, since P is a convex set and since
Sn,Sn+1 ∈ P, it results Sn+α ∈ P. In other words, the scheme Dual2 results
both midpont (t = tn+α) and endpoint (t = tn+1) yield-consistent, i.e. it
returns a solution in terms of generalized stress which results consistent with
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the yield surface limit. Obviously, in the case α = 1 the scheme Dual2

reduces to the scheme Dual1. This implies that the also the scheme Dual1

is end-point yield consistent. Yield-consistency of the numerical solution is
a desirable property of a numerical time integration scheme since it avoids
possible undesired instabilities of the solution [72].

It is possible to carry out an error analysis of the above schemes in terms
of the error norm maxn ‖ S(tn) − Sn ‖T [41]. If the solution is sufficiently
smooth (i.e. S ∈ W 2,1(0, T ;T )), the scheme Dual2 and hence also the scheme
Dual1 are of first-order when α ∈

(
1
2 , 1
]

max
n

‖ S(tn) − Sn ‖T ≤ c∆t ‖ S ‖W 2,1(0,T ;T )

while the scheme Dual2 is second-order accurate, i.e.:

max
n

‖ S(tn) − Sn ‖T ≤ c∆t2 ‖ S ‖W 3,1(0,T ;T )

when α = 1
2 and S ∈ W 3,1(0, T ;T ).

A third family of discretization procedures is based on a generalized mid-
point method proposed by Simo [69], still based on the generalized midpoint
integration technique but with a double stage procedure.

Scheme Dual3 (Two-stage Generalized Midpoint Rule). [69]
Let (w0,S0) = (0,0).

• STEP 1.

For n = 0, ..., N − 1, first compute (wn+α,Sn+α) ⊂ V × P, satisfying

b(v,σn+α) = 〈ℓ(tn+α),v〉 ∀v ∈ V (4.16)

A(Sn+α − Sn,T − Sn+α)

+(α∆t)b(wn+α, τ − σn+α) ≥0 ∀T ∈ P (4.17)

set

wn+1 =
1

α
wn+α +

(

1 − 1

α

)

wn (4.18)

• STEP 2.

Find Sn+1 ∈ P such that

A(Sn+1 − Sn,T − Sn+1)

+∆tb(wn+1, τ − σn+1) ≥ 0 ∀T ∈ P (4.19)
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The result on the existence of a solution of the time continuous problem Dual
introduced in Section 3.3 can be extended in the present context respectively
to the discrete variational forms (4.14)-(4.15), (4.16)-(4.17) and (4.18)-(4.19)
[41]. The variational problem expressed by the inequality (4.19) is equivalent
to a constrained minimization problem of the form

inf

{
1

2
A(T,T) − A(Sn,T) + ∆tb(wn, τ ) : T ∈ P

}

which has a unique minimizer Sn+1 ∈ P [41]. In what follows we present two
fundamental results on stability and convergence of the above semidiscrete
schemes. The proof of the ensuing propositions may be found in [41].

We begin by first presenting a general property of contractivity of the
solution.

Theorem 4.3.1 Let (u1,S1) and (u2,S2) : [0, T ] → V×P satisfy the relations
(4.7)-(4.8). Then:

‖ S1(t) − S2(t) ‖A≤‖ S1(s) − S2(s) ‖A ∀s, t, 0 ≤ s ≤ t ≤ T (4.20)

We thus say that a numerical scheme for Problem Dual is stable if its
numerical solutions inherit the contractivity property of the solution of the
continuous problem. More precisely we have the following definition.

Definition 4.3.2 A numerical scheme for solving the Problem Dual is said
to be stable if two numerical solutions (w1,S1) = {(w1,n+1,S1,n+1), 0 ≤ n ≤
N − 1} and (w2,S2) =
{(w2,n+1,S2,n+1), 0 ≤ n ≤ N − 1} generated by two initial values, satisfy the
inequality:

‖ S1,n+1 − S2,n+1 ‖A≤‖ S1,m+1 − S2,m+1 ‖A ∀m,n, 0 ≤ m ≤ n ≤ N
(4.21)

Stability is a desirable property for a numerical scheme. The estimate (4.21)
shows that the propagation of the error to later steps is controlled with con-
stant 1. With the above positions and definition we are able to state the
following theorem (see [41] for a complete derivation of the result).

Theorem 4.3.3 The schemes Dual1 and Dual3 are stable. If α ∈ [12 , 1],
the scheme Dual2 is also stable

It is noted that the contractivity property implies uniqueness of a solution
[41, 70]. Thus, in particular for both the continuous problem and discrete
problem, the uniqueness of the generalized stress part of the solutions follows
immediately.



4.4. SOLUTION ALGORITHMS FOR THE TIME INTEGRATION SCHEMES 125

4.4 Solution algorithms for the time integration sche-

mes

In practical computations, usually the fully discrete schemes discussed above
for the solution of the elastoplastic equilibrium variational problem are not
implemented directly, because of the large size of the discrete problems. Com-
monly an iteration procedure is adopted in order to split the task of computing
the generalized stress and the displacement. The iteration procedures used are
all of the “predictor-corrector” type. In this section we present two of the most
common predictor-corrector algorithms which apply to the discrete problems
discussed in the previous section. Attention is focused on algorithms which
are in common use in current computational practice [69]. The presentation,
for brevity, is limited to the solution of the scheme Dual1 for a single time
step. The treatment of the other time-discrete and fully discrete approxima-
tion involves the same basic steps and therefore it is omitted here.

For convenience, we first propose a re-formulation of the Problem Dual.
Let

Se = (Cεεε,0)

where C represents as usual the elastic tensor. Then, the variational inequality
(4.8) can be rewritten as

A(Ṡ
e
(t) − Ṡ(t),T − S(t)) ≤ 0 ∀T = (τ ,µ) ∈ P (4.22)

Therefore, the scheme Dual1 can be restated as follows. Set ℓn+1 = ℓ(tn+1)
and

un+1 = ∆t
n∑

j=1

wj n = 1, ..., N

Scheme Dual. Find (un+1,Sn+1) = {(un+1,σn+1,χn+1), 0 ≤ n ≤ N −1} ⊂
V × P, with (u0,S0) = (0,0), such that for n = 0, ..., N − 1

b(v,σn+1) = 〈ℓ(tn+1),v〉 ∀v ∈ V (4.23)

A(STR
n+1 − Sn+1,T − Sn+1) ≤ 0 ∀T ∈ P (4.24)

in which

STR
n+1 = Sn + ∆Se

n+1 (4.25)
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represents the generalized stress that results by a purely elastic evolution over
the step, given in terms of the quantity

∆Se
n+1 = (C(εεεn+1 − εεεn),0) = (C(εεε(un+1 − un)),0)

Theorem 3.3.3, with its assumptions, grants that the Scheme Dual has a
unique solution.

At this stage it may be noted that once STR
n+1 is known, the variational

inequality (4.24) is equivalent to the minimization problem

Find T s.t. J(T) =
1

2
‖ STR

n+1 − T ‖A→ inf, T ∈ P (4.26)

where ‖ · ‖A is the norm induced by the bilinear form A(·, ·). Likewise, the
above problem is formally equivalent to the following projection problem

Sn+1 = ΠP,ASTR
n+1 (4.27)

where ΠP,A denotes the projection operator onto P, with respect to the inner
product (·, ·)A. In both views, the updating of the solution is set forth imposing
the yield surface consistency constraint to the trial solution, calculated by
(4.25).

The algorithms for solving the problem expressed by (4.23)-(4.24) that
are discussed in the following paragraph and that are implemented in the
subsequent section are of the predictor-corrector type.

By the predictor-corrector concept, we are lead to an iterative solution
procedure in which each iteration consists of a predictor trial step, followed
by a corrector step which returns a consistent solution. In the predictor step,
in fact, the quantity un+1 is first updated using Equation (4.23). Then an
updated trial generalized stress value STR

n+1 is computed. The corrector step,
then, consists in solving Equation (4.24) (or equivalently (4.26) or (4.27))
in order to get a new iteration for Sn+1. In general, a variety of solution
algorithms can be developed by using different schemes to update un+1 in the
predictor step. In what follows we consider the so-called elastic predictor and
the so-called tangent predictor [41]. Within the context of a finite element
space discretization of the problem, the second algorithm refers to the well
known Newton’s iterative linearization procedure.

In the literature (see for instance [69, 71]) an implementation of the cor-
rector step is usually referred to as a return map algorithm. Using an updated
value for un+1 from the predictor step, the algorithm computes the corre-
sponding updated strain increment ∆εεεn+1 and, through Equation (4.25), an
updated trial state STR

n+1 for the generalized stress, assuming that no plastic
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deformation takes place during the step [tn, tn+1]. If the trial state STR
n+1 be-

longs to P, i.e. if the trial state is admissible, then the solution updating
is Sn+1 = STR

n+1 and the procedure steps forward to the solution of equations
(4.23)-(4.24) for the next time increment. Otherwise, if the updated trial state
lies outside the admissible region P, the corrector returns the iteration to a
point on P which results close to the trial state in some sense. The architecture
of the corrector step is also clear from the version of the projection problem,
expressed by (4.27).

4.4.1 Elastic predictor

We begin by returning to Equation (4.7). As already specified one may think
to work with a finite element strategy for the space discretization of the pro-
blem and to address the time integration by means of one of the presented
time integration schemes. Accordingly, we solve a sequence of (consistently)
linearized problems associated to the variational problem (4.7). In this ex-
position we adopt a superscript i as the iteration counter in the algorithm.
We begin by assuming the stress σ as a function implicitly depending on the
displacement u. Then, for the (i+1)th iteration of the stress, let us introduce
the following (elastic) approximation into (4.7) in the place of σ

σi+1 = σ(εεε(ui+1)) ≈ σ(εεε(ui)) + Dεεε(ui+1 − ui)

Accordingly, the predictor step is referred to as an elastic predictor by virtue
of the fact that the modulus D is assumed to be time-independent and to be
related to the elastic tensor C in an assigned way. Later, sufficient conditions
on the tensor D are given in order to grant the convergence of the predictor-
corrector method.

The above iterative form is then introduced into Equation (4.7) which,
starting from the previous known iteration (ui

n+1,S
i
n+1), is to be solved in

order to update the displacement value un+1 once at convergence. We have
∫

Ω
Dεεε(ui+1

n+1 − ui
n+1) : εεε(v)dv = b(v,σi

n+1) − 〈ℓn+1,v〉 ∀v ∈ V

The above equation may be regarded as an approximation to (4.7) at time t =
tn+1, in which σ(tn+1) is replaced by a first-order approximation σ(εεε(ui+1

n+1)) ≈
σ(εεε(ui

n+1)) + Dεεε(ui+1
n+1 − ui

n+1). Thus, once (un,Sn) is known, a predictor
corrector algorithm for computing (un+1,Sn+1) is provided by the following
procedure.

• Initialization: u0
n+1 = un, S0

n+1 = Sn
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• Iteration: for i = 1, 2, ..., imax

– Predictor: compute ui+1
n+1 ∈ V satisfying

∫

Ω
Dεεε(ui+1

n+1 − ui
n+1) : εεε(v)dv = b(v,σi

n+1) − 〈ℓn+1,v〉 ∀v ∈ V

(4.28)

and a trial state for the generalized stress

STR,i+1
n+1 = Sn + ∆Se,i+1

n+1 (4.29)

with

∆Se,i+1
n+1 = (Cεεε(ui+1

n+1 − un),0)

– Corrector: find Si+1
n+1 ∈ P such that

A(STR,i+1
n+1 − Si+1

n+1,T − Si+1
n+1) ≤ 0 ∀T ∈ P (4.30)

The above elastic predictor-plastic corrector scheme is very popular in com-
putational plasticity and is granted to be convergent [41, 69], provided some
suitable requirements on the modulus D are satisfied. Namely, as soon as D is
symmetric, uniformly bounded, pointwise stable and such that the inverse D−1

exists and is uniformly dominated by C
−1, then the above iteration procedure

converges to the exact solution. This fact is formalized by the following result.

Theorem 4.4.1 Assume that the modulus D is chosen in such a way that it
is symmetric, uniformly bounded, pointwise stable in the sense that for some
constant c > 0

D(x)τ : τ ≥ c ‖ τ ‖2 ∀τ ∈ Linsym, a.e. x ∈ Ω (4.31)

and such that its inverse D
−1 is uniformly dominated by C

−1 (or equivalently
C is uniformly dominated by D) in the sense that for some constant α > 0

τ : (C−1(x) − D
−1(x))τ ≥ α ‖ τ ‖2 ∀τ ∈ Linsym, a.e. x ∈ Ω (4.32)

Then
S

i → S as i → ∞
and for some subsequence {uij}j of {ui}i and some element ũ ∈ V

u
ij ⇀ ũ as j → ∞

The limits ũ ∈ V and S ∈ P together solve the problem (4.23)-(4.24) [41].
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4.4.2 Tangent predictor

Another common approach in the application of the predictor-corrector type
algorithms is the one that uses a tangent predictor. This choice produces an
iterative solver based on Newton’s method. This predictor takes as a starting
point a first-order Taylor expansion of σ, in which the modulus D introduced
in the preceding section is replaced by an appropriate tangent modulus. We
give here simply a brief illustration on the main idea underneath this choice
and on the steps involved in the computation of the tangent predictor. The
derivations are reported according to [69].

The procedure basically resemble the one of the elastic predictor, except
that for the approximation of the stress tensor. As usual, we refer to the
(i + 1)th iteration, assuming that the data (ui

n+1,S
i
n+1) is known. Again,

Equation (4.23) is used to update un+1. By a Taylor’s expansion we may
write

σ(εεε(ui+1
n+1)) ≈ σ(εεε(ui

n+1)) +
∂σ

∂εεε
(εεε(ui

n+1)) : εεε(ui+1
n+1 − ui

n+1)

This leads to the task of finding an approximate value for the fourth-order tan-

gent tensor
∂σ

∂εεε
(εεε(ui

n+1)) consistent with the adopted time integration scheme.

We start with the constitutive relations

σ = C(εεε(u) − ep)

χ = −Hξ

and make the following positions:

εεεn+1 = εεε(un+1)

En+1 = (εεεn+1,0)

Pn+1 = P(un+1)

Sn+1 = S(εεεn+1)

Thus we have
Sn+1 = G(En+1 − Pn+1) (4.33)

with G the diagonal matrix operator given by

[G] =

[
C

H

]

Differentiating both sides in (4.33) gives

dSn+1 = G(dEn+1 − dPn+1) (4.34)
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We need an (approximate) expression for dPn+1 in terms of dEn+1. This is
accomplished by recalling the associative flow rule examined in Section 2.3

Ṗ = γ̇∇φ(S)

which in incremental form becomes

Ṗn+1 = γ̇n+1∇φ(Sn+1)

Hence, integrating the above relation over the time step, one finds

Pn+1 − Pn ≈ λn+1∇φ(Sn+1)

where λn+1 = ∆tγ̇n+1 = ∆γn+1. In the following sections, the increment of
the plastic multiplier λn+1 over the step [tn, tn+1] will be simply indicated by
λ for brevity’s reasons.

Being Pn given, differentiating the preceding expression yields

dPn+1 ≈ d(λn+1)∇φ(Sn+1) + λn+1∇2φ(Sn+1)dSn+1

which, upon substitution into (4.34), gives

dSn+1 ≈ G(dEn+1 − d(λn+1)∇φ(Sn+1) − λn+1∇2φ(Sn+1)dSn+1)

In conclusion it is found

dSn+1 ≈ Gn+1[dEn+1 − d(λn+1)∇φ(Sn+1)] (4.35)

where

Gn+1 = [G−1 − λn+1∇2φ(Sn+1)]
−1 (4.36)

In this way the problem is reduced to one of finding an (approximate) expres-
sion for the differential of the plastic multiplier increment d(λn+1) in terms
of dEn+1. This task is achieved by imposing the consistency condition at the
end of the step t = tn+1

dφ(Sn+1) = ∇φ(Sn+1) · dSn+1 = 0 (4.37)

Combining (4.35) and (4.37) it results

d(λn+1) ≈
∇φ(Sn+1) · Gn+1dEn+1

∇φ(Sn+1) · Gn+1∇φ(Sn+1)
(4.38)
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The above relation together with Equation (4.35) provides the following for-
mula

dEn+1 ≈ [Gn+1 − Nn+1 ⊗ Nn+1]dEn+1 (4.39)

where the matrix operator Nn+1 is defined as

Nn+1 =
Gn+1∇φ(Sn+1)√

∇φ(Sn+1) · Gn+1∇φ(Sn+1)
(4.40)

The relation (4.39) thus provides the formula

dσn+1 ≈ C
ep
n+1dεεεn+1 (4.41)

in which C
ep
n+1 can be viewed as an approximation of

∂σ

∂εεε
(εεε(un+1)). The fourth-

order elastoplastic consistent algorithmic tangent operator C
ep
n+1 can readily

be viewed as the discrete counterpart of the continuous operator C
ep defined

in Chapter 2 by Equation (2.134) for the case of J2 plasticity with combined
linear isotropic/kinematic and nonlinear kinematic hardening.

As pointed out in [71, 72] the use of a consistent tangent operator preserves
the quadratic rate of convergence of the Newton’s method adopted in the
incremental solution of the finite element scheme. Moreover, as noted by [72]
imposing consistency at the endpoint of each time steps, in relation to the
previously studied backward Euler’s method, produces a symmetric operator,
while the same does not hold true for the midpoint family algorithms. The
symmetry can anyway be obtained by enforcing consistency at the midpoint
instant tn+α [63].

The tangent predictor step is constructed as follows. Once an iteration
(ui

n+1,S
i
n+1) is known, the algorithm computes Gi

n+1 from (4.36), with Sn+1

there being replaced by Si
n+1. Then, the generalized matrix operator N

i
n+1

is computed from its definition (4.40), again with Si
n+1 in the place of Sn+1.

Now, exploiting the relation between dSi
n+1 and dEi

n+1, given by (4.39), the
algorithmic tangent modulus C

i
n+1 can be calculated following (4.41). After

the preceding predictor step is completed, the corrector (4.30) is applied to
update Sn+1. The unknown scalar λn+1 appearing in (4.36) is computed im-
posing the consistency condition on the generalized stress at the end of the
step.

From a theoretical standpoint it is not clear how to prove convergence
for the tangent predictor constructed above [41]. However, in practice, it is
known that the tangent predictor performs far more efficiently than the elastic
predictor, particularly if a line search algorithm is implemented [69, 70, 79].
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Closest point projection

It is observed that the key point of the corrector step in the predictor-corrector
algorithms presented above is the solution of a variational inequality of the
form (omitting all subscripts and superscripts for simplicity)

S ∈ P A(STR − S,T − S) ≤ 0 ∀T ∈ P (4.42)

Formally, this is an elliptic variational inequality of the first kind. Equivalently,
the solution S can be shown to be the closest-point projection of the trial
generalized stress STR (cf. (4.25)) onto the admissible convex set P [69].
This is a standard problem in convex programming that can be formulated as
follows

Problem. Let P be a nonempty, closed, convex subset of a Hilbert space T
and G

−1 a symmetric, positive definite metric on T . Given STR ∈ T , solve
the problem

min

{
1

2
(STR − S) · G

−1(STR − S) · S ∈ P
}

(4.43)

A possible solution algorithm for solving the constrained minimization problem
(4.43) is presented in [69] and first needs the following equivalence result

Theorem 4.4.2 S ∈ P is the solution of the problem (4.43) if and only if
there exists a scalar λ such that

S = S
TR − λG∇φ(S)

φ(S) ≤ 0, λ ≥ 0, λφ(S) = 0
(4.44)

The proof of the above assertion is straightforward. Let S ∈ P be the solution
of problem (4.43). The Lagrangian associated with the constrained minimiza-
tion problem is

L(S, λ) =
1

2
(STR − S) · G

−1(STR − S) · S + λφ(S)

By the Kuhn-Tucker optimality condition, we get (4.44). On the other hand,
assume that (4.44) is satisfied for some S ∈ P and some scalar λ. Then, by
the so-called second-order sufficiency condition [41, 58], S ∈ P is the solution
of the constrained minimization problem.

An application of Newton’s iterative method to solve the system (4.44) re-
sults in a solution algorithm. This algorithm performs well on some numerical
examples [69, 79], but from a theoretical point of view is not guaranteed to
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have a consistent solution λ ≥ 0. Also the convergence issue is still an open
problem.

In some selected cases, nevertheless, the above algorithm results in the
simple solution of a linear equation and thus the problem simplifies signifi-
cantly. This case is addressed in detail in the following chapter when the case
of J2 plasticity with linear isotropic and kinematic hardening is approached
adopting the backward Euler’s integration scheme.

A return map algorithm for the one-dimensional elastoplastic model

In what follows we give a brief description of the classical return map algo-
rithm [70], based on the backward Euler’s rule for the integration of the one-
dimensional contitutive model presented in Section 2.2. The one-dimensional
constitutive model, recalled here for convenience, is governed by the following
relations

σ = E (ε − εp) (4.45)

Σ = σ − α (4.46)

ε̇p = γ̇ sign (Σ) (4.47)

φ = |Σ| − σy (4.48)

˙̄ep = γ̇ (4.49)

σy = σy,0 + Hisoē
p (4.50)

α̇ = γ̇Hkin sign (Σ) (4.51)

γ̇ ≥ 0 , F ≤ 0 , γ̇F = 0 (4.52)

The aim of this paragraph is to provide an example of the specialization of the
general algorithm enlightened previously to the simple one-dimensional case at
hand. In the next chapter, the issue addressed by the following lines is gene-
ralized to the three-dimensional case and further investigated with particular
emphasis on the exponential-based integration algorithms family which is the
object of this thesis.

The problem to be solved in this context is purely local. We admit there
exists a space discretization of the one-dimensional IBVP, carried out, for
instance, with the finite element method. Let us then consider a material
point x ∈ Ω, the one-dimensional domain of interest. Assume that the local
state at point x, represented by the set

{σn(x), εn(x), εp
n(x), ēp(x), α(x)} (4.53)

is known at the time instant tn. The stress is given by

σn(x) = E [εn(x) − εp
n(x)] (4.54)
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The problem we are dealing with may be stated as follows: given a strain
increment ∆εn+1 = εn+1 − εn at x, which drives the local state to time tn+1,
update the state variables (4.53) to time tn+1, in a manner consistent with the
constitutive laws (4.45)-(4.52).

Note that the framework of the incremental integration problem over the
time interval [tn, tn+1] of the constitutive equations is purely local. Moreover,
as already outlined in Section 4.4 with respect to the numerical solution of
the IBVP of elastoplastic equilibrium, the process is regarded as strain-driven
with the strain ε = ∂u/∂x playing the role of the independent variable.

We start by considering the incremental form of the flow rule (4.47) for the
one-dimensional model. Using a backward’s Euler integration rule, we obtain

εp
n+1 = εp

n + λ sign(Σn+1)

ēp
n+1 = ēp

n + λ
(4.55)

where the scalar λ is the plastic multiplier increment over the step and

σn+1 = E
(
εn+1 − εp

n+1

)

εn+1 = εn + ∆εn+1
(4.56)

The discrete couterpart of the Kuhn-Tucker optimality conditions are

φn+1 = |Σn+1| −
(
σy,n + Hisoē

p
n+1

)

λ ≥ 0

λφn+1 = 0

(4.57)

Note that integrating the contitutive model with the backward Euler’s rule, we
have transformed the initial constrained problem of evolution into a discrete
constrained algebraic problem for the variables

{
σn+1, εn+1, ε

p
n+1, ē

p
n+1, αn+1

}
.

As already pointed out, this problem may also be stated in the form of a
discrete constrained optimization problem. We also observe that Equation
(4.56), being ∆εn+1 given, represents simply the definition for εn+1.

The integration algorithm starts by considering a trial elastic state, ob-
tained by freezing plastic flow over the integration interval [tn, tn+1]. Thus we
have

σTR
n+1 = E [εn+1 − εp

n] = σn + E∆εn+1

ΣTR
n+1 = σTR

n+1 − αn

εp,TR
n+1 = εp

n

ēp,TR
n+1 = ēp

n

αTR
n+1 = αn

φTR
n+1 =

∣∣ΣTR
n+1

∣∣− (σy,n + Hisoē
p
n)

(4.58)
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along with the algorithmic counterpart of the Kuhn-Tucker conditions

φTR
n+1

{
≤ 0 elastic step λ = 0

> 0 plastic step λ > 0
(4.59)

If the step is elastic as in (4.59), then the trial state is taken as the actual
state. Otherwise, if the step is plastic in the sense of (4.59), a correction to
the trial state is introduced as follows by means of a return map algorithm.

Recalling Equation (4.54) and expressing the final stress σn+1 in terms of
σTR

n+1 and λ we obtain

σn+1 = E
(
εn+1 − εp

n+1

)

= E (εn+1 − εp
n) − E

(
εp
n+1 − εp

n

)

= σTR
n+1 − Eλ sign (σn+1)

(4.60)

Therefore, since λ > 0, Equations (4.55)-(4.57) are written, in view of (4.60)
as

σn+1 = σTR
n+1 − λE sign(Σn+1)

εp
n+1 = εp,TR

n+1 + λ sign(Σn+1)

ēp
n+1 = ēp,TR

n+1 + λ

αn+1 = αTR
n+1 + λHkin sign(Σn+1)

φn+1 = |Σn+1| −
(
σy,n + Hisoē

p
n+1

)
= 0

(4.61)

where

Σn+1 = σn+1 − αn+1 (4.62)

Crucial to the above update is the computation of an expression for αn+1,
which can be obtained as follows. Subtract (4.61)4 from (4.61)1 and apply
(4.62). One finds

Σn+1 =
(
σTR

n+1 − αn

)
− λ (Hiso + Hkin) sign (Σn+1) (4.63)

Exploiting the fact that ΣTR
n+1 = σTR

n+1 − αn and rearranging terms in (4.63),
we have

[|Σn+1| + λ (Hiso + Hkin)] sign (Σn+1) =
∣∣σTR

n+1

∣∣ sign
(
ΣTR

n+1

)
(4.64)

Being both λ and the sum (Hiso + Hkin) positive, it necessarily holds

sign (Σn+1) = sign
(
ΣTR

n+1

)
(4.65)
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which implies

|Σn+1| + λ (Hiso + Hkin) =
∣∣ΣTR

n+1

∣∣ (4.66)

The incremental plastic consistency parameter λ > 0 is determined from the
discrete limit (4.61)5 introducing in it Equations (4.66) and (4.61)3:

φn+1 =
∣∣ΣTR

n+1

∣∣− (E + Hkin) λ −
(
σy,n + Hisoē

p
n+1

)

=
∣∣ΣTR

n+1

∣∣− (E + Hkin) λ − (σy,n + Hisoē
p
n) − Hiso

(
ēp
n+1 − ēp

n

) (4.67)

The above equation is solved for λ in closed form and gives

λ =
φTR

n+1

E + Hiso + Hkin
> 0 (4.68)

The incremental plastic rate parameter given by Equation (4.68), together with
(4.65) completes the plastic correction (4.61). As it is pointed out in the next
chapter, where a wide set of integration algorithms for J2 elastoplastic models
are examined, the possibility of determining the plastic consistency parameter
in closed form is not always granted a priori. In such cases particular solution
strategies need to be actuated in order to compute the plastic rate parameter
λ.

4.4.3 Finite element solution of the IBVP of elastoplastic equi-

librium

In the preceding paragraph we have presented an integration algorithm for the
one-dimensional elastoplastic constitutive model analyzed in Section 2.2, based
on the backward Euler’s rule. Before passing to the next chapter in which the
generalization of the above case is made to three-dimensional J2 plasticity, we
find it convenient to present the sketch of the iterative solution of a general
three-dimensional initial boundary value problem of elastoplastic equilibrium,
within the context of a finite element strategy. The aim of the following lines
is to introduce the general finite element strategy that is used by common
finite element codes to solve elastoplastic equilibrium initial boundary value
problems. The steps described here are the same followed by the FEAP code
[73] used in the numerical tests Chapter 6 for the solution of our test problems.
We briefly present here the procedure performed by the iterative solver for a
general three-dimensional problem, while the next paragraph is devoted to
the the one-dimensional case using the return map algorithm discussed above.
Following [70] such a procedure is composed of the following steps:
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i. Time discretization

(a) The reference time interval [0, T ] is discretized into a partition of N
time subintervals, according to [0, T ] =

⋃N−1
n=0 [tn, tn+1]. The gen-

eral interval [tn, tn+1] has amplitude ∆t = tn+1 − tn. The relevant
problem is reported to a typical time interval.

(b) The time derivatives arising in the weak form of the initial boundary
value problem are approximated by suitable integration schemes,
for instance, as the ones presented in Section 4.3. This step leads
to the formulation of a global time integration algorithm and, to a
large extent, is independent of the specific constitutive model.

(c) Attention is now restricted to a particular point x ∈ Ω prede-
termined by the spatial discretization discussed below (in fact, a
quadrature point of a typical finite element). The goal is to com-
pute an approximation of the stress appearing in the weak form.

(d) At the point x ∈ Ω of interest at time tn, the (incremental) displace-
ment (leading to tn+1), denoted by ∆un+1(x) = un+1(x) − un(x),
is regarded as given.

(e) At time tn, the state at x ∈ Ω characterized by {σn(x),εεεn(x),
ep

n(x), ēp
n(x),αn(x)} is given and is assumed to be equilibrated, i.e.

it satisfies Equation (4.12) evaluated at tn.

(f) The problem at this stage is to update the state variables at x ∈
Ω to the values

{
σn+1(x),εεεn+1(x), ep

n+1(x), ēp
n+1(x),αn+1(x)

}
in

a manner consistent with the constitutive equations examined in
Section 2.2 for the von-Mises elastoplastic model.

ii. Space discretization

(a) The domain Ω is discretized as Ω̄ =
⋃Nel

e=1 Ωe in order to arrive at the
discrete counterpart of the weak form of the equilibrium equations
(see Section 4.1).

(b) Attention is focused on a typical finite finite element Ωe. For a
given stress field σn+1(x) at predetermined points, one evaluates
the weak form (4.12) restricted to Ωe.

(c) Assemble the contributions of all elements and determine wether
the system is equilibrated under the state {un+1(x),σn+1(x)}.

(d) Determine a correction to the displacement field and return to step
i. to evaluate the associated state {σn+1(x),εεεn+1(x),
ep

n+1(x), ēp
n+1(x),αn+1(x)

}
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Finite element solution of a one-dimensional IBVP of elastoplastic
equilibrium

To illustrate the above solution procedure and the use of the return map
integration algorithm (4.58)-(4.61), we outline a typical numerical solution
scheme for a one-dimensional elastoplastic equilibrium IBVP in the context of
the finite element method. We aim at specializing the dual variational form
of the problem presented in Section 2.4 for a one-dimensional material body.

The object of study is a one-dimensional body B, identified with the closed
interval Ω ≡ Ω̄ = [0, L], with material points labeled by their position x ∈ Ω̄.
The boundary of Ω̄, denoted with Γ, is given by the interval extrema Γ =
{0, L}. The interior of the domain is given by the open interval Ω =]0, L[.
Suppose that, for t ∈ [0, T ], a body force b(x, t) is assigned in Ω, a displacement
field ū is assigned on ΓD = {0} as well as a traction σ̄ is assigned on ΓS = {L}.

For simplicity, it is assumed that the displacement boundary condition is
homogeneous:

u|ΓD
= ū = 0 (4.69)

The loading is given in terms of body force

b : Ω × [0, T ] → R (4.70)

and traction

σ̄ : ΓS × [0, T ] → R (4.71)

The formulations of the problem (see Equations (2.139)-(2.142)) specializes to
the present case as follows: find the displacement field u(x, t) which, for any
x ∈ Ω and any t ∈ [0, T ], solves the

• equation of equilibrium

∂σ

∂x
+ ρb = 0 (4.72)

• strain-displacement relation

ε(u) =
∂u

∂x
(4.73)

• constitutive relation represented by relations (4.45)-(4.52) together with
the rate form of the stress-strain relationship (2.25)
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and satisfies the

• boundary conditions

u = ū on ΓD and σ = σ̄ on ΓS (4.74)

• initial conditions

u(x, 0) = u0(x) (4.75)

Thus, in the spirit of the dual weak formulation of the elastoplastic problem
of equilibrium we may set the following function spaces. The displacement
solution space is defined as

V =
{

u : u ∈ H1(Ω), u|ΓD
= ū
}

(4.76)

Then we have the following problem statement: find the displacement field
u(x, t) ⊂ V such that:

• the equilibrium equation holds:

G(σ, v) = 0 ∀v ∈ V,∀t ∈ [0, T ] (4.77)

• the constitutive equations (4.45)-(4.52) hold

where

G(σ, v) =

∫

Ω
σv′dx −

∫

Ω
ρbvdx − σ̄v|ΓS

(4.78)

v′ =
∂v

∂x
(4.79)

With the above hypotheses, the problem solution concerns the numerical ap-
proximation of the displacement u(x, t) appearing in (4.77) with σ(x, t) satis-
fying the local elastoplastic constitutive equations.

In what follows we present a classical algorithmic scheme, for the solution
of the exposed one-dimensional IBVP [48, 70].
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Spatial discretization via finite element method

i. The domain Ω = [0, L] is discretized into a sequence of nonoverlapping
elements

Ωe = [xe, xe+1] (4.80)

such that

Ω =

Nel⋃

e=1

Ωe (4.81)

where x1 = 0 and xNel+1 = L. We set he = xe+1 − xe the “mesh size”,
which for simplicity is assumed uniform.

ii. The simplest (conforming) finite-dimensional approximation to V , de-
noted as usual by V h, is then constructed as follows. The restriction vh

e

to a typical element Ωe of a test function vh ∈ V h is locally interpolated
linearly as

vh
e =

2∑

a=1

Na
e (x)va

e (4.82)

where Na
e (x) : Ωe → R, a = 1, 2 are the linear shape functions defined

as

N1
e =

xe+1 − x

he

N2
e =

x − xe

he

(4.83)

With {ve} =
{
v1
e , v

2
e

}T
and {Ne} =

{
N1

e , N2
e

}T
we indicate, respec-

tively, the vector containing the nodal values of the local element test
functions and the element shape functions1. Then, a global, piecewise,
continuous function vh ∈ V h is obtained from the above element inter-
polation by matching the value of ve at the nodes:

ve = v1
e = v2

e−1

ve+1 = v2
e = v1

e+1

(4.84)

1In this paragraph we admit a slight abuse of notation and indicate algebraic vectors as
for instance {ve}, {Ne} and {Be} with the engineering notation. This permits to mantain
the treatment more compact.
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iii. The computation of G(σh, vh), given by (4.77) with vh ∈ V h (and uh also
in V h since, by assumption ū = 0) is performed in an element-by-element
fashion by setting, in view of (4.81)

G
(
σh, vh

)
=

Nel∑

e=1

Ge

(
σh, vh

)
(4.85)

For a general element Ωe it is first computed

∂

∂x
vh
e = Beve (4.86)

where, in the present case, from (4.83), it results

{Be} =

{
∂

∂x
N1

e ,
∂

∂x
N2

e

}
=

{
− 1

he
,

1

he

}
(4.87)

Therefore, recalling (4.77), it is found

Ge

(
σh, vh

)
= vT

e

[
f int
e (σh) − f ext

e (t)
]

(4.88)

where

f int
e

(
σh
)

=

∫

Ωe

BT
e σh(x, t)dx (4.89)

is the element internal force vector. Note that f int
e is implicitly a func-

tion of uh along with εp, ēp and α through the constitutive equations.
Moreover,

f ext
e

(
σh
)

=

∫

Ωe

[Ne ρb(x, t)] dx + [σ̄(t) Ne]|ΓS∩Γe
(4.90)

is referred to as the element external load vector.

Using Equations (4.69) and (4.84), the expression (4.85) is assembled
from the element contributions given by (4.89) and (4.90) as follows

Gh
(
σh, vh

)
= vT

[
Fint(σh) − Fext(t)

]
(4.91)

where {v} =
{
v2, v3, ..., vNel+1

}T ∈ RNel . The global force vectors are
computed from the element contributions as

Fint(σh) =
Nel

A
e=1

f int
e (σh)

Fext(t) =
Nel

A
e=1

f ext
e (t)

(4.92)
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where
Nel

A
e=1

is the standard finite element assembly operator [48].

Thus, the finite element counterpart of the weak form (4.77) of the equi-
librium equation takes the form

G
(
σh, vh

)
= 0 ∀vh ∈ V h (4.93)

Since the test function vh is arbitrary, it follows that v ∈ RNel is also
arbitrary and from (4.91) one arrives at the discrete system of (nonlinear)
equations:

Fint(σh) − Fext(t) = 0 (4.94)

The crucial step in the outline given above which remains to be addressed
concerns the computation of the stress field σh(x, t) within a typical
element at time t ∈ [0, T ].

An important observation concerning numerical quadrature in the con-
text of the finite element method is now in order. It is remarked that in
general the expression for the element internal force vector is computed
according to a formula of the following kind

f int
e (σh) =

nint∑

ℓ=1

BT
e σh(x, t)

∣∣∣
x=xℓ

e

ωℓhe (4.95)

where xℓ
e indicates a quadrature point in Ωe, ωℓ represenets the corre-

sponding weight and nint is the number of quadrature points on Ωe. It
is noted that from (4.95), in general, in a finite element formulation, the
stress is to be computed at a finite number of points over each element,
typically the quadrature points of the element Ωe.

Incremental solution procedure

Consider the usual partition of the time interval of interest

[0, T ] =

N⋃

n=1

[tn, tn+1] (4.96)

Let xℓ
e ∈ Ωe be a quadrature point of a typical finite element and let {εn, εp

n,
ēp
n, αn} be the internal variables at xℓ

e. Under the body force bn = b(tn) and



4.4. SOLUTION ALGORITHMS FOR THE TIME INTEGRATION SCHEMES 143

the traction σ̄n = σ̄(tn), the body is assumed to be equilibrated. Therefore,
at t = tn, the approximate stress field σh

n satisfies

Fint(σh
n) − Fext

n = 0 (4.97)

The associated displacement field at tn is uh
n ∈ V h. The load at tn+1 is given

by

bn+1 = bn + ∆bn+1

σ̄n+1 = σ̄n + ∆σ̄n+1
(4.98)

with {∆bn+1,∆σ̄n+1} incremental loads, which define a discrete external force
vector Fext

n+1. This is the known data.

The discrete equilibrium problem can be stated as follows: find the dis-
placement field increment ∆uh

n+1 ⊂ V h, such that uh
n+1 = uh

n + ∆uh
n+1, the

updated internal variables
{
εn+1, ε

p
n+1, ē

p
n+1, αn+1

}
and the stress field σh

n+1

(at quadrature points xℓ
e) such that:

•

Fint(σh
n+1) − Fext

n+1 = 0 (4.99)

• the discrete constitutive equations (4.58)-(4.61) hold

Iterative solution procedure

The solution of the above problem is carried out by an iterative solution proce-
dure. In order to simplify the notation in the following we omit the superscript
“h”. We also fix the convention that (·)in+1 represents the value of a history
variable (·) at the ith iteration during the time step [tn, tn+1]. The sketch of
the algorithm is as follows:

i. Let ∆di
n+1 be the incremental nodal displacement vector at the ith it-

eration such that

di
n+1 = dn + ∆di

n+1 (4.100)

is the ith iteration nodal displacement vector. Following respectively
(4.82) and (4.86) it is possible to calculate the displacement and strain
fields over each element as

εi
n+1|Ωe = Bede|in+1 (4.101)
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ii. Given the strain field (4.101), the stress σi
n+1 is computed (at each

quadrature point over each element) using the algorithm (4.58)-(4.61).

iii. The element internal force vector f int
e (σh

n+1) (corresponding to the ith
iteration) is evaluated according to (4.95) for each element and assembled
applying (4.92).

iv. The convergence check is performed. If Equation (4.94) is satisfied for
σ = σi

n+1 then (·)in+1 is the solution, otherwise go to the next step

v. Determine ∆di
n+1, set i ← i + 1 and go to step i.

In the above sequence the calculation of the term ∆di
n+1 is addressed in the

same fashion highlighted in Section 4.4.2, i.e. with a tangent predictor. Thus,
determinating ∆di

n+1 involves the linearization of the term f int(σi
n+1) about

the current configuration, represented by the vector di
n+1. Inspecting Equation

(4.92), by the linearity of the assembly operator, we may write

∂Fint(σi
n+1)

∂di
n+1

∆di+1
n+1 =

Nel

A
e=1

∂f int
e (σi

n+1)

∂de|in+1

∆de|i+1
n+1

=
Nel

A
e=1

∫

Ωe

BT
e

[
∂σi

n+1

∂εi
n+1

]
∂εi

n+1

∂de|in+1

∆de|i+1
n+1dx

=
Nel

A
e=1

[∫

Ωe

BT
e

[
∂σi

n+1

∂εi
n+1

]
Be dx

]
∆de|i+1

n+1

(4.102)

Defining the 2 × 2 element stiffness matrix ke|in+1 as

ke|in+1 =

∫

Ωe

BT
e

[
∂σi

n+1

∂εi
n+1

]
Be dx (4.103)

and assembling all the element contributions according to (4.102), we are left
with an expression of the form

∂F int(σi
n+1)

∂di
n+1

∆di+1
n+1 = Ki

n+1∆di+1
n+1 (4.104)

where

Ki
n+1 =

Nel

A
e=1

ke|in+1 (4.105)
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is called the global stiffness matrix at time tn+1 and ith iteration. The eval-
uation of the next iteration incremental displacement ∆di+1

n+1 is achieved lin-
earizing the equilibrium Equation (4.104), i.e.

[
Fint(σi

n+1) − Fext
n+1

]
+

∂Fint(σi
n+1)

∂di
n+1

∆di+1
n+1 = 0 (4.106)

Note that all the terms appearing in the previous equation are known, except
for ∆di+1

n+1, provided that the algorithmic tangent operator ∂σi
n+1/∂εi

n+1 can
be computed. If such is the case, one obtains the following expression

∆di+1
n+1 = −

[
Ki

n+1

]−1 [
Fint(σi

n+1) − Fext
n+1

]
(4.107)

which, as already pointed out in Section 4.4.2, makes the above sequential
procedure i. − v. equivalent to the classical Newton’s method.

Algorithmic consistent tangent operator

The solution procedure addressed in the previous section is completed by spec-
ifying the explicit expression for the algorithmic tangent modulus

C
i
n+1 =

∂σi
n+1

∂εi
n+1

(4.108)

appearing in (4.103). To obtain such operator it is necessary to differentiate
the algorithm given by Equations (4.58)-(4.61).

For simplicity, in the following the superindex i is omitted. First from
(4.58), we obtain (note that εp

n, ēp
n and αn are constant)

∂σTR
n+1

∂εn+1
= E

∂ΣTR
n+1

∂εn+1
=

∂σTR
n+1

∂εn+1
= E

(4.109)

With these results, differentiating (4.68), assuming that φTR
n+1 > 0, one finds

∂λ

∂εn+1
=

1

E + [Hiso + Hkin]

∂φTR
n+1

∂εn+1

=
1

E + [Hiso + Hkin]

∂|ΣTR
n+1|

∂ΣTR
n+1

∂ΣTR
n+1

∂εn+1
=

=
E

E + [Hiso + Hkin]
sign

(
ΣTR

n+1

)

(4.110)
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Rearranging (4.61)2, we may write

σn+1 =
(
σTR

n+1 − αn

)
+ αn − λE sign

(
ΣTR

n+1

)

= αn + ΣTR
n+1 − λE sign

(
ΣTR

n+1

)

= αn +

(

1 − λE∣∣ΣTR
n+1

∣∣

)

ΣTR
n+1

(4.111)

Differentiating the discrete constitutive Equation (4.111) with respect to the
actual strain εn+1 using the chain rule and recalling relations (4.109)2 and
(4.110) we obtain

∂σn+1

∂εn+1
=

(
1 − λE

|ΣTR
n+1|

)
E +

λE

|ΣTR
n+1|2

ΣTR
n+1

∂|ΣTR
n+1|

∂εn+1

− E2

E + [Hiso + Hkin]

=

(

1 − λE

|ΣTR
n+1|

)

E +
λE2

|ΣTR
n+1|2

ΣTR
n+1 sign

(
ΣTR

n+1

)

− E

|ΣTR
n+1|

E

E + [Hiso + Hkin]
ΣTR

n+1sign
(
ΣTR

n+1

)

=

(

1 − λE

|ΣTR
n+1|

)

E +
λE2

|ΣTR
n+1|

− E2

E + [Hiso + Hkin]

=
E[Hiso + Hkin]

E + [Hiso + Hkin]

(4.112)

Since σn+1 = σTR
n+1 for φTR

n+1 ≤ 0 by (4.109) and (4.112)

C
i
n+1 =

∂σi
n+1

∂εi
n+1

=






E if φTR
n+1 ≤ 0

E[Hiso + Hkin]

E + [Hiso + Hkin]
if φTR

n+1 > 0
(4.113)

Finally a comparison of (4.113) and (2.25) reveals that for the one-dimensional
model the algorithmic tangent operator coincides with the elastoplastic tan-
gent operator. In the next chapter, where three-dimensional integration al-
gorithms for J2 plasticity are presented it is found that closed-form return
map algorithms are not always achievable and that the the plastic correction
through the computation of the incremental plastic multiplier may be not even
granted to have a solution.



Chapter 5

Time-integration schemes for

J2 plasticity

Introduzione

In questo capitolo vengono trattai in dettaglio la struttura e gli aspetti ma-
tematici fondamentali di una ampia gamma di algoritmi di integrazione per
modelli elastoplastici di tipo J2. Questo capitolo rappresenta il cuore della
tesi dato che contiene gli sviluppi più recenti ed innovativi sugli algoritmi di
integrazione a base esponenziale per plasticità von-Mises, oggetto della tesi.

Il capitolo risulta suddiviso in due macro-sezioni. La prima raggruppa gli
algoritmi che si applicano al modello elastoplastico con incrudimento isotropo e
cinematico lineare (modello LP). La seconda riunisce gli algoritmi applicabili
al modelo elastoplastico con incrudimento lineare isotropo ed incrudimento
cinematico lineare/nonlineare (modello NLK). L’organizzazione del capitolo è
la seguente.

La Sezione 5.2 riporta brevemente il modello costitutivo LP. Nelle sezioni
5.3 e 5.4 sono introdotti gli algoritmi tipo return map per il modello LP, basati
rispettivamente su regola di integrazione secondo Eulero all’indietro e di tipo
midpoint generalizzato. Gli algoritmi suddetti, denominati rispettivamente
BE ed MPT, vengo completati dalla derivazione dei rispettivi operatori tan-
genti per passo elastoplastico. Nelle sezioni 5.5 e 5.6 vengono presentati due
algoritmi a base esponenziale basati su di una opportuna riscrittura del mod-
ello e sull’utilizzo delle mappe esponenziali per l’integrazione al passo. Detti
algoritmi, denominati ENN ed ENC possono ritenersi i primi membri dlla
famiglia degli algoritmi esponenziali.

La Sezione 5.7 presenta due innovativi algoritmi a base esponenziale, chia-
mati ESC and ESC2. Tali schemi rappresentano l’evoluzione dei due schemi
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precedenti in quanto posseggono caratteristiche numeriche avanzate e risultano
globalmente più competitivi rispetto ai primi. Tutti gli algoritmi esponenziali
vengono dettagliati con il rispettivo operatore tangente. La Sezione 5.8 fornisce
una serie di risultati teorici sulle fondamentali proprità numeriche possedute
dagli schemi innovativi ESC ed ESC2.

La seconda parte del capitolo inizia con la Sezione 5.9 che richiama le
equazioni governanti del modello elastoplastico NLK. La Sezione 5.10 è ded-
icata al classico algoritmo di integrazione di tipo return map per il modello
NLK. L’algoritmo in parola, denominato BEnl è basato su integrazione me-
diante regola di Eulero all’indietro. La Sezione 5.11 tratta lo schema di in-
tegrazione basato su metodo midpoint generalizzato e applicabile allo stesso
modello. Tale schema prende il nome di MPTnl.

Da ultimo, nella Sezione 5.12 viene introdotto il nuovo algoritmo ESC2nl,
basato sulla riformulazione del modello NLK tramite la scelta di un opportuno
fattore integrante scalare e sull’uso delle mappe esponenziali.

I risultati teorici contenuti nel presente capitolo inerenti gli algoritmi ENN,
ENC, ESC, ESC2 ed ESC2nl sono tratti precipuamente da [6, 7, 8, 11, 12, 13,
16].

5.1 Introduction

In this chapter we addres in detail the structure and the fundamental math-
ematical aspects of a wide set of integration algorithms which apply to J2

elastoplastic models. The present chapter represents the core of the thesis
as it contains the innovative developments on exponential-based integration
algorithms for von-Mises plasticity: the object of this work.

The chapter is divided in two macro-sections. The first one groups al-
gorithms which apply to linear isotropic and kinematic hardening materials
(LP model), while the second one groups algorithms which apply to linear
isotropic and linear/nonlinear kinematic hardening materials (NLK model).
The arguments are exposed as follows.

Section 5.2 briefly reports the LP constitutive model. In Sections 5.3 and
5.4 we present the return map algorithms for the LP model respectively based
on the backward Euler’s rule and on the generalized midpoint rule. The algo-
rithms are provided with the relative consistent elastoplastic tangent opera-
tors. In Sections 5.5 and 5.6 we present two exponential-based integration algo-
rithms based on a proper time continuous model reformulation and on the use
of exponential maps for the stepwise integration. These algorithms, labeled as
ENN and ENC can be regarded as the first members of the exponential-based
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family. Section 5.7 presents two innovative exponential-based integration al-
gorithms, labeled as ESC and ESC2. These schemes represent the evolution
of the previous integration schemes since they show improved numerical pro-
perties and globally perform better than the previous two algorithms. All the
exponential-based schemes are provided with the derivation of the consistent
elastoplastic tengent operator. Section 5.8 is thus dedicated to the theoretical
and numerical analysis of the relevant numerical properties presented by the
ESC and ESC2 integration procedures.

The second part of the chapter starts with Section 5.9 which recalls the
governing equations for the NLK constitutive model. Section 5.10 is devoted
to the backward Euler’s integration algorithm for the NLK elastoplstic model.
Section 5.11 addresses the treatment of the integration procedure based on the
generalized midpoint integration rule for the NLK model. Finally, in Section
5.12 the newly developed ESC2nl exponential-based integration algorithm for
the NLK model is presented.

The theoretical results contained in this chapter concerning the exponential-
based algorithms family are mainly taken from [6, 7, 8, 11, 12, 13, 16].

5.2 LP plasticity model

We start by recalling the associative von-Mises plasticity model under conside-
ration, already examined in Section 2.3.3 and labeled as LP model. Splitting
the strain and stress tensors, σ and εεε, in deviatoric and volumetric parts we
have

σ = s + pI with p =
1

3
tr(σ) (5.1)

εεε = e +
1

3
θI with θ = tr(εεε) (5.2)

where tr indicates the trace operator (sum of the first three components), while
I, s, p, e, θ are respectively the second-order identity tensor, the deviatoric
and volumetric stress, the deviatoric and volumetric strain.
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The equations for the model are

p = Kθ (5.3)

s = 2G[e − ep] (5.4)

Σ = s − α (5.5)

F = ‖Σ‖ − σy (5.6)

ėp = γ̇n (5.7)

σy = σy,0 + Hisoγ (5.8)

α̇ = Hkinγ̇n (5.9)

γ̇ ≥ 0 , F ≤ 0 , γ̇F = 0 (5.10)

where K is the material bulk elastic modulus, G is the material shear mod-
ulus, ep is the traceless plastic strain, Σ is the relative stress in terms of the
backstress α, the latter introduced to describe the kinematic hardening mech-
anism. Moreover, F is the von-Mises yield function, n is the normal to the
yield surface, σy is the yield surface radius, σy,0 the initial yield stress, Hkin

and Hiso are the kinematic and isotropic linear hardening moduli. Finally,
Equations (5.10) are the Kuhn-Tucker conditions; in particular, the second
equation limits the relative stress within the boundary defined by the yield
surface F = 0, while the other two are necessary to determine the plastic be-
havior. With a slight over-simplification of the model complexity, we may say
that when γ̇ = 0 the system is in an elastic phase, while when γ̇ > 0 we say
that the system is in a plastic phase.

In the following sections a set of numerical schemes for the above problem
is presented. The first two schemes are based respectively on the backward
Euler’s and on the generalized midpoint integration rules. The subsequent
schemes belong to the exponential-based time integrators family.

Remark 5.2.1 Due to the linear behavior of the volumetric part constitutive
equations, in the following we treat only the deviatoric part of the model.

5.3 Backward Euler’s integration scheme for the LP

model

The numerical method presented in this section for the solution of the LP pla-
sticity model is based on a backward Euler’s integration rule and on a return
map algorithm. In the following this scheme is indicated as BE scheme. A more
detailed description can be found in several articles and books [17, 69, 71, 79];
it is anyway worth recalling here the widespread success of such a method,
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granted by its general good numerical performances and the well established
numerical properties. In general, the method consists of the time-integration
of the differential algebraic system, leading to an algebraic system and of
the formulation of the solution algorithm for the obtained algebraic system.
The method grants first-order accuracy and respect the yield consistency con-
straint. In the following chapter the BE scheme is used as a reference for
testing the new exponential-based integration schemes which are suited for
the LP elastoplastic model.

5.3.1 Integration scheme

In particular, for the model under investigation, adopting a first order back-
ward Euler’s time integration formula, the solution of the algebraic system
returns a simple linear equation and, accordingly, the solution algorithm re-
duces to a radial return map. In the following we briefly review the method
together with the form of the consistent elastoplastic tangent operator. It is
assumed that the load history interval [0, T ] is divided into N sub-intervals
defined by the points 0 = t0 < t1 < .... < tn < tn+1 < .... < tN < tN+1. If
tn is a generic time instant, we indicate by en the deviatoric strain at time
tn, by sn the deviatoric stress at the same time, and so on for all the problem
variables.

The strain history path is known and is taken as piecewise linear in time;
we are then interested in the evolution of the other problem variables, in
particular the stress, the plastic strain and the total strain.

As an example, assuming to know the values {sn, en, ep
n, γn,αn} at time

tn, and the deviatoric strain en+1 at time tn+1, we search for the remaining
variables at time tn+1. Using a backward Euler’s integration rule the discrete
evolutionary equations for the plasticity model become






ep
n+1 = ep

n + λnn+1

αn+1 = αn + Hkinλnn+1

sn+1 = 2G[en+1 − ep
n+1]

Σn+1 = sn+1 − αn+1

γn+1 = γn + λ

(5.11)

where λ represents the incremental plastic rate parameter, to be determined
enforcing the plastic consistency condition (the subscript n+1 in λ is omitted
for compactness).

Substituting (5.11)1 into (5.4) yields:

sn+1 = 2G[en+1 − ep
n] − 2Gλnn+1 (5.12)
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and subtraction of (5.11)2 gives

Σn+1 = sn+1 − αn+1 = 2G[en+1 − ep
n] − αn − Hkinλnn+1 (5.13)

5.3.2 Solution algorithm

To solve the problem, we initially suppose the step to be elastic, and calculate
the trial values at the final instant:






ep,TR
n+1 = ep

n

sTR
n+1 = 2G[en+1 − ep

n]

αTR
n+1 = αn

ΣTR
n+1 = sTR

n+1 − αTR
n+1

γTR
n+1 = γn

(5.14)

If the resulting stress is admissible, i.e.

‖ ΣTR
n+1 ‖≤ σy,0 + Hisoγ

TR
n+1 (5.15)

the variable values at the time step tn+1 are taken as the trial ones just cal-
culated. On the other hand, if ΣTR

n+1 violates the yield limit (5.15), a plastic
correction is introduced






ep
n+1 = ep,TR

n+1 + λnn+1

sn+1 = sTR
n+1 − 2Gλnn+1

αn+1 = αTR
n+1 + Hkinλnn+1

Σn+1 = ΣTR
n+1 − [2G + Hkin] λn

γn+1 = γTR
n+1 + λ

(5.16)

where the scalar λ represents the increment of the plastic consistency param-
eter i.e.

∫ tn+1

tn
γ̇dt .

A graphical idealization of the return map algorithm applied to the BE
integration scheme is provided in Figure 5.1, which represents in the devia-
toric stress space the trial elastic predictor and the plastic corrector obtained
applying the return map algorithm to the BE scheme.

The solution of the obtained algebraic system is approached solving initially
for the scalar λ, enforcing the condition F (Σn+1) = 0. This implicit equation
is solved observing that ΣTR

n+1 and Σn+1 are parallel, obtaining

λ =
‖ ΣTR

n+1 ‖ −
(
σy,0 + Hisoγ

TR
n+1

)

2G + Hiso + Hkin
(5.17)
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Figure 5.1: Application of the return map algorithm to the BE integration
scheme. Plastic correction representation in deviatoric stress space.

Once the scalar λ is known, noting that

nTR =
ΣTR

n+1

‖ ΣTR
n+1 ‖

= n (5.18)

it is possible to update all the problem variables.

5.3.3 BE scheme elastoplastic consistent tangent operator

For the reader convenience, we show here the consistent tangent operator for
the BE scheme. For brevity’s sake, only the final form of the operator corre-
sponding to a plastic step (i.e. such that λ �= 0) is reported without deriving
it thoroughly. To make notation more clear, the subscripts of all variables are
omitted and it is implicitly assumed that all quantities are evaluated at the
final instant of the step tn+1. The reader is referred to [17] for a complete
derivation.

C
ep =

∂σ

∂εεε
= KI ⊗ I + 2G (1 − C) Idev + [2G (C − A)]n⊗ n (5.19)

with

A =
2G

2G + Hiso + Hkin

C =
2Gλ

‖ Σλ
A ‖
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5.4 Generalized midpoint integration scheme for the

LP model

In this section we present the numerical method already proposed by Ortiz
and Popov in 1985 [63] in the framework of elastoplastic constitutive models.
The method is based on a generalized midpoint integration rule combined with
a return map algorithm. In the following, this scheme is indicated as MPT
scheme. The return map is achieved enforcing consistency at the end of the
time step and projecting the trial solution onto the updated yield surface at the
end of each elastoplastic step. This procedure results in solving a quadratic
equation in the plastic consistency parameter. The method grants second-
order accuracy as it is shown by the numerical tests carried out in the next
chapter and is taken as a reference algorithm for testing the new exponential-
based integration schemes in terms of accuracy and precision in stress and
strain computation.

5.4.1 Integration scheme

Using a generalized midpoint rule the discrete evolutionary equations become






ep
n+1 = ep

n + λnn+α

αn+1 = αn + λHkinnn+α

sn+1 = 2G[en+1 − ep
n+1]

Σn+1 = sn+1 − αn+1

γn+1 = γn + λ

(5.20)

where λ may be regarded as the incremental plastic parameter to be deter-
mined enforcing the plastic consistency condition, while the scalar α is the
algorithmic parameter such that the following the midpoint rule holds






en+α = αen+1 + (1 − α)en

ep
n+α = αep

n+1 + (1 − α)ep
n

αn+α = ααn+1 + (1 − α)αn

sn+α = 2G[en+α − ep
n+α]

Σn+α = sn+α − αn+α

(5.21)

In what follows we will assume α = 1/2.
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5.4.2 Solution algorithm

We initially suppose the step to be elastic, and calculate trial values at the
final stage tn+1: 





ep,TR
n+1 = ep

n

sTR
n+1 = 2G[en+1 − ep

n]

αTR
n+1 = αn

ΣTR
n+1 = sTR

n+1 − αTR
n+1

γTR
n+1 = γn

(5.22)

If the resulting stress is admissible, i.e.

‖ ΣTR
n+1 ‖≤ σy,0 + Hisoγ

TR
n+1 (5.23)

the step is assumed to be elastic and the variable values at the final time
instant are taken as the trial ones. On the other hand, if ΣTR

n+1 violates the
yield limit, a plastic correction is introduced in two steps:

• Update of values at tn+α.






Σn+α + (2Gαλ + αλHkin)nn+α = 2G[en+α − ep
n − αn

2G
]

αn+α = αn + αλHkinnn+α

sn+α = Σn+α + αn+α

(5.24)

• Update of values at tn+1.






ep
n+1 = ep

n + λnn+α

αn+1 = αn + λHkinnn+α

sn+1 = 2G[en+1 − ep
n+1]

Σn+1 = sn+1 − αn+1

γn+1 = γn + λ

(5.25)

A graphical idealization of the return map algorithm applied to the MPT
integration scheme is provided in Figure 5.2 which represents in the devia-
toric stress space the trial elastic predictor and the plastic corrector obtained
applying the return map algorithm to the MPT scheme.
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Figure 5.2: Application of the return map algorithm to the MPT integration
scheme. Plastic correction representation in deviatoric stress space.

The above sequential update procedure is set forth by enforcing the plastic
consistency condition at the end of the step and observing (5.24)1 which states
that Σn+α and

ΣTR
n+α = 2G[en+α − ep

n] − αn (5.26)

are parallel i.e.

nn+α =
Σn+α

‖ Σn+α ‖ =
ΣTR

n+α

‖ ΣTR
n+α ‖

= nTR
n+α (5.27)

and using (5.24)1−2 and (5.25)1−4 to enforce the modified form of the discrete
limit equation at the final instant tn+1

‖ Σn+1 ‖2= σ2
y,n+1 (5.28)

This results in the following second order algebraic equation

aλ2 + bλ + c = 0 (5.29)

where

a = (2G + Hkin)nTR
n+α : nTR

n+α − H2
iso (5.30)

b = −2(2G + Hkin)ΣTR
n+1 : nTR

n+α − 2(H2
isoγn + H2

isoσy,0) (5.31)

c = ΣTR
n+1 : ΣTR

n+1 − σ2
y,0 − H2

isoγ
2
n − 2Hisoσy,0γn (5.32)
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It is assumed that the plastic rate parameter λ which permits the updates
(5.24) and (5.25) is given by the minimum positive root.

5.4.3 MPT scheme elastoplastic consistent tangent operator

The elastoplastic consistent tangent operator at tn+1 follows at once by a chain
rule argument, once it is derived at tn+α. The reader can refer to [7, 13, 17, 72]
for a detailed derivation of this part. For brevity’s sake, we just report the final
form of the operator for a plastic step (i.e. such that λ �= 0) without deriving
it thoroughly. To make notation more clear, the subscripts of all variables are
omitted and it is implicitly assumed that all quantities are evaluated at the
final instant of the step tn+1. Recalling that

∂s

∂ε
=

∂s

∂e

∂e

∂ε
=

∂s

∂e
Idev (5.33)

where

Idev = I − 1

3
(I ⊗ I) (5.34)

and taking into account the volumetric part of the stress, from Equations (5.1),
(5.2) and (5.3) we get

C
ep =

∂σ

∂ε
=

∂s

∂e
Idev + K (I ⊗ I) (5.35)

The fourth-order tensor
∂s

∂ε
can be computed as

∂s

∂e
= m1 + m2 (5.36)

where m1 and m2 are given by the following expressions

m1 = 2G

(
I − β1

β1 + β2 + 1
In − nn+α ⊗ ∂λ

∂e

)
(5.37)

m2 =
β1

β1 + β2 + 1
In

(
β ⊗ ∂λ

∂e

)
(5.38)
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with

In = I − nn+α ⊗ nn+α (5.39)

∂λ

∂e
= −2Gθ−1

1

(
I − 2Gλ + Hkinλ/2

2 ‖ sTR
n+α − αn ‖In

)
Σn+1 (5.40)

β =
1

2
Hkinnn+α (5.41)

θ1 = Hisoσy,n+1 + (β : Σn+1) + 2G (nn+α : Σn+1) (5.42)

β1 =
2Gλ

2‖Σn+α‖
(5.43)

β2 =
Hkinλ

2‖Σn+α‖
(5.44)

5.5 ENN exponential-based integration scheme for

the LP model

This section presents the first exponential-based integration algorithm for von-
Mises plasticity with linear hardening, initially presented and implemented by
Auricchio and Beirão da Veiga [16]. A similar idea had been developed by
Hong and Liu [44, 45]. This algorithm which is labeled ENN (Exponential-
based Non-symmetric Non-consistent method) constitutes the first member
of the exponential-based family object of this work and is characterized by
second-order accuracy, exactness in case of zero isotropic hardening, yet by
not being yield-consistent.

The integration scheme is based on a model reformulation by a rewriting
of the constitutive equations and on the choice for an integration factor. The
resulting evolutive equation for a generalized stress tensor results of notable
interest since it is quasi-linear. Under suitable hypotheses the time integra-
tion of the above quasi-linear dynamical system can be carried out with the
exponential maps technique.

5.5.1 A new model formulation

Combining Equations (5.4) and (5.5), we obtain

Σ + α + 2Gep = 2Ge (5.45)

and, taking the derivative in time and applying Equation (5.9), Equation (5.45)
becomes

Σ̇ + (2G + Hkin) ėp = 2Gė (5.46)
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Now, recalling that in the plastic phase

n =
Σ

‖ Σ ‖ =
Σ

σy,0 + Hisoγ
(5.47)

we may apply (5.7) obtaining

Σ̇ + (2G + Hkin)
Σ

σy,0 + Hisoγ
γ̇ = 2Gė (5.48)

which is a differential equation for Σ. We now need an evolution law for γ,
which in the elastic phase is simply

γ̇ = 0 (5.49)

while in the plastic phase it is indirectly extracted from the Kuhn-Tucker
condition Ḟ = 0. Multiplying Equation (5.48) by Σ it follows

Σ : Σ̇ + (2G + Hkin)
‖ Σ ‖2

σy,0 + Hisoγ
γ̇ = 2G [ė : Σ] (5.50)

and, observing that in the plastic phase

‖ Σ ‖2 = (σy,0 + Hisoγ)2 (5.51)

Σ : Σ̇ =
1

2

d

dt
‖ Σ ‖2= Hiso (σy,0 + Hisoγ) γ̇ (5.52)

it becomes

(σy,0 + Hisoγ) (2G + Hkin + Hiso) γ̇ = 2G [ė : Σ] (5.53)

Now the idea is to rewrite the differential system formed by equations (5.48)
and (5.49)-(5.53) introducing an integrating function. Accordingly, we set

X0(γ) =






(

1 +
Hiso

σy,0
γ

)2G + Hkin

Hiso
if Hiso �= 0

exp

(
2G + Hkin

σy,0
γ

)

if Hiso = 0

(5.54)

noting that such a function is continuous for fixed γ and Hiso → 0. Multiplying
Equation (5.48) by X0(γ), we have

d

dt
[ΣX0(γ)] = 2GėX0(γ) (5.55)
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At this stage, we define a new generalized stress vector X which, adopting the
engineering notation reads

{X} =

{
X0Σ
X0

}
=

{
Xs

X0

}
(5.56)

from (5.55) we obtain
Ẋ

s
= 2GX0ė (5.57)

We now search a similar differential equation for the last component X0 of X.
Taking the derivative of X0(γ), we have

Ẋ0 =
d

dt
X0(γ (t)) = (2G + Hkin)

X0

σy,0 + Hisoγ
γ̇ (5.58)

From (5.58) and (5.53) we obtain

Ẋ0 =
2G + Hkin

σ2
y,0 (2G + Hkin + Hiso)

X0(

1 +
Hiso

σy,0γ

)2 [2Gė : Σ] =

=
2G + Hkin

σ2
y,0 (2G + Hkin + Hiso)

X
−

2Hiso

2G + Hkin
0 [2Gė : Xs] (5.59)

Introducing the position

χ = χ(X0) =
2G + Hkin

σ2
y,0 (2G + Hkin + Hiso)

X
−

2Hiso

2G + Hkin
0 (5.60)

and, recalling Equation (5.49), we have

Ẋ0 = 0 (elastic phase) (5.61)

Ẋ0 = 2G χ ė : Xs (plastic phase) (5.62)

We introduce now a linear space structure on the space of generalized stresses
which is the key feature of the exponential-based formulation. Any element of
the space of linear operators from the generalized stress space into itself can
be written adopting the engineering notation as

[M] =

[
M11 M12

M21 M22

]
(5.63)
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with M11 a fourth-order tensor, M12,M21 second-order tensors and M22 a
scalar, under the convention that the formal expression

MY (5.64)

returns a generalized stress vector given by the following operation

[M] {Y} =

[
M11 M12

M21 M22

]{
Ys

Y0

}
=

{
M11Y

s + M12Y 0

M21 : Ys + M22Y0

}

(5.65)

for any couple {Y} = {Ys, Y0}T in the generalized stress space. The product
by a scalar and the sum between vectors is defined in the obvious natural
way. Accordingly, Equations (5.57) and (5.61)-(5.62) provide a system for the
generalized stress vector X

Ẋ = AX (5.66)

with the matrix operator A depending on the actual phase

[A] = [Ae] = 2G

[
O ė
0 0

]
(elastic phase) (5.67)

[A] = [Ap] = 2G

[
O ė
χė 0

]
(plastic phase) (5.68)

where 0 and O indicate respectively the second-order and fourth-order null ten-
sors. Therefore, the original problem, represented by Equations (5.3)-(5.10),
is replaced by a new one, where the relative stress Σ and the plastic rate γ
are now represented in the form of vector X. The main advantage of the new
form is the quasi-linearity, both in the elastic and in the plastic phase.

As an example, let us consider the model with no isotropic hardening
(Hiso = 0). Due to Equations (5.60) and (5.68), it is immediate to check
that A depends only on ė. This means that, if ė is constant in a certain time
interval, A holds the same property: under such a hypothesis the solution of
system (5.66) is known and the problem can be solved exactly.

However, in the general case, the matrix A depends on X, and in this sense
we say that the problem is quasi-linear. Anyway, the partial linearity arising
in the problem is indeed of great value, allowing us to numerically approximate
its solution with excellent results.

Time-continuous on-off switch

To properly convert the original problem in an equivalent but new differential
algebraic format, we also need to introduce an elastic-plastic phase determi-
nation criteria expressed in the new generalized stress environment.
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For a given phase to be plastic, the following two conditions hold:

1) The relative stress Σ must be on the yield surface

‖ Xs ‖2=‖ Σ ‖2 X2
0 = (σy,0 + Hisoγ)2 X2

0 = σ2
y,0X

2(Hiso + Hkin + 2G)

2G + Hkin
0

(5.69)

2) The direction of the strain rate ė must be outward with respect to the
yield surface

Σ : ė > 0 ⇐⇒ Xs : ė > 0 (5.70)

If such two conditions are not satisfied, the step is elastic.

5.5.2 Integration scheme

In the following we present a numerical scheme for the evolution of X, gov-
erned by the dynamical law (5.66) with matrix A given by (5.67) or (5.68)
respectively.

As usual, we assume that the time history interval [0, T ] is divided into N
sub-intervals defined by the nodes 0 = t0 < t1 < .... < tn < tn+1 < .... < tN =
T and indicate the general sub-interval amplitude as ∆t = tn+1 − tn. Given
the values {sn, en, ep

n, γn,αn} at time tn and the deviatoric strain en+1 at time
tn+1, we search for the remaining variables at time tn+1, assuming the strain
history to be piecewise linear. The strain is retained taken as a linear function
in each time sub interval and, for simplicity, we consider the initial values of
γ and α to be zero, so that the initial generalized stress vector is

{X0} =

{
Xs

0

X0

}
=

{
Σ0

1

}
(5.71)

Clearly, the initial values of the relative stress and the deviatoric strain must
be consistent with the governing Equations (5.3)-(5.10).

The evolution of X is governed by the dynamical law (5.66) with matrix
A given by (5.67) or (5.68). Due to the piecewise linearity of the strain path,
ė is constant in each single time interval. Unluckily, due to the presence of χ
in (5.68), this is not true for matrix A; the scalar χ is a function of X0, and so
of X, as shown in Equation (5.60). Therefore, we approximate the solution of
the dynamical law (5.66) considering χ constant in each single time step. The
discrete form of the evolution law (5.66) becomes

Ẋ = ĀX (5.72)
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where the matrix Ā is now constant along a single time interval

[
Ā
]

= 2G

[
O ė
0 0

]
(elastic step) (5.73)

[
Ā
]

= 2G

[
O ė

χnė 0

]
(plastic step) (5.74)

Under such an additional hypothesis, the matrix Ā is constant in both
phases, and so the evolution of Equation (5.72) is well known to be

Xn+1 = exp
[
Ā∆t

]
Xn (5.75)

where ∆t = tn+1−tn. Defining the tensor ∆e = en+1−en, we observe that the
matrix Ā∆t is equal to the matrix (5.67) or (5.68) after substituting ė with ∆e.
Note that, being Ā an element in the linear space of linear operators acting
on couples, the exponential of Ā∆t is naturally defined by the (converging)
exponential serie

Ḡ = exp
[
Ā∆t

]
=

+∞∑

n=0

(
Ā∆t

)n

n!
(5.76)

The linear operator Ḡ appearing in Equation (5.75) can be derived calculating
the shown exponential. Note that, for such purpose, it is convenient to refor-
mulate the linear operator Ā∆t as a R7×7 matrix, calculate the exponential,
and finally write it back in the original form (5.63).

Hence, given the initial value Xn, Xn+1 can be now calculated as

Xn+1 = Ḡ Xn (5.77)

The matrix Ḡ is the exponential appearing in (5.76), which is

[
Ḡe

]
=




I 2G∆e

0 1



 (5.78)

for an the elastic step, and

[
Ḡp

]
=





I +

[
(a − 1)

‖ ∆e ‖2

]
∆e⊗ ∆e

b√
χ

∆e

‖ ∆e ‖

b
√

χ
∆e

‖ ∆e ‖ a




(5.79)
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for a plastic step. The scalars a and b are

a = cosh (2G
√

χ ‖ ∆e ‖)
b = sinh (2G

√
χ ‖ ∆e ‖)

while χ is given by (5.60) calculated in X0
n, i.e. the last component of Xn.

Such a choice of χ is not only natural (we take its value at the start of the
step) but also of simple application. More accurate and performing choices
could be introduced, perhaps requiring some implicit calculation instead of the
direct matrix product (5.77).

5.5.3 Solution algorithm

At every time step the numerical scheme is as follows:

1) suppose the step to be elastic and compute trial values following an
elastic law

XTR
n+1 = ḠeXn (5.80)

where the matrix Ḡe is given by (5.78). If the trail solution is admissible,
i.e.

‖ XTR
n+1 ‖≤ σy,0

(
XTR

0,n+1

)
Hiso + Hkin + 2G

2G + Hkin (5.81)

then the history variables at the time step tn+1 are taken as the trial
ones just calculated.

2) If the trail solution is not admissible, i.e. Equation (5.81) is violated,
then the step is plastic. Being ė constant in each sub time interval, this
means that the step can be divided into two parts: an elastic deformation
followed by a plastic one. We represent with a scalar α ∈ [0, 1) the
elastic time proportion of the step; for example α = 1/2 means that the
stress evolution is of elastic kind for the first half of the time interval,
and plastic in the rest. Simple geometrical considerations allow us to
compute α; without discussing the details, the obtained value is

α =

√
C2 − DM − C

D
(5.82)

where 




C = 2GX0,n (Xs
n) : ∆e

D = (2GX0,n ‖ ∆e ‖)2

M =‖ Xs
n ‖2 −σ2

y,0 (X0,n)2ϕ

ϕ =
2G + Hkin + Hiso

2G + Hkin

(5.83)
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Computed α, Xn+1 is updated in two steps.

– Calculate XTR
n+1 following an elastic law

XTR
n+1 = ḠeXn (5.84)

with Ḡe still given by (5.78), but where ∆e = α (en+1 − en) instead
of ∆e = (en+1 − en).

– Calculate Xn+1 evolving from the new initial data XTR
n+1 following

a plastic law:

Xn+1 = ḠpX
TR
n+1 (5.85)

with Ḡp given by (5.78), where ∆e = (1−α) (en+1 − en) instead of
∆e = (en+1 − en).
Observe that in such a framework purely plastic steps are simply
those where the time proportion of elastic phase α is zero.

3) Whenever needed, calculate the relative stress and backstress as:

Σ =
Xs

X0
(5.86)

α = Hkine
p = Hkin

2Ge − Σ

2G + Hkin
(5.87)

The first one is immediately obtained from the definition of X, while the
second one follows from (5.4) and (5.5), observing that α = Hkine

p.

4) Finally, at the end of each step, update the constant χ = χ(X0,n+1) used
for the calculation of the matrix Ḡp.

Remark 3: Due to the approximation introduced assuming χ constant in
each time step, during a plastic step Equation (5.69) is not exactly enforced
(while in the BE method this is fulfilled). However, this discrepancy seems to
resolve in very small numerical errors as shown in the examples that follow.
A cure to this could be a radial projection of the solution on the yield surface
at the end of each time step: this idea indeed leads to the development of the
next algorithm (ENC algorithm). Nevertheless, it is observed that introducing
such a correction does not change significantly the solution. In Section 5.7 two
algorithms improved to be yield-consistent with no need of a radial projection
at the end of plastic steps are presented.
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5.5.4 ENN scheme elastoplastic consistent tangent operator

The algorithmically consistent tangent operator can be obtained properly lin-
earizing the time-discrete procedure. To make notation more clear, the sub-
scripts of all history variables evaluated at time tn+1 are omitted for brevity.
Quantities evaluated at tn are specified by the relative subscript.

From the definition of the generalized stress tensor X we get

∂Xs

∂e
= Σ ⊗ ∂X0

∂e
+ X0

∂Σ

∂e
(5.88)

hence
∂Σ

∂e
=

1

X0

(
∂Xs

∂e
− Σ ⊗ ∂X0

∂e

)
(5.89)

For the elastic phase we immediately have

∂Xs

∂e
= 2GX0I (5.90)

∂X0

∂e
= 0 (5.91)

while in the plastic phase the result is slightly more complicated and can be
found in the sequel.
For the deviatoric stress, Equation (5.5) provides

∂s

∂e
=

∂Σ

∂e
+

∂α

∂e
(5.92)

and, recalling also Equation (5.87), it becomes

∂s

∂e
=

2G

2G + Hkin

∂Σ

∂e
+

2GHkin

2G + Hkin
I (5.93)

We also have
∂s

∂ε
=

∂s

∂e

∂e

∂ε
=

∂s

∂e
Idev (5.94)

Taking into account the volumetric part of the stress, from Equations (5.1),
(5.2) and (5.3), we obtain the tangent operator

C
ep =

∂σ

∂ε
=

∂s

∂ε
+ K (I ⊗ I) (5.95)

Joining statements (5.89), (5.93), (5.94) and (5.95) we obtain

∂σ

∂ε
=

2G

X0(2G + Hkin)

(
∂Xs

∂e
− Σ

∂X0

∂e

)
Idev +

2GHkin

2G + Hkin
Idev + K (I ⊗ I)

(5.96)
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which in the elastic case simplifies to the usual

∂σ

∂ε
= 2GIdev + K (I ⊗ I) (5.97)

and in the plastic one can be calculated substituting the fourth-order tensor
∂Xs/∂e and the second-order tensor ∂X0/∂e, which can be deduced as follows.
The fourth-order tangent tensor ∂Xs/∂e and the second-order tangent tensor
∂X0/∂e provide the tangent operator ∂σ/∂ε of the new algorithm during
plastic or mixed elastoplastic steps (cf. Equation (5.96)). Remembering that
purely plastic steps are a particular case within the range of mixed ones (see
Section 5.5.3), we start analyzing the latter. We have, from (5.84)-(5.85),

Xn+1 = ḠpḠeXn = Ḡp((1 − α)∆e) Ḡe(α∆e) Xn (5.98)

where the tensors above are given by (5.78)-(5.79) and α = α(∆e) is the “elas-
tic step proportion” defined in (5.82). Consequently, following basic derivation
rules, we have for mixed steps

∂Xn+1

∂e
=
[
Ã1 + Ã2 + Ã3 + Ã4

]
Xn (5.99)

where the matrix operators






Ã1 =
∂Ḡp

∂∆e
[(1 − α)∆e] Ḡe(α∆e)

Ã2 =
∂Ḡp

∂α
[(1 − α)∆e]

dα

d∆e
(∆e) Ḡe(α∆e)

Ã3 = Ḡp[(1 − α)∆e]
∂Ḡe

∂∆e
(α∆e)

Ã4 = Ḡp[(1 − α)∆e]
∂Ḡe

∂ α
(α∆e)

dα

d∆e
(∆e)

(5.100)

From Equation (5.99) we can derive ∂Xs
n+1/∂e and ∂X0,n+1/∂e; in order to

obtain the classical tangent operator, the obtained equations must be finally
expressed as a linear function of the strain of the form (5.99), which is expressed
as a linear function of Xn. Doing so, we finally obtain that for mixed steps

∂Xs

∂e
= (A1 + A2 + A3 + A4) (5.101)

∂X0

∂e
= (b1 + b2 + b3 + b4) (5.102)

where the fourth-order tensors A and the second-order tensors b are described
below without addressing the calculations.
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For purely plastic steps, being α constantly equal to zero, we obtain the shorter
formulation

∂Xs

∂e
= A1 (5.103)

∂X0

∂e
= b1 (5.104)

We start introducing (cf. (5.82) for M,D,C in each step) the υ = dα/d∆e
second-order tensor






υ = φ1
dC

d∆e
+ φ2

dD

d∆e

φ1 =
1

D

(
C√

C2 − DM
− 1

)

φ2 = − 1

D2

(
DM

2
√

C2 − DM
+
√

C2 − DM − C

)

dC

d∆e
= 2GX0,n Xs

n

dD

d∆e
= 2(2GX0,n)2∆e

(5.105)

Let the scalars 




a = cosh (2G(1 − α)
√

χ ‖ ∆e ‖)
b = sinh (2G(1 − α)

√
χ ‖ ∆e ‖)

s =
∆e : Xs

n

‖ ∆e ‖
k = 2G(1 − α)

√
χ

k̃ = −2G
√

χ ‖ ∆e ‖

(5.106)

and the operators

M1 = s

(
kb − 2

a − 1

‖ ∆e ‖

)[
∆e ⊗ ∆e

‖ ∆e ‖2

]

+
(a − 1)s

‖ ∆e ‖ I +
a − 1

‖ ∆e ‖

[
∆e ⊗ Xs

n

‖ ∆e ‖

] (5.107)

M2 =

(
ka − b

‖ ∆e ‖

)[
∆e ⊗ ∆e

‖ ∆e ‖2

]
+

b

‖ ∆e ‖I (5.108)
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We then have, for the tensors in (5.101),





A1 = M1 +
X0,n√

χ
M2

A2 = k̃

(
bs +

a√
χ

X0,n

)[
∆e ⊗ υ

‖ ∆e ‖

]

A3 = 2GαX0,n

[
I + (a − 1)

∆e ⊗ ∆e

‖ ∆e ‖2

]

A4 = 2GaX0,n [ ∆e ⊗ υ] ;

(5.109)

and for the tensors appearing in (5.102)






b1 =
√

χ M2X
s
n + kbX0,n

∆e

‖ ∆e ‖
b2 = k̃ (as

√
χ + bX0,n) υ

b3 = 2GαbX0,n
√

χ
∆e

‖ ∆e ‖
b4 = 2GbX0,n

√
χ ‖ ∆e ‖ υ

(5.110)

5.6 ENC exponential-based integration scheme for

the LP model

5.6.1 ENC scheme: an enforced consistency variant of the

ENN scheme

As it is shown by the numerical tests carried out in the next chapter, when
compared to the BE scheme and to the ESC algorithm which will be addressed
in the next section, the ENN scheme shows far better precision properties
and second-order accuracy. On the other hand, as already observed in [16],
the ENN algorithm presented above is not consistent with the yield surface
condition. In other words, at the end of plastic steps, condition (5.69) does
not hold exactly for the numerical solution.

Apart from physical considerations, the above property is important also
for the stability of the algorithm; whenever the numerical relative stress Σ falls
out of the yield surface (i.e. ‖ Σn+1 ‖> σy,n+1) this may lead to instabilities
in the following time step. Therefore, in practical applications, it is recom-
mendable to enforce the consistency at the end of each elastoplastic step. This
can be achieved using a radial projection of the relative stress onto the yield
surface in each time step in which ‖ Σn+1 ‖> σy,n+1 by simply multiplying
Σn+1 by the rate σy,n+1/ ‖ Σn+1 ‖).
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The ENC yield-consistent variant of the ENN scheme is implemented fol-
lowing this idea. The consistency check can be done either at the start of
each step or at the end. It is to be pointed out that the algorithmical steps
of this methods remain the same as the ones described in the previous section
with respect to the ENN method. In particular, the enforced consistency vari-
ant ENC allows to use the same algorithmic consistent elastoplastic tangent
operator calculated for the ENN scheme.

5.7 ESC-ESC2 exponential-based integration sche-

mes for the LP model

5.7.1 An innovative model formulation

In this section we present a new time-continuous model formulation for the
differential algebraic problem under consideration [9, 10, 11]. This innova-
tive statement of the problem represents a generalisation of the formulations
presented in [6, 8] and thus constitutes an extension of the ones proposed in
[44, 45, 16]. Such a formulation still allows to rewrite the system in the form

Ẋ = AX (5.111)

which is the starting point for the numerical scheme developed in Section
5.7.2. As it will be cleared and substantiated on mathematical grounds by the
theoretical analysis carried out in the next Section 5.8, one of the algorithms
stemming from the present reformulation (ESC2 algorithm) shows to be the
“optimal” one within the exponential-based integration algorithms class for
the LP elastoplastic model.

Combining Equations (5.4) and (5.5), we obtain

Σ + α + 2Gep = 2Ge (5.112)

which, taking the derivative in time, applying Equation (5.9) and rearranging
terms gives

Σ̇ = 2Gė − (2G + Hkin) ėp (5.113)

Now, recalling the yield surface radius

σy = σy,0 + Hisoγ (5.114)

and that in the plastic phase

n =
Σ

‖Σ‖ =
Σ

σy,0 + Hisoγ
=

Σ

σy
(5.115)
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we may apply (5.7) obtaining

Σ̇ + (2G + Hkin)
Σ

σy
γ̇ = 2Gė (5.116)

which is a differential equation for Σ that is valid also during elastic phases
(γ̇ = 0). Introducing the scaled relative stress

Σ̄ =
Σ

σy
(5.117)

we observe that, whenever the relative stress Σ lays on the yield surface, then
Σ̄ = n, while this is not true when Σ lays inside the yield surface. The time
derivative of (5.117) and the use of relation (5.114) gives

˙̄Σ =
Σ̇

σy
− Hiso

σy
γ̇Σ̄ (5.118)

Dividing Equation (5.116) by σy and using relationship (5.118), one obtains

˙̄Σ +
2G + Hkin + Hiso

σy
γ̇Σ̄ =

2G

σy
ė (5.119)

The next goal is to introduce an integration factor for the above evolutionary
equation. Accordingly, we set

X0(γ) =






(
1 +

γHiso

σy,0

)2G + Hkin + Hiso

Hiso
if Hiso �= 0

exp

(
2G + Hkin + Hiso

σy,0
γ

)
if Hiso = 0

(5.120)

noting that such a function is continuous for fixed γ and Hiso → 0 and that

Ẋ0 =
2G + Hkin + Hiso

σy
γ̇X0 (5.121)

Multiplying Equation (5.119) by X0 and using equation (5.121) the following
relationship holds

d

dt

[
X0Σ̄

]
= X0

˙̄Σ + Ẋ0Σ̄ =
2G

σy
X0ė (5.122)
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At this stage, defining the generalized stress vector X as

{X} =

{
X0Σ̄
X0

}
=

{
Xs

X0

}
(5.123)

Equation (5.122) can be rewritten as

Ẋ
s

=
2G

σy
X0ė (5.124)

The evolution law for X0 in terms of X in elastic phases follows immediately
from (5.121):

Ẋ0 = 0 (elastic phases) (5.125)

On the other hand, for γ̇ �= 0, taking the scalar product of (5.122) with Σ̄, we
have

X0
1

2

d

dt
‖Σ̄‖2 + Ẋ0‖Σ̄‖2 =

2G

σy
X0ė : Σ̄ (5.126)

which, noting that in plastic phases

‖Σ̄‖ =
‖Σ‖
σy

= 1 (5.127)

and using (5.123), (5.126) gives

Ẋ0 =
2G

σy
ė : Xs (plastic phases) (5.128)

Equations (5.124), (5.125) and (5.128) provide a system for the generalized
stress vector X, in the form

Ẋ = AX (5.129)

with the matrix A depending on the actual phase as follows

[A] = [Ae] =
2G

σy

[
O ė
O 0

]
(elastic phase) (5.130)

[A] = [Ap] =
2G

σy

[
O ė
ė 0

]
(plastic phase) (5.131)

where 0 and O indicate respectively the second-order and fourth-order order
null tensors. In the last statement, Equation (5.129), we have made use of the
linear operator space structure introduced in the previous section (cf. Equa-
tions (5.63)-(5.65). Note that A is symmetric during plastic phases. Therefore
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the original problem, expressed by Equations (5.4)-(5.9), has been substituted
by a new one, expressed by Equations (5.129)-(5.131).

We also observe that in the case of no isotropic hardening (Hiso = 0) the
yield radius σy is fixed and therefore A depends only on ė. This means that, if
ė is constant in a given time interval, A holds the same property: under such
an hypothesis the solution of system (5.129) is known and the problem can be
solved exactly.

However, in a general case (Hiso �= 0) the matrix A depends on X and in
this sense we say that the problem is quasi-linear. Anyway, the quasi-linearity
arising in the problem is indeed of great value, allowing us to develop the
numerical method of Section 5.7.2.

Time-continuous on-off switch

To properly convert the original problem in a new but equivalent differential
algebraic format, we also need to introduce an elastoplastic phase determina-
tion criterium expressed in the new generalized stress environment.

For a given state to be plastic, the following two conditions must be fulfilled:

1) The relative stress Σ must be on the yield surface, in other words

‖Σ‖ = σy (5.132)

Using (5.117) and (5.123) this can be easily rewritten as

‖Xs‖2 = ‖Σ̄‖2X2
0 =

‖Σ‖2

σ2
y

X2
0 = X2

0 (5.133)

2) The direction of the strain rate ė must be outward with respect to the
yield surface, i.e.

Σ : ė > 0 (5.134)

Again, recalling (5.117) and (5.123) it is immediate to check that (5.134)
is equivalent to

Xs : ė > 0 (5.135)

If the two conditions (5.133) and (5.135) are not satisfied, the step is elastic.

5.7.2 Integration scheme

We now want to develop a numerical scheme for the evolution of X, gov-
erned by the dynamical law (5.129) with matrix A given by (5.130) or (5.131)
respectively.



174 5. TIME-INTEGRATION SCHEMES FOR J2 PLASTICITY

As usual, we assume that the time history interval [0, T ] is divided into N
sub-intervals defined by the nodes 0 = t0 < t1 < .... < tn < tn+1 < .... < tN =
T and indicate the general sub-interval amplitude as ∆t = tn+1 − tn. Given
the values {sn, en, ep

n, γn,αn} at time tn and the deviatoric strain en+1 at time
tn+1, we search for the remaining variables at time tn+1, assuming the strain
history to be piecewise linear. For simplicity, we consider the initial values (at
t = t0) of γ, ep and α to be zero, so that the initial generalized stress vector is

{X0} =

{
Σ0/σy,0

1

}
(5.136)

Due to the piecewise linearity of the strain path, ė is constant in each single
time interval. Unluckily, due to the presence of σy in (5.131), during plastic
phases, the matrix A is not constant in the same time interval; in fact the yield
surface radius σy is a function of X0, as shown by relation (5.121) and hence
of X. Therefore, we discretize the dynamical law (5.129), approximating σy

stepwise. Along each time interval [tn, tn+1], we choose σy = R, where R is
now a constant value in each single time step. It is evident that for purely
elastic steps R coincides with σy,n. The discrete form of the evolution law
(5.129) becomes

Ẋ = ĀX (5.137)

where the matrix Ā is now constant along a single time interval

[
Ā
]

=
2G

σy,n

[
O ė
0 0

]
(elastic step) (5.138)

[
Ā
]

=
2G

R

[
O ė
ė 0

]
(plastic step) (5.139)

Different choices for R are possible [11], for example





R = σy,n (ESC scheme)

R =
cσy,n

ln(1 + c)
(ESC2 scheme)

(5.140)

where

c =

2G q (1 − α)

(
Xs

n

X0,n
: ė

)

σy,n
∆t (5.141)

with

q =
Hiso

2G + Hkin + Hiso
(5.142)
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The α scalar parameter represents the part of the step along which the stress
remains within the limit surface (see Figure 5.3). Its calculation will be ex-
plained and discussed in detail in Section 5.7.3 for compactness reasons.

The first choice for R in (5.140) corresponds to the ESC scheme proposed
in [8], the second one leads to the new ESC2 scheme [11]. While the rea-
sonings for the first choice for R are evident (“forward integration” scheme),
the second choice for R comes from considerations regarding the improved
numerical properties of the new exponential-based algorithm, discussed from
the analytical standpoint in Section 5.8.

Due to the fact that R is computed using only quantities evaluated at the
beginning of the step, the matrix Ā is now constant in both elastic and plastic
phases and so Equation (5.137) can be solved exactly, giving the following
evolution for X

Xn+1 = exp
[
Ā∆t

]
Xn = Ḡ Xn (5.143)

Note that, being Ā an element in the linear space of linear operators acting
on couples, the exponential of Ā∆t is naturally defined by the (converging)
exponential serie

Ḡ = exp
[
Ā∆t

]
=

+∞∑

n=0

(
Ā∆t

)n

n!
(5.144)

Defining the tensor ∆e = en+1 − en, we observe that the matrix Ā∆t is
equal to the matrix (5.138) or (5.139) after substituting ė with ∆e. The linear
operator Ḡ can be derived calculating the shown exponential. Note that, for
such purpose, it is convenient to reformulate the linear operator Ā∆t as a R7×7

matrix, calculate the exponential, and finally write it back in the original form
(5.63). Without showing the calculations, one finds

[
Ḡ
]

=






[
Ḡe

]
=




I

2G

σy,n
∆e

O 1



 (elastic phase)

[
Ḡp

]
=





I +

[
(a − 1)

‖∆e‖2

]
∆e ⊗ ∆e b

∆e

‖∆e‖

b
∆e

‖∆e‖ a




(plastic phase)

(5.145)



176 5. TIME-INTEGRATION SCHEMES FOR J2 PLASTICITY

where the scalars a and b are

a = cosh

(
2G

R
‖∆e‖

)
(5.146)

b = sinh

(
2G

R
‖∆e‖

)
(5.147)

5.7.3 Solution algorithm

At every time step the exponential-based algorithm proceeds as follows:

1) suppose the step to be elastic and compute trial values following an
elastic law

XTR
n+1 = ḠeXn (5.148)

where the matrix Ḡe is given by (5.145). If the trial solution is admissible,
i.e.

‖Xs,TR
n+1 ‖ ≤

(
XTR

0,n+1

)2
(5.149)

then the history variables at the time step tn+1 are taken as the trial
ones just calculated.

2) If the trial solution is not admissible, i.e. Equation (5.149) is violated,
then the step is plastic or elastoplastic. Being ė constant in each time sub
interval, the step can be divided into two parts: an elastic deformation
taking place during [tn, tn+α], followed by a plastic one along [tn+α, tn+1].
Hence, we represent with a scalar α ∈ [0, 1) the elastic time proportion
of the step. The key consideration in order to calculate α is that the
evolution during the partial elastic sub-step is linear in stress space.
Accordingly, recalling (5.145), we search for an intermediate generalized
stress vector

Xs,e
n+1 = Xs

n +
2GX0,n

σy,n
[α∆e] (5.150)

such that Xs,e
n+1 represents a relative stress tensor lying on the yield

surface at time tn+α. In other words, we must request

Xs,e
n+1 : Xs,e

n+1 − X2
0,n = 0 (5.151)

Note that the left hand side of the above equation is a second order
polynomial in α. In stress space, the roots of such polynomial correspond
to the intersections between a segment and the boundary of a sphere,
where an extreme of the segment (sn) lays inside the sphere closure and
the other extreme (sn + 2G∆e) outside the sphere. As a consequence,
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there is always one maximum (non-negative) root. Calculating therefore
α from expression (5.151) we get

α =

√
C2 − DM − C

D
(5.152)

where 




C =
2GX0,n

σy,n
(Xs

n : ∆e)

D =

(
2GX0,n‖∆e‖

σy,n

)2

M = ‖Xs
n‖2 −

(
XTR

0,n+1

)2

(5.153)

Computed α, Xn+1 is updated in two steps.

– Calculate a new Xe
n+1 vector following an elastic law along an α∆t

interval
Xe

n+1 = Ḡe[α∆e]Xn (5.154)

– Calculate Xn+1 evolving from the new initial data Xe
n+1 following

a plastic law along the remaining part of the interval of amplitude
(1 − α)∆t

Xn+1 = Ḡp[(1 − α)∆e]Xe
n+1 (5.155)

Observe that in such a framework purely plastic steps are simply
those where the time proportion of the elastic phase α is zero.

3) Update the yield surface radius

σy,n+1 = σy(X0,n+1) = σy,0 (X0,n+1)
q (5.156)

which is easily obtained combining (5.114) and (5.120).

The updating procedure illustrated by steps 1) - 3) is represented in Figure
5.3 which refers to the space of tensors Xs.

Remark 5.7.1 The relative stress and backstress can be calculated whenever
needed as:

Σ =
Xs

X0
σy (5.157)

α = Hkin
2Ge − Σ

2G + Hkin
(5.158)

The first one is immediately obtained from the definition of X, while the second
one follows from (5.4) and (5.5), observing that α = Hkine

p.
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Figure 5.3: Updating procedure in generalized stress space for the ESC and
ESC2 scheme during a mixed elastoplastic step.

Remark 5.7.2 The variable X0 is a local auxiliary variable and not an history
variable. In other words, introducing an appropriate scaling of the vector X
the variable X0 does not need to be updated at every time step [8].

Remark 5.7.3 Whenever Hiso = 0, i.e. there is no isotropic hardening, the
solution obtained with this scheme is exact. Other exact integrators can be
found in the literature for the case Hiso = 0 [51, 67, 77]. A discussion of
exponential-based exact integration schemes and other exact integrators can
be found in [8].

5.7.4 ESC2 scheme elastoplastic consistent tangent operator

In the following we present the tangent operator of the new optimal exponential-
based ESC2 integration scheme. For what concerns the ESC scheme, the
reader is referred to [8] where a complete derivation of its tangent operator
is developed. As it will be clear in the following, the tangent moduli opera-
tor corresponding to the ESC algorithm can be obtained in a straightforward
manner by simply canceling the A5 and e5 terms arising in the new discrete
formulation. To make notation more clear, the subscripts of all history vari-
ables evaluated at time tn+1 are omitted for brevity. Quantities evaluated
either at tn or at tn+α are specified by the relative subscript.

We now present the tangent fourth-order tensor ∂Xs/∂e and the tangent
second-order tensor ∂X0/∂e for plastic phases, which provide the elastoplastic

consistent tangent operator C
ep =

∂σ

∂ε
of the new algorithm during plastic or
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mixed elastoplastic steps.
Recalling that purely plastic steps are a particular case within the range

of mixed ones (see Section 5.7.2), we start analyzing the latter. From (5.154)-
(5.155), we have

Xn+1 = ḠpḠeXn = Ḡp[(1 − α)∆e, R] Ḡe[α∆e] Xn (5.159)

where the above matrix operators are given by (5.145) and α (which depends on
∆e) is the “elastic step proportion” defined in (5.152). Consequently, following
basic differentiation rules, we have

∂Xn+1

∂∆e
=
[
Ã1 + Ã2 + Ã3 + Ã4 + Ã5

]
Xn (5.160)

with 




Ã1 =
∂Ḡp

∂∆e
[(1 − α)∆e, R] Ḡe[α∆e]

Ã2 =
∂Ḡp

∂α
[(1 − α)∆e, R]

dα

d∆e
[∆e] Ḡe[α∆e]

Ã3 = Ḡp[(1 − α)∆e, R]
∂Ḡe

∂∆e
[α∆e]

Ã4 = Ḡp[(1 − α)∆e, R]
∂Ḡe

∂ α
[α∆e]

dα

d∆e
[∆e]

Ã5 =
∂Ḡp

∂R
[(1 − α)∆e, R]

∂R

∂∆e
[∆e, σy,n] Ḡe[α∆e]

(5.161)

From Equation (5.160) we derive ∂Xs
n+1/∂e and ∂X0,n+1/∂e; in order to ob-

tain the classical tangent operator, the obtained equations must be finally
expressed as a linear function of the strain tensor instead of the form (5.160),
which is expressed as a linear function of Xn. Doing so, we finally obtain that
for mixed steps

∂Xs

∂e
= A1 + A2 + A3 + A4 + A5 (5.162)

∂X0

∂e
= b1 + b2 + b3 + b4 + b5 (5.163)

where the fourth-order tensors A and the second-order tensors b are described
below without addressing the calculations.
For purely plastic steps, being α constantly equal to zero, we obtain the shorter
formulation

∂Xs

∂e
= A1 (5.164)

∂X0

∂e
= b1 (5.165)
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We start introducing (see again (5.152) for M,D,C in each step) the second-
order tensor υ = dα/d∆e






υ = φ1
dC

d∆e
+ φ2

dD

d∆e

φ1 =
1

D

(
C√

C2 − DM
− 1

)

φ2 = − 1

D2

(
DM

2
√

C2 − DM
+
√

C2 − DM − C

)

dC

d∆e
=

2G

σy,n
X0,n Xs

n

dD

d∆e
= 2(

2G

σy,n
X0,n)2∆e

(5.166)

and the second-order tensor w






w = p (w1 + w2)

p =
−σy,n

[c−1 ln(1 + c)]2

[
1

c(1 + c)
− ln(1 + c)

c2

]

p1 =
2Gq

σy,n
(∆e : Xs

n)

p2 =

(
2G

σy,n

)2

q(1 − α)‖∆e‖2

w1 = (1 − α)
2Gq

σy,n
Xs

n − p1υ

w2 = p2υ +

(
2G

σy,n

)2

q(1 − α)∆e

(5.167)

Introducing the scalars






a = cosh

(
2G

R
(1 − α)‖∆e‖

)

b = sinh

(
2G

R
(1 − α)‖∆e‖

)

s =
∆e : Xs

n

‖∆e‖

k =
2G

R
(1 − α)

k̃ = −2G

R
‖∆e‖

(5.168)
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and the fourth-order tensors

M1 = s

(
kb − 2

a − 1

‖ ∆e ‖

)[
∆e ⊗ ∆e

‖ ∆e ‖2

]

+
(a − 1)s

‖ ∆e ‖ I +
a − 1

‖ ∆e ‖

[
∆e ⊗ Xs

n

‖ ∆e ‖

] (5.169)

M2 =

(
ka − b

‖ ∆e ‖

)[
∆e ⊗ ∆e

‖ ∆e ‖2

]
+

b

‖ ∆e ‖I (5.170)

We can show that the tensors appearing in (5.162) are





A1 = M1 + X0,n M2

A2 = k̃ (bs + aX0,n)

[
∆e ⊗ υ

‖ ∆e ‖

]

A3 =
2G

R
αX0,n

[
I + (a − 1)

∆e ⊗ ∆e

‖ ∆e ‖2

]

A4 =
2G

R
aX0,n [ ∆e ⊗ υ]

A5 = − k

R

(
bs

‖∆e‖2
+ a

)
[ ∆e ⊗ w]

(5.171)

while the second-order tensors in (5.163) are






b1 = M2X
s
n + kbX0,n

∆e

‖ ∆e ‖
b2 = k̃ (as + bX0,n) υ

b3 =
2G

R
αbX0,n

∆e

‖ ∆e ‖

b4 =
2G

R
bX0,n ‖ ∆e ‖ υ

b5 = − k

R

(
as

‖∆e‖ + b‖∆e‖
)

w

(5.172)

5.8 Theoretical analysis of algorithmical properties

of the ESC and ESC2 schemes

In this section we address from a theoretical point of view the following al-
gorithmical properties for the ESC and ESC2 methods: yield consistency, ex-
actness under proportional loading, accuracy and convergence. In particular
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we prove that the ESC scheme is yield consistent and converging with linear
rate to the exact solution. The ESC2 scheme is yield consistent, exact in the
case of proportional loading and quadratically accurate. Moreover, limiting
the proof to purely plastic load histories, we show that the ESC2 scheme is
quadratically convergent. Although purely plastic loadings are not uncommon
in practical cases, a more complete approach should deal with generic loading
histories; hence, this point is worth further investigation.

Finally, both schemes are exact in the case of materials with no isotropic
hardening. Note that the word “exact” means that the algorithm introduces
no error for strain driven load histories under the classical hypothesis ė piece-
wise constant. In practical applications this does not translate directly into
exactness of the constitutive solver. This point will be cleared by the numerical
tests and it will be briefly discussed in the following sections.

For basic results and definitions regarding the numerical integration of
ordinary differential equations we refer for example to [39, 52].

5.8.1 Yield consistency

In the framework of the new formulation, recalling (5.117) and (5.123), the
yield consistency condition

‖Σn+1‖ = σy,n+1 at end of each plastic step (5.173)

becomes

‖Xs
n+1‖2 − X2

0,n+1 = 0 at end of each plastic step (5.174)

Both the ESC and ESC2 schemes are yield consistent, in other words satisfy
condition (5.174). The proof for the ESC2 is identical to the one for the ESC
method, which is shown in [8].

5.8.2 Exactness whenever Hiso = 0

Both the ESC and ESC2 schemes are exact whenever there is no isotropic
hardening. The proof of this property is immediate, considering that in such
cases the matrix operators (5.130)-(5.131) are constant in each time step. For
other methods with this property see References [51, 77].

5.8.3 Exactness under proportional loading

Assume as usual a piecewise linear strain history. We then say that a particular
algorithmical time step develops under proportional loading if during the whole
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step

Σ(t) = r(t)Σ0 (5.175)

where Σ0 is the initial stress and r(t) is a scalar depending on time. It is easy
to check that the definition above implies

ė = ‖ė‖ Σ0

‖Σ0‖
= ‖ė‖ Σ

‖Σ‖ (5.176)

during the time step. As noted in [8], the backward Euler method combined
with a return map algorithm is exact in the case of proportional loading,
while this same property in not shared by the ESC scheme. This means that,
if a given time step develops under proportional loading, then the solution
obtained with the return map will be identical to the continuous solution
with the same initial step conditions. As shown in the following proposition,
differently frmm the ESC scheme, the ESC2 method has the advantage of
being exact in the case of proportional loading.

We have the following

Proposition 5.8.1 The ESC2 algorithm is exact in the case of proportional
loading.

Proof: It is trivial to show that the scheme is exact during the elastic part of
each time step; therefore what has to be proved is that the algorithm is exact
also in the plastic part of each step. In the case of purely plastic steps (α = 0)
this follows from Lemma 5.8.2 below, while the general case (α > 0) follows
applying a trivial modification of the same Lemma.

In the sequel, we will call the direction of a vector v ∈ Rn the normalized
unit vector v/‖v‖.

Lemma 5.8.2 Consider a purely plastic step under proportional loading. Then
the solution obtained with the ESC2 is identical to the continuous solution with
the same initial step conditions.

Proof: as usual we mark with the subindex n the values at the start of the
step, which are assumed assigned. Note that, being the step purely plastic,
the initial relative stress Σn lays on the yield surface. As already noted, the
proportional loading assumption implies that during the step

ė = ‖ė‖ Σn

‖Σn‖
(5.177)
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or equivalently

∆e = ‖∆e‖ Σn

‖Σn‖
(5.178)

In the case of proportional loading the continuous solution can be checked
to be equal to

Σex
n+1 =

Σn

‖Σn‖
σex

y,n+1 (5.179)

σex
y,n+1 = σy,n + 2G q‖∆e‖ (5.180)

where here and in the sequel the index e is used to indicate the exact solution.
The value of the backstress α at any instant can be immediately derived

from the value of Σ and relation (5.158); this is true both for the continuous
and the numerical solution. Similarly, the remaining variables can be obtained
from the usual relations (5.3)-(5.10). Therefore all that has to be checked in
order to state the Lemma is that the value Σn+1 obtained with the ESC2

algorithm is equal to Σex
n+1.

This will be done in two steps. The first is to prove that the direction of
Σn+1 is the same as the one of Σex

n+1, in other words that the direction of
Σn+1 is equal to Σn/‖Σn‖. The second step is to show that the norm of Σn+1

is the same as the one of Σex
n+1, in other words that the norm of Σn+1 is equal

to σex
y,n+1.

Step1: by definition of Xs
n and recalling that ‖Σn‖ = σy,n we have

Xs
n = X0,n

Σn

‖Σn‖
(5.181)

Applying the algorithm (see (5.145) and (5.155)), we get

Xs
n+1 = Xs

n +

([
(a − 1)

‖∆e‖2

]
∆e : Xs

n +
bX0,n

‖∆e‖

)
∆e (5.182)

where

a = cosh

(
2G

R
‖∆e‖

)
(5.183)

b = sinh

(
2G

R
‖∆e‖

)
(5.184)

with R defined in (5.140). Joining (5.182) with (5.178) and (5.181) immedi-
ately gives that Xs

n+1 is of the form

Xs
n+1 = ψ

Σn

‖Σn‖
ψ ∈ R (5.185)
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which immediately implies

Xs
n+1

‖Xs
n+1‖

=
Σn

‖Σn‖
(5.186)

First from definitions (5.117) and (5.123), then from (5.186) and finally using
(5.179), we obtain

Σn+1

‖Σn+1‖
=

Xs
n+1

‖Xs
n+1‖

=
Σn

‖Σn‖
=

Σex
n+1

‖Σex
n+1‖

(5.187)

This completes the first part of the proof.

Step2: being the step plastic and due to the consistency of the scheme, we
have

‖Σn+1‖ = σy,n+1 (5.188)

which, recalling relation (5.156) and with simple algebra, gives

‖Σn+1‖ = σy,n+1 = σy,0 (X0,n+1)
q = σy,0 (X0,n)q

(
X0,n+1

X0,n

)q

= σy,n

(
X0,n+1

X0,n

)q

(5.189)
Again applying the algorithm (see (5.145) and (5.155)), we get

X0,n+1 = b
∆e : Xs

n

‖∆e‖ + aX0,n (5.190)

Substituting (5.178) and (5.181) in (5.190) and dividing by X0,n gives imme-
diately

X0,n+1

X0,n
= b‖∆e‖

Σn

‖Σn‖
:

Σn

‖Σn‖
‖∆e‖ + a = b + a (5.191)

which by definition of a and b gives

X0,n+1

X0,n
= exp

(
2G

R
‖∆e‖

)
(5.192)

Substituting (5.192) into (5.189) we obtain

‖Σn+1‖ = σy,n exp

(
2G q

R
‖∆e‖

)
(5.193)

Due to (5.179)-(5.180) and (5.193), in order to show that

‖Σn+1‖ = ‖Σex
n+1‖ (5.194)
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and conclude the proof of the Lemma, it suffices to show that

σy,n exp

(
2G q

R
‖∆e‖

)
= σy,n + 2G q‖∆e‖ (5.195)

Identity (5.195) follows from a direct calculation and the definition of R in
(5.140), observing that from (5.178) and (5.181)

c =
2G q ‖∆e‖

σy,n
(5.196)

5.8.4 Accuracy

In this section we analyze the accuracy of the methods ESC and ESC2.
It is easy to check that the function R(∆t), defined in (5.140), is continuous

even in ∆t = 0. Moreover, it holds the following result which will be useful in
the sequel.

Lemma 5.8.3 Let α = 0 (purely plastic step). Then the (right) derivative in
∆t = 0 of the function R(∆t) defined in (5.140) is well defined and equal to

Ṙ(0) =
σ̇y(tn)

2
(5.197)

Moreover, it exists the second (right) derivative in zero of R(∆t).

Applying the definition of derivative and (5.140) we obtain

Ṙ(0) = lim
∆t→0

R(∆t) − R(0)

∆t
= σy,n lim

∆t→0

c − ln (1 + c)

ln (1 + c)∆t

= σy,n lim
∆t→0

c2/2

c ∆t
=

2G q

2

Xs
n

X0,n
: ė (5.198)

where we also used the condition α = 0. Due to definition (5.123), identity
(5.198) gives

Ṙ(0) =
2G q

2

Σn

‖Σn‖
: ė (5.199)

Recalling that we are considering a plastic phase, a direct derivation gives

σ̇y =
d

dt
‖Σ‖ =

Σ

‖Σ‖ : Σ̇ (5.200)
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Starting from the von-Mises constitutive equations, in Section 4 of [16] it is
shown that in plastic phases

Σ̇ + (2G + Hkin)
Σ

σy,0 + Hisoγ
γ̇ = 2Gė (5.201)

(σy,0 + Hisoγ) (2G + Hkin + Hiso) γ̇ = 2Gė : Σ (5.202)

Extracting the expression for γ̇ in (5.202) and using it in (5.201), we immedi-
ately obtain an equation for Σ̇; then, taking the scalar product with Σ/‖Σ‖
we get

Σ̇ :
Σ

‖Σ‖ = 2Gė :
Σ

‖Σ‖−
(2G + Hkin)Σ : Σ

‖Σ‖ (σy,0 + Hisoγ)

2Gė : Σ

(σy,0 + Hisoγ) (2G + Hkin + Hiso)
(5.203)

Recalling that σy,0 + γHiso = ‖Σ‖, Equation (5.203) immediately simplifies to

Σ̇ :
Σ

‖Σ‖ = 2G q ė :
Σ

‖Σ‖ (5.204)

Equations (5.200) and (5.204) give at time tn

σ̇y(tn) = 2G q ė :
Σn

‖Σn‖
(5.205)

which joined with (5.199) proves (5.197).
Finally, the last statement of the Lemma can be derived from the definition

of second order derivative

R̈(0) = lim
∆t→0+

Ṙ(∆t) − Ṙ(0)

∆t
(5.206)

calculating the value of Ṙ(∆t) directly from (5.140), using (5.199) for the value
of Ṙ(0) and then calculating the limit in (5.206).

We are now ready to present the following accuracy result.

Proposition 5.8.4 The ESC2 scheme holds quadratic accuracy, in other words
the truncation error is of order (∆t)2 with ∆t size of the time step. The ESC
scheme holds instead linear accuracy.

Proof: We will show the proof only in the case of the ESC2 method; the proof
for the ESC scheme is simpler and follows similar steps. As usual, it is sufficient
to show that the truncation error for the relative stress Σ is quadratic; the
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result for the back stress α follows from relation (5.158). Therefore, assuming
all the variables at time tn as given, we want to show that

Tn =
‖Σex

n+1 − Σn+1‖
∆t

= O(∆t2) (5.207)

where Σex
n+1 is the exact solution for the given initial data at time tn+1 and

Σn+1 the solution obtained with the ESC2 scheme for the same initial data at
time tn+1.

We will start showing that

‖Xex
n+1 −Xn+1‖ = O(∆t3) (5.208)

where again Xex
n+1 represents the exact generalized stress for the given initial

data at time tn+1 and Xn+1 the solution obtained with the ESC2 algorithm
for the same initial data.

Recalling that the scheme is exact during elastic phases, it is sufficient to
prove the proposition for purely plastic steps. The result for mixed elastoplas-
tic steps will then follow trivially considering the plastic part of the step as a
purely plastic step with smaller ∆t. We assume therefore a purely plastic step
(i.e. α = 0) with given initial data at time tn.

Then, from (5.111), the exact value of the generalized stress

Xex
n+1 = Xex(tn+1) = Xex(tn + ∆t) (5.209)

is the solution at time tn + ∆t of the dynamical system






Xex(tn) = Xn

Ẋ
ex

(t) =
2G

σy
B Xex(t) t ∈ [tn, tn + ∆t]

(5.210)

where the matrix operator

[B] =

[
O ė
ė 0

]
(5.211)

and where we recall that σy may vary in time. Following instead the scheme
ESC2, the value of the generalized stress

Xn+1 = X(tn+1) = X(tn + ∆t) (5.212)

is

X(tn + ∆t) = exp

(
2G

R
B ∆t

)
Xn (5.213)
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where R = R(∆t) depends on ∆t as shown in (5.140).
It can be checked after some calculation that both Xex(tn+∆t) and X(tn+

∆t) are C3 regular as functions of ∆t, even in ∆t = 0. Therefore a truncated
Taylor expansion immediately leads to

Xex(tn + ∆t) = Xex(tn) +
dXex

d∆t
(tn)∆t +

d2Xex

d∆t2
(tn)

∆t2

2
+ O(∆t3)(5.214)

X(tn + ∆t) = X(tn) +
dX

d∆t
(tn)∆t +

d2X

d∆t2
(tn)

∆t2

2
+ O(∆t3)(5.215)

As a consequence, in order to prove (5.208), we must show that

Xex(tn) = X(tn) (5.216)

dXex

d∆t
(tn) =

dX

d∆t
(tn) (5.217)

d2Xex

d∆t2
(tn) =

d2X

d∆t2
(tn) (5.218)

Using (5.210) and with direct derivations we easily obtain for the exact solution

Xex(tn) = Xn (5.219)

dXex

d∆t
(tn) = Ẋ

ex
(tn) =

2G

σy,n
B Xex(tn) =

2G

σy,n
B Xn (5.220)

d2Xex

d∆t2
(tn) = Ẍ

ex
(tn) =

2G

σy,n
B Ẋ

ex
(tn) − 2G

σ2
y,n

B Xex(tn) σ̇y(tn)

=

(
2G

σy,n
B

)2

Xn − 2G

σ2
y,n

B Xn σ̇y(tn) (5.221)

For the discrete solution, from (5.213) we immediately have

X(tn) = Xn (5.222)

which joined with (5.219) gives (5.216).
Inspecting (5.213), a direct derivation leads to

dX

d∆t
(tn) =

[
d

d∆t
exp

(
2G

R(∆t)
B ∆t

)]

∆t=0

Xn

=

[
2G

R(∆t)
B − 2G

R(∆t)2
B ∆t Ṙ(∆t)

]

∆t=0

[
exp

(
2G

R(∆t)
B ∆t

)]

∆t=0

Xn

=
2G

R(0)
B Xn =

2G

σy,n
B Xn (5.223)
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where we implicitly used that Ṙ(0) is well defined due to Lemma 5.8.3.

Identity (5.223) joined with (5.220) gives (5.217). Deriving (5.223) and
omitting the manipulations we obtain

d2X

d∆t2
(tn) =

[(
2G

σy,n
B

)2

− 2
2G

σ2
y,n

B Ṙ(0)

]

Xn (5.224)

where we implicitly used that R̈(0) is well defined due to Lemma 5.8.3.

Identity (5.218) then follows from (5.221), (5.224) and again Lemma 5.8.3.
We have proven the three identities (5.216)-(5.218), therefore the proof of
(5.208) follows as already discussed. First from definitions (5.117) and (5.123),
then using relation (5.156) it follows the relation between relative and genera-
lized stress

Σ = σy
Xs

X0
= σy,0 Xq−1

0 Xs (5.225)

Using (5.225) and (5.208) and without showing all the calculations we finally
get

‖Σex
n+1−Σn+1‖ = ‖σy,0

(
Xex

0,n+1

)q−1
Xs,e

n+1−σy,0 (X0,n+1)
q−1 Xs

n+1‖ = O(∆t3)
(5.226)

Bound (5.226) immediately implies (5.207) and proves the proposition.

5.8.5 Convergence

In this section we will make a first study of the convergence properties of
the ESC and ESC2 methods. In order to keep calculations simpler we will
address the case with no kinematic hardening (i.e. Hkin = 0), otherwise also
the norm introduced below should be modified accordingly. Note that this
is not restrictive because, differently from isotropic hardening, an opportune
translation in stress space shows that linear kinematic hardening does not
generate additional difficulties from the numerical viewpoint.

We will consider convergence in the classical “complementary Helmholtz
free energy” norm

‖|Σ, σy‖|2 = (2G)−1‖Σ‖2 + (Hiso)
−1σ2

y (5.227)

Note that, although on a finite dimensional space all norms are equivalent,
the choice of this norm is not arbitrary. This is in fact the norm in which
the original continuous problem is contractive [68, 69]. Note also that we are
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assuming Hiso > 0, otherwise both schemes are exact and there is nothing to
prove.

Given a certain degree of accuracy, probably the best way to prove the
convergence of a scheme in plasticity is to show that the scheme is B-stable, in
other words that the method is contractive in the “complementary Helmholtz
free energy” norm above [63]. On the other hand the aim of this section is not
to address strong properties as the B-Stability [63, 68] which, considering the
particular formulation under consideration, would require a deeper study. We
will therefore prove convergence directly, essentially by showing that in the
energy norm the error propagates at a controlled rate. In other words

• For the ESC scheme we prove linear convergence

• For the ESC2 scheme we show quadratic convergence, but only for purely
plastic load histories. On one hand, considering that during elastic
phases there is virtually no additional error, an assumption of this kind,
which is also addressed in the classical paper [63], can be reasonably
accepted. On the other hand, in the presence of complicated histories
with a large number of elasto-plastic switches, a result of this kind is not
sufficient to guarantee convergence; the matter is surely worth further
investigations.

In order to fix the notation, we note that in the sequel we will refer to the
relative stress-radius couples (Σ, σy) simply as “couples”. The convergence of
the methods will derive from the accuracy results of the previous section and
from the two following propositions, which state the stable behavior of the
error propagation in the scheme.

Proposition 5.8.5 Assume that two initial couples (Σi, σy,i) and (Σ̃i, σ̃y,i)
and a strain increment ∆e are assigned. Let (Σf , σy,f ) and (Σ̃f , σ̃y,f ) be the
solutions obtained applying one step of the ESC algorithm with strain incre-
ment ∆e, respectively to (Σi, σy,i) and (Σ̃i, σ̃y,i). Then there exists a constant
K such that

‖|Σf − Σ̃f , σy,f − σ̃y,f‖| ≤ exp (K‖∆e‖) ‖|Σi − Σ̃i, σy,i − σ̃y,i‖| (5.228)

Moreover, the constant K depends only on ‖∆e‖ and is bounded on all sets of
the type
{∆e ∈ Lin, ‖∆e‖ ≤ c, c ∈ R+}.

Proof: In order to shorten the notation, during the proof an added index E
will in general refer to the difference

ΣE = Σ − Σ̃ , σE
y = σy − σ̃y (5.229)
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The proof can be divided into three separate cases, depending on which type of
step (elastic or plastic) each of the two couples is following. It is not restrictive
to assume that each couple is undergoing either a totally plastic or a totally
elastic step; it is then trivial to check that the proof for mixed elastoplastic
increments simply follows splitting the time step properly.

If both couples follow an elastic step, then both couples undergo the same
identical transformation and the proposition is trivially true setting K = 0.
If both couples are in plastic phase, or if one is in plastic and the other in
elastic phase, the matter is more complicated. In both cases, Lemmas 5.8.10
and 5.8.11 respectively show that the error will evolve satisfying the bound

d

dt
‖|ΣE(t), σE

y (t)‖| ≤ ‖ė‖
[
K1‖|ΣE(t0), σ

E
y (t0)‖| + K2‖|ΣE(t), σE

y (t)‖|
]

(5.230)
during the whole time step. In the present case, respectively at the beginning
and at the end of an integration interval, it holds

(Σ(t0), σy(t0)) = (Σi, σy,i) (Σf , σy,f ) = (Σ(t0 + ∆t), σy(t0 + ∆t))
(5.231)

(Σ̃(t0), σ̃y(t0)) = (Σ̃i, σ̃y,i) (Σ̃f , σ̃y,f ) = (Σ̃(t0 + ∆t), σ̃y(t0 + ∆t))

(5.232)

(ΣE(t0), σ
E
y (t0)) = (ΣE

i , σE
y,i) (ΣE

f , σE
y,f ) = (ΣE(t0 + ∆t), σE

y (t0 + ∆t))

(5.233)

assuming that the time-step has length ∆t. We now have, for all t ∈ [t0, t0+∆t]

‖|ΣE(t), σE
y (t)‖| = ‖|ΣE(t0), σ

E
y (t0)‖| +

∫ t0+t

t0

d

ds
‖|ΣE(s), σE

y (s)‖|ds

(5.234)

Applying bound (5.231) in equation (5.234) now easily gives

‖|ΣE(t), σE
y (t)‖| ≤

[
1 + K1‖ė‖(t − t0)

]
‖|ΣE(t0), σ

E
y (t0)‖|

+‖ė‖K2

∫ t0+t

t0

‖|ΣE(s), σE
y (s)‖|ds ∀t ∈ [t0, t0 + ∆t] (5.235)

which in turn, recalling that t ∈ [t0, t0 + ∆t], grants

‖|ΣE(t), σE
y (t)‖| ≤

[
1 + K1‖ė‖∆t

]
‖|ΣE(t0), σ

E
y (t0)‖|

+‖ė‖K2

∫ t0+t

t0

‖|ΣE(s), σE
y (s)‖|ds ∀t ∈ [t0, t0 + ∆t] (5.236)
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A scalar function which satisfies a condition of this type must, due to the
Gronwall Lemma [39, 52], satisfies on the same interval the bound

‖|ΣE(t), σE
y (t)‖| ≤

[
1 + K1‖ė‖∆t

]
‖|ΣE(t0), σ

E
y (t0)‖| exp [K2‖ė‖(t − t0)]

(5.237)

Using bound (5.237) for t = t0 + ∆t and observing that 1 + x ≤ exp (x) for all
x ∈ R, it follows

‖|ΣE
f , σE

y,f‖| ≤ exp [K1‖ė‖∆t] ‖|ΣE
i , σE

y,i‖| exp [K2‖ė‖∆t] (5.238)

where we also used the definitions (5.232) and (5.233). Finally, recalling that
‖∆e‖ = ‖ė‖∆t and setting K = K1 + K2, bound (5.238) gives

‖|ΣE
f , σE

y,f‖| ≤ exp [K‖∆e‖] ‖|ΣE
i , σE

y,i‖| (5.239)

The proposition is proved.

The proof of the following result is identical to the previous one, the only
difference being to limit the argument to plastic steps, therefore using only
Lemma 5.8.10 instead of Lemma 5.8.11.

Proposition 5.8.6 Assume that two initial couples (Σi, σy,i) and (Σ̃i, σ̃y,i)
and a strain increment ∆e are assigned. Let (Σf , σy,f ) and (Σ̃f , σ̃y,f ) be the
solutions obtained applying one purely plastic step of the ESC2 algorithm with
strain increment ∆e, respectively to (Σi, σy,i) and (Σ̃i, σ̃y,i). Then there exists
a constant K such that

‖|Σf − Σ̃f , σy,f − σ̃y,f‖| ≤ exp (K‖∆e‖) ‖|Σi − Σ̃i, σy,i − σ̃y,i‖| (5.240)

Moreover, the constant K depends only on ‖∆e‖ and is bounded on all sets of
the type
{∆e ∈ Lin, ‖∆e‖ ≤ c, c ∈ R+}.

Remark 5.8.7 Note that the second part of Lemma 5.8.11, i.e. proving that
the scalar A2 in the lemma is non positive, can be proved identically also for
the ESC2 scheme. The additional difficulty is instead given by bounding the
scalar A1 with terms which depend only on the present or past history. Note
that following the same steps a conditional stability result could be obtained
for the ESC2 scheme in case of mixed elastoplastic evolution histories (i.e.
a result as in Proposition 5.8.5 with the additional assumption that ∆e is
sufficiently small).
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We can now state the convergence result for the ESC2 method, which
holds for purely plastic load histories. This is undoubtedly a non negligible
limitation, as noted in the comments at the start of this section. The matter
is therefore worth further investigation.

Proposition 5.8.8 Let a piecewise linear strain history e(t) , t ∈ [0, T ] and
two starting couples (Σex(0), σex

y (0)) and (Σ(0), σy(0)) be assigned. Assume
for simplicity that ‖ė‖ is constant during the whole history; due to the rate
invariance of the problem, this is not restrictive. Let the time interval be di-
vided into N uniform sub-intervals of length ∆t = T/N . Let (Σex(T ), σex

y (T ))
indicate the exact solution at time T following the strain history above with
starting point (Σex(0), σex

y (0)); let also (Σ(T ), σy(T )) indicate the solution at

time T obtained with the ESC2 scheme based on the above strain history and
time stepping, with starting point (Σ(0), σy(0)). Finally, assume that the strain
history is such that the continuous and the discrete solutions undergo a purely
plastic loading. Then

|‖(Σex(T ), σex
y (T )) − (Σ(T ), σy(T ))|‖

≤ C1‖ė‖2(∆t)2 + C2|‖(Σex(0), σex
y (0)) − (Σ(0), σy(0))|‖ (5.241)

where C1, C2 are independent of N .

Proof: In the sequel a subindex n will indicate a variable calculated at time
tn = n∆t, n = {0, 1, 2...N − 1}. Given any stress-radius couple (Σ̃, σ̃y), let
in the sequel Θn[Σ̃, σ̃y] indicate the couple obtained applying one step of the
ESC2 scheme to (Σ̃, σ̃y) with ∆e = en+1 − en = e(tn+1) − e(tn). We have in
particular for the discrete solution

(Σ, σy)n+1 = Θn[Σn, σy,n] (5.242)

Using the definition of the operator Θ and a triangle inequality, for the error
at time tn+1 it holds

En+1 := |‖(Σex, σex
y )n+1 − (Σ, σy)n+1|‖

≤ |‖(Σex, σex
y )n+1 − Θn[Σex

n , σex
y,n]|‖ + |‖Θn[Σex

n , σex
y,n] −

Θn[Σn, σy,n]|‖ (5.243)

The first member in the right hand side of (5.243) represents the local error
generated at each time step, which can be controlled using the accuracy results
of the previous section. The second member represents instead the propaga-
tion of the accumulated error, which must be dealt with essentially using the
stability results of this section.
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From Proposition 5.8.4 and bound (5.208), recalling that σy = σy,0X
q
0 both

for the exact and the numerical solution, it follows

|‖(Σex, σex
y )n+1 − Θn[Σex

n , σex
y,n]|‖ ≤ C̃(∆t)3 (5.244)

where here and in the sequel C̃ will indicate a general constant independent
of N . We want to rewrite bound (5.244) in rate invariant form. The error in
Proposition 5.8.4 follows from the difference between the third order derivative
of the numerical scheme and the exact solution. Therefore, it is easy to check
that, bringing out the dependence of C̃ on ‖ė‖, bound (5.245) becomes

|‖(Σex, σex
y )n+1 − Θn[Σex

n , σex
y,n]|‖ ≤ C̃‖ė‖3(∆t)3 = C̃‖∆e‖3 (5.245)

where the new constant C̃ is now rate invariant. For the second member in
the right hand side of (5.243), Proposition 5.8.6 gives

|‖Θn[Σex
n , σex

y,n] − Θn[Σn, σy,n]|‖ ≤ exp (K‖∆e‖)|‖(Σex
n , σex

y,n) − (Σn, σy,n)|‖
= exp (K‖∆e‖)En (5.246)

with K fixed scalar independent of N . Therefore, applying the bounds (5.245)
and (5.246) into the inequality (5.243), we get

En+1 ≤ C̃‖∆e‖3 + exp (K‖∆e‖)En (5.247)

Iteration of (5.247) easily leads to

EN ≤ C̃‖∆e‖3[
N−1∑

n=0

exp (Kn‖∆e‖)] + exp (KN‖∆e‖)E0 (5.248)

From (5.248), using that ∆e = ė ∆t and T = N∆t we get

EN ≤ C̃‖∆e‖3N exp (KN‖∆e‖) + exp (KN‖∆e‖)E0

≤ C̃(‖ė‖2(∆t)2‖ė‖T + E0) exp (K‖ė‖T ) ≤ C̃ ′(‖ė‖2(∆t)2

+E0) (5.249)

where the scalar C̃ ′ is rate invariant and independent of N . Note that also
the quantities ‖ė‖2(∆t)2 and ‖ė‖T appearing in (5.249) are correctly rate
invariant. Recalling the definition of En, n ∈ {0, 1, 2, ..., N}, the proposition
is proved.
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Remark 5.8.9 The convergence result for the ESC method is not restricted to
purely plastic load histories. The result is identic to that of Proposition 5.8.8
but holding for any type of loading history. The proof is essentially the same
as for Proposition 5.8.8 but using the more general Proposition 5.8.5 instead
of Proposition 5.8.6.

In the following the reader is provided with the proofs of the lemmas recalled
in Section 5.8.5 devoted to the numerical analysis of the exponential-based
algorithms. The present results which play a key role in the derivations carried
out in the previous section are taken from [11].

5.8.6 Two lemmas

We now introduce and prove the two lemmas mentioned in the previous sec-
tions by first recalling the following identities which can be derived from the
new formulation of Section 5.7.1. At all time instants during plastic steps it
holds:

Xs = σ−1
y,0 X1−q

0 Σ (5.250)

Σ = σy,0 Xq−1
0 Xs (5.251)

Lemma 5.8.10 Let two initial couples (Σ(t0), σy(t0)), (Σ̃(t0), σ̃y(t0)) and a
strain increment ∆e = ė∆t be assigned. Assume to apply one step of the ESC
or ESC2 algorithm with strain increment ∆e to both initial couples and assume
that both steps are totally plastic. Then at all instants t ∈ [t0, t0 + ∆t] during
the time step, it holds

d

dt
‖|Σ(t) − Σ̃(t), σy(t) − σ̃y(t)‖|

≤ ‖ė‖
[
K1‖|Σ(t0) − Σ̃(t0), σy(t0) − σ̃y(t0)‖|

+ K2‖|Σ(t) − Σ̃(t), σy(t) − σ̃y(t)‖|
]

(5.252)

where the positive constants K1,K2, depending only on the material constants
and ‖∆e‖, are bounded on all sets of the type {∆e ∈ Lin, ‖∆e‖ ≤ c, c ∈ R+}

Proof: The proof will be shown only in the case of the ESC2 algorithm.
The proof for the ESC scheme is a simpler version of the one that follows and
can be trivially derived following the same steps. In the sequel, in order to
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shorten the notation, the dependence of the variables on time will not be ex-
plicited; unless differently noted, the time dependent equations and identities
that follow are valid for all t ∈ [t0, t0 + ∆t].

We will again adopt the notation introduced in (5.229). Direct derivation
gives

d

dt
‖|ΣE , σE

y ‖|2 = 2
[
(2G)−1(ΣE, Σ̇

E
) + (Hiso)

−1σE
y σ̇E

y

]
(5.253)

Deriving in time definition (5.251) and using (5.124)-(5.250) we easily get,
without showing all the calculations,

Σ̇
E

=
d

dt
(Σ − Σ̃) = σy,0T1 + T2 (5.254)

T1 =

[
2G

R
Xq

0 − 2G

R̃
X̃q

0

]
ė (5.255)

T2 = (q − 1)
[2G

R
(ė : Σ)

Σ

σy
− 2G

R̃

(
ė : Σ̃

) Σ̃

σ̃y

]
(5.256)

As a consequence, the first member in the right hand side of (5.253) can be
bounded with

(2G)−1ΣE : Σ̇
E

= (2G)−1 [σy,0 T1 + T2] : ΣE ≤ C (‖T1‖ + ‖T2‖) ‖ΣE‖
(5.257)

where here and in the sequel C indicates a general positive constant depending
only on the material constants. We now have

‖T1‖ ≤ C

[∣∣∣∣∣
R̃ − R

R R̃
Xq

0 +
1

R̃

(
Xq

0 − X̃q
0

)∣∣∣∣∣

]
‖ė‖

≤ C

(∣∣∣∣∣
R̃ − R

R R̃
Xq

0

∣∣∣∣∣+
∣∣∣∣
1

R̃
(Xq

0 − X̃q
0)

∣∣∣∣

)
‖ė‖

= (A1 + A2)‖ė‖ (5.258)

The definition of R, recalling that both couples are undergoing a purely plastic
step, becomes

R =
‖Σi‖

c−1 ln (1 + c)
(5.259)

c =
2G q Σi : ∆e

‖Σi‖2
(5.260)
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and the analogous for the barred variables. Therefore R is a real C1 function
of Σi.

Recalling that both couples are in plastic phase, it follows immediately
that both ‖Σi‖ and ‖Σ̃i‖ are greater or equal to σy,0. It is therefore easy to
check that it exists a smooth path γ in Linsym from Σ̃i to Σi such that

γ : [0, L] −→ Linsym (5.261)

‖∇γ(s)‖ = 1 ∀s ∈ [0, L] (5.262)

‖γ(s)‖ ≥ σy,0 ∀s ∈ [0, L] (5.263)

L ≤ 4‖Σi − Σ̃i‖ (5.264)

Note that the above conditions simply mean that γ is a C1 path of length L
lesser than 4‖Σi − Σ̃i‖, written with respect to its curvilinear abscissae and
bounded outside a sphere of radius σy,0 centered at the origin.

From the Lagrange theorem applied to the function R(Σ) along the path
γ, it follows the existence of β ∈ [0, L] such that

R − R̃ = L ∇R|Σ∗

i
: ∇γ|β (5.265)

where

Σ∗
i = γ(β) 0 ≤ β ≤ L (5.266)

Using (5.262) and (5.264), from (5.265) we get

|R − R̃| ≤ 4‖∇R|Σ∗

i
‖ ‖Σi − Σ̃i‖ (5.267)

Substituting (5.267) in the definition of A1 and using the Cauchy-Schwartz
inequality now leads to

A1 ≤
‖∇R|Σ∗

i
‖

R̃

Xq
0

R
‖Σi − Σ̃i‖ (5.268)

We now want to bound the pieces in (5.268). A direct calculation gives

∇R|Σ∗

i
=

1

c−1 ln (1 + c)
∇‖Σ‖ − ‖Σ∗

i ‖

1

c(1 + c)
− ln (1 + c)

c2

(c−1 ln (1 + c))2

[
∂c

∂Σ

]
(5.269)

where all the functions and derivatives are calculated in Σ∗
i . We note that the

functions

1

c(1 + c)
− ln (1 + c)

c2
, c−1 ln (1 + c) (5.270)
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are bounded from above on all the positive real line. Also, recalling (5.260), it
is easy to check that the latter function c−1 ln (1 + c) is bounded from below
by a positive constant (independent of ‖Σ∗

i ‖) on all sets of the type {∆e ∈
Lin, ‖∆e‖ ≤ c, c ∈ R+}. A direct calculation also easily gives

‖
[

∂c

∂Σ

]
|Σ∗

i
‖ ≤ C

‖∆e‖
‖Σ∗

i ‖2
(5.271)

Joining the latter three statements with (5.269) and noting that the norm
of ∇(‖Σ‖) is equal to one, gives

‖∇R|Σ∗

i
‖ ≤ K ′

3

(
1 + ‖Σ∗

i ‖−1
)

(5.272)

where K ′
3 depends only on ‖∆e‖ and is bounded on all sets of the type {∆e ∈

Lin, ‖∆e‖ ≤ c, c ∈ R+}. Finally, due to definition (5.266) and condition
(5.263), the above bound becomes

‖∇R|Σ∗

i
‖ ≤ K3 (5.273)

where K3 depends only on ‖∆e‖ and is bounded on all sets of the type {∆e ∈
Lin, ‖∆e‖ ≤ c, c ∈ R+}.

Using again the boundedness from above of c−1 ln (1 + c) and recalling
(5.259), (5.156) we have

1

R̃
≤ c̃−1 ln (1 + c̃)

σy,0
≤ C (5.274)

1

R
=

c−1 ln (1 + c)

σy,0X
q
0,i

≤ C
1

Xq
0,i

(5.275)

Using (5.275) and recalling that X0 never decreases during the step, we now
have

Xq
0

R
≤ C

(
X0

X0,i

)q

≤ C

(
X0,f

X0,i

)q

(5.276)

We observe that, due to (5.143)-(5.145) and recalling that

‖Xs‖ = X0 during plastic phases (5.277)

it follows

X0,f = b
ė : Xs

i

‖ė‖ + aX0,i ≤ b‖Xs
i‖ + aX0,i ≤ (b + a)X0,i (5.278)
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Therefore, from (5.276) and (5.278), it holds

Xq
0

R
≤ C(b + a)q ≤ C exp

(
2G q

R
‖∆e‖

)
≤ K4 (5.279)

with K4 bounded on all sets of the type {∆e ∈ Lin, ‖∆e‖ ≤ c, c ∈ R+}.
Finally, simply applying the three bounds (5.273),(5.274) and (5.279) into

(5.268), we obtain

A1 ≤ K5‖Σi − Σ̃i‖ (5.280)

with K5 depending only on ∆e and bounded on all sets of the type {∆e ∈
Lin, ‖∆e‖ ≤ c, c ∈ R+}. Using (5.274) and observing that any difference of
tensor norms is bounded by the norm of the difference, we get for the second
term in (5.258)

A2 =

∣∣∣∣
1

R̃
σ−1

y,0

(
‖Σ‖ − ‖Σ̃‖

)∣∣∣∣ ≤ C
(
‖Σ‖ − ‖Σ̃‖

)
≤ C‖Σ− Σ̃‖ (5.281)

Applying the bounds (5.280) and (5.281) to (5.258), it immediately follows

‖T1‖ ≤ ‖ė‖
[
K5‖Σi − Σ̃i‖ + C‖Σ − Σ̃‖

]
(5.282)

The second term T2 is bound following the same techniques; in the end we
obtain a similar bound

‖T2‖ ≤ ‖ė‖
[
K6‖Σi − Σ̃i‖ + K7‖Σ − Σ̃‖

]
(5.283)

where K6,K7 depend only on ‖∆e‖ and are bounded on all sets of the type
{∆e ∈ Lin, ‖∆e‖ ≤ c, c ∈ R+}.

For the second term in (5.253), using the identities (5.156) and (5.128), it
follows

|σE σ̇E| = |σy − σ̃y| σy,0 |Xq−1
0 Ẋ0 − X̃q−1

0
˙̃X0| (5.284)

which, recalling that in plastic phase σy = ‖Σ‖, becomes

|σE σ̇E| ≤ C‖Σ− Σ̃‖ σy,0 |Xq−1
0 Ẋ0 − X̃q−1

0
˙̃X0| (5.285)

Applying identity (5.250), bound (5.285) becomes

|σE σ̇E | ≤ C‖Σ − Σ̃‖
(

2G

R
ė : Σ − 2G

R̃
ė : Σ̃

)
(5.286)
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where the term in parentheses can be bounded with the usual techniques.
Thus it is found that

|σE σ̇E | ≤ ‖Σ − Σ̃‖ ‖ė‖
[
K10‖Σi − Σ̃i‖ + K11‖Σ − Σ̃‖

]
(5.287)

where K10,K11 share the usual property of the previous cases.
Simply applying the four bounds (5.257), (5.282), (5.283) and (5.287) into

(5.253), we obtain

d

dt
‖|ΣE(t), σy(t)

E‖|2 ≤ ‖ė‖
[
K1‖Σi − Σ̃i‖ + K2‖Σ − Σ̃‖

]
‖ΣE‖

≤ C‖ė‖
[
K1‖Σi − Σ̃i‖ + K2‖Σ − Σ̃‖

]
‖|ΣE(t), σy(t)

E‖| (5.288)

where K1,K2 depend only on ‖∆e‖ and are bounded on all sets of the type
{∆e ∈ Lin, ‖∆e‖ ≤ c, c ∈ R+}. Observing that

d

dt
‖|ΣE(t), σy(t)

E‖|2 = 2‖|ΣE(t), σy(t)
E‖| d

dt
‖|ΣE(t), σy(t)

E‖| (5.289)

bound (5.288) trivially proves the lemma.

Lemma 5.8.11 Let two initial couples (Σ(t0), σy(t0)), (Σ̃(t0), σ̃y(t0)) and a
strain increment ∆e = ė∆t be assigned. Assume to apply one step of the
ESC algorithm with strain increment ∆e to both initial couples; assume also
that the step for the first couple is totally plastic, while the step for the second
couple is totally elastic. Then at all instants t ∈ [t0, t0 + ∆t] during the time
step, it holds

d

dt
‖|Σ(t) − Σ̃(t), σy(t) − σ̃y(t)‖|

≤ ‖ė‖
[
K1‖|Σ(t0) − Σ̃(t0), σy(t0) − σ̃y(t0)‖|

+K2 ‖|Σ(t) − Σ̃(t), σy(t) − σ̃y(t)‖|
]

(5.290)

where the positive constants K1,K2 depend only on ‖∆e‖ and are bounded on
all sets of the type {∆e ∈ Lin, ‖∆e‖ ≤ c, c ∈ R+}

Proof: As in the proof of Lemma 5.8.10, the dependence of the variables
on time will not be explicited. Unless differently noted, the time dependent
equations and identities that follow are valid for all t ∈ [t0, t0 + ∆t].
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We will again adopt the notation introduced in (5.229). Following the same
identical initial steps as in Lemma 5.8.10, we get

d

dt
‖|ΣE , σE

y ‖|2 = 2
[
(2G)−1 ΣE : Σ̇

E
+ (Hiso)

−1σE
y σ̇y

]
(5.291)

where we implicitly used that σ̇E
y = σ̇y because the second couple is in elastic

phase. Note that for the time derivative of X̃, which is in elastic phase, it
holds

d

dt
X̃

s
=

2G

σy,i
X̃0ė (5.292)

d

dt
X̃0 = 0 (5.293)

while the time derivative of X still follows (5.124)-(5.250). Deriving in time
definition (5.251), then using (5.124)-(5.250) and (5.292)-(5.293), we easily get,
without showing all the calculations,

Σ̇
E

=
d

dt
(Σ − Σ̃) = σy,0 T1 + T2 (5.294)

T1 =

[
2G

σy,i
Xq

0 − 2G

σ̃y,i
X̃q

0

]
ė (5.295)

T2 = (q − 1)

[
2G

R
(ė : Σ)

Σ

σy

]
(5.296)

Joining (5.291) and (5.294) gives

d

dt
‖|ΣE , σE

y ‖|2 = 2(2G)−1σy,0 T1 : ΣE

+2
[
(2G)−1T2 : ΣE + (Hiso)

−1σE
y σ̇y

]
=: A1 + A2 (5.297)

Recalling the identity (5.156), which holds in all phases and using that σ̃y =
σ̃y,i during all the step, we get

A1 = 2

(
σy

σy,i
− 1

)
ė : ΣE ≤ 2

σy,i
|σy − σy,i| ‖ΣE‖ ‖ė‖ (5.298)

Observing that σy,i ≥ σy,0 and σ̃y = σ̃y,i, due to a triangle inequality it follows

A1 ≤ 2

σy,0
(|σy − σ̃y| + |σy,i − σ̃y,i|) ‖ΣE‖ ‖ė‖ (5.299)
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which, from definition (5.227), becomes

A1 ≤ C
(
‖|ΣE

i , σE
y,i‖| + ‖|ΣE, σE

y ‖|
)
‖|ΣE , σE

y ‖| ‖ė‖ (5.300)

where the scalar C depends only on the material constants.
Deriving in time and applying (5.128) we get

σ̇y =
d

dt
[σy,0X

q
0 ] = q σy,0 Xq−1

0 Ẋ0 = q σy,0 Xq−1
0

2G

σy,i
ė : Xs (5.301)

Applying (5.156) and (5.250), the identity above easily gives

σ̇y = q
2G

σy,i
ė : Σ (5.302)

From the definition of q (see (5.156)), identity (5.302) and rearranging the
terms, the second member in (5.297) becomes

A2 =

[
−2

2G

2G + Hiso

Σ

σy
: ΣE + 2

2G

2G + Hiso
σE

y

]
ė : Σ

σy,i

= 2
2G

2G + Hiso

[
−Σ

σy
: ΣE + σy − σ̃y

]
ė : Σ

σy,i
(5.303)

which we will show being lesser or equal than zero. Note that, being the first
couple in purely plastic phase, ė : Σ ≥ 0; as a consequence, in order to show

A2 ≤ 0 (5.304)

it is sufficient to show

−Σ

σy
: ΣE + σy − σ̃y ≤ 0 (5.305)

Multiplying and dividing by σy, then recalling that ‖Σ‖ = σy, we get

−Σ

σy
: ΣE + σy − σ̃y =

1

σy

[
−‖Σ‖2 + Σ : Σ̃ + σ2

y − σyσ̃y

]
(5.306)

=
1

σy

[
Σ : Σ̃− σyσ̃y

]

A Cauchy-Schwarz inequality and the Kuhn-Tucker conditions applied to (5.306)
then give

−Σ

σy
: ΣE + σy − σ̃y ≤ 1

σy
[‖Σ‖‖Σ̃‖ − σyσ̃y] ≤ 0 (5.307)

which implies (5.304). Joining (5.300) and (5.304) with (5.297) implies

d

dt
‖|ΣE, σE

y ‖|2 ≤ C
(
‖|ΣE

i , σE
y,i‖| + ‖|ΣE , σE

y ‖|
)
‖|ΣE , σE

y ‖| ‖ė‖ (5.308)

which recalling (5.289) easily proves the Lemma.
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5.9 NLK plasticity model

We start by recalling the associative von-Mises plasticity model under conside-
ration, already examined in Section 2.3.3 and labeled as NLK model. Splitting
the strain and stress tensors, σ and εεε, in deviatoric and volumetric parts we
have

σ = s + pI with p =
1

3
tr(σ) (5.309)

εεε = e +
1

3
θI with θ = tr(εεε) (5.310)

where tr indicates the trace operator, while I, s, p, e, θ are respectively the
second-order identity tensor, the deviatoric and volumetric stress, the devia-
toric and volumetric strain.

The equations for the model are

p = Kθ (5.311)

s = 2G[e − ep] (5.312)

Σ = s − α (5.313)

F = ‖Σ‖ − σy (5.314)

ėp = γ̇n (5.315)

σy = σy,0 + Hisoγ (5.316)

α̇ = Hkinγ̇n − Hnlγ̇α (5.317)

γ̇ ≥ 0 , F ≤ 0 , γ̇F = 0 (5.318)

where K is the material bulk elastic modulus, G is the material shear mod-
ulus, ep is the traceless plastic strain, Σ is the relative stress in terms of
the backstress α, the latter introduced to describe the nonlinear kinematic
hardening mechanism. Moreover, F is the von-Mises yield function, n is the
normal to the yield surface, σy is the yield surface radius, σy,0 the initial yield
stress, Hkin and Hiso are the kinematic and isotropic linear hardening moduli.
The constant Hnl is the nonlinear kinematic hardening modulus, introduced
to represent a nonlinear kinematic hardening mechanism (see Section 2.3.2).
Finally, Equations (5.318) are the Kuhn-Tucker conditions; in particular, the
second equation limits the relative stress within the boundary defined by the
yield surface F = 0, while the other two are necessary to determine the plastic
behavior. With a slight over-simplification of the model complexity, we may
say that when γ̇ = 0 the system is in an elastic phase, while when γ̇ > 0 we
say that the system is in a plastic phase.
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In the following sections a set of numerical schemes for the above problem
is presented. The first two schemes are based respectively on the backward
Euler’s and on the generalized midpoint integration rules, while the third one
is a newly developed exponential-based integration algorithm.

Remark 5.9.1 Due to the linear behavior of the volumetric part constitutive
equations, in the following we treat only the deviatoric part of the model.

5.10 Backward Euler’s integration scheme for the

NLK model

In this section we present a numerical method which uses a backward Euler’s
integration rule and is combined with a return map algorithm. Originally
proposed in the context of elasoplastic models by Maenchen and Sack [59] by
Wilkins [76], by Auricchio and Taylor [17] in the framework of generalized
plasticity, the return map algorithm is based on the elastic predictor- plastic
corrector strategy. The return map is achieved enforcing consistency at the
end of the time step and projecting the trial solution onto the updated yield
surface at the end of each elastoplastic step. This procedure result in solving
a fourth-order polynomial in the plastic consistency parameter. As usual, we
present both the time integration and the solution algorithm together with
the consistent elastoplastic tangent operator. In the following the present
scheme is referred to as BEnl (Backward-Euler integration method for von-
Mises plasticity with nonlinear hardening).

It is assumed that the time history interval [0, T ] is divided into N sub-
intervals defined by the nodes 0 = t0 < t1 < .... < tn < tn+1 < .... < tN = T .
Given the values {sn, en, ep

n, γn,αn} at time tn, and the deviatoric strain en+1

at time tn+1, the scheme consists in computing the remaining variables at time
tn+1. The strain history is assumed to be piecewise linear and the initial values
of γ, ep and α are equal to zero.
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5.10.1 Integration scheme

Using a backward Euler’s integration rule the discrete evolutionary equations
for the plasticity model become






ep
n+1 = ep

n + λnn+1

αn+1 = T λαn + T λHkinλnn+1

sn+1 = 2G
(
en+1 − ep

n+1

)

Σn+1 = sn+1 − αn+1

γn+1 = γn + λ

(5.319)

with

T λ =
1

1 + Hnlλ
(5.320)

and where λ represents the incremental plastic parameter to be determined
enforcing the plastic consistency condition (the subscript n+1 in λ is omitted
for compactness).

Substituting (5.319)1 into (5.312) yields:

sn+1 = 2G (en+1 − ep
n) − 2Gλnn+1 (5.321)

and subtraction of Equation (5.319)2 gives

Σn+1 = sn+1 − αn+1 = 2G (en+1 − ep
n) − T λαn − Uλnn+1 (5.322)

where
Uλ =

(
2G + HkinT λ

)
λ (5.323)

5.10.2 Solution algorithm

We initially suppose the step to be elastic, and calculate trial values at the
final stage tn+1: 





ep,TR
n+1 = ep

n

sTR
n+1 = 2G (en+1 − ep

n)

αTR
n+1 = αn

ΣTR
n+1 = sTR

n+1 − αTR
n+1

γTR
n+1 = γn

(5.324)

If the resulting stress is admissible, i.e.

‖ ΣTR
n+1 ‖≤ σy,0 + Hisoγ

TR
n+1 (5.325)
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Figure 5.4: Application of the return map algorithm to the BEnl integration
scheme. Plastic correction representation in deviatoric stress space.

the step is assumed to be elastic and the variable values at the final time
instant are taken as the trial ones. On the other hand, if ΣTR

n+1 violates the
yield limit, a plastic correction is introduced. Enforcing the satisfaction of the
limit equation permits to compute λ and thus the discrete equantions (5.326)
can be rewritten in terms of the trial state and λ:






ep
n+1 = ep,TR

n + λnn+1

sn+1 = sTR
n+1 − 2Gλnn+1

αn+1 = T λαTR
n+1 + HkinT λλnn+1

Σn+1 = sTR
n+1 − T λαTR

n+1 − Uλnn+1

γn+1 = γTR
n+1 + λ

(5.326)

A graphical idealization of the return map algorithm applied to the BEnl
integration scheme is provided in Figure 5.4 which represents in the devia-
toric stress space the trial elastic predictor and the plastic corrector obtained
applying the return map algorithm to the BEnl scheme.

It is noted that in Equations (5.319) and (5.326) the only unknown is
represented by the consistency parameter λ which is to be computed imposing
yield consistency at the end of the step. Therefore, the above sequential update
procedure is set forth by enforcing the plastic consistency condition at tn+1 by
means of a return map algorithm.

Observing that (5.326)4 can be rewritten as

Σn+1 = Σλ
A − Uλnn+1 (5.327)
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with
Σλ

A = sTR
n+1 − T λαTR

n+1

we may conclude that Σn+1 and Σλ
A are parallel i.e.

‖ Σn+1 ‖=‖ Σλ
A ‖ −Uλ

Using relation (5.327) we may write the discrete limit equation as

‖Σλ
A‖ − Uλ − σy,n+1 = 0

Noting that:

‖Σλ
A‖ =

[
(Σλ

A : Σλ
A)
] 1

2

=
[(

sTR
n+1 − T λαTR

n+1

)
:
(
sTR
n+1 − T λαTR

n+1

)] 1

2

=
[
(sTR

n+1 : sTR
n+1) − 2T λ(αTR

n+1 : sTR
n+1) + (T λ)2(αTR

n+1 : αTR
n+1)

] 1

2

=
[
Sss − 2SsαT λ + Sαα(T λ)2

] 1

2

where:

Sss = (sTR
n+1 : sTR

n+1)

Ssα = (sTR
n+1 : αTR

n+1)

Sαα = (αTR
n+1 : αTR

n+1)

the limit equation becomes:

Sss(R
λ)2 − 2SsαRλ + Sαα −

[
2GλRλ + Hkinλ + Rλσy,n + HisoλRλ

]2
= 0

(5.328)
with

Rλ = 1 + Hnlλ (5.329)

Equation (5.328) is a quartic equation in λ and may be expressed as:

g(λ) = C1λ
4 + C2λ

3 + C3λ
2 + C4λ + C5 = 0

where:

C1 = 4Hnl
2G2

0

C2 = 4Hnl
2G0σy,n + 8G0G1Hnl

C3 = Hnl
2
[
(σy,n)2 − Sss

]
+ 4G2

1 + 4Hnlσy,n [G0 + G1]

C4 = 2Hnl

[
(σy,n)2 + Ssα − Sss

]
+ 4σy,nG1

C5 = (σy,n)2 − Sαα + 2Ssα − Sss
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with:
2G0 = 2G + Hiso

The solution of this equation, i.e. the search for the minimum positive root, is
not an easy task, due to the order of the polynomial and to the dependence of
the coefficients on the trial state. As observed in [17], an iterative algorithm
of the Newton type may be easily implemented:

λi+1 = λi + ∆λi

∆λi = − g
(
λi
)

g′ (λi)

where: the superscript i refers to the i-th iteration, the superscript ′ indicates
first derivative; and where a starting value of λ0 = 0 may be adopted. Unfor-
tunately, this approach does not guarantee convergence to a positive root; in
fact:

∆λ(0) = − g(0)

g
′

(0)
= −C5

C4

=
ΣTR : ΣTR − (σy,n)2

2Hnl

[
ΣTR : ΣTR − (σy,n)2

]
+ 2Hnl(Σ

TR : αTR) − 4σy,nG1

and the sign of ∆λ at zero depends on the sign of the denominator, which
clearly depends on the trial state and on the previous solution. Consequently,
it may happen that ∆λ(0) < 0 and the Newton algorithm returns a negative
value for λ. Attempts of starting the Newton iteration algorithm with different
values of λ (such as λ0 = λn) have been explored but generate the same
pathology. Once the Newton algorithm has failed, the only robust approach
is to perform a synthetic division of the quartic polynomial and compute in
closed form the roots of the resulting cubic [14]; the roots should then be
corrected using a Newton algorithm, since the synthetic division is sensitive
to roundoff.

Remark 5.10.1 The NLK model has been used to simulate the behavior of
metals under cyclic loading, achieving an high degree of accuracy. Moreover,
extensions of the model to include strain range memory, visco-plastic recovery
properties, ratcheting effects have been presented in the literature [17, 23, 69,
70].

However, difficulties arise to implement the model in a return map frame-
work and they are all directly related to the non-linear kinematic hardening
term. The discrete consistency condition yields a quartic equation, whose co-
efficients are function of the trial state and the previous solution, which makes
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difficult the search of the minimum positive root. An approach based on a
combination of Newton’s algorithm and synthetic division is presented, which
is robust but at the same time computationally expensive. Moreover, the elasto-
plastic tangent tensor consistent with the discrete model is non-symmetric and,
as a result, an appropriate solver for non-symmetric linear systems must be
used, plus the required memory storage is doubled.

5.10.3 BEnl scheme elastoplastic consistent tangent operator

We show here the consistent tangent operator for the BEnl scheme. For
brevity’s sake, only the final form of the operator corresponding to a pla-
stic step (i.e. such that λ �= 0) is reported without deriving it thoroughly. To
make notation more clear, the subscripts of all history variables evaluated at
time tn+1 are omitted for brevity. Quantities evaluated either at tn are spec-
ified by the relative subscript. The reader is referred to [17] for a complete
derivation.

C
ep =

∂σ

∂εεε
= KI⊗ I + 2G (1 − C) Idev

+ [2G (C − A) + B (n : α)]n ⊗ n− Bα ⊗ n (5.330)

with

A =
2G

2G0 + T λHkin − T λ (n : α)

B = AT λCHnl

C =
2Gλ

‖ Σλ
A ‖

5.11 Generalized midpoint integration scheme for

the NLK model

In this section we present the numerical method already proposed by Ortiz
and Popov [63] in the framework of linear hardening elastoplastic constitu-
tive models. The method is based on a generalized midpoint integration rule
combined with a return map algorithm. The return map is achieved enforcing
consistency at the end of the time step and projecting the trial solution onto
the updated yield surface at the end of each elastoplastic step. This procedure
results in solving a 10th-order polynomial in the plastic consistency parameter
which makes the computational effort quite significant. Again, this is still due
to the nonlinear kinematic hardening term.
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The present scheme is referred to as the MPTnl method (midpoint integra-
tion method for von-Mises plasticity with nonlinear hardening). In particular,
the generalized midpoint integration rule investigated herein can be special-
ized to two different methods, namely the proper midpoint integration scheme
[72] and the BEnl integration scheme analyzed in the preceding section. The
method is outlined with its algorithmic solution sketch and consistent tangent
operator.

To the author’s knowledge, the literature does not report any detailed
development or testing of the midpoint method MPTnl for the von-Mises pla-
sticity model with nonlinear hardening as the one considered here (see [13] for
a detailed comparison of generalized midpoint integration procedures applied
to von-Mises plasticity with nonlinear hardening).

In the sequel it is assumed that the time history interval [0, T ] is divided
into N sub-intervals defined by the nodes 0 = t0 < t1 < .... < tn < tn+1 <
.... < tN = T . Given the values {sn, en, γn,αn} at time tn, and the deviatoric
strain en+1 at time tn+1, the scheme consists in computing the remaining
variables at time tn+1. The strain history is assumed to be piecewise linear
and the initial values of γ, ep and α are zero.

5.11.1 Integration scheme

Using a generalized midpoint integration rule the discrete evolutionary equa-
tions can be written as:






ep
n+1 = ep

n + λnn+α

αn+1 = αn + λ (Hkinnn+α − Hnlαn+α)

sn+1 = 2G
(
en+1 − ep

n+1

)

Σn+1 = sn+1 − αn+1

γn+1 = γn + λ

(5.331)

where λ represents the incremental plastic parameter to be determined enforc-
ing the plastic consistency condition. The scalar α is the algorithmic parameter
such that the following relations hold for quantities evaluated at the midpoint
instant tn+α 





en+α = αen+1 + (1 − α)en

ep
n+α = αep

n+1 + (1 − α)ep
n

αn+α = ααn+1 + (1 − α)αn

sn+α = 2G
(
en+α − ep

n+α

)

Σn+α = sn+α − αn+α

(5.332)
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Clearly, α can be arbitrarily chosen in the range (0, 1]. In particular, in the
following we consider the possibility of α = 1/2, leading to the midpoint inte-
gration rule (MPTnl). We remark that adopting α = 1 leads to the backward
Euler’s integration rule (BEnl). The difference between the two schemes lays
in fact only in the choice of the α parameter. The choice α = 1/2 guarantees
quadratic accuracy to the MPTnl, while the choice α = 1 makes the BEnl
method a simpler and more robust scheme with linear accuracy.

5.11.2 Solution algorithm

The elastic predictor-plastic corrector solution idea is applied again. Initially,
the step is supposed to be elastic. This yields the following trial values at the
final instant tn+1: 





ep,TR
n+1 = ep

n

sTR
n+1 = 2G (en+1 − ep

n)

αTR
n+1 = αn

ΣTR
n+1 = sTR

n+1 − αTR
n+1

γTR
n+1 = γn

(5.333)

If the resulting relative stress is admissible, i.e.

‖ ΣTR
n+1 ‖≤ σy,0 + Hisoγ

TR
n+1 (5.334)

then the step is purely elastic and the history variables are updated with their
trial values. On the other hand, if ΣTR

n+1 lays outside the yield surface, a plastic
correction is introduced in two steps:

• STEP 1: update at tn+α.






αn+α = V λαTR
n+1 + αHkinV λλnn+α

sn+α = sTR
n+α − 2Gαλnn+α

Σn+α = sn+α − αn+α

(5.335)

where

sTR
n+α = 2G (en+α − ep

n)

V λ =
1

1 + αHnlλ
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Figure 5.5: Application of the return map algorithm to the MPTnl integration
scheme. Plastic correction representation in deviatoric stress space.

• STEP 2: update at tn+1.






ep
n+1 = ep

n + λnn+α

αn+1 = W λαn + HkinV λλnn+α

sn+1 = 2G
(
en+1 − ep

n+1

)

Σn+1 = sn+1 − αn+1

γn+1 = γn + λ

(5.336)

with

W λ =
1 + (α − 1)λHnl

1 + αλHnl

Remark 5.11.1 In the case of the BEnl scheme, step (5.336) is equivalent to
(5.335) and therefore is avoided in the procedure.

A graphical idealization of the return map algorithm applied to the MPTnl
integration scheme is provided in Figure 5.5, which represents in the devia-
toric stress space the trial elastic predictor and the plastic corrector obtained
applying the return map algorithm to the MPTnl scheme.

It is noted that in Equations (5.335) and (5.336) the only unknown is
represented by the consistency parameter λ which is to be computed imposing
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yield consistency at the end of the step. Therefore, the above sequential update
procedure is set forth by enforcing the plastic consistency condition at tn+1.
Observing that (5.335)3 can be rewritten as

Σn+α = Σλ
B − Y λnn+α (5.337)

with

Σλ
B = sTR

n+α − V λαTR
n+1

Y λ = 2Gαλ + αHkinV λλ

we may conclude that Σn+α and Σλ
B are parallel i.e.

‖ Σn+α ‖=‖ Σλ
B ‖ −Y λ (5.338)

Using relation (5.338) we can finally write the consistency condition at tn+1

as follows

‖ Σn+1 ‖=
∥∥∥∥∥

1

α
Σn+α −

(
1 − α

α

)
Σn

∥∥∥∥∥ = [σy,n + λHiso] (5.339)

Equation (5.339) is then solved searching for the minimum positive root. Note
that, as an alternative in solving the above equation, the yield condition (5.339)
can be rewritten as

1

α2
‖ Σn+α ‖2 −2

(
1 − α

α2

)
(Σn+α : Σn)+

(
1 − α

α

)2

‖ Σn ‖2= [σy,n + λHiso]
2

(5.340)
which, with some algebra, results in a 10th-order polynomial in λ. For brevity,
the expression of the polynomial coefficients is here omitted.

Remark 5.11.2 In the case of the BEnl scheme, Equation (5.340) take a
simpler form as the second and third term in the left hand side vanish. As a
consequence, the relevant polynomial in λ is fourth degree and the coefficients
have a shorter explicit form as discussed in Section 5.10.

Remark 5.11.3 Both th MPTnl and the BEnl scheme here presented are yield
consistent and stable, as shown in [63] in a very general fashion. Moreover,
the BEnl method is shown to be linearly accurate while the MPTnl method is
quadratically accurate.

Remark 5.11.4 For the present model, the MPTnl midpoint scheme here
detailed is not guaranteed to have a solution for every trial s

TR
n+1. On the

other hand, from all the numerical tests carried out in Chapter 6, it seems
that a solution always exists for the values of strain increment ‖ ∆e ‖ adopted
throughout the testing.
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5.11.3 MPTnl scheme elastoplastic consistent tangent opera-

tor

We report here the elastoplastic tangent operator consistent with the MPTnl
scheme. For brevity’s sake, only the final form of the operator is given here
for a plastic step (i.e. such that λ �= 0) without deriving it thoroughly. To
make notation more clear, the subscripts of all history variables evaluated at
time tn+1 are omitted for brevity. Quantities evaluated either at tn or at tn+α

are specified by the relative subscript.

Following the derivation procedure reported in [17, 63, 71], the consistent

tangent operator
∂σ

∂ε
for the MPTnl scheme is easily obtained. Recalling that

∂s

∂ε
=

∂s

∂e

∂e

∂ε
=

∂s

∂e
Idev (5.341)

where

Idev = I − 1

3
(I ⊗ I) (5.342)

and taking into account the volumetric part of the stress, from equations
(5.309), (5.310) and (5.311) we get

C
ep =

∂σ

∂ε
=

∂s

∂e
Idev + K (I⊗ I) (5.343)

The fourth-order tensor
∂s

∂e
may be computed as

∂s

∂e
= M1 + M2 (5.344)

where M1 and M2 are given by the following expressions

M1 = 2G

(
I − η In − nn+α ⊗ ∂λ

∂e

)
(5.345)

M2 = η In

(
β ⊗ ∂λ

∂e

)
(5.346)
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with

η = λ
2G + HkinV λ

2Gλ + HkinV λλ + 2‖Σn+α‖
(5.347)

In = I − nn+α ⊗ nn+α (5.348)

∂λ

∂e
= −2G(θ1 + θ2)

−1

(
I − 2Gλ + HkinV λλ/2

2 ‖ sTR
n+α − V λαn ‖In

)
Σ (5.349)

θ1 = Hisoσy,n+1 + (β : Σ) + 2G (nn+α : Σ) (5.350)

θ2 =
Hnl

(
2Gλ + HkinV λλ/2

)

2 (V λ)
2

(Σ : Inαn)

‖ sTR
n+α − V λαn ‖ (5.351)

β =
1

2

Hnl

(V λ)
2αn − 1

4
Hkin

λHnl

(V λ)
2nn+α +

1

2
HkinV λnn+α (5.352)

5.12 ESC2nl exponential-based integration scheme

for the NLK model

In this section we propose an exponential-based numerical scheme for the NLK
model. The method is based on a different formulation of the constitutive
relation and is developed following an ad-hoc rewriting of the time continuous
model and on the application of exponential maps for the integration of the
respective dynamical system [12]. A similar continuous formulation had been
adopted earlier by Hong and Liu [44, 46, 47] in the case of von Mises plastic
materials with no hardening. The new algorithm here presented, which will be
referred as ESC2nl, represents an extension of previous algorithms introduced
by the author et al. in the case of linear hardening [16, 8, 9, 10, 11] and is a
member of the “ESC” integration schemes family.

As will be pointed out within the numerical test chapter the new ESC2nl
scheme is yield consistent, quadratically accurate and grants exactness in case
of no hardening.

5.12.1 A model reformulation

Combining Equations (5.312) and (5.313), we obtain

Σ + α + 2Gep = 2Ge (5.353)

which, taking the derivative in time, applying Equation (5.315), (5.317) and
rearranging terms gives

Σ̇ = 2Gė − (2G + Hkin) ėp + Hnlγ̇α (5.354)
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Now, recalling the yield surface radius

σy = σy,0 + Hisoγ (5.355)

and that in the plastic phase (γ̇ > 0)

n =
Σ

‖Σ‖ =
Σ

σy,0 + Hisoγ
=

Σ

σy
(5.356)

we may apply (5.315) in (5.354) obtaining

Σ̇ + (2G + Hkin)
Σ

σy
γ̇ = 2GΨ̇ (5.357)

where we introduced the position

Ψ̇ = ė +
Hnl

2G
γ̇α (5.358)

Note that (5.357) is a differential equation for Σ that is valid also during elastic
phases (γ̇ = 0). Introducing the scaled relative stress

Σ̄ :=
Σ

σy
(5.359)

we observe that, whenever the relative stress Σ lays on the yield surface, then
Σ̄ = n, while this is not true when Σ lays inside the yield surface. The time
derivative of (5.359) and the use of relation (5.355) gives

˙̄Σ =
Σ̇

σy
− Hiso

σy
γ̇Σ̄ (5.360)

Using Equations (5.357) and (5.360), one obtains

˙̄Σ +
2G + Hkin + Hiso

σy
γ̇Σ̄ =

2G

σy
Ψ̇ (5.361)

The next goal is to introduce an integration factor for the above evolutionary
equation. In other words, we search for a scalar function depending on time
X0 such that

d

dt
[X0Σ̄] = X0

˙̄Σ + Ẋ0Σ̄ = X0
˙̄Σ + X0

2G + Hkin + Hiso

σy
γ̇Σ̄ (5.362)

which, multiplying Equation (5.361) by X0, would give

d

dt

[
X0Σ̄

]
=

2G

σy
X0Ψ̇ (5.363)
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Accordingly, we set

X0(γ) =






(
1 +

γHiso

σy,0

)2G + Hkin + Hiso

Hiso
if Hiso �= 0

exp

(
2G + Hkin + Hiso

σy,0
γ

)
if Hiso = 0

(5.364)

Noting that such a function is continuous for fixed γ and Hiso → 0, and that

Ẋ0 =
2G + Hkin + Hiso

σy
γ̇X0 (5.365)

we immediately obtain the target relationship (5.362) and therefore (5.363).
We now need an evolution law for X0. In elastic phases, such law follows

immediately from (5.365):

Ẋ0 = 0 (elastic phases) (5.366)

On the other hand, for γ̇ �= 0, taking the scalar product of (5.363) with Σ̄,
we have

X0
1

2

d

dt
‖Σ̄‖2 + Ẋ0‖Σ̄‖2 =

2G

σy
X0Ψ̇ : Σ̄ (5.367)

which, noting that in plastic phases

‖Σ̄‖ =
‖Σ‖
σy

= 1 (5.368)

and using (5.367) gives

Ẋ0 =
2G

σy
Ψ̇ : X0Σ̄ (plastic phases) (5.369)

At this stage, we define the generalized stress X as the two component
vector represented in engineering notation as

{X} =

{
X0Σ̄
X0

}
=

{
Xs

X0

}
(5.370)

As done for the ENN, ESC and ESC2 schemes, we consider a linear space
structure on the space of generalized stresses, the product by a scalar and the
sum between vectors being defined in the obvious natural way. Moreover, any
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element of the space of linear operators from the generalized stress space into
itself can be written adopting the engineering notation as

[M] =

[
M11 M12

M21 M22

]
(5.371)

with M11 a fourth-order tensor, M12,M21 second-order tensors and M22 a
scalar, under the convention that the formal expression

MY (5.372)

returns a generalized stress vector given by the following operation

[M] {Y} =

[
M11 M12

M21 M22

]{
Ys

Y0

}
=

{
M11Y

s + M12Y0

M21 : Ys + M22Y0

}

(5.373)

for any couple {Y} = {Ys, Y0}T in the generalized stress space. In the sequel,
we will consider a linear space structure also on the space of the linear operators
acting on couples, again with the product by a scalar and the sum between
such linear operators being defined in the obvious natural way.

Due to definition (5.370), Equation (5.363) can be rewritten as

Ẋ
s

=
2G

σy
X0Ψ̇ (5.374)

while (5.369) becomes

Ẋ0 =
2G

σy
Ψ̇ : Xs (plastic phases) (5.375)

Equations (5.374), (5.366) and (5.375) provide a system for the generalized
stress vector X, in the form

Ẋ = AX (5.376)

where A represents a linear operator acting from the space of couples into
itself, and depending on the actual phase as follows

[A] = [Ae] =
2G

σy

[
O Ψ̇
0 0

]
(elastic phase) (5.377)

[A] = [Ap] =
2G

σy

[
O Ψ̇

Ψ̇ 0

]
(plastic phase) (5.378)
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where 0 and O indicate respectively the second-order and fourth-order null
tensors.

Expression (5.376)-(5.378) is a formal compact notation to describe the
action of the linear operator A on the couple X, as introduced in (5.373).

Therefore the original problem, expressed by Equations (5.312)-(5.317),
has been substituted by a new one, expressed by Equations (5.376)-(5.378).
Note that Ψ̇ can be equivalently substituted by ė in (5.377), because γ̇ = 0
during elastic phases.

Remark 5.12.1 Unless Hiso = Hnl = 0, the operator A is not constant in
time, therefore our formulation (5.376) is nonlinear. Nevertheless, the parti-
cular form of the dynamical system (5.376) is useful, since it allows to develop
the numerical method of Section 5.12.2.

Time-continuous on-off switch

To properly convert the original problem in a new but equivalent differential
algebraic format, we also need to introduce an elastoplastic phase determina-
tion criterion expressed in the new generalized stress environment.

For a given state to be plastic, the following two conditions must be fulfilled:

1) The relative stress Σ must be on the yield surface, i.e.

‖Σ‖ = σy (5.379)

Using (5.359) and (5.370) this can be easily rewritten as

‖Xs‖2 = ‖Σ̄‖2X2
0 =

‖Σ‖2

σ2
y

X2
0 = X2

0 (5.380)

2) The direction of the strain rate ė must be outward with respect to the
yield surface, i.e.

Σ : ė > 0 (5.381)

Again recalling (5.359) and (5.370) it is immediate to check that (5.381)
is equivalent to

Xs : ė > 0 (5.382)

If the two conditions (5.380) and (5.382) are not satisfied, the step is elastic.
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5.12.2 Integration scheme

It is assumed that the time history interval [0, T ] is divided into N sub-intervals
defined by the points 0 = t0 < t1 < .... < tn < tn+1 < .... < tN = T . Given the
values {sn, en, γn,αn} at time tn, and the deviatoric strain en+1 at time tn+1,
we search for the remaining variables at time tn+1. As usual, the strain history
is assumed to be piecewise linear. Equivalently, we may say that the piecewise
linearity of the strain path makes ė constant within each single time interval.
Moreover, we assume to start from an unstressed and undeformed state, i.e.
characterized by zero initial values of the variables γ, ep and α. Accordingly,
the initial generalized stress is

{X0} =

{
Σ0/σy,0

1

}
(5.383)

Referring to the the dynamical law (5.376) with the operator A given respec-
tively by (5.377) or (5.378), we aim to derive a numerical scheme for the
discrete evolution of X along the general time step [tn, tn+1].

It is immediate to observe that, if during the time interval [tn, tn+1] the
material behavior is purely elastic (γ̇ = 0 - elastic step), then the operator Ae

is constant within this interval. In this case, the dynamical law (5.376) can be
solved in closed form and the formula (5.384) returns the exact solution. In
analogy to (5.376), the discrete evolution of the generalized stress will be in
the form

Xn+1 = exp
[
Ā∆t

]
Xn = Ḡ Xn (5.384)

with Ā = Ae and ∆t = tn+1 − tn. Note that, being Ā an element in the linear
space of linear operators acting on couples, the exponential of Ā∆t is naturally
defined by the (converging) exponential serie

exp
[
Ā∆t

]
=

+∞∑

n=0

(
Ā∆t

)n

n!
(5.385)

Instead, if during the step [tn, tn + 1] purely plastic loading takes place, the
linear operator Ap is not constant in time; in fact the yield surface radius σy

and the “driving” tensor Ψ̇ cannot be expected to be constant whenever γ̇ > 0
(see Equations (5.316) and (5.358)). In such cases, therefore, the discrete
solution of the dynamical system (5.376) is achieved by assuming that the
above variables remain constant within the time step. As a consequence, an
equation identic to (5.384) still holds, clearly with a different choice of Ā.
This is equivalent to substitute the operator Ap with an operator Āp which
is constant during the time step. The respective constant values taken by σy
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and Ψ̇, which depend on known quantities evaluated at the beginning of the

step tn, are still indicated by σ̄y and ¯̇Ψ; we will specialize such constants in
the immediate following. Then, we may introduce Ā defined by

[
Āe

]
=

2G

σy,n

[
O ė
0 0

]
(elastic step) (5.386)

and

[
Āp

]
=

2G

σ̄y

[
O

¯̇Ψ
¯̇Ψ 0

]

(plastic step) (5.387)

We are now in possess of all the ingredients for solving the Equation (5.376).

In particular the choice of the parameters σ̄y and ¯̇Ψ for plastic steps is now
addressed with emphasis on the effects this choices induces on the algorithmical
properties.

The operator Ā∆t is by definition equal to the original operator (5.377)

or (5.378) after substituting ¯̇Ψ with ∆Ψ̄ = ∆t ¯̇Ψ and σy with σ̄y. A possible
choice is thus given by the following values






σ̄y =
cσy,n

ln(1 + c)

∆Ψ̄ = ∆t ¯̇Ψ = ∆Ψ̄0 + ∆Ψ̄1

(5.388)

where the constant and tensors appearing in (5.388) are given by

c =
2G q̄ (nn : ∆e)

σy,n
(5.389)

∆Ψ̄0 = ∆e +
Hnl (nn : ∆e)

2G1 − Hnl (nn : αn)
αn (5.390)

∆Ψ̄1 =
1

2

Hnl

2G

(
DαDγ + D′

γαn

)
(5.391)
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with

∆e = ė∆t

q̄ =
Hiso

2G1 − Hnl (nn : αn)

nn =
Xs

n

X0,n

2G1 = 2G + Hiso + Hkin

Dγ =
2G

2G1 − Hnl (nn : αn)
(nn : ∆e)

Dα = (Hkinnn − Hnlα) Dγ

D′
γ =

2G

2G1 − Hnl (nn : αn)
(Dn : ∆e)

+
HnlDγ

2G1 − Hnl (nn : αn)
[(Dn : αn) + (nn : Dα)]

Dn =
2G

σy,n
∆e − 2G1Dγ

σy,n
nn +

HnlDγ

σy,n
Dα

The choice for σ̄y in (5.388) corresponds to an extension of the ESC2 scheme
presented in Section 5.7 [9]. Instead, the value for ∆Ψ̄ is essentially derived
from a first order expansion of the tensor Ψ̇ in time. This choice guarantees a
second-order scheme as well as other properties as discussed in the sequel (see
[12] for further details on this issue).

The linear operator Ḡ appearing in Equation (5.384) can be derived calcu-
lating the shown exponential. Note that, for such purpose, it is convenient to
reformulate the linear operator Ā∆t as a R7×7 matrix, calculate the exponen-
tial, and finally write it back in the original form (5.371). Without showing
the calculations, we get

[
Ḡ
]

=






[
Ḡe

]
=




I

2G

σ̄y
∆e

0 1



 (elastic step)

[
Ḡp

]
=





I +

[
(a − 1)

‖∆Ψ̄‖2

]
∆Ψ̄ ⊗ ∆Ψ̄ b

∆Ψ̄

‖∆Ψ̄‖

b
∆Ψ̄

T

‖∆Ψ̄‖ a




(plastic step)

(5.392)



224 5. TIME-INTEGRATION SCHEMES FOR J2 PLASTICITY

where I is the fourth-order identity tensor, while the scalars a and b are

a = cosh

(
2G

σ̄y
‖∆Ψ̄‖

)
(5.393)

b = sinh

(
2G

σ̄y
‖∆Ψ̄‖

)
(5.394)

Another point to be addressed is the update of the backstress tensor α.
Due to the presence of the nonlinear kinematic hardening in the model, the
tensor α(t) is not a function of e(t) and Σ(t), t ∈ [0, T ], but must be recorded
separately. As a consequence, the backstress α needs to be updated at all time
steps. An approximated integration in time of Equation (5.317) gives

αn+1 − αn =

∫ tn+1

tn

(Hkinγ̇n− Hnlγ̇α) dt ≃

∆γ

2
[Hkin(nn+1 + nn) − Hnl(αn+1 + αn)] (5.395)

From Equation (5.395) we get immediately

αn+1 ≃ Hkin∆γ(nn+1 + nn)/2 + (1 − Hnl∆γ/2)αn

1 + Hnl∆γ/2
(5.396)

where, as follows by definitions (5.370) and (5.359), the normal at time tn+1

nn+1 =
Xs

n+1

X0,n+1
(5.397)

Moreover, we note that the value of ∆γ in (5.396) can be obtained directly
from definition (5.364)

∆γ =






σy,0

2G1
ln (X0,n+1/X0,n) if Hiso = 0

σy,0

Hiso

(
Xq

0,n+1 − Xq
0,n

)
if Hiso �= 0

(5.398)

where

q =
Hiso

2G + Hiso + Hkin
(5.399)



5.12. ESC2NL EXPONENTIAL-BASED INTEGRATION SCHEME FOR THE NLK MODEL 225

5.12.3 Solution algorithm

At every time step the exponential-based ESC2nl algorithm proceeds as fol-
lows:

1) Suppose the step to be elastic and compute trial values following an
elastic law

XTR
n+1 = ḠeXn (5.400)

where the operator Ḡe is given by (5.392). If the trial solution is admis-
sible, i.e.

‖Xs,TR
n+1 ‖ ≤

(
XTR

0,n+1

)2
(5.401)

then the variable values at the time step tn+1 are taken as the trial ones
just calculated.

2) If the trial solution is non admissible, i.e. Equation (5.401) is violated,
then the step is plastic or elastoplastic. Being ė constant in each time sub
interval, the step can be divided into two parts: an elastic deformation
followed by a plastic one. We represent with a scalar α ∈ [0, 1) the elastic
time proportion of the step, which with simple geometrical considerations
turns out to be

α =

√
C2 − DM − C

D
(5.402)

where 




C =
2GX0,n

σy,n
(Xs

n : ∆e)

D =

(
2GX0,n‖∆e‖

σy,n

)2

M = ‖Xs
n‖2 −

(
XTR

0,n+1

)2

(5.403)

Computed α, Xn+1 is updated in two steps.

– Calculate a new Xe
n+1 following an elastic law along an α∆t interval

Xe
n+1 = Ḡe[α∆t]Xn (5.404)

– Calculate Xn+1 evolving from the new initial data Xe
n+1 following

a plastic law along the remaining part of the interval of amplitude
(1 − α)∆t

Xn+1 = Ḡp[(1 − α)∆t]Xe
n+1 (5.405)

Observe that in such a framework purely plastic steps are simply
those where the time proportion of the elastic phase α is zero.
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Figure 5.6: Updating procedure in generalized stress space for the ESC2nl
scheme during a mixed elastoplastic step.

3) Update the yield surface radius

σy,n+1 = σy(X0,n+1) = σy,0 (X0,n+1)
q (5.406)

which is easily obtained combining (5.355) and (5.364).

4) Update the backstress α as follows from (5.396)

αn+1 =
Hkin∆γ(nn+1 + nn)/2 + (1 − Hnl∆γ/2)αn

1 + Hnl∆γ/2
(5.407)

where nn+1 and ∆γ can be calculated from (5.397) and (5.398) respec-
tively. Note that, due to (5.355), in the case Hiso �= 0 the scalar ∆γ can
be simply computed as

∆γ =
σy,n+1 − σy,n

Hiso
(5.408)

where σy,n+1 has been already updated in (5.406).

The updating procedure illustrated by steps 1) - 3) is represented in Figure
5.6 which refers to the space of tensors Xs.

Remark 5.12.2 The relative stress can be calculated whenever needed as:

Σ =
X

s

X0
σy (5.409)

which is immediately obtained from the definition of X.
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Remark 5.12.3 The variable X0 is a local auxiliary variable and not an his-
tory variable. In other words, introducing an appropriate scaling of the couple
X the variable X0 does not need to be updated at every time step [8].

Remark 5.12.4 The scalar α in the ESC2nl scheme is not to be confused with
the α parameter of the midpoint method presented in this same contribution.
The author preferred to avoid renaming variables which already appear in the
existing literature.

5.12.4 ESC2nl scheme elastoplastic consistent tangent opera-

tor

The algorithmically consistent tangent operator can be obtained properly lin-
earizing the time-discrete procedure. To make notation more clear, the sub-
scripts of all history variables evaluated at the end of the time interval tn+1 are
omitted for brevity. Quantities evaluated either at tn or at tn+α are specified
by the relative subscript.

For the total stress, from (5.343) and (5.313) it immediately follows

C
ep =

∂σ

∂ε
=

[
∂Σ

∂e
+

∂α

∂e

]
Idev + K (I ⊗ I) (5.410)

Then, a few calculations give

∂Σ

∂e
=

σy

X0

(
∂Xs

∂e
− 1 − q

X0
Xs ∂X0

∂e

)
(5.411)

while a direct derivation of the update procedure (5.407) gives
∂α

∂e
, which is

shown in the sequel.

For the elastic phase we immediately have

∂Xs

∂e
= 2GX0I (5.412)

∂X0

∂e
= 0 (5.413)

while in the plastic phase the result is more complicated and is achieved as
follows. For the evaluation of the fourth-order tensors ∂X/∂e and ∂α/∂e, we
start recalling that, for a general mixed elastoplastic step one has

Xs = Xs,e
n +

a − 1

‖∆Ψ̂‖2
(∆Ψ̂ : Xs,e

n )∆Ψ̂ + b
X0,n

‖∆Ψ̂‖
∆Ψ̂ (5.414)



228 5. TIME-INTEGRATION SCHEMES FOR J2 PLASTICITY

where

Xs,e
n = Xs

n + α
2G

σy,n
X0,n∆e (5.415)

a = cosh

[
(1 − α)

2G

σ̄y
‖∆Ψ̂‖

]
(5.416)

b = sinh

[
(1 − α)

2G

σ̄y
‖∆Ψ̂‖

]
(5.417)

∆Ψ̂ = ∆Ψ̄0 + (1 − α)∆Ψ̄1 (5.418)

Above, Xs,e
n represents the value of the second-order tensor Xs updated at

the end of the elastic part of the step. Moreover, ∆Ψ̂ is the scaled driving
tensor, introduced to take into account that the plastic proportion of the step
amounts to (1 − α)∆t.

The fourth-order tensor ∂Xs/∂e is obtained deriving expression (5.414).
Without presenting all the calculations, it is found that

∂Xs

∂e
= T1 + T2 + T3 (5.419)

In order to describe the three addenda T1, T2 and T3, a set of preliminary
derivatives is necessary.

Thus, we start introducing the second-order tensor υ = dα/d∆e






υ = φ1
dC

d∆e
+ φ2

dD

d∆e

φ1 =
1

D

(
C√

C2 − DM
− 1

)

φ2 = − 1

D2

(
DM

2
√

C2 − DM
+
√

C2 − DM − C

)

dC

d∆e
= 2GX0,n Xs

n

dD

d∆e
= 2(2GX0,n)2∆e

(5.420)
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Indeed, the following relations hold

∂∆Ψ̂

∂e
=

∂∆Ψ̄0

∂e
+ (1 − α)

∂∆Ψ̄1

∂e
− ∆Ψ̄1 ⊗ υ (5.421)

∂∆Ψ̄0

∂e
= I +

q̃

X0,n
(αn ⊗ ∆e) :

∂Xs,e
n

∂e
+ q̃ αn ⊗ ne (5.422)

+
Hnl

Hiso
(ne : ∆e) αn ⊗ ∂q̄

∂e
(5.423)

∂∆Ψ̄1

∂e
=

1

2

Hnl

2G

(
∂Dα

∂e
Dγ + Dα ⊗ ∂Dγ

∂e
+ αn ⊗

∂D′
γ

∂e

)
(5.424)

where

q̃ =
Hnl

Hiso
q̄ =

Hnl

2G1 − Hnl(ne : α)
(5.425)

∂q̄

∂e
=

HisoHnl

(2G1 − Hnl(ne : αn))2
X−1

0,n

(
∂Xs,e

n

∂e

)
αn (5.426)

∂Dα

∂e
= (Hkinne − Hnlαn) ⊗ ∂Dγ

∂e
+ Hkin

Dγ

X0,n

∂Xs,e
n

∂e
(5.427)

∂Dγ

∂e
= (ne : ∆e)Φ + q̄

(
ne + X−1

0,n

Xs,e
n

∂e
∆e

)
(5.428)

∂D′
γ

∂e
= T4 + T5 + T6 (5.429)

with ne = Xs,e
n /X0,n the normalized stress at the end of the elastic part. The

second-order tensors appearing in (5.428)-(5.429) are given by the following
expressions

Φ = X−1
0,n

2GHnl

[2G1 − Hnl(ne : αn)]2
∂Xs,e

n

∂e
αn (5.430)

T4 = (ne : ∆e)Φ + q̄

(
Dn +

∂Dn

∂e
∆e

)
(5.431)

T5 = Hnl [(Dn : α) + (ne : Dα)]

[
2(ne : ∆e)

2G1 − Hnl(ne : αn)
Φ

+
2G

[2G1 − Hnl(ne : αn)]2

(
ne + X−1

0,n

∂Xs,e
n

∂e
∆e

)]
(5.432)

T6 =
2GHnl

(2G1 − Hnl(ne : αn))2
(ne : ∆e)

[
∂Dn

∂∆e
αn

+X−1
0,n

∂Xs,e
n

∂∆e
Dα +

∂Dα

∂∆e
ne

]
(5.433)



230 5. TIME-INTEGRATION SCHEMES FOR J2 PLASTICITY

with

∂Dn

∂∆e
=

2G

σy,n
I − 2G1

σy,0

[
DγX−1

0,n

∂Xs,e
n

∂∆e
+ ne ⊗

∂Dγ

∂∆e

]
(5.434)

+
Hnl

σy,n
αn ⊗ ∂Dγ

∂∆e
(5.435)

Let moreover

∂σ̄y

∂e
= σy,n

(
log (1 + c) − c/(1 + c)

2 log 1 + c

)
∂c

∂e
(5.436)

where

∂c

∂e
=

2Gq̄

σy,n

[
− (ne : ∆e)υ +

(1 − α)

X0,n

∂Xs,e
n

∂e
∆e

+(1 − α)ne +
1 − α

q̄
(ne : ∆e)

∂q̄

∂e

]
(5.437)

∂Xs,e
n

∂e
= α

2G

σy,n
I +

2G

σy,n
X0,n (∆e ⊗ υ) (5.438)

Let in addition

∂‖∆Ψ̂‖
∂e

=
∂∆Ψ̂

∂e

∆Ψ̂

‖∆Ψ̂‖
(5.439)

∂

∂e

(
∆Ψ̂

‖∆Ψ̂‖

)

= ‖∆Ψ̂‖−2

(

‖∆Ψ̂‖∂∆Ψ̂

∂e
− ∆Ψ̂⊗ ∂‖∆Ψ̂‖

∂e

)

(5.440)

∂a

∂e
= b

2G

σ̄y

[
−‖∆Ψ̂‖υ − (1 − α)

‖∆Ψ̂‖
σ̄y

∂σ̄y

∂e
+ (1 − α)

∂‖∆Ψ̂‖
∂e

]
(5.441)

∂b

∂e
= a

2G

σ̄y

[
−‖∆Ψ̂‖υ − (1 − α)

‖∆Ψ̂‖
σ̄y

∂σ̄y

∂e
+ (1 − α)

∂‖∆Ψ̂‖
∂e

]
(5.442)
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The fourth-order tensors defined in (5.419) are thus:

T1 =
∂Xs,e

n

∂e
+ α

2G

σy,n
X0,n

a − 1

‖∆Ψ̂‖2
∆Ψ̂⊗ ∆Ψ̂

+ α
2G

σy,n
X0,n

a − 1

‖∆Ψ̂‖2

(
∆Ψ̂ : ∆e

)
∆Ψ̂⊗ υ (5.443)

T2 =

(
∆Ψ̂ : Xs,e

n

)

‖∆Ψ̂‖2
∆Ψ̂⊗ ∂a

∂e
+

X0,n

‖∆Ψ̂‖
∆Ψ̂⊗ ∂b

∂e
(5.444)

T3 = (a − 1)

(
∆Ψ̂

‖∆Ψ̂‖
: Xs,e

n

)
∂

∂e

(
∆Ψ̂

‖∆Ψ̂‖

)

+ (a − 1)
∆Ψ̂

‖∆Ψ̂‖
⊗
[

∂

∂e

(
∆Ψ̂

‖∆Ψ̂‖

)
Xs,e

n

]

+bX0,n
∂

∂e

(
∆Ψ̂

‖∆Ψ̂‖

)
(5.445)

The scalar function X0, following the algorithm of Section 5.12.2, is updated
as

X0 = b
(∆Ψ̂ : Xs,e

n )

‖∆Ψ̂‖
+ aX0,n (5.446)

Therefore, a direct derivation gives

∂X0

∂e
=

(∆Ψ̂ : Xs,e
n )

‖∆Ψ̂‖
∂b

∂e
+

b

‖∆Ψ̂‖
∂Xs,e

n

∂e
∆Ψ̂ + b

(
∂

∂e

∆Ψ̂

‖∆Ψ̂‖

)

Xs,e
n + X0,n

∂a

∂e

(5.447)
which is readily calculated in view of the previous derivations in this section.

Finally, with respect to the derivative of the backstress α for an elastoplas-
tic step, it holds

∂α

∂e
=

(
Hkin

∂∆ep

∂e
− 1

2
Hnlαn ⊗ ∂∆γ

∂e

)(
1 +

1

2
Hnl∆γ

)−1

− Hnl

2

(
1 +

1

2
Hnl∆γ

)−2 [
Hkin∆ep +

(
1 − 1

2
Hnl∆γ

)
αn

]
⊗ ∂∆γ

∂e
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where

∆ep =
1

2
∆γ

(
Xs

X0
+

Xs
n

X0,n

)
(5.448)

∂∆γ

∂e
=






q
σy,0

Hiso
Xq−1

0

∂X0

∂e
if Hiso = 0

σy,0

2G1

X0,n

X0

∂X0

∂e
if Hiso �= 0

(5.449)

∂∆ep

∂e
=

1

2
∆γ

∂

∂e

(
Xs

X0

)
+

1

2

[(
Xs

X0
+

Xs
n

X0,n

)
⊗ ∂∆γ

∂e

]
(5.450)

∂

∂e

(
Xs

X0

)
=

1

X0

∂Xs

∂e
− 1

X2
0

(
Xs ⊗ ∂X0

∂e

)
(5.451)

5.12.5 Brief review of the numerical properties of the ESC2nl

method

The presented ESC2nl method satisfies the following algorithmical properties:

Yield consistency. As shown in (5.380), in the framework of formulation
(5.376) the yield condition becomes

‖Xs‖2 = X2
0 (5.452)

at the end of all plastic steps. Following the same line of thought reported in
Section 5.8.1, it can be immediately shown that such condition is fullfilled by
the ESC2nl scheme.

Second-order accuracy. Following standard calculations, namely a Taylor
expansion in time, it can be proved that the truncation error of the ESC2nl
method is of order (∆t)2, where ∆t is the time step size. Therefore the scheme
is second-order accurate, which guarantees a very reduced error at small time
steps.

Exactness in case of no hardening. If Hiso = Hnl = Hkin = 0, provided
e(t) is piecewise constant, the matrix in (5.376) is constant during each time
step. As a consequence, the evolution problem (5.376) is integrated exactly by
the exponential-based method presented. Therefore, whenever Hiso = Hnl =
Hkin = 0, no error is introduced by the scheme in strain driven histories
with piecewise linear strain tensors. Although this property does not imply
exactness in the general mixed stress-strain driven case, it is reflected in a very
good error behavior (see [10] for a brief discussion on this point).
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Remark 5.12.5 Stability of the method is, from the theoretical viewpoint, still
to be addressed. This is for sure a point which should be further investigated.



234 5. TIME-INTEGRATION SCHEMES FOR J2 PLASTICITY



Chapter 6

Numerical tests

Introduzione

In questo capitolo vengono presentati alcuni test numerici relativi agli algoritmi
di integrazione per modelli di plasticità J2 analizzati nel precedente Capitolo
5. I test numerici hanno un duplice scopo. Il primo è quello di fornire un con-
fronto in termini di precisione dei diversi schemi di integrazione considerati.
Il secondo è quello di validare le proprietà numeriche dimostrate nel capitolo
precedente con riferimento particolare alla famiglia degli algoritmi di inte-
grazione a base esponenziale. Le analisi summenzionate vengono sviluppate
attraverso test numerici di tipo diverso. In particolare, si presentano i risul-
tati inerenti storie di carico puntuali a controllo misto deformazioni-tensioni
e risultati relativi a problemi a valori iniziali e dati al bordo posti su continui
tridimensionali.

Il capitolo è suddiviso in tre sezioni ed organizzato nel modo seguente.
La Sezione 6.2 presenta il set-up delle diverse prove numeriche riportate nel
capitolo. Vengono qui introdotti i dettagli inerenti le strategie risolutive e di
implementazione algoritmica adottate, nonchè le diverse misure d’errore uti-
lizzate a seconda della prova considerata. La Sezione 6.3 riguarda il confronto
numerico degli algoritmi di integrazione del modello costitutivo J2 con incrudi-
mento isotropo e cinematico lineare (modello LP). La Sezione 6.4 riguarda il
confronto numerico degli algoritmi di integrazione del modello costitutivo J2

con incrudimento isotropo e cinematico lineare ed incrudimento cinematico
non lineare (modello NLK). Alcuni dei risultati presentati in questo capitolo
sono tratti da [6, 7, 8, 11, 12].
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6.1 Introduction

In this chapter we present a set of numerical tests on the integration algorithms
for J2 elastoplastic models analyzed in Chapter 5. The numerical tests have
a double scope. First, they are intended to provide a comparison in terms of
precision between the different considered integration schemes. On the other
hand, the numerical tests aim to validate the numerical properties and results
found in the previous chapter with particular emphasis to the exponential-
based integration algorithms family. The above mentioned analyses are carried
out through different kinds of numerical tests. In particular, we present results
relative to pointwise mixed stress-strain loading histories and results relative
to initial boundary value problems on three-dimensional material bodies.

The chapter is divided in three sections and is organized as follows. Section
6.2 is concerned with the setup of the numerical tests reported in the present
chapter. In this section the details inherent the solution strategies and the
algorithmic implementation adopted in the tests together with the different
error measures are introduced. Section 6.3 is devoted to the comparison of
the numerical schemes which apply to the J2 constitutive model with linear
isotropic and kinematic hadening (LP model). Section 6.4 is devoted to the
comparison of the numerical schemes which apply to the J2 constitutive model
with linear isotropic and kinematic hardening and nonlinear kinematic harden-
ing (NLK model). Some of the results which are shown in this chapter are
taken from some works among which we cite [6, 7, 8, 11, 12].

6.2 Numerical tests setup

This section is devoted to the setup of the numerical tests presented in the
following sections. There are three different kinds of numerical tests. First, we
consider mixed stress-strain loading histories for a material point. The object
of this test is to study the accuracy granted by the method with respect to
the computation of the stress-strain asset. Second, we show a set of iso-
error maps [69, 70] in order to evaluate the algorithm precision using different
time discretizations. Finally, we present two classical initial boundary value
problems, which we study to analyze the algorithm reliability on a practical
engineering problem.

As a result of the above numerical tests, we carry out a detailed comparison
of the presented methods in terms of precision, accuracy and in terms of specific
properties shown by each method. The pointwise tests and the iso-error maps
are performed with the aid of the CE-Driver code [15], the initial boundary
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value problem is solved using FEAP [73]. Each test is described in detail as
follows.

6.2.1 Mixed stress-strain loading histories

We consider three biaxial non-proportional stress-strain loading histories de-
fined on the reference time interval [0, T ], with T = 7 s. The considered
loading histories are obtained assuming to control two strain components and
four stress components, respectively, i.e.

Problem 1: ε11 σ22 σ33 ε12 σ13 σ23

Problem 2: ε11 ε22 σ33 σ12 σ13 σ23

Problem 3: ε11 σ22 σ33 ε12 σ13 σ23

For each history we require that all the controlled stress components are iden-
tically equal to zero, while the strains are varied proportionally to

εy,mono =

√
3

2

σy,0

E
(6.1)

which represents the first yielding strain value in a uniaxial loading history. A
graphical representation of the varying quantities is given in Figure 6.1.

Instantaneous error

Lacking the analytical solutions of the problems under investigation, we com-
pute the “exact” solutions using a reference scheme (BE for the LP model,
BEnl for the NLK model) with a very fine time discretization, corresponding
to 100000 steps per second (∆t = 0.00001 s). The “exact” solutions are com-
pared with the “numerical” ones, corresponding respectively to 10, 20 and 40
steps per second (∆t = 0.1 s, 0.05 s, 0.025 s) and computed with each one of
the compared algorithms.

The error is evaluated separately for the stress and the strain introducing
the following relative norms:

Eσ
n =

‖σn − σex
n ‖

σy,n
Eεεε

n = 2G
‖εεεn − εεεex

n ‖
σy,n

(6.2)

where ‖ · ‖ indicates the usual euclidean norm and σy,n is the yield surface
radius at time tn. In (6.2), σn and εεεn as well as σex

n and εεεex
n are respectively

the stress and strain “numerical” and “exact” solution at time tn.
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Pb. 1

Pb. 2

Pb. 3

Figure 6.1: Pointwise stress-strain tests. Mixed stress-strain loading histories
for Problem 1, Problem 2 and Problem 3.
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Figure 6.2: Plane stress von-Mises yield surface representation in principal
stresses plane. State 1 choices for iso-error maps plots.

Total error

In order to further investigate the rate of convergence of the compared meth-
ods, we also introduce the average total error as the ℓ1 norm in time of the
absolute error:

Eσ
T =

N∑

n=1

∆t

T

‖σn − σex
n ‖

σy,n
Eεεε

T =

N∑

n=1

2G
∆t

T

‖εεεn − εεεex
n ‖

σy,n
(6.3)

6.2.2 Iso-error maps

Iso-error maps are commonly adopted in the literature [51, 63, 64, 69] as a
systematic tool to test the accuracy of plasticity integration algorithms. In
particular, iso-error maps provide a clear evaluation of the integration algo-
rithm accuracy when a large time discretization is adopted in solving particular
piecewise mixed stress-strain loading histories. Each loading history consid-
ered in this chapter is set up by controlling the ε11 and ε22 strain components
and requiring that all the remaining stresses are equal to zero. The evolution
in time of the controlled quantities is piecewise linear and can be divided in
two distinct phases defined as follows (see Table 6.1). Phase 1 consists of a
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Table 6.1: Benchmark mixed stress-strain history for iso-error maps computa-
tion.

Time [s] ε11 ε22 σ33 σ12 σ13 σ23

State 0 t=0 0 0 0 0 0 0

State 1 t=1 ε11,y ε22,y 0 0 0 0

State 2 t=2 εy,11 + ∆ε11 εy,22 + ∆ε22 0 0 0 0

Table 6.2: Iso-error maps. Choices for the State 1 point on the yield surface.

ε11,y ε22,y σ33 σ12 σ13 σ23

State 1-A εy,mono −νεy,mono 0 0 0 0

State 1-B (1 − ν)εy,mono εy,mono 0 0 0 0

State 1-C
(1 + ν)

3
εy,mono − (1 + ν)

3
εy,mono 0 0 0 0

purely elastic path and proceeds from the zero stress and strain state (State
0) to a specific state on the yield surface (State 1) given in terms of the yield
strain components ε11,y and ε22,y. Phase 2 is a purely plastic path which starts
from State 1 and leads to a final state (State 2) given in terms of the strain
increments ∆ε11 and ∆ε22.

In this analysis, we consider three different choices of State 1, correspond-
ing to plane states of stress on the yield surface [69], labeled A, B and C
respectively, represented in Figure 6.2 and corresponding to uniaxial, biaxial
and pure shear states. Each State 1 is expressed in Table 6.2 in terms of the
quantity εy,mono (uniaxial yield strain) already defined in (6.1) according to

ε11 = ε11,y

ε22 = ε22,y

For each choice of State 1, we consider a State 2 defined as

ε11 = ε11,y + ∆ε11

ε22 = ε22,y + ∆ε22

We solve a total of 60 × 60 mixed stress-strain histories for each State 1,
corresponding to the following sets of normalized strain increments (see Figures
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6.15-6.17 for instance)

∆ε11

ε11,y
= 0.0, 0.1, 0.2, ..., 6.0

∆ε22

ε22,y
= 0.0, 0.1, 0.2, ..., 6.0

This subdivision leads to a total of 3600 computed mixed stress-strain histories
and to an equal number of calculated relative error values. According to
[69, 72], as an error measure, we adopt the following expression

Eσ
iso =

‖σ − σex‖
‖σex‖ (6.4)

where σ is the final stress tensor, computed with a single time step discretiza-
tion between State 1 and State 2, whereas σex corresponds to an “exact”
solution adopting a very fine time step between State 1 and State 2.

6.2.3 Initial boundary value problems

We consider two three-dimensional thin rectangular perforated strips, sub-
jected to uniaxial extension in a plane strain state [69]. The first strip has a
circular hole in the center, while the second one has an elliptical hole. Both
strips have three planes of symmetry and in Figure 6.4 we show one quarter
of the domain for each of the two strips. The geometric lenghts referred to
Figure 6.4 are

B = 100 mm H = 180 mm R0 = 50 mm H0 = 10 mm B0 = 50 mm

while the thickness is 10 mm.

Initially the strip results undeformed and unstressed. The problem loading
history results symmetric with respect to the three symmetry planes of the
strip, hence we can refer to a single quarter of the domain and define the
following equivalent problem. The loading history, which is represented in
Figure 6.3, is composed of a first phase (1 s), in which, the strip is stretched
assigning a top side vertical displacement δmax and a second phase (1 s) in
which the imposed displacement is set back to 0 mm. We set δmax = 1 mm.
We assume to block the horizontal displacement on the left side and to block
the vertical displacement on the bottom side of the strip. The remaining
boundary sides are stress free. In the analysis we consider Material 2 as done
for the iso-error map tests. We solve the boundary value problem using the
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Figure 6.3: Initial boundary value problem. Loading history of imposed dis-
placement on the top side of the strip and indication of L2 norm error plot
instants.

finite element code FEAP [73], in which the considered integration methods
are implemented. The mesh is composed of Nel finite elements (displacement-
based four-node SOLID2D elements adopting a four point Gauss quadrature
rule [73]). The following results refer to a mesh with Nel = 192 as can be
observed in Figure 6.5.

The comparison between the methods is carried out by evaluating the
following L2 norm error on stress and strain which makes use of stress and
strain output at Gauss quadrature points

Ẽσ =

√ ∫
Ω ‖ σn − σex

n ‖2

∫
Ω ‖ σex

n ‖2
≈

√√√√
∑Nel

n=1

∑4
q=1 wnq ‖ σnq − σex

nq ‖2

∑Nel

n=1

∑4
q=1 wnq ‖ σex

nq ‖2
(6.5)

Ẽεεε =

√ ∫
Ω ‖ εεεn − εεεex

n ‖2

∫
Ω ‖ εεεex

n ‖2
≈

√√√√
∑Nel

n=1

∑4
q=1 wnq ‖ εnq − εex

nq ‖2

∑Nel

n=1

∑4
q=1 wnq ‖ εex

nq ‖2
(6.6)

In the above formulas, the indexes n and q respectively refer to the element
number and quadrature point number, while wnq is the qth quadrature point
Gauss weight of the nth element. The quantities σnq and εεεnq are, respectively,
the “numerical” stress and strain tensors calculated via the three integration
schemes adopting a prescribed time step ∆t, while σex

nq and εεεex
nq are the corre-

sponding “exact” quantities evaluated with the reference scheme (BE for the
LP model, BEnl for the NLK model) using an overkilling time step size. In
the following tests we have chosen three different time steps sizes, respectively
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Figure 6.4: Boundary value problems. Strips with circular and elliptical holes:
geometry and imposed displacements for a single quarter of the strips.

∆t1 = 0.05 s, ∆t2 = 0.025 s, ∆t3 = 0.0125 s. The norms (6.5) and (6.6) are
evaluated and plotted at four different instants (t = 0.5 s, t = 1.0 s, t = 1.5 s,
t = 2.0 s) of the loading history (see Figure 6.3) with the three discretizations
described above.

6.2.4 Material parameters

In the following analyses we consider five sets of material constants

• Material 1 [17]

E = 100 MPa ν = 0.3
σy,0 = 15 MPa Hkin = 10 MPa Hiso = 10 MPa
σ̄y,0 = σy,0/E = 0.15 H̄kin = Hkin/E = 0.1 H̄iso = Hiso/E = 0.1

• Material 2 [69]

E = 30000 MPa ν = 0.3
σy,0 = 3 MPa Hkin = 0 MPa Hiso = 0 MPa
σ̄y,0 = σy,0/E = 0.0001 H̄kin = Hkin/E = 0 H̄iso = Hiso/E = 0
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Figure 6.5: Strips with circular and elliptical holes: plane projection of the
adopted meshes

• Material 3 [79]

E = 7000 MPa ν = 0.3
σy,0 = 24.3 MPa Hkin = 0 MPa Hiso = 225 MPa
σ̄y,0 = σy,0/E = 0.0034 H̄kin = Hkin/E = 0 H̄iso = Hiso/E = 0.032

• Material 4 [74]

E = 2 × 105 MPa ν = 0.3 σy,0 = 2 × 102 MPa
Hiso = 0 MPa Hkin = 2 × 104 MPa Hnl = 50
H̄iso = Hiso/E = 0 H̄kin = Hkin/E = 10−1 H̄nl = Hnl/E = 2.5 × 10−4

• Material 5 [74]

E = 2 × 105 MPa ν = 0.3 σy,0 = 2 × 102 MPa
Hiso = 6 × 103 MPa Hkin = 2 × 104 MPa Hnl = 50
H̄iso = Hiso/E = 3 × 10−2 H̄kin = Hkin/E = 10−1 H̄nl = Hnl/E = 2.5 × 10−4

Finally, we recall that the Young Modulus E and the Poisson ratio ν
uniquely determine the constants K and G as follows

K =
E

3(1 − 2ν)
G =

E

2(1 + ν)
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6.3 Numerical tests on the LP model

In this section we present the numerical tests on the integration algorithms
discussed in Sections 5.3-5.7 which apply to the LP model. In what follows we
systematically adopt the following acronyms for the tested algorithms:

• BE Bacward Euler return map method (Section 5.3)
• MPT Midpoint return map method (Section 5.4)
• ENN Exp. Non-symm. Non-cons. method (Section 5.5)
• ENC Exp. Non-symm. Cons. method (Section 5.6)
• ESC Exp. Symm. Cons. method (Section 5.7)
• ESC2 Exp. Symm. Cons. 2nd-order accurate method (Section 5.7)

6.3.1 Mixed stress-strain loading histories

The pointwise stress-strain tests are divided in two parts. First, we present a
set of instantaneous error plots (Figures 6.6-6.9) corresponding to Problem 1
and to Problem 2 solved with the first-order accurate BE and ESC meth-
ods and with the exponential-based non-symmetric ENN and ENC meth-
ods, respectively with Material 1 and Material 2. Then, in Figures 6.10-
6.13, we present the corresponding instantaneous error plots obtained with
the quadratic methods MPT, ENC and ESC2. This splitting is done in order
to appreciate clearly the comparison in terms of precision between algorithms
sharing the same order of accuracy.

From the error plots, we can extract the following comments

• The ESC and the BE methods perform similarly in terms of error, al-
though in general the ESC seems slightly better. As the step size is
reduced, both methods seem to converge with linear accuracy, i.e. the
error seems to be divided by 2 every time we double the number of steps
(error goes as ∆t).

• The non symmetric methods ENN and ENC show practically the same
error levels for all the considered stress-strain histories. These methods
perform decisively better than the ESC and BE algorithms. The order
of accuracy is 2 in this case and the error is roughly divided by 4 every
time we double the number of steps (error goes as (∆t)2).

• The performance of the MPT and the ENC methods are comparable.
The MPT algorithm provides exact solutions for the case of proportional
loading. Finally, as the step size is reduced, both methods converge
quadratically, i.e. the error is divided by 4 every time the number of
steps is doubled (the error goes as ∆t2).
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• The new symmetric method ESC2 grants relatively lower error levels
than the MPT and ESC algorithms for all the considered stress-strain
histories. Also in this case, the numerical solution is exact for pro-
portional loading conditions and the error decreases quadratically with
respect to the time step size.

We omit, for brevity’s sake, to provide the error plots regarding the remaining
load histories since they would lead to conclusions similar to those given in
the above points.

Then, in Figure 6.14 we plot the total error expressed by Equation (6.3) ver-
sus the number of time steps in logarithmic scale for the six methods BE, MPT,
ENN, ENC, ESC and ESC2 for Problem 1 with Material 1. The quadratic con-
vergence of the MPT, ENN, ENC and ESC2 methods with respect to the linear
convergence of the other algorithms can be clearly appreciated. It is remark-
able that this error measurement qualifies the new optimal ESC2 scheme as
the most precise within the set of the tested algorithms, since it presents the
lowest error levels both for the stress and the strain computation.



6.3. NUMERICAL TESTS ON THE LP MODEL 247

0 1 2 3 4 5 6 7
0.0

1.0

2.0

3.0

4.0

5.0

6.0

S
tr

e
s
s
 r

e
la

ti
v
e
 e

rr
o
r 

E
n
[−

]

BE
ESC
ENN
ENC

x 10
−2

 

0 1 2 3 4 5 6 7
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

S
tr

a
in

 r
e

la
ti
v
e

 e
rr

o
r 

E
n
[−

]

BE
ESC
ENN
ENC

x 10
−3

 

0 1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
tr

e
s
s
 r

e
la

ti
v
e
 e

rr
o
r 

E
n
[−

]

BE
ESC
ENN
ENC

x 10
−2

 

0 1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

S
tr

a
in

 r
e

la
ti
v
e

 e
rr

o
r 

E
n
[−

]

BE
ESC
ENN
ENC

x 10
−3

 

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

S
tr

e
s
s
 r

e
la

ti
v
e

 e
rr

o
r 

E
n
[−

]

BE
ESC
ENN
ENC

x 10
−2

 

0 1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

2.5

S
tr

a
in

 r
e

la
ti
v
e

 e
rr

o
r 

E
n
[−

]

BE
ESC
ENN
ENC

x 10
−3

 

Figure 6.6: Mixed stress-strain loading histories: Problem 1 with Material 1.
Stress and strain error for ∆t = 0.1 s, ∆t = 0.05 s, ∆t = 0.025 s
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Figure 6.7: Mixed stress-strain loading histories: Problem 1 with Material 2.
Stress and strain error for ∆t = 0.1 s, ∆t = 0.05 s, ∆t = 0.025 s
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Figure 6.8: Mixed stress-strain loading histories: Problem 2 with Material 1.
Stress and strain error for ∆t = 0.1 s, ∆t = 0.05 s, ∆t = 0.025 s
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Figure 6.9: Mixed stress-strain loading histories: Problem 2 with Material 2.
Stress and strain error for ∆t = 0.1 s, ∆t = 0.05 s, ∆t = 0.025 s
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Figure 6.10: Mixed stress-strain loading histories: Problem 1 with Material 1.
Stress and strain error for ∆t = 0.1 s, ∆t = 0.05 s, ∆t = 0.025 s
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Figure 6.11: Mixed stress-strain loading histories: Problem 1 with Material 2.
Stress and strain error for ∆t = 0.1 s, ∆t = 0.05 s, ∆t = 0.025 s
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Figure 6.12: Mixed stress-strain loading histories: Problem 2 with Material 1.
Stress and strain error for ∆t = 0.1 s, ∆t = 0.05 s, ∆t = 0.025 s
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Figure 6.13: Mixed stress-strain loading histories: Problem 2 with Material 2.
Stress and strain error for ∆t = 0.1 s, ∆t = 0.05 s, ∆t = 0.025 s
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Figure 6.14: Pointwise stress-strain tests. Problem 1 with Material 1. Stress
and strain total error versus number of steps per second.

6.3.2 Iso-error maps

In this section we present the iso-error maps corresponding to the three initial
State 1 on the yield surface (cf. Table 6.2) and compare the precision levels
granted by the BE, MPT and ESC2 integration algorithms, respectively. All
the calculations refer to Material 2.

The total error range is subdivided in ten equally spaced levels according to
which the iso-curves are drawn in Figures 6.15-6.17. Each iso-curve is indicated
by a proper error label while the thick continuous line represents the zero-level
error stress-strain histories (i.e. proportional loading histories). For the sake
of completeness, aside from each map we also report the maximum error value
computed on the grid adopted for the computation of the iso-error map.

Observing Figures 6.15-6.17, we recognize that the ESC2 scheme produces
more precise solutions in terms of stresses if compared to the BE and MPT
algorithms. Even for “large” strain increments the new exponential-based
procedure reveals low levels of error compared with the other two methods.
Such a result seems to be rather interesting since it suggests robustness of the
integration scheme for practical application of the integration procedure in a
finite element analysis of boundary value problems. It is also worth noting that
the BE scheme, which has linear accuracy, is more precise than the quadratic
MPT algorithm for large strain increments. In this sense the ESC2 method
turns out to be the most reliable within the three methods, since it is quadratic
and mantains good behavior also for large time steps.
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A further observation is that, although Hiso = 0, the exponential-based
algorithm presents a non zero error. This apparently erroneous behavior is
due to the fact that we have assumed a mixed stress-strain history and not a
completely strain driven one (see Reference [11] for a deeper discussion of this
point).

Remark 6.3.1 It is noted that even with a non zero value of isotropic harden-
ing the ESC2 scheme still produces more precise results for large time dis-
cretizations than both the BE and MPT scheme. The reader is referred to [7]
where a wide set of iso-error maps regarding this particular case confirm the
better performance of the exponential-based method.

6.3.3 Initial boundary value problems

In this section we report the L2 norm error (6.5)-(6.6) obtained with the
BE, ENC, ESC, MPT and ESC2 integration algorithms, respectively, for the
solution of the initial boundary value problems presented in Section 6.2.3. The
results are summarized in Table 6.3 and Table 6.4 which report the norm error
at different instants during the loading history for the tested algorithms.

As expected, Table 6.3 and Table 6.4 show that the BE, ENC and ESC
algorithms grant first-order accuracy while the MPT and ESC2 are second-
order accurate schemes. The tests indicate that the quadratic algorithms are
far more precise than the linear ones, both for the stress and the strain com-
putation. The quadratically accurate ESC2 algorithm results globally more
precise than the MPT.
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Figure 6.15: Comparison between backward Euler (BE), midpoint (MPT)
and the new exponential-based scheme (ESC2). Iso-error maps for yield sur-
face State 1 - A with Material 2 and indication of the maximum stress error
level.
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Figure 6.16: Comparison between backward Euler (BE), midpoint (MPT)
and the new exponential-based scheme (ESC2). Iso-error maps for yield sur-
face State 1 - B with Material 2 and indication of the maximum stress error
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Figure 6.17: Comparison between backward Euler (BE), midpoint (MPT)
and the new exponential-based scheme (ESC2). Iso-error maps for yield sur-
face State 1 - C with material 2 and indication of the maximum stress error
level.
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Table 6.3: Initial boundary value problems. Extension of rectangular strip
with circular hole. Stress and strain L2 norm errors with Material 3 at t = 0.5
s,t = 1.0 s,t = 1.5 s,t = 2.0 s for BE, ENC, ESC, MPT and ESC2 schemes

Ẽ ∆t BE ENC ESC MPT ESC2

t = 0.5 s
∆t1 1.81×10−3 1.15×10−3 1.18×10−4 1.36×10−4 1.03×10−4

Ẽσ ∆t2 9.62×10−4 3.26×10−4 5.12×10−5 3.24×10−5 2.67×10−5

∆t3 4.96×10−4 9.09×10−5 2.76×10−5 9.27×10−6 7.11×10−6

∆t1 2.31×10−3 2.08×10−3 2.80×10−4 3.02×10−4 9.92×10−5

Ẽεεε ∆t2 1.24×10−3 5.91×10−4 1.20×10−4 7.44×10−5 2.12×10−5

∆t3 6.42×10−4 1.62×10−4 6.42×10−5 2.31×10−5 8.90×10−6

t = 1.0 s
∆t1 3.07×10−3 1.94×10−3 6.32×10−4 1.26×10−4 1.11×10−4

Ẽσ ∆t2 1.58×10−3 5.17×10−4 3.13×10−4 3.05×10−5 2.55×10−5

∆t3 8.00×10−4 1.32×10−4 1.56×10−4 7.81×10−6 6.58×10−6

∆t1 2.57×10−3 2.99×10−3 1.40×10−3 2.86×10−4 2.96×10−4

Ẽεεε ∆t2 1.29×10−3 8.12×10−4 6.69×10−4 5.87×10−5 6.22×10−5

∆t3 6.53×10−4 2.03×10−4 3.30×10−4 1.64×10−5 1.69×10−5

t = 1.5 s
∆t1 9.61×10−3 6.10×10−3 1.94×10−3 2.31×10−1 3.61×10−4

Ẽσ ∆t2 1.14×10−1 1.14×10−1 1.16×10−1 1.15×10−1 1.15×10−1

∆t3 5.72×10−2 5.74×10−2 5.81×10−2 5.78×10−2 5.78×10−2

∆t1 3.64×10−3 4.23×10−3 1.98×10−3 5.23×10−2 4.19×10−4

Ẽεεε ∆t2 2.61×10−2 2.63×10−2 2.61×10−2 2.61×10−2 2.61×10−2

∆t3 1.30×10−2 1.31×10−2 1.30×10−2 1.30×10−2 1.30×10−2

t = 2.0 s
∆t1 6.46×10−3 3.40×10−3 1.14×10−3 2.92×10−4 2.20×10−4

Ẽσ ∆t2 3.35×10−3 9.06×10−4 5.68×10−4 6.98×10−5 5.05×10−5

∆t3 1.70×10−3 2.31×10−4 2.83×10−4 1.78×10−5 1.28×10−5

∆t1 6.38×10−3 5.64×10−3 2.31×10−3 5.27×10−4 6.16×10−4

Ẽεεε ∆t2 3.24×10−3 1.51×10−3 1.12×10−3 1.07×10−4 1.30×10−4

∆t3 1.63×10−3 3.79×10−4 5.56×10−4 2.98×10−5 3.46×10−5
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Table 6.4: Initial boundary value problems. Extension of rectangular strip
with elliptical hole. Stress and strain L2 norm errors with Material at t = 0.5
s,t = 1.0 s,t = 1.5 s,t = 2.0 s for BE, ENC, ESC, MPT and ESC2 schemes

Ẽ ∆t BE ENC ESC MPT ESC2

t = 0.5 s
∆t1 2.72×10−3 2.10×10−3 2.60×10−4 2.05×10−4 2.21×10−4

Ẽσ ∆t2 1.43×10−3 6.47×10−4 1.05×10−4 5.19×10−5 5.45×10−5

∆t3 7.38×10−4 1.72×10−4 5.24×10−5 1.56×10−5 1.64×10−5

∆t1 2.93×10−3 4.18×10−3 6.74×10−4 5.26×10−4 3.58×10−4

Ẽεεε ∆t2 1.59×10−3 1.29×10−3 2.65×10−4 1.24×10−4 8.19×10−5

∆t3 8.27×10−4 3.45×10−4 1.26×10−4 3.66×10−5 2.62×10−5

t = 1.0 s
∆t1 3.65×10−3 2.60×10−3 1.10×10−3 1.33×10−4 2.66×10−4

Ẽσ ∆t2 1.86×10−3 7.18×10−4 5.30×10−4 3.42×10−5 6.68×10−5

∆t3 9.45×10−4 1.91×10−4 2.60×10−4 8.74×10−6 1.67×10−5

∆t1 6.04×10−3 4.15×10−3 2.12×10−3 2.31×10−1 3.61×10−4

Ẽεεε ∆t2 3.05×10−3 1.13×10−3 1.02×10−3 1.15×10−1 1.15×10−1

∆t3 5.72×10−2 5.74×10−2 5.81×10−2 5.78×10−2 5.78×10−2

t = 1.5 s
∆t1 8.50×10−3 6.09×10−3 2.56×10−3 1.63×10−3 6.27×10−4

Ẽσ ∆t2 8.08×10−2 8.04×10−2 8.24×10−2 8.17×10−2 8.17×10−2

∆t3 4.03×10−2 4.05×10−2 4.12×10−2 4.08×10−2 4.08×10−2

∆t1 7.88×10−3 5.42×10−3 2.76×10−3 3.91×10−2 8.89×10−4

Ẽεεε ∆t2 1.92×10−2 1.98×10−2 1.93×10−2 1.95×10−2 1.95×10−2

∆t3 9.61×10−3 9.83×10−3 9.66×10−3 9.77×10−3 9.76×10−3

t = 2.0 s
∆t1 8.05×10−3 4.67×10−3 1.85×10−3 3.38×10−4 4.95×10−4

Ẽσ ∆t2 4.16×10−3 1.27×10−3 9.33×10−4 8.10×10−5 1.21×10−4

∆t3 2.11×10−3 3.37×10−4 4.70×10−4 2.11×10−5 3.07×10−5

∆t1 1.21×10−2 7.66×10−3 3.21×10−3 3.47×10−4 1.25×10−3

Ẽεεε ∆t2 6.16×10−3 2.06×10−3 1.70×10−3 8.72×10−5 3.05×10−4

∆t3 3.10×10−3 5.43×10−4 8.80×10−4 2.31×10−5 7.81×10−5
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6.4 Numerical tests on the NLK model

In this section we present the numerical tests on the integration algorithms
discussed in Sections 5.10-5.12 which apply to the NLK model. In what follows
we systematically adopt the following acronyms for the tested algorithms:

• BEnl Bacward Euler return map method (Section 5.10)
• MPTnl Midpoint return map method (Section 5.11)
• ESC2nl Exp. Symm. Cons. 2nd-order accurate method (Section 5.12)

6.4.1 Mixed stress-strain loading histories

The pointwise stress-strain tests are divided in two parts. First, we present a
set of instantaneous error plots (Figures 6.18-6.21) corresponding to Problem 1
and to Problem 2 solved with the BEnl, MPTnl and ESC2nl methods, respec-
tively with Material 4 and Material 5. Then in Figures 6.22-6.25, we present
the corresponding instantaneous error plots obtained with the quadratic meth-
ods MPTnl and ESC2nl. This splitting is done in order to appreciate clearly
the comparison in terms of precision between the MPTnl and the ESC2nl
algorithm. It is evident from the presented error plots that

• The BEnl method is linearly accurate, that is the error is proportional
to the step size ∆t, while both the MPTnl and ESC2nl are quadratically
accurate, that is the error is proportional to the square of ∆t.

• The performance of the MPTnl and ESC2nl methods are globally com-
parable. As the loading history evolves the exponential-based method
seems to produce lower error levels than the midpoint algorithm when
there is a direction change in the driving input (the dashed line peaks on
the error plots are usually higher than the dash-dot line peaks). On the
other hand, in most cases it is observed that the MPTnl algorithm error
levels decrease more rapidly after the change of direction peaks than in
the case of the ESC2nl method.

• The two second-order accurate methods ESC2nl and MPTnl perform
decisively better than the linearly accurate BEnl, for all the considered
stress-strain histories.

In Figure 6.26 we plot the total error expressed by (6.3) versus the num-
ber of time steps in logarithmic scale for the three methods BEnl, MPTnl
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and ESC2nl for Problem 1 with Material 4. The quadratic convergence
of the MPTnl and ESC2nl methods, with respect to the linear one of the
BEnl algorithm is still evident. Moreover, the quadratic methods show
significantly lower error levels with respect to the ones granted by the
linear method. The ESC2nl method results more precise in stress com-
putation than the MPT, while their strain error levels are practically
equal.

6.4.2 Iso-error maps

In this section we present the iso-error maps corresponding to the three initial
State 1 on the yield surface (cf. Table 6.2) and compare the precision levels
granted by the BEnl, MPTnl and ESC2nl integration algorithms, respectively.
All the calculations refer to Material 5.

The total error range is subdivided in ten equally spaced levels according
to which the iso-curves are drawn in Figures 6.27-6.29. Each iso-curve is
indicated by a proper error label while the thick continuous line represents
the couples of strain increments values corresponding to proportional loading
histories starting from state 1. For the sake of completeness, aside from each
map we also report the maximum error value computed on the grid adopted
for the computation of the iso-error map. Observing Figures 6.27-6.29 we can
derive the following conclusions

• the ESC2nl scheme shows better performances than both the BEnl and
MPTnl algorithms for every considered starting yield State 1-A, 1-B
and 1-C. Even for “large” strain increments the new exponential-based
procedure reveals low levels of error compared with the other two meth-
ods in all the examined cases.

• In general the BEnl scheme presents lower error levels for large strain
increments than the MPTnl method. This result is in agreement with
the general observation that lower order methods perform better than
higher order ones for large time steps.

• None of the algorithms presents a zero error level along proportional load-
ing paths (thick black lines, Figures 6.27-6.29). This is due to the fact
that we have taken into account a nonlinear kinematic hardening mech-
anism. However, in the vicinity of the thick black lines the exponential-
based method seems to be more accurate than the other schemes.
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Figure 6.18: Mixed stress-strain loading histories: Problem 1 with Material 4.
Stress and strain error for ∆t = 0.1 s, ∆t = 0.05 s, ∆t = 0.025 s
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Figure 6.19: Mixed stress-strain loading histories: Problem 1 with Material 5.
Stress and strain error for ∆t = 0.1 s, ∆t = 0.05 s, ∆t = 0.025 s
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Figure 6.20: Mixed stress-strain loading histories: Problem 2 with Material 4.
Stress and strain error for ∆t = 0.1 s, ∆t = 0.05 s, ∆t = 0.025 s
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Figure 6.21: Mixed stress-strain loading histories: Problem 2 with Material 5.
Stress and strain error for ∆t = 0.1 s, ∆t = 0.05 s, ∆t = 0.025 s
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Figure 6.22: Mixed stress-strain loading histories: Problem 1 with Material 4.
Stress and strain error for ∆t = 0.1 s, ∆t = 0.05 s, ∆t = 0.025 s
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Figure 6.23: Mixed stress-strain loading histories: Problem 1 with Material 5.
Stress and strain error for ∆t = 0.1 s, ∆t = 0.05 s, ∆t = 0.025 s
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Figure 6.24: Mixed stress-strain loading histories: Problem 2 with Material 4.
Stress and strain error for ∆t = 0.1 s, ∆t = 0.05 s, ∆t = 0.025 s
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Figure 6.25: Mixed stress-strain loading histories: Problem 2 with Material 5.
Stress and strain error for ∆t = 0.1 s, ∆t = 0.05 s, ∆t = 0.025 s
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Figure 6.26: Pointwise stress-strain tests. Problem 1 with Material 4. Stress
and strain total error versus number of steps per second.

6.4.3 Initial boundary value problems

In this section we report the L2 norm error (6.5)-(6.6) obtained with the BEnl,
MPTnl and ESC2nl integration algorithms, respectively, for the solution of
the initial boundary value problems presented in Section 6.2.3. The results
are summarized in Table 6.5 and Table 6.6, which report the norm error at
different instants during the loading history for the tested algorithms.

We may observe in Table 6.5 and Table 6.6 that the BEnl shows a first order
of accuracy while the MPTnl and ESC2nl are second-order accurate schemes.
As shown in the tests, the quadratic algorithms are far more precise than the
linear one, both for the stress and the strain computation. The quadratically
accurate MPTnl and ESC2nl algorithms result globally comparable in terms
of precision.

Summarizing, the midpoint and the exponential-based scheme seem to
behave very similarly. The higher peaks shown by the midpoint method in
the pointwise error graphs, seem to reveal a better behavior of the ESC2nl
scheme whenever there is a crossing of the yield surface. Apart this difference,
looking at the iso-error maps and the boundary value problem tests, it seems
that the error behaviors of the two schemes are quite similar both for small
and large time step size.
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Figure 6.27: Comparison between return map (BEnl), midpoint (MPTnl)
and the new exponential-based scheme (ESC2nl). Iso-error maps for yield
surface State 1 - A with Material 5 and indication of the maximum stress
error level.
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Figure 6.28: Comparison between return map (BEnl), midpoint (MPTnl)
and the new exponential-based scheme (ESC2nl). Iso-error maps for yield
surface State 1 - B with Material 5 and indication of the maximum stress
error level.
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Figure 6.29: Comparison between return map (BEnl), midpoint (MPTnl)
and the new exponential-based scheme (ESC2nl). Iso-error maps for yield
surface State 1 - C with Material 5 and indication of the maximum stress
error level.
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Table 6.5: Initial boundary value problems. Extension of rectangular strip
with circular hole. Stress and strain L2 norm errors with Material 5 at t = 0.5
s,t = 1.0 s,t = 1.5 s,t = 2.0 s for BEnl, MPTnl and ESC2nl schemes.

Ẽ ∆t BEnl MPTnl ESC2nl
t = 0.5

∆t1 4.41×10−3 2.27×10−4 3.95×10−4

Ẽσ ∆t2 2.27×10−3 6.11×10−5 1.04×10−4

∆t3 1.15×10−3 1.61×10−5 2.61×10−5

∆t1 3.72×10−3 5.83×10−4 6.44×10−4

Ẽε ∆t2 1.91×10−3 1.52×10−4 1.62×10−4

∆t3 9.65×10−4 3.94×10−5 4.15×10−5

t = 1.0
∆t1 3.33×10−3 6.87×10−5 1.86×10−4

Ẽσ ∆t2 1.69×10−3 1.84×10−5 4.95×10−5

∆t3 8.48×10−4 4.92×10−6 1.25×10−5

∆t1 2.74×10−3 1.97×10−4 2.52×10−4

Ẽε ∆t2 1.40×10−3 5.17×10−5 6.34×10−5

∆t3 7.05×10−4 1.32×10−5 1.63×10−5

t = 1.5
∆t1 1.48×10−2 1.62×10−3 7.50×10−4

Ẽσ ∆t2 7.98×10−3 4.42×10−4 1.86×10−4

∆t3 4.17×10−3 1.10×10−4 4.51×10−5

∆t1 3.13×10−3 2.21×10−4 3.04×10−4

Ẽε ∆t2 1.54×10−3 6.06×10−5 7.08×10−5

∆t3 7.63×10−4 1.40×10−5 1.92×10−5

t = 2.0
∆t1 5.05×10−3 2.22×10−4 2.14×10−4

Ẽσ ∆t2 2.57×10−3 5.71×10−5 5.15×10−5

∆t3 1.29×10−3 1.48×10−5 1.24×10−5

∆t1 8.08×10−3 4.94×10−4 9.74×10−4

Ẽε ∆t2 4.16×10−3 1.13×10−4 2.30×10−4

∆t3 2.10×10−3 3.19×10−5 6.45×10−5
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Table 6.6: Initial boundary value problems. Extension of rectangular strip
with elliptical hole. Stress and strain L2 norm errors with Material 5 at t = 0.5
s,t = 1.0 s,t = 1.5 s,t = 2.0 s for BEnl, MPTnl and ESC2nl schemes.

Ẽ ∆t BEnl MPTnl ESC2nl
t = 0.5

∆t1 4.48×10−3 2.11×10−4 7.10×10−4

Ẽσ ∆t2 2.30×10−3 5.47×10−5 1.83×10−4

∆t3 1.16×10−3 1.47×10−5 4.65×10−5

∆t1 5.56×10−3 3.11×10−4 1.44×10−3

Ẽε ∆t2 2.83×10−3 8.00×10−5 3.83×10−4

∆t3 1.42×10−3 2.24×10−5 9.76×10−5

t = 1.0
∆t1 3.22×10−3 6.73×10−5 3.91×10−4

Ẽσ ∆t2 1.63×10−3 1.68×10−5 1.01×10−4

∆t3 8.22×10−4 4.70×10−6 2.59×10−5

∆t1 4.21×10−3 1.27×10−4 6.93×10−4

Ẽε ∆t2 2.13×10−3 3.19×10−5 1.82×10−4

∆t3 1.07×10−3 8.81×10−6 4.63×10−5

t = 1.5
∆t1 1.21×10−2 1.22×10−3 9.39×10−4

Ẽσ ∆t2 6.52×10−3 3.26×10−4 2.44×10−4

∆t3 3.39×10−3 8.74×10−5 6.15×10−5

∆t1 4.72×10−3 2.00×10−4 8.27×10−4

Ẽε ∆t2 2.34×10−3 5.20×10−5 2.24×10−4

∆t3 1.16×10−3 1.46×10−5 5.66×10−5

t = 2.0
∆t1 5.22×10−3 2.17×10−4 3.71×10−4

Ẽσ ∆t2 2.66×10−3 5.65×10−5 9.65×10−5

∆t3 1.34×10−3 1.50×10−5 2.40×10−5

∆t1 9.58×10−3 5.04×10−4 2.30×10−3

Ẽε ∆t2 4.90×10−3 1.31×10−4 6.38×10−4

∆t3 2.46×10−3 3.88×10−5 1.62×10−4
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Appendix A

Results from Functional

Analysis

A.1 Generalities

In what follows it is assumed that reader is familiar to the notions and the
properties of vector spaces. All vector spaces considered in the following will
be defined over the field of real numbers.

Normed spaces and Banach spaces

Let V be a vector space. A seminorm on V is a map | · | → R+ that is
subadditive and positively homogenous, i.e. it satisfies the properties

|u + v| ≤ |u| + |v|, |αv| = |α| |v| ∀u, v ∈ V, ∀α ∈ R (A.1)

The above properties imply that |0| = 0 and |v| ≥ 0 for all v ∈ V . A norm
‖ · ‖ on V is a special seminorm which is positive definite, i.e. it satisfies

‖ v ‖= 0 iff v = 0 (A.2)

If ‖ · ‖ is a norm on V , the pair (V, ‖ · ‖) is called a normed space. Commonly,
a normed space (V, ‖ · ‖) is identified by the sole vector space V when there
is no confusion about the norm defined on it. The norm function ‖ · ‖ can
be interpreted as a generalization of the absolute value for the space of real
numbers and thus is seen as a measure of the length of a vector v ∈ V or
equivalently of the distance between v and the null vector of V . Accordingly,
the expression ‖ u− v ‖ returns the distance between two points u and v of V .

Two distinct norms ‖ · ‖1 and ‖ · ‖2 defined over the same space V are said
to be equivalent if there exist two strictly positive constants c1 and c2 such

279
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that

c1 ‖ v ‖1≤‖ v ‖2≤ c2 ‖ v ‖1 (A.3)

A well known property is that any two norms defined on a finite-dimensional
vector space are equivalent. By contrast, this is not true in an infinite-
dimensional space. The above notions are recalled since in the analysis of
boundary value problems a common technique is that of establishing esti-
mates using some norm equivalent to the conventional norm of the function
space for the problem.

A sequence {vn} in a normed space V converges (strongly) to a vector
v ∈ V if and only if limn→∞ ‖ vn − v ‖= 0. This occurrence is indicated by
vn → v or by saying that v is the (strong) limit of the sequence {vn}. Given
two equivalent norms ‖ · ‖1 and ‖ · ‖2 defined over the space V , it can be
shown that a sequence {vn} ⊂ V converges to a vector v ∈ V in the norm
‖ · ‖1 if and only if it converges to v in the norm ‖ · ‖2.

A subset A of V is said to be closed in V if any converging sequence of
elements of A has its limit in A. The closure Ā of A is the smallest closed set
of V containing A; in other words, we may say that Ā is obtained by adding
to A its “boundary points”. The set A is dense in V if for every v ∈ V there
exists a sequence {vn} in A such that vn → v, or, equivalently, if Ā = V .
The set A is said to be bounded if there exists a positve constant M such that
‖ v ‖≤ M for every v ∈ V .

A Cauchy sequence in V is a sequence {vn} of elements of V such that for
any ε > 0, there exists an integer N(ε) such that, for all n and m larger than
N(ε), ‖ vn − vm ‖< ε. This property simply means that the elements of the
sequence are restricted to an arbitrarily small region of the space, provided
that we consider elements of sufficiently high rank. Indeed, all convergent
sequences are Cauchy sequences, while the converse is not true. A Banach
space A is a normed vector space which is complete, i.e. in which all Cauchy
sequences converge strongly to an element of the space. We have then the
following proposition that relates the properties of completeness and closedness
in normed spaces.

Proposition A.1.1 A subset of a Banach space is complete if and only if it
is closed.

Linear operators and linear functionals

Let V and W be vector spaces. Let L : V → W be a map from V to W , also
called an operator. The operator L is said to be linear if it is additive and
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homogeneous, that is, if for all u, v ∈ V and α ∈ R, it holds

L(u + v) = L(u) + L(v)

L(αv) = αL(v)

Commonly the action of L on v is denoted with Lv instead of L(v). If the
space W coincides with R, then L is called a functional.

The range R(L) and the kernel or null space N (L) of L are subspaces of
W and V , defined respectively by

R(L) = {w ∈ W : w = L(v) for some v ∈ V }
N (L) = {v ∈ V : L(v) = 0}

meaning that R(L) represents the set of images under the mapping L, while
the null space N (L) is given by the elements in V which are mapped to the
zero element of W .

If V and W are normed vector spaces and L is a map from V into W , then
L is said to be continuous if to any converging sequence vn → v in V there
corresponds the converging sequence L(vn) → L(v) in W . The map L is said
to be bounded if for any r > 0, there exists a constant R ≥ 0 such that

‖ L(v) ‖≤ R ∀v ∈ V, s.t. ‖ v ‖≤ r

Any linear bounded operator L is characterized by the properties that

‖ L(v) ‖≤ M ‖ v ‖ ∀v ∈ V (A.4)

with M a nonnegative constant. It can be shown that a linear operator is
continuous if and only if it is bounded.

Finally, the operator L will be said Lipschitz continuous if there exists a
constant c > 0 such that

‖ L(v1) − L(v2) ‖≤ c ‖ v1 − v2 ‖ ∀v1, v2 ∈ V

Lipschitz continuous operators are continuous, but the converse is not true in
general. On the other hand, a linear operator is Lipschitz continuous if and
only if it is continuous.

Bilinear forms

Given two vector spaces V and W , a map b : V × W → R is called a bilinear
form if it is linear in each slot, that is, if it satisfies the following properties

b(αv1 + βv2, w) = αb(v1, w) + βb(v2, w)

b(v, αw1 + βw2) = αb(v,w1) + βb(v,w2)
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for any v1, v2, v ∈ V , w1, w2, w ∈ W and α, β ∈ R.

A bilinear form b : V × W → R is said to be continuous if there exists a
positive constant M such that

b(v,w) ≤ M ‖ v ‖V ‖ w ‖W ∀v ∈ V, ∀w ∈ W

In the case where W = V , the bilinear form is symmetric if

b(v1, v2) = b(v2, v1) ∀v1, v2 ∈ V

while it is V-elliptic if there exists a constant α > 0 such that

b(v, v) ≥ α ‖ v ‖2 ∀v ∈ V

Isomorphisms and completions

A linear continuous map L : V → W which is both injective, i.e. one-to-one
and surjective, which means R(L) = W , is called an isomorphism.

Given a normed space V , its completion is a Banach space V̂ , which holds
the property that there exists an isomorphism from V onto a dense subspace
of V̂ . A classical example in this sense is the completion of the continuous
function space C([0, 1]) in the norm ‖ v ‖0= (

∫ 1
0 |v(x)|2dx)1/2 which coincides

with the Lebesgue space L2(0, 1) [41].

The space L(V,W ). Dual space

Let V and W be normed spaces. The space of all bounded linear operators
from V to W is denoted by L(V,W ). The conventional or natural norm defined
over the space L(V,W ) is

‖ L ‖L(V,W )= sup
v∈V \{0}

‖ Lv ‖W

‖ v ‖V
= sup

‖v‖V ≤1
‖ Lv ‖W (A.5)

which is always a well-defined quantity as can be deduced from (A.4). It can
be shown that the space L(V,W ) endowed with the norm (A.5) is a Banach
space if W is a Banach space.

The space L(V,R) of bounded linear functionals on V is defined as the
dual space of V and is denoted by V ′. It follows that, since R is complete, V ′

is a Banach space with the norm

‖ L ‖V ′= sup
‖v‖V ≤1

|Lv| (A.6)
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In the following, the symbol ℓ will be frequently used to indicate a bounded
linear functional on a normed space V , while the image ℓ(v) of a vector v ∈ V
through ℓ, will be denoted by V ′〈ℓ, v〉V rather than l(v). The map 〈·, ·〉 :
V ′×V → R is known as the duality pairing between V and V ′. Some examples
of duality will be addressed in Section A.2.1 in the context of the function space
Lp(Ω). In the following, when there is no amboguity, we simply indicate with
〈·, ·〉 the duality pairing between V ′ and V .

Monotone and strongly monotone operators

An operator T : V → V ′ is said to be monotone if

〈T (u) − T (v), u − v〉 ≥ 0 ∀u, v ∈ V

and it is said to be strongly monotone if there exists a constant c > 0 such
that

〈T (u) − T (v), u − v〉 ≥ c ‖ u − v ‖2 ∀u, v ∈ V

Biduals and reflexivity

The dual V ′ of a normed space V is a Banach space and V ′ itself has a dual
V ′′ ≡ (V ′)′, called the bidual of V . Of course, the bidual is a Banach space
and it is possible to show that there exists a bounded linear operator J from
V onto V ′′ that is one-to-one and also an isometry, i.e. ‖ Jv ‖=‖ v ‖,∀v ∈ V .
It follows that V can be identified with a subspace J(V ) of V ′′. The normed
space V is said to be reflexive if the following identity holds

J(V ) = V ′′ (A.7)

To indicate the above relationship we briefly write V ′′ = V . Indeed, a reflexive
normed space is a Banach space. A classical example of a reflexive Banach
space is provided by the space Lp(Ω) (see Section A.2.1) for p ∈ (1,∞) in
which Ω ⊂ Rd is an open set.

Weak convergence

Let V be a normed space and V ′ its dual. A sequence {vn} ⊂ V is said to
converge weakly in V to v if

lim
n→∞

〈ℓ, vn〉 = 〈ℓ, v〉 ∀ℓ ∈ V ′ (A.8)
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The above notion is indicated by the following notation

vn ⇀ v

It is noted that strong convergence implies weak convergence, while the con-
verse is not true, with the only exception of finite-dimensional spaces for which
the two kinds of convergence coincide.

Compactness and weak compactness

A subset V1 of a normed space V is said to be (sequentially) compact if every
bounded sequence in V1 has a subsequence that converges in V1. Likewise,
V1 is weakly compact if every bounded sequence in V1 has a subsequence that
converges weakly in V1.

A linear operator L : V → W is said to be compact if the image under L
of a bounded sequence in V contains a subsequence converging in W , that is,
if {vn} ⊂ V is bounded, then there exists a subsequence {vnj

} and an element
w ∈ W such that Lvnj

→ w in W . If in the above definition strong convergence
is replaced by weak convergence and Lvnj

⇀ w in W , then L is said to be
weakly compact. Clearly, L is compact if and only if it maps bounded sets to
compact sets. We have now the following important result

Theorem A.1.2 (Eberlein-Smulyan). A reflexive Banach space V is weakly
compact, that is, if {vn} is a bounded sequence of V , then it results possible to
extract a subsequence of {vn} that converges weakly in V. If, furthermore, the
limit v is independent of the subsequence extracted, then the whole sequence
{vn} converges weakly to v.

Embeddings

Let V and W be normed spaces with V ⊂ W . If there is a constant c > 0 such
that

‖ v ‖W≤ c ‖ v ‖V ∀v ∈ V (A.9)

we say that V is continuously embedded in W and write

V →֒ W

The property (A.9) can be interpreted in various ways, for instance it allows
to state that the identity operator I : V → W is bounded or, equivalently,
continuous. Moreover the continuous embedding of V into W implies that if
vn → v in V , then also vn → v in W .
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A subspace V is said to be compactly embedded in W if

vn ⇀ v in V implies vn → v in W

This property is expressed in the form

V →֒→֒ W

and is equivalent to the statement that the identity operator from V into W
is compact [41].

The above embedding results will be useful in the next section when
Sobolev spaces with different indices are compared.

Dual operators

Consider a couple of normed spaces V and W and their respective dual spaces
V ′ and W ′. Let A be a linear operator with domain D(A) ⊂ V and range in
W . Given a vector w′ ∈ W ′, it can be shown that there exists a vector v′ ∈ V ′

such that

W ′〈w′, Av〉W =V ′ 〈v′, v〉V ∀v ∈ D(A) (A.10)

if and only if D(A) is dense in V . If this is the case, then v′ is uniquely
determined by w′. When D(A) coincides with V , then the above reasoning
defines a linear operator A′ from W ′ to V ′ such that A′w′ = v′. The operator
A′ is called the dual operator of A and is such that the following statement
holds

W ′〈w′, Av〉W =V ′ 〈A′w′, v〉V ∀v ∈ V, ∀w′ ∈ W ′

If D(A) = V and A is bounded, then A′ is also bounded and

‖ A′ ‖=‖ A ‖

We have now the following important theorem which illustrates further
relationships existing between dual operators.

Theorem A.1.3 (Closed Range Theorem). Let V and W be two Banach
spaces and let A be a bounded linear operator from V to W with dual operator
A′. Then the following statements are equivalent:

• R(A) is closed in W

• R(A′) is closed in V ′
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• R(A) = [KerA′]◦ ≡ {w ∈ W : 〈ℓ, w〉 = 0 ∀ℓ ∈ KerA′}
• R(A′) = [KerA]◦ ≡ {ℓ ∈ V ′ : 〈ℓ, v〉 = 0 ∀v ∈ KerA}

The next result follows directly from the closed range theorem

Corollary A.1.4 The following results hold:

• R(A) = W iff there exists a constant c such that ‖ A′ℓ ‖V ′≥ c1 ‖ ℓ ‖W ′

∀ℓ ∈ W ′

• R(A′) = V ′ iff there exists a constant c such that ‖ Av ‖W≥ c2 ‖ v ‖V

∀v ∈ V

The Babuška-Brezzi condition for bilinear forms

Let b : V × W → R be a continuous bilinear form, that is there exists a
constant αb > 0 such that

|b(v,w)| ≤ αb ‖ v ‖V ‖ w ‖W ∀v ∈ V, ∀w ∈ W (A.11)

The bilinear form b(·, ·) is said to satisfy the Babuška-Brezzi condition if there
exists a constant βb > 0 such that

sup
w∈W\{0}

|b(v,w)|
‖ w ‖W

≥ βb ‖ v ‖V ∀v ∈ V (A.12)

The following theorem establishes the relationship between the Babuška-
Brezzi condition and the closed range theorem [18, 22].

Theorem A.1.5 Let b : V × W → R be a continuous bilinear form which
defines bounded linear operators B : V → W ′ and B′ : W → V ′, according to

b(v,w) =W ′ 〈Bv,w〉W =V ′ 〈B′w, v〉V ∀v ∈ V, w ∈ W

With the above hypotheses, the following statements are equivalent

• The bilinear form b(·, ·) satisfies the Babuška-Brezzi condition (A.12)

• The operator B is an isomorphism from (KerB)◦ onto W ′, where

KerB = {v ∈ V : b(v,w) = 0 ∀w ∈ W}

• The operator B′ is an isomorphism from W onto (KerB)◦, where

(KerB)◦ = {ℓ ∈ V ′ : 〈ℓ, v〉 = 0 ∀v ∈ KerB}

The Babuška-Brezzi condition is the crucial key-point in the analysis of mixed
or saddle-point variational problems like those related to the formulation of
the elastoplastic boundary value problem addressed in Chapter 3.
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Inner products and Hilbert spaces

An inner product is a generalization of the ordinary vector scalar product in
Rd to an arbitrary vector space. Let V be a vector space. An inner product
on V is a symmetric positive-definite bilinear form (·, ·) : V × V → R, namely
such that

(u, v) = (v, u) ∀u, v ∈ V

(αu1 + βu2, v) = α(u1, v) + β(u2, v) ∀u1, u2, v ∈ V, ∀α, β ∈ R
(v, v) ≥ 0 ∀v ∈ V, and (v, v) = 0 ⇔ v = 0

An inner product space is a vector space endowed with an inner product. When
the definition of the inner product (·, ·) is clear, we will briefly denote the inner
product space with V .

From the definition above it follows immediately that any inner product
space is a normed space with the norm

‖ v ‖= (v, v)1/2

A complete inner product space is called a Hilbert space. It is evident that any
Hilbert space is a Banach space with the norm induced by its inner product.

Consider now the following classical results on inner product and Hilbert
spaces.

Theorem A.1.6 (Cauchy-Schwartz Inequality). Given an inner prod-
uct space V , it holds

|(u, v)| ≤‖ u ‖‖ v ‖ ∀u, v ∈ V

Theorem A.1.7 (Riesz Representation Theorem). Any Hilbert space
V can be identified with its dual V ′ by means of an isometric isomorphism.
More precisely, for any ℓ ∈ V ′ there exists a unique u ∈ V such that

〈ℓ, v〉 = (u, v) ∀v ∈ V

‖ ℓ ‖V ′ = ‖ u ‖V

On the other hand, for any u ∈ V , the mapping v �→ (u, v) determines an
element ℓ ∈ V ′ such that ‖ ℓ ‖V ′=‖ u ‖V

From the last theorem it follows immediately that a Hilbert space can be
identified with its bidual as well. Therefore, we have the following

Corollary A.1.8 Every Hilbert space is reflexive.
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Now combining the statements of Theorem A.1.7 and Corollary A.1.8 it is
found that in a Hilbert space every bounded sequence has a weakly convergent
subsequence. We have thus the property that on an inner product space V

vn ⇀ v ⇒‖ v ‖≤ lim
n→∞

inf ‖ vn ‖

which can be equivalently stated by saying that the norm function ‖ · ‖ of an
inner product space is weakly l.s.c. The last proposition can be proved simply
by checking that for a fixed w ∈ V , the mapping v �→ (w, v) defines a bounded
and continuous functional on V and thus

‖ v ‖2= (v, v) = lim
n→∞

(v, vn) ≤‖ v ‖ lim
n→∞

inf ‖ vn ‖

The last property will be frequently used in Section 3.3.
We now present a well-known fundamental result which comes into play in

proving the unique solvability of elliptic variational problems

Theorem A.1.9 (Lax-Milgram Lemma). Let V be a Hilbert space. Given
a continuous and V-elliptic bilinear form b : V ×V → R and a bounded linear
function ℓ : V → R, the following (variational) problem

Find u ∈ V such that

b(u, v) = 〈ℓ, v〉 ∀v ∈ V

has a unique solution. Furthermore, there exists a positive constant c indepen-
dent of ℓ such that

‖ u ‖V ≤ c ‖ ℓ ‖V ′

We now introduce a result from the theory of monotone operators which
will be useful in Section 3.2 for proving the well-posedness of a particular initial
boundary value problem of elastoplastic equilibrium.

Theorem A.1.10 Assume that V is a Hilbert space and that T : V → V ′ is
a strongly monotone and Lipschitz continuous operator. Then for any ℓ ∈ V ′,
the equation T (u) = ℓ has a unique solution u ∈ V .

Theorem A.1.11 (Projection Theorem). Let K be a nonempty closed
convex subset of a Hilbert space V and let u ∈ V . Then there exists a unique
element u0 ∈ K such that

‖ u − u0 ‖= min
v∈K

‖ u − v ‖
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The element u0 is referred to as the projection P (u) of u on K and is charac-
terized by the following property

(u − u0, v − u0) ≤ 0 ∀v ∈ K

From the last characterization of the projection operator it is immediate to
verify that the projection operator is nonexpansive, i.e. it satisfies

‖ P (u) − P (v) ‖≤‖ u − v ‖ ∀u, v ∈ V

and monotone, that is

(P (u) − P (v), u − v) ≥ 0 ∀u, v ∈ V

Corollary A.1.12 If K is a closed subspace of a Hilbert space V , then for
any u ∈ V there exists a unique element u0 ∈ K such that

(u − u0, v) = 0 ∀u ∈ K

The map u �→ Pu = u0 is linear and defines an orthogonal projection onto K

A.2 Function spaces

A.2.1 The spaces Cm(Ω), Cm(Ω̄) and Lp(Ω)

In the following we will be referring as usual at spaces defined over a bounded
domain Ω ⊂ R3. Before entering the discussion on function spaces and related
properties, we find it useful here to give some introductory notions on multi-
index notation.

Multi-index notation

Let Z
d
+ be the set of all ordered d-tuples of nonnegative integers. A member

of Z
d
+ will be referred to with a greek letter α or β, with

α = (α1, α2, ..., αd)

where each component αi denotes a nonnegative integer.
The sum of all elements in α will be written as |α| = α1 + α2 + · · · + αd

and will be called the length of the multi-index α. We indicate with Dαv the
partial derivative of a vector v

Dαv =
∂|α|v

∂xα1

1 , ∂xα2

2 , · · ·, ∂xαd

d
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In this manner, if |α| = m, then Dαv indicates one of the mth-order partial
derivatives of v For instance, set α = (1, 0, 3) ∈ Z

3
+, with |α| = 4. In this case

we have

Dαv =
∂4v

∂xα1

1 ∂xα2

2 ∂xα3

3

=
∂4v

∂x1
1, ∂x0

2∂x3
3

=
∂4v

∂x1∂x3
3

The space of continuous and continuously differentiable functions

The space of all real-valued continuous functions defined over Ω is indicated
by C(Ω). Being Ω an open set, a function of C(Ω) is not necessarily bounded;
therefore we denote the space of bounded and uniformly continuous functions
on Ω by C(Ω̄). Such notation follows from the property of bounded and
uniformly continuous functions on Ω which have a unique continuous extension
to Ω̄. It can be shown that the space C(Ω̄) is a Banach space when equipped
with the norm

‖ v ‖C(Ω̄)= sup{|v(x)| : x ∈ Ω} ≡ max{|v(x)| : x ∈ Ω̄}
The space Cm(Ω), with m a nonnegaive integer, is defined as the set of all real-
valued functions on Ω which are continuous together with their derivatives of
order less than or equal to m. Thus

Cm(Ω) = {v ∈ C(Ω) : Dαv ∈ C(Ω) ∀α ∈ Z
d
+ with |α| ≤ m}

and, as done before,

Cm(Ω̄) = {v ∈ C(Ω̄) : Dαv ∈ C(Ω̄) ∀α ∈ Z
d
+ with |α| ≤ m}

In the sequel, for brevity, the spaces C0(Ω) and C0(Ω̄) will be indicated with
C(Ω) and C(Ω̄), respectively.

The space Cm(Ω̄) can be endowed with the following seminorm

|v|Cm(Ω̄) =
∑

|α|=m

‖ Dαv ‖C(Ω̄)

and it becomes a Banach space when equipped with the following norm

‖ v ‖Cm(Ω̄)=

m∑

j=0

|v|Cj(Ω̄) =
∑

|α|≤m

‖ Dαv ‖C(Ω̄)

According to the previous definitions the spaces of infinitely differentiable
real-valued continuous functions on Ω and of infinitely differentiable bounded
uniformly continuous functions over Ω̄ are respectively defined as

C∞(Ω) = {v ∈ C(Ω) : v ∈ Cm(Ω) ∀m ∈ Z+}
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and

C∞(Ω̄) = {v ∈ C(Ω̄) : v ∈ Cm(Ω̄) ∀m ∈ Z+}

Hölder spaces

A function v : Ω → R is said to be Lipschitz continuous if there exists a
constant c such that

|v(x) − v(y)| ≤ c|x− y| ∀x,y ∈ Ω

while it is said to be Hölder continuous with exponent β ∈ (0, 1] if there exists
a constant c > 0 such that

|v(x) − v(y)| ≤ c|x − y|β ∀x,y ∈ Ω

The space of Hölder continuous function of C(Ω̄) with exponent β is indicated
with C0,β(Ω̄) and, if endowed with the norm

‖ v ‖C0,β(Ω̄)=‖ v ‖C(Ω̄) + sup

{
|v(x) − v(y)|

|x − y|β : x,y ∈ Ω, x �= y

}

this space is shown to be a Banach space. Finally, given a nonnegative integer
m and a real β ∈ (0, 1], we have the following Hölder space

Cm,β(Ω̄) = {v ∈ Cm(Ω̄) : Dαv ∈ C0,β(Ω̄) ∀α ∈ Z
d
+ with |α| = m}

which becomes a Banach space if it is endowed with the norm

‖ v ‖Cm,β(Ω̄)=‖ v ‖Cm(Ω̄) +
∑

|α|=m

sup

{
|Dαv(x) − Dαv(y)|

|x− y|β : x,y ∈ Ω, x �= y

}

The spaces Lp(Ω)

For any number p ∈ [1,∞), we denote by Lp(Ω) the space of (equivalence
classes of) measurable functions v for which

∫

Ω
|v(x)|pdx < ∞

where integration is understood to be in the sense of Lebesgue. The space
Lp(Ω) is a Banach space when it is endowed with the norm

‖ v ‖0,p,Ω=

(∫

Ω
|v(x)|pdx

)1/p

(A.13)
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The reason for including the zero in the subscript of the notation ‖ · ‖0,p,Ω

will be clarified soon when the Sobolev spaces are introduced. Instead, when
there is no confusion, the domain symbol Ω will be omitted by the subscript of
the natural norm on Lp(Ω) and since in many applications we will be dealing
especially with the space L2(Ω), for such a case the norm (A.13) will simply
be expressed by ‖ · ‖0 rather than by ‖ · ‖0,2.

The function ‖ · ‖0,p is a norm only when it is understood that the argument
represents an equivalence class of functions, that is two function belong to the
same class if they are equal almost everywhere (a.e. in the sequel), which
means they are equal everywhere except on a subset of Ω of Lebesgue measure
zero.

The definition of the spaces Lp(Ω) can be generalized to account for the
case p = ∞ with the aid of the following notion. The essential supremum
(denoted by ess sup) of any measurable function v is defined as

ess sup
x∈Ω

v(x) = inf{M ∈ (−∞,∞] : v(x) ≤ M a.e. in Ω}

The function v is said to be essentially bounded above if ess sup Ω v < ∞.
Similarly, we may define the essential infimum of a function and provide the
pertinent notion of essentially boundedness below. Joining the two statements,
if v is both essentially bounded above and below then v is said to be essentially
bounded.

With the above positions it is natural to define the space

L∞(Ω) = {v : Ω → R : v is essentially bounded on Ω}

which can be shown to be a Banach space when equipped with the following
norm

‖ v ‖0,∞,Ω= ess sup
x∈Ω

|v(x)|

We note that all continuous functions on a bounded closed set are bounded,
thus

C(Ω̄) →֒ L∞(Ω)

Furthermore, the space L2(Ω) is an inner product space (then a Hilbert
space) if endowed with the inner product

(u, v)0,Ω =

∫

Ω
u(x)v(x)dx



A.2. FUNCTION SPACES 293

which in fact defines the norm ‖ · ‖0,2,Ω.

Consider now a function v defined over Ω. The function v ∈ Lp
loc(Ω) (the

space of functions whose pth-order powers are locally integrable functions) if
for any proper subset Ω′ ⊂⊂ Ω, v ∈ Lp(Ω′).

From the above definitions, two important results are drawn.

Theorem A.2.1

• (The Minkowski Inequality) If u, v ∈ Lp(Ω), 1 ≤ p ≤ ∞, then
u + v ∈ Lp(Ω) and

‖ u + v ‖0,p≤‖ u ‖0,p + ‖ v ‖0,p

• (The Hölder Inequality) If p, q and r are reals satusfying p, q, r ≥ 1
and p−1 + q−1 = r−1. Suppose that u ∈ Lp(Ω) and v ∈ Lq(Ω). Then
uv ∈ Lr(Ω) and

‖ uv ‖0,r≤‖ u ‖0,p‖ v ‖0,q

When p = q = 2, the Hölder inequality reduces to the Cauchy-Schwartz
inequality

‖ uv ‖0,2≤‖ u ‖0,2‖ v ‖0,2 ∀u, v ∈ L2(Ω)

Dual spaces and reflexivity

We define the dual exponent q of p ∈ [1,∞) by 1/p + 1/q = 1 (taking q = ∞
when p = 1). The topological dual of Lp(Ω), indicated with (Lp(Ω))′ is defined
to be Lq(Ω). It follows immediately from the last definition that L2(Ω) can
be identified with its dual space. For 1 < p < ∞, we also have

Lp(Ω) = (Lq(Ω))′ = (Lp(Ω))′′

which implies that the spaces Lp(Ω) are reflexive for 1 < p < ∞.

The spaces L1(Ω) and L∞(Ω) are not reflexive, but it is still possible to
identify the latter with the dual of the former in view of the following expres-
sion

L∞(Ω) = (L1(Ω))′

Conversely, L1(Ω) can be identified only with a proper subspace of (L∞(Ω))′.
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A.2.2 Sobolev spaces

Lipschitz domains

Given a point x = (x1, x2, ..., xd) ∈ Rd, consider

y = xd and x̂ = (x1, x2, ..., xd−1) ∈ Rd−1

An open set Ω ⊂ Rd is said to have Lipschitz-continuous boundary Γ if there
exist two constant α > 0 and β > 0, a finite number of local coordinate systems
(x̂m, ym) and local maps fm,m = 1, ...,M , that are Lipschitz-continuous on
their respective domains of definition {x̂m : |x̂m| ≤ α} such that

Γ = ∪M
m=1{(x̂m, ym) : ym = fm(x̂m), |x̂m| ≤ α}

and for m = 1, ...,M

{(x̂m, ym) : fm(x̂m) < ym < fm(x̂m) + β, |x̂m| ≤ α} ⊂ Ω

{(x̂m, ym) : fm(x̂m) − β < ym < fm(x̂m), |x̂m| ≤ α} ⊂ Rd\Ω̄

More in general, we say that the boundary is of class X if the functions fm

are of class X and that it is smooth if X = C∞.

In what follows, with a slight simplification of terminology, we will always
assume that Ω is “a Lipschitz domain” meaning by that that its boundary is
in fact Lipschitz-continuous.

Distributions

The notion of differentiability can be extended also to non-differentiable func-
tions by means of the definition and of the properties of distributions.

We define C∞
0 (Ω) the space of smooth functions with compact support,

which is the set of all the functions in C∞(Ω) vanishing outside a compact
subset of Ω. In particular, we may say that any φ ∈ C∞

0 (Ω) vanishes in a
neighborhood of the boundary Γ of Ω.

The space of functions with compact support is not characterized by a
“standard” norm topology; nevertheless we can define convergence in the fol-
lowing manner. A sequence {φk} ∈ C∞

0 (Ω) is said to converge to φ in C∞
0 (Ω)

if

• there exists a compact set K in Ω such that φk vanishes outside K for
any k

and
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• for each multi-index α, Dαφk → Dαφ uniformly in Ω

The space C∞
0 (Ω) equipped with the last notion of convergence is called the

space of test functions and is denoted by D(Ω).
A distribution on Ω is a continuous linear functional on D(Ω), that is a

linear functional ℓ on D(Ω) satisfying the condition

φk → φ in D(Ω) implies 〈ℓ, φk〉 → 〈ℓ, φ〉

Clearly, the space of distribution on Ω is indicated by D′(Ω).
Any locally integrable u ∈ L1

loc(Ω) may be identified with a distribution, in
the sense that there exists a unique distribution ℓu for which

〈ℓu, φ〉 =

∫

Ω
uφ dx ∀φ ∈ D(Ω)

In this case we indicate with u both the function itself and the associated
distribution.

With an appropriate extension of the classical Green’s formula it is possible
to define derivatives of any order for distributions. Indeed, given u ∈ D′(Ω)
and a multi-index α with |α| = m, the (distributional) derivative Dαu of u is
a distribution defined by

〈Dα u, φ〉 = (−1)m〈u,Dα φ〉 ∀φ ∈ D(Ω)

When u is an m−times continuously differentiable function, the distributional
derivative Dαu coincides with the classical mth-order derivative.

The Sobolev spaces W m,p(Ω)

For any nonnegative integer m and real number p ≥ 1 or p = ∞, we define
the Sobolev space as [2]

W m,p(Ω) = {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω) ∀α ∈ Z
d
+ with |α| ≤ m}

with the derivatives intended in the distributional sense. The spaces W m,p(Ω),
if equipped with the norms

‖ v ‖m,p,Ω=




∑

|α|≤m

‖ Dαv ‖p
0,p,Ω




1/p

1 ≤ p < ∞ (A.14)

and

‖ v ‖m,∞,Ω= sup
|α|≤m

‖ Dαv ‖0,∞,Ω p = ∞ (A.15)
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become a Banach spaces. The seminorms which are defined on the Sobolev
spaces W m,p(Ω) are respectively

|v|m,p,Ω =




∑

|α|=m

‖ Dαv ‖p
0,p,Ω




1/p

1 ≤ p < ∞

and

|v|m,∞,Ω = sup
|α|=m

‖ Dαv ‖0,∞,Ω p = ∞

Furthermore, it can be shown that the space W m,p(Ω) is reflexive if and only
if 1 < p < ∞ and it is noted that W 0,p(Ω) = Lp(Ω).

When p = 2, W m,2(Ω) may be endowed with an inner product. Setting
W m,2(Ω) ≡ Hm(Ω) the following results an inner product on this space

(u, v)m,Ω =
∑

|α|≤m

(Dαu,Dαv)0,Ω

where, as usual, (·, ·)0,Ω stands for the L2(Ω) inner product. With this inner
product, Hm(Ω) is a Hilbert space. The corresponding norm will be denoted
by ‖ · ‖m,2,Ω or briefly by ‖ · ‖m,Ω or even by ‖ · ‖m when there is no danger
of confusion.

By the definition of norm over the Sobolev spaces (A.14) and (A.15) it
follows that convergence in W m,p(Ω) of a sequence {vl}∞l=1 to a function v is
expressed by the following condition

Dαvl → Dαv in Lp(Ω) ∀α ∈ Z
d
+ with |α| ≤ m

with a similar result for weak convergence in W m,p(Ω).
The following theorem provides a number of properties regarding embed-

dings and inclusions about Sobolev spaces of different order

Theorem A.2.2 The following statements ar valid

• W m,p(Ω) →֒→֒ W k,p(Ω) if m > k

• D(Ω) ⊂ W m,p(Ω)

• Cm(Ω̄) →֒ W m,p(Ω)

• C∞(Ω̄) ∩ W m,p(Ω) is dense in W m,p(Ω); in other words, a function in
W m,p(Ω) can be approximated by a sequence of functions smooth up to
the boundary

• (Sobolev compact embedding) If k < m − d/p with 1 ≤ p ≤ ∞, then
W m,p(Ω) →֒→֒ Ck(Ω̄); in particular, W m,p(Ω) →֒→֒ Ck(Ω̄)
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The space W s,p(Γ) for noninteger s

Consider a bounded domain Ω ⊂ Rd (d ≥ 2) with Lipschitz boundary Γ.
Suppose that 1 ≤ p < ∞ and σ ∈ (0, 1). For a function v ∈ Lp(Γ), set

Fσ(v) =

∫

Γ×Γ

|v(x) − v(y)|p
|x− y|d−1+σp

ds(x) ds(y)

and

‖ v ‖σ,p,Γ=

(∫

Γ
|v)|pds + Fσ(v)

)1/p

Then W σ,p(Γ) is defined to be the space of functions v ∈ Lp(Γ) for which
‖ v ‖σ,p,Γ< ∞. This is a Banach space with the norm ‖ v ‖σ,p,Γ and it is
reflexive for 1 < p < ∞.

More generally, for s = m + σ with m ∈ Z+ and σ ∈ (0, 1), the space
W s,p(Γ) is defined in a similar way, namely it consists of the functions v such
that any tangential derivatives of order less that or equal to m of the function
v belong to Lp(Γ) and any tangential derivative Dαv of order |α| = m satisfies
Fσ(Dαv) < ∞.

Trace theorems

The well-defined boundary value taken by a uniformly continuous function v
on a bounded domain Ω with boundary Γ is usually denoted by v|Γ. This idea
can be equivalently stated introducing a map γ, called trace operator, which
maps each v ∈ C(Ω̄) into its boundary value γv = v|Γ, which in turn results a
function belonging to C(Γ). The above concept is not equally straightforward
for functions v ∈ W m,p(Ω): the restriction of v to Γ need not make sense, since
Γ is a set of measure zero and two functions in W m,p(Ω) are identified if they
are equal a.e. Nevertheless, an extension of the definition of trace operator for
functions of C(Ω̄) is still possible even for functions in W m,p(Ω). This concept
will be illustrated by the following theorem.

Theorem A.2.3 (Trace Theorem). Assume that 1 ≤ p ≤ ∞ and m >
1/p. Then there exists a unique bounded linear surjective mapping γ : W m,p(Ω)
→ W m−1/p,p(Γ) such that γv = v|Γ when v ∈ W m,p(Ω) ∩ C(Ω̄).

In later developments, when it is assumed that the trace γv of a Sobolev
function v is known on the boundary, we will simply write v in the place of
γv.
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We now intend to use the trace theorem to investigate the notion of higher-
order normal derivative of a function on its boundary. It is in fact known that
the tangential derivative of a function is completely defined if the function
itself is known along a boundary.

Let n = (n1, n2, ..., nd)
T be the outward unit normal vector to the boundary

Γ of Ω, assumed smooth. The kth-order normal derivative of a function v ∈
Ck(Ω̄) is defined by

∂kv

∂nk
≡ ni1 · · · nik

∂kv

∂xi1 · · · ∂xik

The following theorem states the possible extendibility of the last definition
to functions of certain Sobolev spaces

Theorem A.2.4 (Second Trace Theorem). Assume that Ω is a bounded
open set with a Ck,1 boundary Γ. Assume that 1 ≤ p ≤ ∞ and m > k +
1/p. Then there exists unique bounded linear and surjective mappings γj :
W m,p(Ω) → W m−j−1/p,p(Γ) (j = 0, 1, ..., k) such that γjv = (∂jv/∂nj)|Γ when
v ∈ W m,p(Ω) ∩ Ck,1(Ω̄).

It is remarkable that the ranges of the trace operators are proper subsets of
Lp(Γ). Moreover, it can be shown that W m−j−1/p,p(Γ) is dense in Lp(Γ), for
j = 0, 1, ..., k.

The space W m,p
0 (Γ)

Bearing in mind the above definitions of trace operator, it is now possible to
consider those particular subspaces of Sobolev spaces which contains functions
vanishing on the boundary. To this end we define the space

W m,p
0 (Ω) = {w ∈ W m,p(Ω) : γjv = 0 for j < m − 1/p}

which, equivalently, can be defined by

W m,p
0 (Ω) = the closure of C∞

0 in W m,p(Ω)

It is rather simple to see that any function in W m,p
0 (Ω) can be approximated

by a sequence of C∞
0 (Ω) functions with respect to the norm of W m,p(Ω).

Applying the second trace theorem it can be shown that W m,p
0 (Ω) is a

closed subspace of W m,p(Ω). When p = 2, we have Hm
0 (Ω) replace W m,2

0 (Ω)
and in the case m = 1 we write

H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 a.e. on Γ}
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Equivalent norms

The following result can be used to construct different equivalent norms (see
definition (A.3)) on Sobolev spaces. Before proceeding we briefly recall that
over the Sobolev space W k,p(Ω) we have the following seminorm

|v|k,p,Ω =




∫

Ω

∑

|α|=k

|Dαv)|pdx




1/p

Theorem A.2.5 (Equivalent norm theorem). Let Ω be an open, bounded,
connected set in Rd with a Lipschitz boundary, k ≥ 1, 1 ≤ p < ∞. Assume
that fj : W k,p(Ω) → R, 1 ≤ j ≤ J , are seminorms on W k,p(Ω) satisfying the
following conditions:

• (H1) 0 ≤ fj(v) ≤ c ‖ v ‖k,p,Ω ∀v ∈ W k,p(Ω) 1 ≤ j ≤ J

• (H2) if v is a polynomial of degree less than or equivalent to k − 1 and
fj(v) = 0, 1 ≤ j ≤ J , then v = 0

Then the quantity

‖ v ‖= |v|k,p,Ω +
J∑

j=1

fj(v)

or

‖ v ‖=



|v|pk,p,Ω +

J∑

j=1

fj(v)p




1/p

defines a norm on W k,p(Ω), which is equivalent to the norm ‖ v ‖k,p,Ω.

The interested reader is referred to [41] for a complete proof of the last state-
ment. Here, we focus our attention on some important consequences of Theo-
rem A.2.5. Consider for instance the case k = 1, p = 2, J = 1, which imply

f1(v) =

∫

∂Ω
|v|ds

Applying the equivalent norm theorem we derive that there exists a positive
constant c, depending only on Ω, such that it holds

‖ v ‖1,Ω≤ c|v|1,Ω ∀v ∈ H1
0 (Ω) (A.16)
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The above result is usually referred to as the Poincaré-Friedrichs inequality
and it implies that the seminorm | · |1 is a norm on H1

0 (Ω), equivalent to the
usual H1(Ω)-norm.

Also, if Γ0 indicates an open, nonempty subset of the boundary Γ, then
there exists a constant c > 0, depending only on Ω, such that

‖ v ‖1,Ω≤ c|v|1,Ω ∀v ∈ H1
Γ0

(Ω) (A.17)

where it is implicitly assumed that

H1
Γ0

(Ω) = {v ∈ H1(Ω) : v = 0 a.e. on Γ0}

The above inequality is derivable also by application of the equivalent norm
theorem with K = 1, p = 2, J = 1 and taking

f1(v) =

∫

Γ0

|v|ds

Korn’s first inequality

We now present a classical result of function spaces theory which is frequently
recalled in the mathematical developments carried out in the treatment of
elasticity and elastoplasticity arguments.

Let Ω be a nonempty, open, bounded and connected set in R3 with a
Lipschitz boundary. Given a function u ∈ [H1(Ω)]3, it is possible to extract
the corresponding linearized strain tensor applying the definition (1.3). Thus,
it can be shown that there exists a constant c > 0 depending on Ω only, such
that

‖ u ‖2
[H1(Ω)]3≤ c

∫

Ω
|εεε(u)|2dx ∀u ∈ [H1

0 (Ω)]3 (A.18)

The above statement can be proved first for C∞
0 (Ω) functions by an integra-

tion by parts technique (if we use the equivalent norm ‖ ∇· ‖[L2(Ω)]3 in the
space [H1

0 (Ω)]3) and then extended to [H1
0 (Ω)]3 by a density argument. The

inequality (A.18) is a special case of the more general Korn’s first inequality
[26]

‖ u ‖2
[H1(Ω)]3≤ c

∫

Ω
|εεε(u)|2dx ∀u ∈ [H1

Γ0
(Ω)]3 (A.19)

where Γ0 is a measurable subset of ∂Ω with meas (Γ0) > 0 and

[H1
Γ0

(Ω)]3 = {v ∈ [H1(Ω)]3 : v = 0 a.e. on Γ0}
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The space W−m,p(Ω)

Let m be a positive integer, p a real number satisfying 1 ≤ p < ∞ and q the
conjugate number of p, i.e. q = (1 − 1/p)−1 if 1 < p < ∞ and q = ∞ if p = 1.
Then, W−m,q(Ω) is defined to be the dual space of W m,p

0 (Ω). Since D(Ω) is
dense in W m,p

0 (Ω), it follows that W−m,q(Ω) ⊂ D′(Ω) which is to say that
W−m,q(Ω) is a space of distributions. With respect to the last property, we
have the following explicative result

Theorem A.2.6 A distribution ℓ belongs to W−m,q(Ω) if and only if it can
be expressed in the form

ℓ =
∑

|α|≤m

Dαuα

where uα are functions in Lq(Ω).

A frequently recurring space with negative index is H−1(Ω), the dual space
of H1

0 (Ω). Given any function f ∈ L2(Ω), we can define the dual function of
f as the H−1(Ω) function ℓ applying the following relation

〈ℓ, v〉 =

∫

Ω
fvdx ∀v ∈ H1

0Ω

Hence f and ℓ can be identified. The duality pairing 〈f, v〉 on H−1(Ω)×H1
0 (Ω)

defined by the above relation is usually denoted by
∫
Ω fvdx.

A.2.3 Spaces of vector-valued functions

When dealing with the mathematical treatment of initial-boundary value prob-
lems, it is useful to interpret functions of space and time as mappings from a
time interval onto a Banach space such as the ones discussed earlier.

Consider now a Banach space X and a positive real number T . We define
the space Cm([0, T ];X) (m = 0, 1, ...) to be the set of all continuous functions
v from [0, T ] to X that have continuous derivatives of order less or equal to
m. This is a Banach space when endowed with the norm

‖ v ‖Cm([0,T ];X)=

m∑

k=0

max
0≤t≤T

‖ v(k)(t) ‖X

where v(k)(t) is defined as the kth time derivative of v. When m = 0, we simply
write C([0, T ];X).
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We define the Lebesgue space Lp(0, T ;X), for 1 ≤ p < ∞, as the set of
all the measurable functions v from [0, T ] to X which satisfy the following
limitation

‖ v ‖Lp(0,T ;X)=

(∫ T

0
‖ v(t) ‖p

X dt

)1/p

< ∞

The space Lp(0, T ;X) becomes a Banach space when equipped with the norm ‖
v ‖Lp(0,T ;X), which is to be understood in the sense that the members represent
equivalent classes of functions that are equal a.e. on (0, T ).

The extension of this definition to include the limit case p = ∞ is obtained
in the usual manner. The space L∞(0, T ;X) will be defined as the set of all
measurable functions v from [0, T ] to X that are essentially bounded. This
space is endowed with the following norm

‖ v ‖L∞(0,T ;X)≡ ess sup
0≤t≤T

‖ v(t) ‖X

which makes it a Banach space.

If X is a Hilbert space with inner product (·, ·)X , then L2(0, T ;X) is a
Hilbert space with the inner product

(u, v)L2(0,T ;X) =

∫ T

0
(u(t), v(t))Xdt

We now give a crucial result for the spaces just discussed

Theorem A.2.7 Let m ∈ N, and 1 ≤ p ≤ ∞. Then the following statements
hold

• C([0, T ];X) is dense in Lp(0, T ;X) and the embedding is continuous

• if X →֒ Y , then Lp(0, T ;X) →֒ Lq(0, T ;Y ) for 1 ≤ q ≤ p ≤ ∞

Let X ′ be the topological dual of a separable normed space X. Then for
1 < p < ∞ the dual space of Lp(0, T ;X) is given by

[Lp(0, T ;X)]′ = Lq(0, T ;X ′)′ with
1

p
+

1

q
= 1 (A.20)

Furthermore, if X is reflexive, then so is Lp(0, T ;X).

Following the same reasonings used to define the generalized derivatives
of distributions, it is now possible to introduce the notion of differentiability
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with respect to time for functions belonging to Lp(0, T ;X). We start again
considering the following integration by parts rule

∫ T

0
φ(m)(t)v(t)dt = (−1)m

∫ T

0
φ(t)v(m)(t)dt

which is valid for all functions φ ∈ C∞
0 (0, T ) and v ∈ Cm([0, T ];X) and where

(·)(m) ≡ dm(·)/dtm. Thus, a function v ∈ L1
loc(0, T ;X) is said to possess an

mth-order generalized derivative if there exists a function w ∈ L1
loc(0, T ;Y )

such that

∫ T

0
φ(m)(t)v(t)dt = (−1)m

∫ T

0
φ(t)w(t)dt ∀φ ∈ C∞

0 (0, T ) (A.21)

where X and Y are appropriate Banach spaces. When (A.21) holds, we write
w = v(m). In the relevant case where X = Y = R and v ∈ Cm(0, T ), the
last definition returns exactly the classical integration by parts formula. An
important Lemma on generalized derivatives is now in order

Lemma A.2.8 Let V be a reflexive Banach space and H a Hilbert space with
the property that V →֒ H →֒ V ′, the continuous embedding V →֒ H being
dense. Let 1 ≤ p, q ≤ ∞, with 1/p + 1/q = 1. Then any function u ∈
Lp(0, T ;V ) possesses a unique generalized derivative u(m) ∈ Lq(0, T ;V ′) if
and only if there is a function w ∈ Lq(0, T ;V ′) such that

∫ T

0
(u(t), v)Hφ(m)(t)dt = (−1)m

∫ T

0
φ(t)〈w(t), v〉V ′×V dt

for all v ∈ V , φ ∈ C∞
0 (0, T ). Then u(m) = w and for almost all t ∈ (0, T ) it

holds

dm

dtm
(u(t), v)H = 〈w(t), v〉V ′×V ∀v ∈ V

For an integer m ≥ 0 and a real number p ≥ 1, we define the space W m,p(0, T ;X)
as the set of functions f ∈ Lp(0, T ;X) such that f (i) ∈ Lp(0, T ;X)
, i ≤ m. This space becomes a Banach space once endowed with the norm

‖ f ‖W m,p(0,T ;X)=

{
m∑

i=0

‖ f (i) ‖p
Lp(0,T ;X)

}1/p

For brevity, in the case where p = 2 we will use the notation Hm(0, T ;X)
instead of W m,2(0, T ;X). If X is a Hilbert space, Hm(0, T ;X) is a Hilbert
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space too with the following inner product

(f, g)Hm(0,T ;X) =

∫ T

0

m∑

i=0

(
f (i)(t), g(i)(t)

)

X
dt

Moreover, we present the following fundamental inequality

‖ f(t) − f(s) ‖≤
∫ t

s
‖ ḟ(τ) ‖X dτ (A.22)

which is valid for any s < t and any f ∈ W 1,p(0, T ;X) and p ≥ 1. It is also
worth recalling the continuous embedding property

H1(0, T ;X) →֒ C([0, T ];X) (A.23)

which authorizes to state that there exists a constant c > 0 such that

‖ v ‖C([0,T ];X)≤ c ‖ v ‖H1(0,T ;X) ∀v ∈ H1(0, T ;X)

Finally we introduce the property

C∞([0, T ];X) is dense in H1(0, T ;X) (A.24)

which will become useful in the sequel

A theorem of Lebesgue

The following result becomes crucial in proving the existence of a solution for
an abstract variational inequality (see Theorem 3.2.1, Section 3.2).

Theorem A.2.9 Let X be a normed space and f ∈ L1(a, b;X). Then we
have

lim
h→0

1

h

∫ t0+h

t0

‖ f(t) − f(t0) ‖X dt = 0 for almost all t0 ∈ (a, b)

The theorem implies

lim
h→0

1

h

∫ t0+h

t0

f(t)dt = f(t0) for almost all t0 ∈ (a, b)

where the limit is understood in the sense of the norm on X, i.e.

lim
h→0

∥∥∥∥∥
1

h

∫ t0+h

t0

f(t)dt − f(t0)

∥∥∥∥∥
X

= 0 for almost all t0 ∈ (a, b)



Appendix B

Elements of Theory of

Variational Inequalities

B.1 Variational formulation of elliptic boundary value

problems

Elliptic boundary value problems

Let Ω be a bounded subset in Rd with a Lipschitz continuous boundary Γ.
The unit outward normal vector n = (n1, n2, ..., nd) exists a.e. on Γ and we
will denote the normal derivative of a function u on Γ by ∂u/∂n.

The following equations

−∆u = f in Ω

u = 0 on Γ
(B.1)

define the well-known Poisson boundary value problem with homogeneous
Dirichlet boundary conditions. Here ∆ denotes the Laplacian operator, de-
fined by

∑d
i=1 ∂2u/∂xi.

A classical solution of problem (B.1) is a smooth function u ∈ C2(Ω)∩C(Ω̄)
which satisfies the differential equation (B.1)1 and the boundary condition
(B.1)2 pointwise. Accordingly, f must be a C(Ω) function even if this further
condition by itself does not assure the existence of a classical solution of the
problem in argument.

A weak formulation in such cases as the one that has just been reviewed is
sought properly in order to avoid the high smoothness requirement of the so-
lution. As soon as this (possibly unrealistic) restriction is removed, it becomes
straightforward to draw existence consideration for a (weak) solution.

305
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The procedure that we are going to present now is a classical one in deriv-
ing a weak formulation of a b.v.p. Let us assume for one moment that problem
(B.1) does have a classical solution u ∈ C2(Ω) ∩C(Ω̄). Multiplying the differ-
ential equation (B.1)1 by an arbitrary smooth test function v ∈ C∞

0 (Ω) and
integrating over Ω, we obtain

−
∫

Ω
∆u v dx =

∫

Ω
f v dx

Performing an integration by parts and bearing in mind that v = 0 on Γ, the
preceding equation leads to

∫

Ω
∇u · ∇v dx =

∫

Ω
f v dx (B.2)

The relation (B.2) has been deduced hypothesizing u ∈ C2(Ω) ∩ C(Ω̄) and
v ∈ C∞

0 (Ω), even if suffices that u, v ∈ H1(Ω) and that f ∈ L2(Ω) for it
to make sense. Moreover, since H1

0 (Ω) constitutes the closure of C∞
0 (Ω) in

H1(Ω), the integrals in (B.2) are well defined for any v ∈ H1
0 (Ω). Meanwhile,

the solution u is sought in the space H1
0 (Ω), which allows to rewrite the weak

formulation of the original problem as

u ∈ H1
0 (Ω),

∫

Ω
∇u · ∇vdx =

∫

Ω
f v dx ∀v ∈ H1

0 (Ω) (B.3)

Interpreting the integral at the right hand side of (B.3) as the duality pairing
〈f, v〉 between H−1

0 (Ω) and H1
0 (Ω), it is sufficient to require f ∈ H−1(Ω) rather

than f ∈ L2(Ω). It is thus demonstrated that if u is a classical solution of the
problem (B.1), then u is also a solution of its weak formulation (B.3).

Instead, if u is a “weak” solution of (B.1) with the additional regularity
u ∈ C2(Ω)∩C(Ω̄), then for any v ∈ C∞

0 (Ω) ⊂ H1
0 (Ω), in view of (B.3) we have

∫

Ω
(−∆u − f)v dx ∀v ∈ H1

0 (Ω)

which is to say −∆u = f in Ω, or equivalently u satisfies the strong form
of the boundary value problem (B.1). Clearly, u satisfies the homogeneous
boundary condition pointwise. It is then shown how a weak solution of (B.3)
with additional regularity is also a classical solution of the boundary value
problem (B.1). When the property u ∈ C2(Ω) ∩ c(Ω̄) is not granted, we will
say that u formally solves the boundary problem (B.1).

Let us consider V = H1
0 (Ω) and let a(·, ·) : V × V → R be a bilinear form

defined by

a(u, v) =

∫

Ω
∇u · ∇v dx for u, v ∈ V
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while ℓ : V → R denotes the linear functional given by the duality pairing

〈ℓ, v〉 =

∫

Ω
f v dx ∀v ∈ V

With these hypotheses, the weak formulation of the problem becomes

u ∈ V, a(u, v) = 〈ℓ, v〉 ∀v ∈ V (B.4)

Recalling the Poincaré-Friedrichs inequality (A.16) we recognize that the bilin-
ear form a(·, ·) is V -elliptic and continuous, while the functional ℓ is bounded
and linear. Hence, by the Lax-Milgram lemma (Theorem A.1.9), the problem
(B.4) has a unique solution u ∈ V .

A formulation of the initial boundary value problem as the one given by
(B.1) is usually referred to as a classical or strong formulation. Indeed, a
formulation of the same problem in the form of (B.4) will be called a variational
or weak formulation, in that the solution to be sought need belong only to
H1

0 (Ω) and thus to be less regular. Nevertheless, for a solution u of (B.1) to
make sense, it is required that u ∈ C2(Ω) ∩ C(Ω̄).

Some remarks on the equivalence between the strong and weak formula-
tions of boundary value problems are now in order. We have shown that under
suitable hypotheses, the classical local formulation (B.1) of a boundary value
problem is equivalent to the weak or variational formulation (B.4) of the same
problem. It is anyway worth pointing out that the natural way of stating
a boundary value problem which models a physical process is accomplished
through the statement of an integral balance law. It is then by admitting suf-
ficient smoothness of the quantities involved in the integrals appearing in the
balance law that it is possible to obtain the differential or punctual formulation
of the problem. It is therefore logical to ask wether there is any tie between
the integral balance law of a process and the weak formulation arising from
the boundary value problem-type formulation arising by the modeling of the
same phenomenon. The answer is affirmative, as shown in [3], provided some
specific requirements are satisfied in the weak formulation itself. Therefore we
may say that indeed the most natural way of formulating a boundary valued
problem from a mathematical standpoint is that of passing through a properly
formulated weak or variational statement of the problem.

Now suppose that the problem (B.1) is stated by means of a nonhomogeneous-
type Dirichlet boundary conditions, namely suppose for instance that instead
of (B.1)2 we are left with

u = g on Γ (B.5)
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with g ∈ H1/2(Γ) a known function. Since there is a surjective application from
H1(Ω) onto H1/2(Γ) (Theorem A.2.3) there also exists a function G ∈ H1(Ω)
such that γG = g. Then, setting

u = w + G

the original problem may be restated as the one of finding a function w such
that

−∆w = f + ∆G in Ω

w = 0 on Γ

Noting that f +∆G belongs to H−1(Ω), it is possible to obtain a weak formula-
tion of the above boundary value problem, which in fact reads: find w ∈ H1

0 (Ω)
such that

∫

Ω
∇w · ∇vdx =

∫

Ω
(fv −∇G · ∇v)dx ∀v ∈ H1

0 (Ω)

The strategy adopted guarantees a way to work with homogeneous Dirich-
let boundary conditions and thus, for convenience, we will assume from now
on to consider only problems with such boundary assignments.

The next problem

−∆u + u = f in Ω

∂u

∂n
= g on Γ

(B.6)

goes by the name of Neumann problem. Assuming that f ∈ L2(Ω), g ∈
L2(Ω), the right space in which to state the above problem in weak form is
H1(Ω). Multiplying (B.6) by an arbitrary smooth test function v ∈ C∞(Ω̄)
and integrating both sides over the domain Ω, once applied the integration by
parts rule, one obtains

∫

Ω
(∇u · ∇v + u v) dx =

∫

Ω
f v dx +

∫

Γ

∂u

∂n
v ds

The above equation can be furtherly modified introducing the Neumann bound-
ary condition (B.6)2 into the last integral over Γ to become

∫

Ω
(∇u · ∇v + u v) dx =

∫

Ω
f v dx +

∫

Γ
g v ds ∀v ∈ C∞(Ω̄)
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Being C∞(Ω̄) dense in H1(Ω) and being the trace operator γ a continuous
application from H1(Ω) to L2(Γ), we may pose the weak formulation of (B.6)
in the following form: find a function u ∈ H1(Ω) such that

∫

Ω
(∇u · ∇v + u v) dx =

∫

Ω
f v dx +

∫

Γ
g v ds ∀v ∈ H1(Ω) (B.7)

Setting

a(u, v) =

∫

Ω
(∇u · ∇v + u v) dx

and

〈ℓ, v〉 =

∫

Ω
f v dx +

∫

Γ
g v ds

(B.7) reads

u ∈ V, a(u, v) = 〈ℓ, v〉 ∀v ∈ V (B.8)

where V = H1(Ω).
At this stage, the Lax-Milgram lemma provides uniqueness of solution for

the weak problem (B.8).
As a final remark it is noted that a classical solution u ∈ C2(Ω)∩C1(Ω̄) of

the problem (B.6) is also the solution of the weak formulation (B.8) and on the
other hand a solution u of (B.8) which additionally belongs to C2(Ω)∩C1(Ω̄)
constitutes a strong solution of the boundary value problem (B.6).

In a straightforward manner it is possible to deal with mixed boundary
conditions. Let us now consider the problem

−∆u + u = f in Ω

u = 0 on ΓD

∂u

∂n
= g on ΓN

(B.9)

where ΓD and ΓN are open sets such that ∂Ω = Γ̄D ∪ Γ̄N , plus ΓD ∩ ΓN = ∅.
Defining

V ≡ H1
ΓD

(Ω) =
{
v ∈ H1(Ω) : v = 0 on ΓD

}
(B.10)

which is the natural space in which seeking a weak solution of the problem
(B.9), we are left with

u ∈ V, a(u, v) = 〈ℓ, v〉 ∀v ∈ V (B.11)
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where

a(u, v) =

∫

Ω
(∇u · ∇v + u v) dx

and

〈ℓ, v〉 =

∫

Ω
f v dx +

∫

ΓN

g v ds

Sufficient assumptions on the data for the applicability of the Lax-Milgram
lemma are f ∈ L2(Ω) and g ∈ L2(ΓN ). Under these hypotheses, uniqueness of
the solution of (B.11) is guaranteed.

Linear elasticity equilibrium boundary value problem

We now intend to discuss the issue of existence and uniqueness of the funda-
mental equilibrium boundary value problem of linear elasticity. The equations
governing the equilibrium of linear elastic bodies (Chapter 1) are here briefly
recalled for the reader’s convenience. Given a bounded domain Ω in R3, with a
Lipschitz continuous boundary Γ, the static behavior of the three-dimensional
elastic body Ω constituted of linear elastic material are

• equation of equilibrium − divσ = f

• elastic constitutive equation σ = Cεεε(u)

• strain-displacement relation εεε(u) =
1

2

[
∇u + (∇u)T

] (B.12)

with the following boundary conditions

•

u = 0 on Γu (B.13)

•

σn = g on Γg

It is assumed that the boundary Γ is divided into two complementary parts
Γ̄u and Γ̄g with Γu and Γg open sets such that Γu ∩ Γg = ∅ and Γu �= ∅.

In order to find the weak formulation of problem (B.12) with boundary
conditions (B.13) we first introduce the space of admissible displacements V
which satisfy a-priori the displacement-type boundary conditions (B.13)2

V = [H1
Γu

(Ω)]d ≡ {v = (vi) : vi ∈ H1(Ω), vi = 0 on Γu, 1 ≤ i ≤ d}
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Combining Equations (B.12)1−2 to eliminate the stress σ we are left with

−div [C(εεε(u))] = f in Ω

The next step is set forth multiplying the last equation by an arbitrary element
v ∈ V , integrating over Ω the resulting relation and substituting the last
boundary condition (B.13)2. Finally, applying as usual the integration by
parts rule, one obtains

a(u,v) = 〈ℓ,v〉 ∀v ∈ V (B.14)

where

a(u,v) =

∫

Ω
Cεεε(u) : εεε(v)dx (B.15)

and

〈ℓ,v〉 =

∫

Ω
f · vdx +

∫

Γg

g · vds (B.16)

It is now easy to verify that both the bilinear form (B.15) and the linear
functional (B.16) are continuous and that a(·, ·) is also V -elliptic. This last
property follows immediately from the assumption that C is pointwise stable
(see (1.68)) and the use of Korn’s inequality. Thus the Lax-Milgram lemma
grants the following results

Theorem B.1.1 The problem defined by Equations (B.14-B.16) has a unique
solution u ∈ V under the above stated hypotheses. Furthermore, there exists
a constant c > 0 such that

‖ u ‖V ≤ c
(
‖ f ‖L2(Ω) + ‖ g ‖L2(Γg)

)
(B.17)

Minimization problems

A boundary value problem of the form (B.4) can be shown to be equivalent,
under certain assumptions, to a minimization problem. In fact, if the bilinear
form a(·, ·) is symmetric, a solution v ∈ V which minimizes the functional
J : V → R

J(v) =
1

2
a(v, v) − 〈ℓ, v〉

satisfies also (B.4). Moreover, if a(·, ·) is also V -elliptic, a solution of (B.4)
is also a minimizer of J(·). Thus, under the stated assumptions, the weak
formulation and the minimization problem are equivalent and the existence of
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a unique minimizer of J may be inferred from the unique solvability of the
weak formulation proved by the Lax-Milgram lemma.

In more general minimization problems regarding functionals with non-
symmetric bilinear forms, the following result provides a means to show unique-
ness and solvability. For a complete proof, which is here omitted for brevity,
the reader is referred to [41].

Proposition B.1.2 Let X be a reflexive Banach space, K be a nonempty,
closed, convex subset of X and f a proper, convex, l.s.c. functional on K.
Assume that

f(x) → ∞ as ‖ x ‖X→ ∞, x ∈ K (B.18)

Then there exists x0 ∈ K such that

f(x0) = min
x∈K

f(x)

If f is strictly convex on K, then the solution x0 is unique.

Mixed variational problems

The problems of the kind of the one analyzed in the following can be regarded
as an extension of the standard elliptic variational problem expressed by (B.4).
In some cases, the above generalization results by the introduction of new
auxiliary variables of the problem either as a complication of the modeling
of the physical phenomenon underneath the problem itself or as a means to
eliminate constraints of the problem.

If Q denotes the space of the new problem variables, then the cartesian
product V × Q becomes the new space on which the problem is formulated.
Assuming a(·, ·) a bilinear form on V as before and b(·, ·) : V ×Q → R another
bilinear form and ℓ and m linear functionals defined respectively on V and on
Q, then the problem under consideration is one of finding the functions u ∈ V
and p ∈ Q such that

a(u, v) + b(v, p) = V ′〈ℓ, v〉V ∀v ∈ V

b(u, q) = QV ′〈m, q〉QV ∀q ∈ Q
(B.19)

The above problem in weak form is usually referred to as saddle-point problem
because whenever a(·, ·) is a symmetric bilinear form it can be shown to be
equivalent to the saddle-point or minimax problem of finding (u, p) ∈ V × Q
such that

L(u, q) ≤ L(u, p) ≤ L(v, p) ∀v ∈ V, q ∈ Q
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with L(v, q) = 1
2a(v, v) + b(v, q) − 〈ℓ, v〉 − 〈m, q〉. Though, it is to be pointed

out that not every mixed problem can be posed in the form of a saddle point
problem, hence the formulation (B.19) remains the more general and will in
fact be the most frequently adopted in subsequent developments.

Let us now treat the example of the linear elasticity problem (B.12) in
mixed form. Choosing the new variable as the stress tensor σ, we may multiply

the equilibrium equation (B.12)1 by an arbitrary function v ∈ V =
[
H1

Γu
(Ω)
]d

,
integrate the resulting equation over Ω, perform the integration by parts rule
and use the mixed boundary condition (B.13) to obtain

∫

Ω
σ : εεε(v) dx =

∫

Ω
f · v dx +

∫

Γg

g · v ds ∀v ∈ V (B.20)

We here introduce the space of admissible stresses, defined as

Q = [L2(Ω)]d×d
sym ≡

{
τ ∈ [L2(Ω)]d×d : τij = τji, 1 ≤ i, j ≤ d

}

The second constitutive equation (B.12)2 can then be written in the form

εεε(u) = Aσ

where A = C
−1 is the elastic compliance tensor. Taking the scalar product

of the above relation with an arbitrary admissible stress tensor τ ∈ Q and
integrating on the domain Ω we are lead to

∫

Ω
Aσ : τ dx −

∫

Ω
εεε(u) : τ dx = 0 ∀τ ∈ Q (B.21)

Equations (B.20) and (B.21) can be recast in compact form to give the
variational formulation of the problem of finding the pair (u,σ) ∈ V × Q
satisfying

a(σ, τ ) + b(τ ,u) = 0 ∀τ ∈ Q

b(σ,v) = 〈ℓ,v〉 ∀v ∈ V
(B.22)

with the following positions

a(σ, τ ) =

∫

Ω
Aσ : τ dx

b(τ ,v) = −
∫

Ω
εεε(v) : τ dx

〈ℓ, τ 〉 =

∫

Ω
f · v dx +

∫

Γg

g · v ds

(B.23)
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The fundamental question of well-posedness of the above mixed problem
clearly relies on the choices of the spaces V and Q and on the properties of
the bilinear forms a(·, ·) and b(·, ·). Assuming that both bilinear forms are
continuous, i.e.

|a(u, v)| ≤‖ a ‖‖ u ‖‖ v ‖ ∀u, v ∈ V

|b(v, q)| ≤‖ b ‖‖ v ‖‖ q ‖ ∀v ∈ V, q ∈ Q
(B.24)

it is possible to define bounded linear operators A : V → V ′, B : V → Q′ and
B′ : Q → V ′ such that

〈Au, v〉 = a(u, v) ∀u, v ∈ V

〈Bv, q〉 = 〈B′q, v〉 = b(v, q) ∀v ∈ V, q ∈ Q
(B.25)

The kernels KerB and KerB′ are therefore defined by

KerB = {v ∈ V : b(v, q) = 0 ∀q ∈ Q}
KerB′ = {q ∈ Q : b(v, q) = 0 ∀v ∈ V } (B.26)

Under the above positions, the following result addressing the existence issue
holds

Theorem B.1.3 (Babuška [18], Brezzi, [22]). Let V and Q be Banach
spaces. Suppose that the bilinear form a(·, ·) is symmetric, continuous and
KerB-elliptic. Furthermore, suppose that b(·, ·) is continuous and that there
exists a constant β > 0 such that

sup
v∈V

b(v, q)

‖ v ‖ ≥ β ‖ q ‖Q\KerB′ ∀q ∈ Q (B.27)

Then there exists a solution (u, p) of problem (B.19) for any ℓ ∈ V ′ and m ∈ Q′,
with u being unique and p uniquely determined up to a member of KerB′.

In (B.27), the quotient norm ‖ q ‖Q\KerB′ is defined by

‖ q ‖Q\KerB′= inf
q0∈KerB′

‖ q + q0 ‖

Finally, it is easy to show that if meas(Γu) �= 0, then the mixed varia-
tional problem of linear elasticity (B.22)-(B.23) satisfies Theorem B.1.3, with
KerB′ = {0} and has therefore a unique solution.
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B.2 Elliptic variational inequalities

There are several contributions in the literature to the theory of variational
inequalities. Just to report a few of them, the reader is referred to [1, 31, 32,
34, 35, 36, 49, 50, 54, 65]. In this brief paragraph we aim to set the stage
for the general form of an elliptic variational inequality (EVI in the following)
and to present a sketch of the well-posedness and solvability issues of such a
problem. Let us first consider the abstract of the EVI of the first kind. Given
a real Hilbert space V endowed with its inner product (·, ·) and associated
norm ‖ · ‖, define K as a subset of V . Let a : V × V → R be a continuous,
V -elliptic bilinear form. Given a linear functional ℓ : V → R, the problem
under consideration is the one of finding u ∈ K such that

a(u, v − u) ≥ 〈ℓ, v − u〉 ∀v ∈ K (B.28)

In some cases EVI of the first kind are posed on convex subsets; moreover
when the case is such that K is a subspace of V , it is shown that the problem
(B.28) becomes a variational equation.

Theorem B.2.1 [54] Let V be a real Hilbert space, a : V × V → R a con-
tinuous, V -elliptic bilinear form, ℓ : V → R a bounded linear functional and
K ⊂ V a nonempty, closed and convex set. Then the EVI (B.28) has a unique
solution u ∈ K.

The proof of the above theorem is not reported here and can be found in [41].
Indeed we have also the following useful result.

Theorem B.2.2 (Banach Fixed-Point Theorem) Let X be a Banach
space. Assume that f : X → X is a contractive mapping, that is, for some
κ ∈ [0, 1)

‖ f(x) − f(y) ‖≤ κ ‖ x − y ‖ ∀x, y ∈ X

Then f possesses a unique fixed point x ∈ X, f(x) = x.

It is noted however that Theorem B.2.1 is a generalization of the Lax-Milgram
lemma.

The second class of variational inequalities treated in this Appendix are
characterized by the presence of nondifferentiable functions. These inequalities
are usually referred to as of the second kind. To begin this investigation we
may consider, in addition to the above defined bilinear form a(·, ·) and linear
functional ℓ the following proper, convex, lower semicontinuous functional j :
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V → R̄ (see Chapter 2 for the pertinent definitions), which is not assumed to
be differentiable. Then we define the problem of finding a function u ∈ V that
satisfies

a(u, v − u) + j(v) − j(u) ≥ 〈ℓ, v − u〉 ∀v ∈ V (B.29)

as an EVI of the second kind.
The key difference between an EVI of the first kind and one of the second

kind lies in the fact that the former is an inequality stating the formulation of
a problem on a convex subset rather than on the whole space, while the latter
is an inequality due to the presence of a nondifferentiable term j(·).

The following important theorem states the requirements for the unique
solvability of an EVI of the second kind.

Theorem B.2.3 Let V be a real Hilbert space, a : V × V → R a continuous,
V -elliptic bilinear form, ℓ : V → R bounded linear functional on V and j :
V → R̄ a proper, convex, l.s.c. functional on V . Then the EVI of the second
kind (B.29) has a unique solution.

A thorough derivation of the above fundamental result is achievable in [41]
and is therefore omitted here for brevity.

B.3 Parabolic variational inequalities

Parabolic variational inequalities result from problem formulations very simi-
lar to those presented in the preceding section, except for the presence of time
as an independent variable of the problem. In the following, some basic defi-
nitions and results are presented with reference to such a kind of variational
inequalities.

Let V and H be real Hilbert spaces such that V ⊂ H and V is dense in H.
We identify H with its dual space H ′. Let K be a nonempty, closed, convex
subset of V . Let A be a linear continuous operator from V to V ′ such that there
exists a constant α > 0 for which 〈Av, v〉 ≥ α ‖ v ‖2

V ∀v ∈ V . The position
a(u, v) = 〈Au, v〉 defines a bilinear form a : V × V → R that is continuous
and V -elliptic. Let f ∈ L2(0, T ;V ′) for some time interval [0, T ] and suppose
that the time derivative ḟ ∈ L2(0, T ;V ′). Finally, let u0 ∈ K be a given initial
value. Then a parabolic variational inequality of the first kind is a problem of
the following form: find a function u ∈ L2(0, T ;V ) with u̇ ∈ L2(0, T ;V ) and
u(0) = u0 such that for almost all (a.a.) t ∈ [0, T ], u(t) ∈ K and

(u̇(t), v − u(t)) + a(u(t), v − u(t)) ≥ 〈f(t), v − u(t)〉 ∀v ∈ K (B.30)

We have the following result [36]
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Theorem B.3.1 In addition to the above assumptions, assume further that
f(0) − Au0 ∈ H. Then the parabolic variational inequality of the first kind
(B.30) has a unique solution. Furthermore, it holds

u, u̇ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H)

An illustrative exemplification of a problem corresponding to a parabolic vari-
ational inequality which can be found in [31] is the following. Introduce a
functional j : V → R̄ which is proper, convex and l.s.c. and such that there
exists a family of differentiable functions jk on V which satisfy the following
three conditions:

• ∫ T

0
jk(v(t))dt →

∫ T

0
j(v(t))dt for anyv ∈ L2(0, T ;V )

• there is a sequence uk bounded in V such that j′k(uk) = 0 for any k

• if vk ⇀ v, v̇k ⇀ v̇ in L2(0, T ;V ) and
∫ T
0 jk(vk)dt is bounded from

above, then

lim
k→∞

inf

∫ T

0
jk(vk)dt ≥

∫ T

0
j(v)dt

The bilinear form a will be taken to be coercive, i.e.

a(v, v) + λ ‖ v ‖2
H≥ α ‖ v ‖2

V ∀v ∈ V

for some constants λ ≥ 0 and α > 0. Finally, it is also assumed that j(u0) ∈ R
and that there exists a sequence {u0k} such that u0k → u0 in V and ‖ Au0k +
j′k(u0k) ‖H is bounded.

Theorem B.3.2 Under the above assumptions, there exists a unique solution
to the problem of finding a function u ∈ L2(0, T ;V ) with ∂u/∂t ∈ L2(0, T ;V ′)
and u(0) = u0 such that for a.a. t ∈ [0, T ]

(u̇(t), v − u(t)) + a(u(t), v − u(t)) + j(v) − j(u(t)) ≥ 〈f(t), v − u(t)〉 ∀v ∈ V
(B.31)

Furthermore, u̇ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H).
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If we define, respectively,

K =
{
v : v ∈ L2(0, T ;V ), v̇ ∈ L2(0, T ;V ′), v(t) ∈ K a.a. t ∈ [0, T ]

}

and

Ku0
= {v : v ∈ K, v(0) = u0}

with u0 a given function in H, it is then possible to restate the problems (B.30)
and (B.31) in the following unified form

u ∈ Ku0
,

∫ T

0
(u̇, v − u)dt +

∫ T

0
[a(u, v − u) + j(v) − j(u)]dt

≥
∫ T

0
〈f, v − u〉dt ∀v ∈ K (B.32)

which has a local counterpart of the type

u ∈ Ku0
, (u̇(t), v − u(t)) + a(u(t), v − u(t)) + j(v) − j(u(t)) ≥

〈f(t), v − u(t)〉 ∀v ∈ K, for a.a. t ∈ [0, T ]
(B.33)

It is probably worth presenting also the following variational formulation
of the problem under consideration which does not require the assumptions
on f(0) and u0 appearing in Theorem B.3.1 and on the nondifferentiable func-
tional j stated in Theorem B.3.2. The problem becomes now the one of finding
u ∈ L2(0, T ;V ) with u(t) ∈ K for a.a. t ∈ [0, T ] such that

∫ T

0
(v̇, v − u)dt +

∫ T

0
[a(u, v − u) + j(v) − j(u)]dt ≥

∫ T

0
〈f, v − u〉dt ∀v ∈ Ku0

(B.34)

The solution to problem (B.32) satisfies (B.34) but the converse does not hold
true. We have indeed the following result on the weak formulation (B.34)
which is found in [36]

Theorem B.3.3 Let K be a nonempty closed convex subset of V , with u0 ∈
K. Let a : V × V → R be a bilinear elliptic form on V and j : K → R
a convex l.s.c. functional with the property that |

∫ T
0 j(v)dt| < ∞ for any

v ∈ L2(0, T ;K). Then, for any f ∈ L2(0, T ;V ′), there exists a unique function
u ∈ L2(0, T ;V ) with u(t) ∈ K for a.a t ∈ [0, T ] such that (B.34) is satisfied.
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Results on the regularity of solutions to parabolic variational inequalities
are very useful in accurately predicting the convergence orders of numerical
approximations. Let us therefore consider the following theorem [21] which is
a key result in this context.

Theorem B.3.4 For the problem (B.30) in which H = L2(Ω), V = H1
0 (Ω),

a(u, v) =

∫

Ω
∇u · ∇v dx, 〈f, v〉 =

∫

Ω
f v dx,

and K =
{
v ∈ H1

0 (Ω) : v ≥ 0 a.e. on Ω
}
, assume that

f ∈ C([0, T ];L∞(Ω)), ḟ ∈ L2([0, T ];L∞(Ω))

and

u0 ∈ W 2,∞(Ω) ∩ K

Then there exists a unique solution to (B.30) satisfying

u ∈ L2([0, T ];H2(Ω)), u̇ ∈ L2([0, T ];H1
0 (Ω)) ∩ L∞([0, T ];L∞(Ω))

and
(

∂u+(t)

∂t
, v − u(t)

)

+ a(u(t), v − u(t)) ≥ 〈f(t), v − u(t)〉

for all v ∈ K, t ∈ [0, T ], where ∂u+(t)/∂t denotes the right-hand derivative of
u with respect to t.
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