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“We are all faced throughout our lives with agonizing decisions, moral
choices. Some are on a grand scale. Most of these choices are on lesser
points.

But we define ourselves by the choices we have made.

We are in fact the sum total of our choices.

Events unfold so unpredictably, so unfairly, human happiness does
not seem to have been included in the design of creation. It is only
we with our capacity to love that give meaning to the indifferent
universe.

And yet most human beings seem to have the ability to keep trying
and even to find joy from simple things like their family, their work,
and from the hope that future generations might understand more.”
-Dr. Levy

Woody Allen’s “Crimes and Misdemeanors”, 1989
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Sommario

Il tema di ricerca su cui verte questa tesi & connesso alla modellazione costi-
tutiva di materiali a comportamento inelastico non lineare. Il filone che si e
scelto di approfondire riguarda lo studio, lo sviluppo e I'implementazione di
nuovi algoritmi di integrazione per problemi algebrico-differenziali non lineari,
inerenti la modellazione costitutiva di materiali elastoplastici tipo von-Mises
con incrudimento.

La teoria della plasticita e, come noto, un argomento classico della Mecca-
nica dei continui e si caratterizza per essere una disciplina che attrae 'interesse
sia di ingegneri che di matematici. Tale caratteristica e sostanzialmente dovuta
a ragioni di carattere storico e, nella fattispecie, allo sviluppo della teoria delle
equazioni differenziali a derivate parziali e della teoria delle disequazioni vari-
azionali riscontrato nella seconda meta del secolo scorso. Tale sviluppo ha
infatti permesso una piu profonda comprensione dei caratteri fisici fondamen-
tali dei fenomeni elastoplastici ed ha messo a disposizione strumenti idonei
alla analisi dei modelli costitutivi e delle formulazioni variazionali dei problemi
meccanici di interesse ingegneristico.

E nota la elevata complessita ed il carattere prettamente nonlineare dei
modelli matematici in discorso. Un filone di ricerca ormai di rilievo in questo
settore € quindi quello dello sviluppo di robusti schemi di integrazione di tali
modelli, in grado di fornire un’accurata approssimazione numerica del com-
portamento del materiale. Detti metodi risultano infatti essenziali nell’ imple-
mentazione di codici di calcolo (ad esempio codici commerciali agli elementi
finiti) per la risoluzione approssimata di problemi a valori iniziali e dati al
bordo per materiali a comportamento elastoplastico.

Questo lavoro si colloca all’interno di questo ultimo settore di ricerca ed
e strutturato in modo da fornire una introduzione al problema elastoplastico
quanto piu completa possibile. Il primo capitolo propone alcuni richiami es-
senziali di Meccanica dei solidi deformabili e di teoria dell’elasticita. Il sec-
ondo capitolo riguarda la cosiddetta teoria classica o teoria matematica della
plasticita e si concentra sulla formulazione della legge costitutiva per materiali
a comportamento elastoplastico di tipo von-Mises con incrudimento lineare e
non lineare.

Il terzo capitolo propone la formulazione variazionale del problema a valori
iniziali e dati al bordo dell’equilibrio di un continuo tridimensionale costituito
da materiale elastoplastico. In tale capitolo sono forniti alcuni risultati di
buona posizione del problema. Il quarto capitolo introduce alla risoluzione
numerica del problema variazionale, utilizzando il metodo degli elementi finiti
per la discretizzazione spaziale e schemi basati su metodi alle differenze finite
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per la discretizzazione temporale.

Il capitolo quinto costituisce la parte innovativa della tesi ed € incentrato
sulla famiglia di metodi d’integrazione cosiddetta a base esponenziale. La tec-
nica alla base di questi metodi prevede la riscrittura del modello costitutivo di
von-Mises a partire dalla sua formulazione classica, mediante ’adozione di un
opportuno fattore integrante scalare, che governa l’evoluzione temporale del
flusso plastico. Il sistema dinamico governante, cosi riformulato, ammette una
forma evolutiva caratteristica di tipo quasi-lineare e, sotto opportune ipotesi,
puo essere integrato nel tempo e risolto al passo, utilizzando la tecnica delle
mappe esponenziali. I vantaggi offerti dalla nuova classe di metodi esponen-
ziali sono evidenziati dall’analisi delle proprieta numeriche e dal confronto con
i classici metodi alle differenze finite su esempi numerici. Il capitolo sesto
presenta una serie di test numerici che hanno lo scopo di valutare la preci-
sione e 'accuratezza dei nuovi algoritmi e quindi validarne ’applicabilita nella
simulazione di problemi di interesse ingegneristico.

Completano la tesi due brevi appendici inerenti elementi introduttivi di
Analisi funzionale e di teoria delle disequazioni variazionali. I contenuti delle
appendici possono risultare utili nello studio della teoria matematica della
plasticita affrontato nei Capitoli 2,3 e 4.

Abstract

The research theme upon which this thesis is based regards the constitutive
modeling of nonlinear inelastic materials. The main topic is concerned with
the analysis, the development and the implementation of a new class of inte-
gration algorithms for differential-algebraic nonlinear problems arising in the
constitutive modeling of von-Mises elastoplastic hardening materials.

The theory of plasticity, as it is well known, is a classical part of continuum
Mechanics and is characterized by being a discipline which attracts both the
scientific interest of engineer scientists and mathematicians. This fact is mainly
due to historical reasons and, in particular, to the development of the theory
of partial differential equations and of the theory of variational inequalities
taken place in the second half of the last century. This development has in
fact made it possible a deeper comprehension of the fundamental physical
meanings of elastoplastic phenomena and has provided useful theoretical tools
for the analysis of the constitutive models and of the variational formulation
of the mechanical problems of interest.

Given the high complexity and the preeminent nonlinear nature of such
mathematical models, another relevant research challenge in this area is the
development of rubust numerical methods for the integration of such models.
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The numerical schemes in argument need to be as precise as possible in order
to accurately reproduce the constitutive response of real elastoplastic materials
in computational enviroments (such as commercial finite element codes).

This work is set within this last research field and is structured in such a
way that the introduction of the elastoplastic constitutive problem remains as
complete as possible, in order to carry out both the engineering and the math-
ematical aspects of the problem. The first chapter proposes some fundamental
concepts of Mechanics of deformable material bodies and of theory of elastic-
ity. The second chapter is centred on the so-called classical or mathematical
theory of plasticity. This chapter focuses in particular on the formulation
of the von-Mises constitutive law for elastoplastic materials with linear and
nonlinear hardening.

The third chapter proposes the analysis of the variational formulation of the
initial boundary value problem of equilibrium for three-dimensional continuum
bodies constituted of elastoplastic material. In this chapter also some theo-
retical results on the well-posedness of the variational problem are exposed.
The fourth chapter introduces to the numerical solution of the variational pro-
blem of elastoplastic equilibrium, within the context of a finite element space
discretization and of classical finite difference time discretization schemes.

Chapter 5 constitutes the innovative part and, being the core of the thesis,
focuses on the new class of exponential-based integration schemes for von-
Mises elastoplastic models. The basic technique underneath the application
of these schemes prescribes the rewriting of the original constitutive model
using a suitable integration factor which governs the evolution of plastic flow.
The ensuing differential-algebraic dynamical system results in a characteristic
quasi-linear evolutive equation which, under proper hypotheses, may be inte-
grated and solved stepwise, using exponential maps. The advantages granted
by the new family of methods are made evident by the theoretical analysis of
their numerical properties and by the comparison on numerical tests with the
classical finite difference schemes. Chapter 6 presents an extensive series of
numerical tests which aim to evaluate the precision and the order of accuracy
of the new exponential-based algorithms and hence to validate them as feasible
tools in practical simulation of problems of engineering interest.

The thesis is completed by two brief appendices concerning mathematical
elements of functional analysis and of theory of variational inequalities. The
contents of these last two sections may be of some value in the study of the
mathematical theory of plasticity carried out in chapters 2, 3 and 4.
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Chapter 1

Continuum Mechanics and
Elasticity

Introduzione

Questo capitolo ¢ dedicato ai concetti fondamentali della Meccanica dei solidi
deformabili e della elasticita lineare. Segue un breve sommario dei contenuti
del capitolo.

La Sezione 1.2 richiama gli elementi di algebra vettoriale e tensoriale che
vengono utilizzati nella tesi. La Sezione 1.3 riguarda la Cinematica del corpo
materiale. In detta sezione si definiscono le fondamentali misure di defor-
mazione e viene messo in evidenza il caso delle deformazioni infinitesime. La
Sezione 1.4 riguarda la formulazione dell’equilibrio per un corpo materiale.
Vengono qui presentati gli assiomi dell’equilibrio statico e dell’equilibrio di-
namico, le leggi di bilancio del momento lineare ed angolare, la forma locale
dell’equazione di equilibrio. La Sezione 1.5 costituisce una breve presentazione
della legge costitutiva per materiali a comportamento elastico lineare isotropo
con un accenno alle proprieta fondamentali del tensore dei moduli elastici.

La Sezione 1.6 & incentrata sulla prima e sulla seconda legge della Ter-
modinamica e tratta, in particolare, il caso di solidi costituiti da materiale
elastico lineare isotropo soggetti a trasformazioni isoterme. La Sezione 1.7
presenta la formulazione locale negli spostamenti per il problema a valori in-
iziali e dati al bordo dell’equilibrio, per solidi deformabili di materiale elastico
lineare isotropo. Da ultimo, la Sezione 1.8 introduce i concetti utilizzati nel
capitolo seguente riguardante la teoria classica della plasticita. In tale sezione
si presenta una trattazione termodinamica generale, adatta allo studio di ma-
teriali a comportamento inelastico non lineare. In particolare viene introdotta
la cosiddetta teoria termodinamica a variabili interne. Per ovvie ragioni, la
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trattazione di questa sezione si limita al caso della elasticita lineare.

Gli elementi di Meccanica del continuo ed elasticita richiamati nel pre-
sente capitolo sono tratti preminentemente da [14, 20], mentre gli argomenti
di Termodinamica seguono principalmente la trattazione in [41].

1.1 Introduction

This chapter is devoted to fundamental concepts of Mechanics of deformable
solids and of linear elasticity. In what follows we give a brief outline of the
contents of the chapter.

In Section 1.2 we recall the elements of vector and tensor algebra that are
used throughout the thesis. Section 1.3 is concerned with the kinematics of a
deformable material body. In this section the fundamental strain measures are
defined and special emphasis is given to the small deformation case. Section
1.4 regards the formulation of equilibrium for a material body. Here we present
the axioms of static and dynamic equilibrium, the balance laws of linear and
angular momentum and the local form of the equilibrium equation. Section 1.5
is a concise review of the constitutive law for linear elastic isotropic materials.
In this section we briefly examine the basic properties of the elastic tensor and
the form of the linear elastic constitutive law.

Section 1.6 focuses on the first and second laws of Thermodynamics and
particularly on the special case of linear elastic bodies undergoing isothermal
transformations. Section 1.7 presents the classical displacement local formu-
lation of the equilibrium boundary value problem for a deformable body con-
stituted of linear elastic material. Finally, Section 1.8 sets the stage for the
later developments on the elastoplastic theory developed in Chapter 2. In fact,
in this section, we give a general framework which is particularly suitable for
studying nonlinear inelastic materials. For obvious reasons the treatment is
momentarily dedicated to linear elasticity. In particular the so-called thermo-
dynamic theory with interval variables is addressed. In this chapter the ele-
ments of continuum Mechanics and elasticity are basically taken from [14, 20],
while the Thermodynamics arguments are presented following [41].

1.2 Preliminaries and notation

Vectors and tensors

In this work, we deal with different types of mathematical objects, namely
with scalars, second-order tensors and fourth-order tensors as well as with
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generalized vector and matrix operators. Scalars are indicated by italic letters
like
a, a, A

Vectors, second-order tensors and generalized vector operators are denoted by
boldface letters like
a, a, A, X

while fourth-order tensors and generalized matrix operators are indicated with
uppercase boldblackboard letters like

A G

The summation convention for repeated indices, or Einstein convention, will
be used in our developments'

We refer to a three dimensional Euclidean space R? and thus make use of
a Cartesian coordinate system equipped with an orthonormal basis (e1, ez, e3)
chosen once and for all. Components of vectors and tensors are systematically
referred to such a basis. The vector a of the space R> is identified by the
ordered set {ai}T, 1 < i < 3, which defines its coordinates with respect to the
above canonical basis and where ¢ is the free index varying between 1 and 3,
such that

a = a;€;
In the following we adopt the following notations for vectors of R>:

e Compact

e Indicial
a; = a|i

e Engineering
{a} = {a1,a2,a3}"

The scalar product of two vectors a and b is denoted by a - b and is defined
by:

a-b:aibi

!The summation convention requires that a repeated index in a multiplicative term implies
the presence of a summation over the possible index range. Consistently, a non-repeated
index in a multiplicative term implies that it may assume indifferently any value in the
possible index range.
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The Fuclidean norm of a vector a is defined according to:

la=(a-a)"?
The Euclidean space R3 with the natural operations introduced above forms
a vector space, indicated in the following as lin.

The cross product or vector product ¢ of two vectors a and b is a vector
c = a X b, orthogonal to both a and b, with length equal to the area of the
parallelogram defined by the vectors a and b and direction defined according
to the right-hand rule. We then have the following expression in terms of
components

c=axb= (al-el-) X (ajej) = al-bj(el- X ej) = aibj&-jkek

where, for 1 <4,j,k < 3, & is the permutation symbol, i.e. &, = +1 for
(4,4, k) a cyclic permutation, &, = —1 for (7,7,k) an anticyclic permutation
and & = 0 otherwise. The cross product returns a vector which is orthogonal
to the plane containing the two original vectors. Second-order tensor are
objects defined to generalized such a property in the sense that they operate
on a vector returning a vector.

A second-order tensor 7 is defined as a linear operator mapping vectors into
vectors. Clearly, dealing with a three-dimensional space, to completely define
the action of a second-order tensor, it is necessary to consider at least the action
on three independent vectors of lin, such as the three basis vectors. Since
the action of the second-order tensor on the three basis vectors is to return
three new vectors, we may conclude that second-order tensors are in general
identified through a set of nine scalar components. The space of second-order
tensors with the natural operation defined in the following form a vector space,
indicated in the sequel as Lin

The fundamental operation to construct the space of second-order tensor
is the tensor product of two vectors a and b, indicated as a ® b and defined
as

(a®@b)c=(b-c)a Va,b,c € lin

The tensor products e; ® e; of the basis vectors of lin are a set of second-order
tensors, providing a suitable basis for expressing the components of a second-
order tensor of the space Lin. In particular we define the ijth component of a
tensor 7 as

Tij:ei-Tej
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which implies that the second-order tensor 7 can be expressed in component
form as

T = Tij(ez‘ ® ej)

In this work we adopt the following notations for a second-order tensor of the
space Lin:

e Compact

e Indicial
Tij = Tlij

e Engineering
1 Ti2 T13
[T]= | 21 T2 723
T31 T32 733

The transpose of a second-order tensor 7 is indicated in compact notation by
77 and defined by the following relation

i =7
The trace of a second-order tensor 7 is a scalar-valued function defined as
tr(7T) = 7
sym

We use the symbol Lin®*'" to indicate the subspace of Lin of symmetric second-

order tensors, i.e.
Lin®™™ = {r ¢ Lin: =717} (1.1)

We use the symbol Ling"™ to indicate the subspace of Lin of symmetric second-
order traceless tensors, i.e.

Lin™ = {r € Lin™™ : tr(7) =0} (1.2)
The action of a second-order tensor 7 onto a vector a is a vector b € lin
b=rTa
defined according to

bi=(Ta)-e; = [(imer ®en)(arer) e = mimarl(e; @ ep)er] - e;

= Tmaglel(en - er)] - e = Timar(er - €;)0mr = TiRar0; = Tikak
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The scalar product or double-dot product of two second-order tensors o and
-

is a scalar defined by
O T = 0yTij
It is noted that
o:1=tr(rlo)

The multiplication or combination of two second-order tensors o and 7 is a
second-order tensor n
n=or

defined in the following manner
Nij = OikTkj

The Euclidean norm of a second-order tensor 7 induced by the above scalar
product is

7 1= ()2

The second-order identity tensor I is defined by the relation Ia = a,Va € lin.
The components of the identity tensor are the Kronecker delta, that is

1 if j=1
5@']’ = .
0 otherwise

A unique additive decomposition of any second-order tensor 7 is given by
the sum of its deviatoric part Tgey and its volumetric or spherical part Tyol,
respectively defined as

1 1
Tvol = gU‘(T)I Tdoy = T — gtr(T) (1.3)

This definition implies

T = Tyol + Tval (1.4)

A fourth-order tensor is defined as a linear operator mapping the space of
second-order tensors Lin onto itself. To properly define the action of a fourth-
order tensor, it is necessary to consider the action on a second-order tensor
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basis; since the action of a fourth-order tensor on a second-order tensor is to
return a second-order tensor, we may conclude that fourth-order tensors are
in general defined by a set of eighty-one scalar components. The space of
fourth-order tensors with the natural operations introduced in the following
form a vector space, indicated in the sequel by Lin.

The fundamental operation to construct the space of fourth-order tensor
is the dyadic product of two second-order tensors 7 and o, indicated as T ® o
and defined as to return a fourth-order tensor:

with D € Lin and such that
Dn=(r®eo)m=(oc:n)r=tr(n’e)r VncLin (1.6)

The tensor products between the second-order basis tensor provide a suitable
basis for expressing the components of a fourth-order tensor of the space LLin.
In particular we define the ijkith component of a tensor D as

Dijir = (e; @ ;) : D(e @ ;)
such that the fourth-order tensor D can be expressed in component form as
D = Djjri(e; ® e;) @ (er ® e;)

In the following we will adopt the following notations for fourth-order tensor
of the space Lin:

e Compact

e Indicial
Dk = Dk

The action of a fourth-order tensor D on a second-order tensor 7 is denoted
by

oc=Dr (1.7)
with the following indicial representation

Oij = [DT] : (ei & ej) = [(Dabcd e, Xe,®e. K ed) (Tkl er el)] : (ei & ej)

= [(Dgpki Tki) €a @ €3] : (€; @ €;) = Dapir Thi
(1.8)
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Besides the dyadic tensor product between second-order tensors, the so-called
square tensor products can be also introduced as:

E=AXB
F=AKB
defined, according to Del Piero [29], such that:

(AXB)C = ACB”

~ VC € Lin
(AKB)C = ACTBT
or, equivalently,
AXB)|;u = AiB;
( X Nijkr = AuBji VA.B ¢ Lin
(AXB)|iju = AaBji

The fourth-order identity tensor I, is defined to satisfy the relation I+ = 7, for
any second-order tensor 7. The fourth-order identity tensor, in components
form, can be shown to be given by

[=e;Qe;Re; Qe
or, equivalently
I=0idje; ®e; Qe e
Therefore we have
Lijki = 0irdji
The fourth-order symmetrized identity tensor I/, is defined to satisfy the rela-
tion I+ = %(T—FTT), for any second-order tensor 7. Accordingly, I! is defined
as:

I = [}@I+I®q

DN |

or, in indicial notation as:

[LikLj; + LLjx]

DO =

I
Lijw =
Therefore we have

I'A =1(A+AT) VA € Lin
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A splitting into volumetric and deviatoric parts of the fourth-order identity
tensor of the form

I= Hvol + ]Idev (1'9)

is achievable by setting

1
Hvol = g (I ® I)
(1.10)

1
Hdev:H_g(I@)I)

With the above positions, the volumetric and deviatoric part 7y, and T4ey of
any second-order tensor 7T are respectively given by:

%tl‘(T)IZl(TII)I

Tvol = Lol = 3 (1.11)
Tvol = HdevT =0 — Tyol

Other than vectors and second-order tensor defined over the Euclidean space
R3, in some selected cases we make use of algebraic vectors or m-tuples. For
instance, the m-component algebraic vector £ can be equivalently indicated in
compact notation or in algebraic notation as & = (&) = (&;, ..., &k, ---&,p,)- 1t s
noted that the components &€, (1 < k < m) of such a vector may be objects of
different type, namely scalars, vectors or tensors. The use of algebraic vectors
will be specified whenever needed in order to avoid confusion. Similarly, in
some cases, use will be made of algebraic or matrix operators. Such matrix
operators will be in general represented in engineering notation as

G11 G2
G p—
& [ Go1 Gao }

It is noted that the components G;; of a matrix operator may be objects of
different type, namely scalars, second-order tensors or fourth-order tensors.
The use of matrix operators will be specified whenever needed in order to
avoid confusion.

Invariants of second-order tensors

The algebraic problem of finding every scalar A and every nonzero vector q
such that

Tq = \q
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leads to the standard eigenvalue problem. This consists of solving the charac-
teristic equation

det(\I—7) =0
This equation can be written equivalently as
N —NAN+LA—13=0

where I1(7), I2(7) and I3(7) are the principal scalar invariants of 7. The
principal scalar invariants are respectively defined by

I :tI'(T):)\l-f—)\Q-f—)\g

1 9 9 1
I, = B [tI‘(T) — tr (T )] = i(TiiTjj — TijTji) = A A2 + A3 + Az

Ig =detT = )\1)\2)\3

where the scalars A, Ay and A3 are the eigenvalues of T as well as the roots
of the characteristic equation (a multiple root is counted repeatedly according
to its multiplicity). The eigenvalues of a matrix 7 are often referred to as the
principal components of T.

The gradient of a scalar field ¢(x) defined on lin is denoted by V¢ and it
is the vector defined by

Vo =

€

or;

The divergence divu and the gradient Vu of a vector field u(x) defined on lin
are respectively a scalar and a second-order tensor field defined by

. Ou;
divua = oz,
8ui

Vu = oz, e ®e;

The divergence of a second-order tensor 7 defined on lin is a vector defined by

aTij
6.’Ej

divr = e;
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For a scalar-valued function f(7) defined on Lin, the derivative with respect
to 7 is defined as a second-order tensor of the following form

of(r) _ 9f(7)
or N 67‘@‘

ei®ej

For a time-dependent quantity z, we will denote with 2 its partial derivative
with respect to time t.

1.3 Kinematics

Material body

We consider a body B that at the macroscopic level may be regarded as
composed of material that is continuously distributed in space. Assume that
at any time instant ¢ the body B can be identified with a closed subset, €2, of
the tridimensional real space R>:

B=QcCR? (1.12)

Accordingly, it is possible to associate any material point X € 28 with a point
XeQcCR:
XeB-XecQcCR? (1.13)

The above identification procedure allows to treat the material body as a
continuum, that is, as a mathematical entity which inherents the continuum
power property of the R? space [38]. In particular, we may define functions
of position and time over the configuration, perform real analysis, differen-
tial calculus operations on such functions and so on. It is also possible to
construct a mathematical model corresponding to experimental observations,
that is, perform experimental observations and assign the measured averaged
properties to a point of the body.

In the present context we start by addressing the kinematics of the body
which is the common starting point to describe the behavior of general con-
tinuous media. As it is well known, this framework remains independent of
what acts on the body and of the constitution of the body itself.

Change of configuration

Let us consider two distinct time instants ¢y and ¢, such that ¢ty < t. We refer ¢
as the initial time instant, while we refer ¢ as the current time instant. At time
to the material body B can be identified with a subset Qy € R?, indicated
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Figure 1.1: Current and reference configurations of a material body

as initial or reference configuration, such that at the same time instant the
generic material point X € B can be identified with a corresponding point
X € Qp. At time t, the material body B can be identified with a subset
Q) € R3, indicated as current configuration, such that at the same time instant
the generic material point X € B can be identified with a corresponding point
x € 2. In the above specifications we have set the convention of indicating the
reference position vector, X, with an upper case boldface letter and the current
position vector, x, with a lower case boldface letter. More generally, either
using a compact or an indicial notation, quantities relative to the reference
configuration are indicated with upper case letters and quantities relative to
the current configuration are indicated with lower case letters.

In view of the identification represented by relation (1.13), it is possible
to construct a map between the reference and the current configuration, indi-
cated, in general, as change of configuration or deformation map . Adopting
in the following both a compact and an indicial notation, we can express the
deformation map ¢ as follows:

x = ¢(X)

z; = i(X7) (L14)

or more precisely as:
p:XeQCcR -xeQC RS

Observing Equation (1.14) it is noted that the conventions on the use of upper
and lower case letters to denote respectively reference and current configura-
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tions quantities is applied also to the subscript relative to the components of
the reference position vector (indicated with an upper case index (J)) and to
the components of the current position vector ( indicated with a lower case
index (7)).

The analytical requirement on the deformation map is that it has to respect
the body continuity. This condition can be split in external requirements and
internal requirements, i.e. in requirements relative to the body boundary and
to the body interior. In particular, if the body configuration is assigned on
a portion of the boundary, indicated as 9QF (for example, x = X on 99,
Vt > tg), then the map should respect such an assignment on such a boundary
portion. Moreover, in the body interior the map should respect the body
continuity; from a mathematical point of view this is expressed through the
following conditions:

e the map ¢ is a function

e the map ¢ is continuous

e the map ¢ is differentiable with continuous derivatives (class C?)
e the map ¢ is invertible

The gradient of the deformation map, or deformation gradient, F, is defined
as:

F=Vxep
i (1.15)

E = —

70X,

and, without distinguishing between the deformation map, ¢, and the current
position, x, (i.e. x = ¢) the deformation gradient can be also written as:

F:VXX:S—;

- (1.16)
Fiy=
770X,

It can be shown that ¢ maps an infinitesimal vector dX, with origin in X,
into a vector, dx, with origin in x, as follows:
dx = FdX

(1.17)
dr; = F;jdX

Accordingly, the deformation gradient is a two-point second-order tensor; in
fact, it is a second-order tensor since it maps vectors into vectors, but it is
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two-point since one component is relative to the reference configuration and
one component is relative to the current configuration. This is consistent with
the fact that F operates on vectors defined in the reference configuration and
it returns vectors defined in the current configuration. In fact, the indices of
F are still indicated with a lower case letter and with an upper case letter
respectively.

The deformation gradient F = F(X) is in general function of position,
since the deformation map is in general non uniform. Likewise, ¢ is in general
a nonlinear map in space and F results as its pointwise linearization.

Strain

It is possible to prove that the deformation gradient F = F(X), being a
pointwise-defined second-order tensor, characterizes the strain status of the
point X neighborhood. In particular, given F it is possible two compute the
relative change in length of a generic fiber emanating from X, as well as the
change in angle between two fibers emanating from X.

The above statement can be derived with the following reasoning. Consider
an infinitesimal vector dS, with origin in X and expressed as dS = Nd.S with N
unit vector (i.e. |N|| =1). Let us indicate with ds the vector with origin in x,
obtained from dS through the deformation map ¢, that is: ds = FdS = FNdS.
Defining the stretch of the vector dS as the elongation of the vector through
the deformation map, that is, as the ratio between the norm of the vector after

and before the mapping:

lds]
A= 1.18
as] (1.18)

and recalling that | N|| = 1, it holds:

_ds-ds _ (FNdS)-(FNdS) (FN)-(FN)

A= = = —CN-N= )N
ds - dSs (NdS) - (NdS) N N (N)
(1.19)
where C is the right Cauchy-Green deformation tensor, defined as:
C=F'F
(1.20)
Crj = FarFoy

Accordingly:
A=AN)=|FN|=vCN-N (1.21)

that is, given F and hence C, we can compute the elongation of any fiber with
origin in X and extremum in a sufficiently small neighborhood of X. Such
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an elongation is just a function of the direction N. Consider two infinitesimal
vectors, dS; and dSs, with origin in X and expressed as
dS1 = N1dS,

(1.22)
dSy = N1dS,

with N7 and Ny unit vectors. Then, indicate with ds; and dss the vectors
with origin in x, defined through the deformation map:

d81 = FdSl = FNldsl
d82 = FdSQ = FNQdSQ
If 6y is the angle between dS; and dS, and 6 is the angle between ds; and dso,

the difference v = 6 — 6y represents the angle variation. We may note that
also this quantity can be expressed in terms of F since:

COS(@) i d51 . dSQ . FN1 . FNQ i CN1 . NQ
[dsi|l[ldsz]l  [[FN[[|[EN2[  A(N1)A(N2)

Despite the fact that F and C represent a correct tool to calculate the local
state of strain, neither of them is an appropriate strain measures. In fact, in
the undeformed configuration F = C = I, while one would expect a proper
strain measure to be zero in the undeformed configuration. This lacking can
be avoided by introducing the Lagrangian or Green strain tensor E, defined
as: ) 1

E=-(C-1I=—
2 2
1 1
Bry=5(Cry = 11y) = 5 (FarFay = 11J)
This definition is suggested in a straightforward manner by considering the
following change in scalar product:

dsy - dsy — dS; - dSy = (FdS; - FdSy) — dS; - dS,
=FTFdS, - dSy — dS; - dS,
= (F'F —1)dS; - dS
= 2EdS; - dS»

(FTF - 1)
(1.23)

which is also amenable of the following representation :
dsy - dsy — dSy - dSy = dsy - dsy — (F~'ds; - F~ds,)
=dsy - dsy — FTF s, - ds,
= (I- F_TF_l) dsy - dssy
= 2eds; - dsy
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The second-order tensor e is called Eulerian or Almansi strain tensor and is

defined as: )
e — 5 (I — bil)

1 —1
where the second-order tensor b is the left Cauchy-Green or Finger deforma-
tion tensor, defined as:

(1.24)

b = FF’
(1.25)
bij = FiaFja
such that:
b l=FTF!
(1.26)

-1 _ p—-Tpp-1
bij - }PiA FjA

The scalar product can still be takes as a measure of deformation. Take for
example dS1 = dSs = dS, such that dS = NdS, with N unit vector in the
direction of dS. Similarly, ds = nds, with n unit vector in the direction of ds.
With these positions, the initial (material) length dS and the current (spatial)
length ds are respectively:

dS? =dS - dS
ds®> = ds - ds
Hence: ) o2
ds® —d
—— =2EN-N
dS?
ds? -

which respectively return the change in square length of the fiber dS with
respect to the initial and current length.

Particular choices of the unit vectors N; and Ny appearing in (1.22) to-
gether with the above calculations induce to recognize the geometrical meaning
of the components of the Lagrangian and Eulerian tensors relative to the local
state of deformation. For instance, taking N; = No = ¢; (i = 1,2,3) it is
found that the components Ej;, e; (i = 1,2,3), respectively, represent the
relative elongation of a fiber initially oriented along the ith basis vector with
respect to the initial and to the current length. Similarly, taking N; = e; and
N =e; (i, = 1,2,3) it is found that the components E;;, e;; (1,7 = 1,2, 3)
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with i £ j, respectively, represent the relative change in angle between the
fibers initially oriented along the ith and jth reference axis with respect to the
initial and to the current angle between them.

It is convenient to describe the change of configuration introducing the
displacement field u, defined as the pointwise difference between the current
and the reference vector position:

uX) =x(X)-X (1.27)

Then the current position vector is given by the sum of the reference position
vector and of the displacement vector:

x = (X)) =X+ u(X)

The expression of the deformation map in terms of displacement gives rise
to alternative expressions of the strain tensors introduced previously. For
example, the deformation gradient becomes:

ox 0

= % = 5% (X +u) =I+Vxu (1.28)

which, defining H = Vxu, can be written as:
F=1+H (1.29)
Moreover, we may write:
C=F'F=I+H+H" +H'H
1

E=5(C-D=

1 (1.30

5(H+HT+HTH) )

The Eulerian strain tensor (1.30)2 admits the splitting:
E=E +E;,=€e+Es

which identifies the linear and the nonlinear parts of E, respectively as E1 =
e=H+H")/2 and E; = (HTH)/2.

Small displacement gradient

In many structural engineering problems the deformations can be regarded as
small in some sense. This assumption, which is rigorously formalized, obvi-
ously introduces an approximation in the treatment but, nevertheless, permits
to simplify the problem formulation and thus remains of notable interest.
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Consider the case of a motion with a small displacement gradient Vu, that
is:
IVxu| =« with ekl

Recalling (1.30), the additive decomposition of the strain tensor E in a linear
and a nonlinear term, we may prove the following theorem [37].

Theorem 1.3.1 Assume ||Vu|| =e < 1. Then:
2E=C—-1+4+0()=b—-1+0(c) =2E; =2¢
Furthermore, if F corresponds to a rigid motion, then:
Vu = -Vu’ + 0(¢)
This proposition asserts that to within an error of order O(e):

e if the displacement gradient Vxu is sufficiently small then the nonlinear
term in (1.30) can be neglected

e the tensors E and & coincide as well as the tensors C and b coincide
e the displacement gradient corresponding to a rigid deformation is skew
Under the same assumptions it is also possible to prove that:
det(F) — 1 =div (u) + O(e) (1.31)

In the following we indicate a deformation map characterized by a small dis-
placement gradient field as a small deformation map or simply we talk about
small deformations, that is:

IVxu| < 1
Small deformation &

e=1|Vxu+ (Vxu)"

Volume change

We are now interested in the evaluation of the unit volume change produced in
the change of configuration of the body by means of the deformation map. To
begin with it is worth recalling that the volume V of a parallelepiped defined
by the vectors a, b and c is given by:

V(a,b,c) =(axb)-c

Moreover, the following theorem holds:
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Theorem 1.3.2 Let {a,b,c} be any triad of non-collinear vectors in the
three-dimensional space and let T be any second-order tensor. Then, the fol-
lowing identities hold:

[(Ta) x (Tb)]- Tc =det(T)[(a x b) - c]
T7 [(Ta) x (Tb)] = det(T) (a x b)
Let us consider a parallelepiped of material described by a triad of infinitesimal
vectors {dS1, dSs, dS3}, expressed respectively as a product of the unit vectors

Ny, N3, N3 and of the infinitesimal lengths dSi,dSs,dSs. Accordingly, the
volume dV of the parallelepiped is given by:

dV = [(Nl X Ng) . Ng] dSldSQng

The deformed parallelepiped is described by the vectors {FN;, FNy, FN3}
multiplied respectively by the quantities dS7,dSs,dSs. Accordingly, the cor-
responding volume dv is given by:

dv = [(FNl X FNQ) . FNg] dSldSQdS;g
which can also be rewritten as:
dv = det(F) [(Nl X Ng) . Ng] dSldSQdS;),

Hence, we get:
D Get(F) = J (1.32)
gy~ det(F) = '
where we also used the classical notation J = det(F) indicating the Jacobian
of the deformation gradient.
The above formula can be specialized in the case of small deformations

[25]. Recalling (1.31) and omitting higher order terms, it holds:
J = det(F) = det(I+ Vu) = 1 + divu (1.33)

A body transformation such that it produces no volume change is said top be
isochoric and observing (1.32) in this case one has

J=1 V¥xeQ (1.34)

Accordingly, for an isochoric infinitesimal deformation process and to within
an error of O(¢e), the displacement field satisfies the condition

tr(e(u(x))) = divu(x) =0 Vxe (1.35)

A material that cannot undergo any transformation that is accompanied by
change in volume is called incompressible. For such a material, relations (1.34)
and (1.35) represent a constraint on the admissible deformation field.
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1.4 Equilibrium

1.4.1 Static equilibrium

This section investigates body static equilibrium conditions, relative either to
the whole body or to body subsets. In particular, the equilibrium is com-
prehensive of the relations introducing proper quantities measuring internal
forces, i.e. actions exchanged between neighborhood body subsets.

Given a body B in a configuration 2, we postulate that the interaction
between the external world and the body can be described through two force
fields:

e a surface force field, or contact force field, t, with dimension of force by

unit area and defined on a portion of the current boundary surface, 9Q*
2.

e a volume force field, or body force field, b, with dimension of force by
unit volume and defined on the current configuration, 2.

We also postulate that:

e the interaction between any portion of the body € internal to the body

(i.e. such that & CSO)) and the remaining part of the body 2\ €’ can be
described through a surface force field, indicated also as traction force
field, with dimension of force by unit area and defined on 9. These
interaction forces are assumed to be function of the local outward normal
to €', and, accordingly, we indicate this field with ty,, with the subscript
to express the dependency from the normal n.

Given any portion ' of the body in the current configuration €2, we can define
the force resultant, r, and the moment resultant, m, relative to Q' C Q as:

r(Q’):/ bdv+/ tnda
/ 89/

(1.36)
m(Q) :/ (x x b)dv—i—/ (x X tn)da
/ BQ/
where x is the current position vector and where the resultant momentum is
computed with respect to a generic origin o.
Now, defined the force and moment resultants, we may state the

2In general, we set 9NF = 90\ 9Q® with 0Q% the part of the boundary where we assign
the deformation map ¢; accordingly, we have: 9Q = 9Q°F U 9Q®.
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StAaTIC EQUILIBRIUM AXIOM. A deformable body is in equilibrium if and
only if the force resultant and the force momentum on each portion of
the body are zero, that is, a body 26 in a configuration 2 is in equilibrium if
and only if:

r(Q)=0 VY CQ

1.37
m(€) =0 VO C Q (1.37)

or, in a more explicit format, a body B in a configuration €2 is in equilibrium
if and only if:

/bdv+/ tnda =0 v CQ
/ aay

(1.38)
/(XXb)dU+/ (xXty)da=0 v CQ
/ 89/

Equation (1.38) are also indicated as linear momentum and angular momen-
tum balance laws. Moreover, for the case ' = (Q, the above equations spe-
cialize as:

I‘(Q):/bd’v—l—/ tnda+/ tda =0
Q a0 a0t

(1.39)
m(Q)z/(xXb)du—i—/ (xxtn)da+/ (xxt)da=0
Q Qe aQtn
where we note that the quantity t, in the surface integral on 9Q%¥ is unknown.
We now want to investigate the actions that internal parts of the body
mutually exchange. To do so, let us introduce a surface ¥, ideally dividing the
body € in two parts, ] and ), such that Q] UQ, = Q, and let us also define:
'y =00\ ¥ and T'y = 005 \ X, such that: 99 =T UX and 00, =T UX.
Assuming that the whole body is in equilibrium, by the equilibrium axiom, we
have that each single part of the body should be in equilibrium, hence, also
Q) and Q). Without showing all the calculations (refer for instance to [14])
the last statement amounts to the following fundamental result:

/ (th +t_n)da=0
by
which, recalling the arbitrariness of the surface ¥, implies
th = —t_p (1.40)

The above equation is known as action-reaction principle or as Cauchy recip-
rocal principle or as first Cauchy theorem.
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Stress tensor

Let us introduce a right-angle tetrahedron 7 contained in the body (7 CSO))
and a coordinate system with origin o in the tetrahedron right-angle vertex
and axes given by the tetrahedron edges, respectively with lengths along the
coordinate axes equal to e1,e9,e3. Moreover, let us indicate with p; (with
i =1,2,3) the other tetrahedron vertices, with e; the unit vector along the ith
coordinate axis, with a; the area of the face with unit normal —e;, and with
a,, the fourth area describing the tetrahedron, having normal n.

We now consider the tetrahedron equilibrium, taking into account the trac-
tion vector fields acting on the four sides and the body force field acting on
the volume. This amounts to studying the following integral force balance:

3
/bdv—i—Z/ t_eida—i—/ tnda =0
v i=1 7 @i an

Omitting, for brevity, the mathematical manipulations and using the action-
reaction principle it is possible to state that the above equilibrium condition
for the tetrahedron implies the following relation for the traction field

n (1.41)

3 3
th = Z (Il ’ ei) te, = [Z (tei ® ei)

i=1 =1

This relation shows how the traction vector acting on the oblique face is related
to the traction vectors on the faces orthogonal to the coordinate axes; in
particular, setting:

3
o= [Z (te, ® €;) (1.42)
i=1
we have:
thn = on (1.43)

which is known as second Cauchy theorem, valid for any point internal to

the body (i.e. Vx 65?2) It is interesting to emphasize how, starting from
the assumption that the traction vector t, depends on n, we prove that this
dependency is linear through a second-order tensor o, known as Cauchy stress
tensor. Accordingly, knowing o in a point, it is possible to compute the stress
vector t, acting on any surface of normal n, which is equivalent to say that o
contains all the information relative to the local state of stress.
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From Equation (1.43), it is possible to obtain a physical interpretation for
the components of the stress tensor, noting that:

3

Oij =€;-0€e; =¢€;- [Z (tei ®el)

i=1

€; =¢€;- tej (144)

Hence, the ¢5th component of o is the ith component of the traction vector
acting on the face with normal vector e;. The reader should be warned that
some authors reverse the convention [3, 38, 53].

It is also interesting to note that Equation (1.42) indicates that o is fully
determined once we know the three vectors te,,te,,te;; accordingly, o is
known once we know nine independent components, which are exactly the
number of components in a second-order tensor.

Static equilibrium equations

We now want to transform the equilibrium requirements from the global inte-
gral format of Equation (1.38) to a local differential format. To do so, we start
recalling that, given any tensor field G defined on a region 2’ with normal n
and boundary 0, the divergence theorem of a tensor field states:

Gnda :/ div (G)dv (1.45)
o '

Applying this equality to Equation (1.38);, we get:

/bdv—i—/ tnda:/ bdv—i—/ O'nda:/ (b+dive)dv=0
U 89/ U 89/ /

and since this equality must hold for all ' C Q, we get the corresponding

local form of the equilibrium equation:
dive+b=0
(1.46)
0ij,j + bi =0

where the subscript comma indicates differentiation. Accordingly, this is a set
of three linear partial differential equations.

To derive the local form of the angular momentum balance, we start mul-
tiplying Equation (1.38)2 with an arbitrary and constant vector field h:

/,[(Xxb).h]dv—l—/(m,[(xxtn),h]da:

(1.47)
[tk by hldo s [ foxxom) b da=o
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Now, recalling the cyclic nature of the triple product, the definition of trans-
pose for a second-order tensor and the equality:

div (G'v) =v-divG +G: Vv

valid for any tensor field G and any vector field v, we may note that:

/(m/[(xxo-n)-h]da:/m, [(h x x) - on]da
:/ [O'T(hxx)-n]da
oY
= //div [O'T (h x x)] dv
://[(hxx)-diva—i—a:V(hxx)]dv
://[(xxdiva)~h+a:V(hxx)]dv
Accordingly, Equation (1.47) becomes:
/,[(xxb)-h]dv—i—//[(xxdiv o)-h+o:V(hxx)|dv=

/,[XX(diva+b)-h+a:V(hxx)]dv: (1.48)

//[O':V(hxx)]dv:0

where we used the balance of linear momentum, i.e. div o +b = 0. Noting
that Vx =1, we have:
Vhxx)=H

with H a skew-symmetric tensor such that: Hv = h x v for any vector v.
Moreover,
o:H= tr(c"H) =e; - o' He;

hence, Equation (1.48) reduces to:

/,[h'(ez‘XUei)]dvzo

with an implied sum on 4. Recalling that h and Q' are arbitrary, we finally
get:
e, Xoe; = 0 (149)
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To understand the real implication of Equation (1.49), we may consider the
kth component of the previous equation, expressing also the tensor o in com-
ponents:

ey - [ei X a’ei] =e; - [ei X (Uabea X eb) ei] =e; - [ei X UabeaIib]
= e - [6; X 04i€4] = [0ui (€ - € X €4)] = 04ikia
The above equaiton can be written in a more explicit format as:
Oqi — Oai (a 7& Z) (1.50)

or in compact notation as:
o=o" (1.51)

Therefore, the balance of angular momentum implies the symmetry of stress
tensor o. In conclusion, the local form of the balance equations are respec-

tively:
dive+b=0 in
o=ol in Q (1.52)
t=on on 0N

or in indicial notation
0y +bi=0 in
Oij = 0j in (1.53)
tl' = 045N on OQt

1.4.2 Dynamic equilibrium

Given a motion ¢ of a body B, the linear momentum, 1, and the angular
momentum, a, of any body portion ' C Q at time ¢ are defined as:

(Y, 1) = / pids
a(@, 1) = / x pit) o

where the angular momentum is computed with respect to a generic origin o

and with the mass density p uniform at any point in the body.
Deriving in time it follows that for every portion €)':

(1) = / piadu
a(Q',t) = / (x X pii) dv

(1.54)

(1.55)
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Recalling that for any portion ' C Q we can define a force resultant, r, and
a moment resultant, m, given respectively by:

rqu/bm+/ tnda
! BQ/

(1.56)
m(Q’):/,(xxb)dv+/89,(x><tn)da

it is possible to state the

Dynamic EQUILIBRIUM AXIOM. A deformable body is in equilibrium if and
only if the force resultant and the force momentum on each portion satisfy
the linear and angular momentum balance laws. Accordingly, a body B in a
configuration €2 is in equilibrium if and only if:

r(Q) =1(Q) v CQ
m(QY) =a() v C (1.57)

where we neglect to indicate time dependency and where 1 and a are the rate
of the linear and of the angular momentum, as defined in (1.55). Accordingly,
(1.57) can be rewritten as:

/ bdv+/ tnda:/ pudv VY € Q
/ 89/ /

//(XXb)dv”L/aﬂ,(XXt“)d“://(XXpﬁ)dv v c 0 (1.58)

Dynamic equilibrium equations

Consider first the law of balance of linear momentum (1.58);. Taking into
consideration relationship (1.43) and using again the divergence theorem (1.45)
one can rewrite the surface integral extended to the boundary 99’ as

/ tnda:/ O'nda:/ div odv
o0/ o !

so that Equation (1.58); becomes
/ [pi—b —divo]dv =0 (1.59)

Since the portion ' is arbitrary, the integrand in (1.59) must vanish. This
condition gives the local form of the equation of motion

div o +b = pua (1.60)
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For the cases in which all the given data are independent of time, we have
u = u(x), o = o(x) and the response of the body will be independent of time
as well and the equation of motion recovers the equation of static equilibrium
(1.46). Examining the law of balance for the angular momentum, we may
perform similar manipulations to those that lead to Equation (1.60) and find
again the symmetry of the Cauchy stress tensor:

g = O

Jij = 0ji

Remark 1.4.1 All the equilibrium considerations presented so far are relative
to the natural configuration where equilibrium should hold, hence they are all
relative to the current configuration 0 and written in terms of geometrical
quantities relative to the current configuration 2. However, thanks to the
invertibility of the map x = @(X) presented in Equation (1.14) and relating
the current configuration ) to the reference configuration €y, we can also write:

o equilibrium equations relative to the current configuration € in term of
geometrical quantities relative to the reference configuration €

o cquilibrium equations relative to the reference configuration 2y in term
of geometrical quantities relative to the reference configuration g

In particular, when a small deformation regime is considered, the distinction
between reference and current configuration may be ignored. In this case the
alternative forms of equilibrium listed above coincide.

1.5 Constitutive relation

Basic relations

We have so far described the equations of motion and the strain-displacements
relations within the framework of infinitesimal deformation. In component
form these equations are given by a set of nine partial differential equations:
three from the balance law and six from the strain-displacement relation (ad-
mitting the symmetry of €). Correspondingly, we have a total of fifteen un-
knowns represented by the six independent components of the strain and of
the stress and by the three displacement components. It is clear that six
additional equations are needed in order to have a well defined problem.
From physical considerations we may infer that the missing equations
should regard the behavior of the material constituting the body. This further



30 1. CONTINUUM MECHANICS AND ELASTICITY

set of equations are the constitutive equations. In the present section we will
be involved in summarizing the basic equations and properties related to linear
elastic materials.

A material body is said to be elastic if the stress is entirely determined by
the current state of deformation. Assuming the strain tensor € as a measure
of the local state of deformation we have

o =0l (1.61)
0ij = 0ij(€ap)

This position implies that the stress cannot depend on the deformation history
and, in particular, on the path followed to reach the actual state. However,
introducing the density of internal work done in going from an initial strain,
€, to a final strain, €7, on a path I'¢ as:

Wir:t = / o(e): de

it is in general possible that Wff:t may depend on the specific strain path I'e.
In the absence of internal constraints and under proper mathematical con-
ditions, Equation (1.61) can be inverted:

e=¢€(o)

(1.62)
€ij = 5z'j(0ab)

It is also interesting to consider an incremental format of relation (1.61), in
the form:
o =C'¢ (1.63)

where the superposed dot indicates a time derivative and C* is the tangent
elastic tensor defined as:

tg _ 99
C Oe

An elastic material is said to be linear if the stress and the strain are related
through a (linear) relation of the type:

(1.64)

o =Ce
(1.65)
0ij = Cijrign

where the fourth-order tensor C is termed the elastic tensor.
Given the symmetry of the second-order tensor €, we may write

0ij = Cijrieie = Cijikem
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Exploiting the symmetry of the stress tensor o, we have
0ji = Ciareir = Cjiriricr

which implies the following equalities
Cijrr = Cijik = Cjing = Cjipe

The above relation states that the elastic tensor which by definition relates
symmetric second-order tensors, possesses the the so-called minor symmetries

Cijrt = Cijik = Cjin

and thus presents, at most, 21 independent components.
In addition, the elastic tensor C is said to be positive definite if

€:Ce>0 Ve e Lin™™ (1.66)
while it is said to be strongly elliptic [60, 75] if
(a®b):C(a®b)>0 Va,beln (1.67)

Finally, C is said to be pointwise stable [60] if there exists a constant o > 0
such that

e:Ce>allel|® VeeLn™ (1.68)
Clearly pointwise stability implies, but is not implied, by strong ellipticity.
Moreover, pointwise stability is equivalent to pointwise positive definiteness,
under the assumption that C is continuous on €.

Inverting relationship (1.65), we may obtain the strain as a function of
stress

e=Ao (1.69)
and define the fourth-order compliance tensor A, inverse of C. Equivalently
A(Ce)=¢e Ve, el =¢
and

C(Ao)=€¢ Vo, ol =0
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Isotropic elasticity

A material that has no preferred directions in a way that it resists to exter-
nal agencies independently of its orientation is said to be isotropic [41]. The
property of isotropy for a linear elastic material reduces the twenty-one in-
dependent components of the elastic tensor to two and from a mathematical
standpoint amounts to say that the elastic tensor C presents also the so-called
major symmetries
Cijrt = Chij
In this hypothesis the elastic tensor admits the following representation [57]

C=XI®I) +2ul’ (1.70)

where the constants A and p are called Lamé moduli and depend on the ma-
terial. This corresponds to a linear elastic relation between stress and strain
in the form:

o = \(tr(e))I + 2ue (1.71)

Bearing in mind the previous definition and recalling the volumetric/deviatoric
splitting of the fourth-order identity tensor (cf. (1.10)), we may perform the
decoupling into volumetric and deviatoric parts of the elastic tensor as well.
Thus, the following relationship is derived

C= [)‘ (I ® I) + QN]II] = [(3)‘ + 2M)Hv01 + 2MHdev]
= [3K]Ivol + 2NHdev]

with 3K = 3\ + 2u, such that:

o = Ce = 3Ky + 2ulgev] €
= 3KIo1€ + 2ullgeve

Recalling the split of a second-order tensor into its volumetric and deviatoric
components (cf. (1.11)), we may write:

o=pl+s

1
e =01
grite

where p = (1/3)tr(o) and 6 = tr(e) are respectively the pressure and the
volumetric deformation, while s and e are respectively the stress and strain
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deviator. The uncoupled volumetric and deviatoric constitutive equations thus
read:

p=Ko (1.72)

s = 2ue
The scalar coefficient p is referred to as the shear modulus, while the material
coefficient K = (A+2/3p) is called the bulk modulus and represents a measure
of the ratio between the spherical stress and the change in volume [57]. The
shear modulus p is often denoted by G, especially in the engineering literature.
With the above specifications, the isotropic linear elastic constitutive equations
(1.72) can be rewritten as follows

p = Kb (1.73)
s = 2Ge (1.74)

where s and e are the deviatoric stress and strain, respectively. The quantities
p = 1/3tr(o) and 6 = tr(e) are associated to the volumetric part of the
stress and of the strain and are respectively called pressure and volumetric
deformation.

It is worth trying to see if it is possible to find another choice of coeffi-
cients that define the linear isotropic elastic behavior of a material. We may
try to find another set of parameters that play the same role as the Lamé
moduli coefficients, from studying the mechanical behavior of an isotropic lin-
ear elastic rod subjected to uniaxial stress. Suppose that the rod lies aligned
with the z1 axis and that it is subjected to a uniform stress 11 # 0, being
the remaining stress components zero. Limiting our investigation to the ra-
tios 011/¢11 and e€33/e11, or equivalently, £92/€17 we may define the following
material parameters

o11

Young’s modulus £ = —
€11

. , . €22
Poisson’s ratio v = ——
€11

which measure, respectively, the slope of the stress-strain curve pertaining
to the material which the rod is made of and the lateral contraction of the
rod. Physical and experimental considerations suggest that the preceding are
positive quantities. In what follows it will be seen how further restrictions,
induced by thermodynamic considerations, hold on the quantities £ and v.



34 1. CONTINUUM MECHANICS AND ELASTICITY

Using relation (1.70) and recalling the form of the stress and of the strain
tensors in pure tension

oir 0 0 11 O 0
[O’] = 0 0 O [8] = 0 £929 0
0 0 0 0 0 €33

it is possible to correlate the pairs {\, u} and {E,v}. Omitting the complete
calculation, one obtains

A
E = 7’“‘((1:/\2)’“‘) (1.75)
YY) (1.76)

With the above relation, it is possible to invert relationship (1.71) and obtain
a useful expression of strain in terms of stress involving F and p

e=FE'[(1+v)e—vtr(o)]] (1.77)

The above linear relationship between strain and stress, valid for isotropic
media, is commonly referred to as Hooke’s law. Applying the definitions of
pointwise stability and of strong ellipticity to the fourth-order elastic tensor
(see (1.67) and (1.68)), a set of bounds on the material parameters can be
derived for the material parameter Young’s modulus E [60]. These conditions
allow to state that a linear elastic isotropic material is

e pointwise stable if and only if > 0 and 3A + 2u > 0 or, equivalently, if

1
andonlyifE>Oand—1<u<§

o strongly elliptic if and only if 4 > 0 and A + 2u > 0 or, equivalently, if

1
andonlyifE>Oand1/<§0ry>1

1.6 Thermodynamic setting for elasticity

A common procedure in Mechanics of solids is to introduce a constitutive
model as a set of relations that hold from a thermodynamic standpoint [4, 57,
41]. Precisely, the most favorable context is within a thermodynamic theory
with internal variables. In this section, we present the linear elastic material
behavior in this fashion. The treatment of the elastoplastic case is carried out
in Chapter 2.
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Suppose that a material body is subjected to a body force b in its interior
and to a surface traction t upon its boundary. Analogously, the body will
be acted by thermal equivalents of the previous mechanical sources: a heat
source r per unit volume in the interior and a heat flur q across its boundary
unit area. The first law of Thermodynamics, which essentially is a balance of
energy statement, indicates that for any part €’ of the body €, the rate of
change of total energy plus kinetic energy equals the amount of work done on
that part by the mechanical forces plus the heat supply. Mathematically, the
law can be formulated in the form

d 1
— (e+—p||i1||2)dv:/b-1'1dv+/ tn~1'1da+/ Tdv—/ q-nda
dt Q/ 2 Q/ aQ/ / 89/

(1.78)

where e is the internal energy density, u is the velocity field, while 9 rep-
resents the boundary of Q'. The minus sign before the last integral in (1.78)
appears, since the heat flux vector q points outward the surface Q' as well as n.
The preceding formulation can be simplified applying the divergence theorem
to the term involving the surface traction which, invoking the symmetry of o,
becomes (cf. (1.52)3)

/ tn-uda:/ on-uda = / U:Vildv—i-/ dive - udv
89/ 89/ ! !
= /a:édv+/ dive - udv

Substituting the last result in (1.78) and recalling the equation of balance of
linear momentum (1.58), the first law can be rewritten as

d
— [ edv= / o :E&dv —|—/ rdv —/ q - nda (1.79)
dt Q/ Q/ / 89/

where it is implicitly assumed that € = e(). The local form of the above
balance law follows from the requirement that all the involved field variables
are sufficiently regular. This hypothesis allows to convert the surface integral
on 0 appearing in (1.79) using the divergence theorem. Thus we are lead to

/(é—a:é—r—i—divq)dU:O

which, for the arbitrariness of the portion €/, gives

é¢=0o:€+r—divq (1.80)



36 1. CONTINUUM MECHANICS AND ELASTICITY

It is useful to introduce also the notions of entropy n per unit volume or
entropy density. This notion is given through the absolute temperature 6 > 0.
Accordingly, it is assumed that the entropy fluz across the bounding surface
09 into a material body €' is given by

/ 0~ 'q - nda
o

while the entropy supplied by the exterior is

0~ trdv
o
The second law of Thermodynamics states that the rate of increase in entropy
in the body is not less than the total entropy supplied to the body by the heat
sources. The second law can thus be formalized as an integral inequality of
the form

d
— | ndv > / 0 trdv — / 0 'qnda (1.81)
dt Q/ ! aQ/

The local form of the second law can be derived with some calculations of the
same type of those carried out in finding the local form of the first law (1.80).
Thus we have

7> —div(0~'q) + 07 'r (1.82)

The inequalities (1.81) and (1.82) are known as the Clausius-Duhem form of
the second law of Thermodynamics.
Introducing the Helmoltz free energy 1, defined by

v=e—nb (1.83)
and recalling the local form of the first law (1.80), we may rewrite (1.82) as
v+nf—0c:€+0'q-VI<O (1.84)

Relation (1.84) is known as the local dissipation inequality.

Since the arguments of the subsequent sections will always refer to isother-
mal processes, it is convenient to specialize the previous fundamental laws to
such a case. Assume that the body temperature is uniformly constant and
that the reference material body does not experience any exterior heat supply.
Under these hypotheses, the local form of the dissipation inequality simplifies
to

p—o:€<0 (1.85)
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Linear elastic material

It is possible to give a characterization of the linear elastic material behav-
ior in the thermodynamic framework developed hitherto. In this sense, it is
customary to define a linear elastic material as one for which the constitutive
equations take the form

Y =1)(e) (1.86)
o=o(e) (1.87)

that is with the free energy and the stress field depending only on the strain.
Dependence on time is also dropped. It is assumed that the functions ap-
pearing in (1.86) and in (1.87) are sufficiently regular with respect to their
argument so that they can be differentiated as many times as required.
Substituting (1.86) into the local dissipation inequality, it is immediate to

derive
o .
—_—— e < .
< e a) E<0 (1.88)

Hence, admitting that inequality (1.88) holds for all &, the stress is expressed
through the Helmoltz free energy v as

_

The stress-strain relationship (1.65), which is the characterizing feature of
linear elastic materials, is obtained as a special case of Equation (1.89), when
the free energy is a quadratic form of the strain, i.e.

Y(e) = %s : Ce (1.90)

According to the previous definition, v represents an elastic potential for the
state variable o. In component form we may write

1

P(e) = §Cijkl5ij5kl (1.91)

The above equation implies a relationship between the elastic tensor C and
the elastic potential . of the following type

_ %)
- Oede

(1.92)
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which holds if the elastic tensor possesses the major symmetries, already in-
troduced in Section 1.5 for discussing the symmetry properties of the isotropic
elastic tensor. Namely, it is required that

Cijkt = Chiij (1.93)

The above condition grants the existence of the strain energy function [57] and
must be fulfilled for relation (1.90) to be valid.

1.7 Initial boundary value problem of equilibrium
in linear elasticity

Following the previous arguments, it is possible to formulate the mathematical
problem that describes the deformation and the stress state of an isotropic
linear elastic material body under an assigned set of external actions. For
simplicity, the treatment is limited to isothermal static processes in which
the effects of temperature variations and of heat flux exchanges are neglected.
This problem is modeled by a set of partial differential equations posed on the
domain €2 plus a set of boundary conditions assigned on the boundary 02 of
the body and a set of initial conditions.

Given a body with current configuration  C R3, we indicate for com-
pactness its boundary 9Q with I' such that ' =T'p UT'g, with TpNTg = @.
Suppose that, for ¢t € [0,7T], a body force b(x,t) is assigned in 2, a displace-
ment field u(x,t) is assigned on I'p and a surface traction t(x,t) is assigned
on ['g. Initial values for the displacement u(x,0) = ug and the velocity field
v(x,0) = v( are known data as well. With the above specifications, the for-
mulation of the initial boundary value problem for the isotropic linear elastic
body under consideration is: find the displacement field u(x, t) which, for any
x € Q and any ¢t € [0, 77, solves the

e cquation of dynamic equilibrium

dive +b = pu (1.94)
e strain-displacement relation
1 T
g(u) = 3 Vu+ (Vu) (1.95)

e constitutive relation

o =Ce (1.96)
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and satisfies the

e boundary conditions

u=1u on I'p and on=t on Iy (1.97)

e initial conditions

u(x,0) =up(x) and u(x,0)=10p(x) (1.98)

Equations (1.94)-(1.98) are known as governing equations of the linear elas-
tic initial boundary value problem. Taking the displacement u as the pri-
mary unknown, the problem can be reduced to one singular partial differential
equation, by solving successively for the stress and the strain. With these
manipulations, the equation of motion becomes

div (Ce(u)) + b = pi (1.99)
while the second boundary condition in (1.97) is replaced by
(Ce(u))n=t on Iy (1.100)

When the problem data a(x,t), b(x,t) and t(x,t) are such that the accelera-
tion term can be omitted in (1.99), the problem is defined as quasi-static [73].
Accordingly, the statement of this problem becomes: find a displacement field
u(x,t) that satisfies the equation of equilibrium

dive +b =0 (1.101)

and Equations (1.95)-(1.97).

A formulation of equilibrium in terms of the displacement field u only can
equally be obtained for the quasi-static initial boundary value problem, leading
to Equation (1.99) with the right hand side equal to zero.

1.8 Thermodynamics with internal variables

The continuum thermodynamic theory briefly presented in Section 1.6 is a suit-
able tool for the discussion of elasticity and Thermoelasticity, but the same
does not hold true when more “complicated” mechanic phenomena are taken
into consideration. For example, in order to model physical processes involv-
ing chemical reactions, it often results necessary to equip the thermodynamic
model with a finite number of internal variables that serve to account for the
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evolution and advancement of each single reaction. These variables, which are
intended to describe irreversible processes, may be regarded either as scalar
or tensorial entities. A similar situation arises if the thermodynamic frame-
work presented so far is extended to the mathematical modeling of mechani-
cal elastoplastic phenomena. In this section a short introduction is given on
the argument, in order to present an extension of the thermodynamic theory
adopted in Section 1.6. In this case the theory is referred to as Thermodynam-
ics with internal variables and may be conveniently adopted as a plasticity
theory. More information regarding this kind of approach and its mathemati-
cal foundations may be found in [28, 36, 37, 40].

The first and second laws of Thermodynamics as stated in the forms (1.80)
and (1.82) remain valid, as well as the thermodynamic hypotheses of isothermal
process with no heat flux nor change in temperature in the body.

We consider a material for which the Helmoltz free energy and the stress are
functions of the strain and of a particular set of strain-like internal variables,
collected in the generalized m-component vector & = (§;), (1 < k& < m).
These quantities may be regarded either as scalars or tensors, depending on the
particular elastoplastic model under consideration. The constitutive equations
are thus of the form

(0 :¢(€a£) :¢(s’£1a"'7£m) (1102)
oc=o0(e € =o0(&,...&,) (1.103)

Differing from elasticity, in which the loading history of the material is not rele-
vant, modeling inelastic phenomena implies introducing constitutive equations
in rate form, i.e. involving time derivatives of the internal variables. These
equations are intended to define the irreversible plastic effects in terms of the
internal variables. Therefore, the model represented by Equations (1.102)-
(1.103), is endowed with the following evolutive constitutive equations

ék :Bk(e’g) :ﬁk(saﬁla“'aﬁm) (1104)

In the next chapter, Equations (1.104) will be specialized for some significant
case models. Introducing (1.102) and (1.103) into (1.84) it is easy to derive

o\ . o,
<£—0> .€+a—£k-£k§0 (1'105)

which, recalling the arbitrariness of the strain rate €, gives

oY

(o
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In correspondence to the internal variables &, (1 < k < m), the thermody-
namic forces or thermodynamic affinities x5, (1 < k < m) are defined by

O

Xg=—— 1< kE<m 1.107
=, (1.107)

and are said to be the conjugate to the internal variables &;,. The thermody-
namic forces are collected in the generalized m-component vector x = (x),
(1 < k < m) and may be regarded either as scalars or tensors, depending on
the particular elastoplastic model under consideration. Obviously, the kth in-
ternal variable &, and the kth thermodynamic force x;, have the same algebraic
dimension.

For later use we define the scalar product between the generalized internal
variable and thermodynamic force vectors

X E€=xp:& 1<k<m (1.108)
In agreement with relations (1.105) and (1.106), it is found that

X €=xp: 6, >0 (1.109)

The 1.h.s. quantity in the above inequality is a scalar product between force-
like variables and strain rate-like variables, which can be interpreted as a rate
of work dissipated in the time unit, acted by the thermodynamic forces and
due to the time variation of those agencies modeled by the internal variables.
In the following chapter, it is shown that inequality (1.109) plays a key role in
the mathematical formulation of elastoplasticity.
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Chapter 2

Elastoplasticity

Introduzione

Questo capitolo presenta i lineamenti essenziali del comportamento meccanico
del materiale di tipo elastoplastico e della teoria matematica che modella tale
comportamento. Il capitolo risulta suddiviso in tre distinte sezioni.

La Sezione 2.2 ¢ dedicata al noto modello elastoplastico unidimension-
ale. La discussione ¢ intesa, in questo contesto, ad affrontare i caratteri tipici
del comportamento elastoplastico nel semplice caso di una provetta di ma-
teriale elastoplastico soggetta a prova di trazione monoassiale. Viene anche
presentata, per il semplice caso monoassiale, la modellazione secondo la teoria
termodinamica a variabili interne introdotta nel Capitolo 1.

Lo studio di un modello elastoplastico unidimensionale € presentato onde il-
lustrare alcune caratteristiche fondamentali del comportamento elastoplastico
riscontrabili nel caso tridimensionale, mantenendo pur sempre una semplice
trattazione.

La Sezione 2.3 concerne il modello elastoplastico tridimensionale, che viene
sviluppato mediante generalizzazione dei concetti introdotti nella sezione prece-
dente. In particolare, vengono presentate le equazioni del modello elastopla-
stico tipo Jo, o di von-Mises, ad incrudimento lineare isotropo e cinematico e
ad incrudimento non lineare cinematico.

La Sezione 2.5 puo considerarsi come un capitolo a seé stante. E, infatti,
dedicata alla riformulazione delle leggi costitutive della plasticita mediante gli
strumenti matematici essenziali della Analisi convessa. I risultati e gli sviluppi
analitici presentati in questa sezione costituiscono il punto fondamentale per la
analisi del problema a valori iniziali e dati al bordo dell’equilibrio elastoplastico
affrontata nel successivo Capitolo 3. I concetti matematici sviluppati nella
Sezione 2.5 sono affiancati dai richiami di Analisi funzionale e di Teoria degli
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spazi di funzioni fatti nella Appendice A.

La trattazione sulla teoria della elastoplasticita presentata in questo capi-
tolo segue, tra gli altri, anche alcuni testi classici sull’argomento quali [41,
69, 70]. La dissertazione sulla riformulazione analitico-convessa & presentata
traendo spunto da [41].

2.1 Introduction

This chapter is intended to present some fundamental concepts on the classical
elastoplastic material behavior and on the mathematical modeling of such
phenomenon. The chapter is divided in three main sections.

In Section 2.2 we address a well known one-dimensional elastoplastic model.
The discussion in this context is intended to offer the basic features of the
elastoplastic material response in the simple case of a uniaxial test. Also the
first elements of the mathematical modeling of an elastoplastic phenomenon
in terms of the thermodynamic theory with internal variables addressed in
Chapter 1 are presented. The study of a uniaxial model is accomplished in
order to illustrate peculiarities of the model at hand that are mirrored in the
three-dimensional case yet maintaining the treatment as simple as possible. In
Section 2.3 we address the three-dimensional elastoplastic model. The model
is developed as a generalization of the concepts enlightened in the previous sec-
tion. In particular, the Js, or von-Mises, elastoplastic constitutive model with
linear isotropic and kinematic and nonlinear kinematic hardening mechanisms
is addressed in detail.

Section 2.5 represents a chapter of its own at some extents. It is in fact
dedicated to the recasting of the mathematical theory of elastoplasticity an-
alyzed so far within a convex-analytic context. The fundamental derivations
presented in this section result the key point for the analysis of the initial
boundary value problem of elatoplastic equilibrium that is the object of the
next Chapter 3. The mathematical concepts used in this section are sup-
ported by the definitions and the fundamental results on functional analysis
and function spaces which are reported in Appendix A at the end of the work.

The treatment of classical elastoplasticity exposed in this chapter follows
[41, 69, 70]. The convex-analytic framework for the elastoplastic constitutive
relations is derived by [41].
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Figure 2.1: (a) Uniaxial tension of an elastoplastic rod; (b) Stress-strain
curve with hardening; (c) Stress-strain curve with hardening and softening;
(d) Stress-strain curve with hardening and stiffening; (e) Stress-strain curve
for a typical mild steel; (f) Stress-strain curve for an elasto-perfectly-plastic
material

2.2 A one-dimensional elastoplastic model

Basic features of a one-dimensional model

We begin with the study of a simple one-dimensional model which enlightens
the basic features of the elastoplastic behavior. This makes it easier to discuss
the three-dimensional case as a generalization of the concepts addressed in the
one-dimensional context.

Let us consider for example the uniaxial stress state of the thin bar illus-
trated in Figure 2.1(a) subjected to uniform distributions of forces per unit
area 0 = 011 applied at its ends. We suppose to report the graph of stress o
versus strain € = £17 in order to record the history of behavior during a loading
in which, for instance, the applied force is gradually increased. The observer
may thus encounter different situations as represented in Figures 2.1(b)-(d).
All the cases illustrated in Figures 2.1(b)-(d)) have common peculiarities which
characterize the elastoplastic behavior. In fact, a relationship between stress
and strain of the form represented by the branch OA can be observed in Fig-
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ures 2.1(b)-(d), up to a stress value oy, corresponding to a strain level ¢, .
If the stress o is reset to zero from any level o < o, the material recovers its
strain completely. This part of the curve is known as the linear elastic path in
that upon unloading the material returns to the unstressed and undeformed
state and the relationship between stress and strain is linear.

Then, as the stress increases, one observes a deviation from the linear
relation between stress and strain. This part of the curve represents the plastic
or, more generally, the inelastic behavior of the material. A common feature
along the path past the deviation is a decrease in the slope of the stress-
strain curve as represented in Figure 2.1(b). Such a circumstance is known as
hardening behavior. As the experiment proceeds, a variety of phenomena may
be encountered. In Figure 2.1(c), for instance, one finds that, after a strain
value € is reached, the curve slope progressively diminishes up to a negative
value and the plastic behavior is referred to as a softening one. This particular
behavior is typically viewable in materials such as soil and concrete, which as
it is well known are elastoplastic materials. In Figure 2.1(d), past a first path
showing hardening, the slope of the stress-strain curve progressively increases.
This behavior is known as stiffening and is typical of some metallic materials.
The threshold between elastic and inelastic behavior is characterized by the
stress level o, o, known as initial yield uniazial stress.

In practice, a material can show a stress-strain curve which encompasses
more than one of the single effects analyzed above. For instance, consider the
stress-strain curve of a typical mild steel, given in Figure 2.1(e). It is evident
that such a material presents a complex series of elastoplastic features. In the
range OA it shows linear elastic behavior which upon loading is followed by a
sudden drop of the stress along AB, with no significant increase of elongation.
After that, the stress-strain curve BC presents an almost zero slope which
afterwards increases following CD and finally decreases along DE. In Figure
2.1(f) a simple idealization of the real behavior just illustrated is represented:
the stress-strain curve in this case is usually referred as the one of an elasto-
perfectly-plastic material in that it is the sequence of a pure linear elastic part
followed by a purely plastic branch with no hardening.

A proper feature possessed by elastoplastic materials can be appreciated
in Figure 2.2(a) which shows that the response in compression does not nec-
essarily mirror the one observed in tension. In fact, the initial compressive
uniaxial stress 0;’0 may differ in magnitude from the tensile value o, o as well
as the post-elastic part of the stress-strain curve (o < 0;70) may not equal the
curve pattern for o > oy 0.

Another distinctive character of plastic materials is shown in Figure 2.2(b)
and is irreversibility or path-dependence. By this it is meant that, unlike the
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elastic materials, the original zero stress-strain state is not recovered upon re-
moval of applied forces, once the yield threshold has been passed. As can be
inspected in Figure 2.2(b), if the direction of loading is inverted at o, 1 > 0y
(point B), the path followed is not the original curve BAO (this case would ac-
tually imply simple nonlinear elastic behavior). Instead, the material behaves
elastically, but on the stress path represented by the straight line BC, parallel
to OA. This phase is referred to as elastic unloading; its peculiarity relies in
the fact that after the loading has been completely removed the material shows
a residual strain which is not elastically recovered (point B’). A new elastic
behavior path is seen if the stress is further decreased down to the yield stress
value O'Iy71, which in general differs from the uniaxial compressive initial yield
stress 03’170. Finally, the curve follows the branch CD if the stress were to be
decreased more.

Thus we may recognize an initial elastic range, i.e. the interval & =
(O‘;vo, 0y,0), bounded by the initial yield surface given by the set By = {0;70, Ty0}-
The initial elastic range & includes the unstressed, undeformed state (the ori-
gin). As a consequence of plastic flow, subsequent expanded and shifted elastic
ranges, such as the interval & = (J;yl,dy’l), bounded by the yield surface
By = {0, 1,041}, can be observed. These new configurations of the elastic
range are reached only as a result of plastic deformation having taken place,
i.e. as a consequence of irreversible phenomena.

It is the above feature of irreversibility that sets elastoplastic materials
apart from elastic ones, since it implies that no longer a one-to-one relation-
ship exists between stress and strain. In order to compute the state of stress
corresponding to a given strain level it is necessary to know the loading history
prior to the actual state, as shown by Figure 2.2(b).

A further feature that is peculiar of the elastoplastic behavior is rate-
dependence. Repeating the uniaxial test shown previously with different load-
ing application rates, it is found that the elastic response is unchanged, while
the plastic response (0 > 0y,0) actually differs in a manner such as the one
shown in Figure 2.3(a). Nevertheless, the elastoplastic theory that is develo-
ped in the following section in general omits to consider this effect. Thereby, in
this work, attention is restricted to materials for which rate-dependence is not
a significant phenomenon, or materials for which the loading histories occur at
sufficiently low rates that rate-dependent effects can be neglected. The above
considerations clearly indicate material nonlinearity as a fundamental quality
of plastic behavior.

The irreversible phenomenon of plastic deformation analyzed at the micro-
scopic scale enlightens two typical ways of material deformation, characteriz-
ing, respectively, a recoverable elastic part and an irreversible plastic part of
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Figure 2.2: (a) Nonsymmetric uniaxial behavior in tension and compression;
(b) Path dependence of the plastic behavior
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Figure 2.3: (a) Loading rate dependence of plastic behavior; (b) Additive strain
decomposition into elastic and plastic parts for an elastoplastic material with
nonlinear hardening; (c¢) Additive strain decomposition into elastic and plastic
parts for an elastoplastic material with linear hardening
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the total deformative effects [41]. Following this concept and the evidence of
residual plastic strain (see Figures 2.3(b)-(c)), the material inelastic behavior
is generally represented with an additive strain decomposition [14] of the form

e=¢e%+¢&P
where

e =€ is the so-called elastic strain, defined as the part of the strain related
to the stress through an elastic relation or as the part of the strain which
is function only of the stress, i.e. £ = (o)

e cP is the so-called plastic strain, defined as the difference between the
total strain and the elastic strain, i.e. eP = ¢ — &°

The elastic strain €° is still given by the Hooke’s law
0= Fe® =FE(e —€P) (2.1)

where E is the Young’s modulus. The plastic strain €P is instead to be deter-
mined with account of the stress history. The elastoplastic problem can thus
be formulated in the following way: given the stress state and the history of
the material point, express the plastic strain rate as a function of stress and
of the loading history. This approach induces a consistent representation of
the elastoplastic behavior with the stress-strain curve of Figure 2.3(c) which
shows the additive decomposition of the strain, the shifting of the elastic range
in terms of stress (i.e. the hardening mechanism) and the path dependence of
the plastic strain. In the following we present a simple uniaxial model able to
describe this kind of elastoplastic behavior.

Constitutive law for the one-dimensional model

We initially refer to an elasto-perfectly-plastic material for which the ini-
tial tensile and compressive uniaxial yield stresses coincide in magnitude, i.e.
0,0 = —0y0 (see Figure 2.4). Then it is assumed that ¢, e” and o are functions
of time in the interval [0,7] C R. In particular we let

e? [0,T] — R

An elastoplastic flow takes place only if €? # 0. To characterize this circum-
stance, for the model represented in Figure 2.4, it is possible to draw the
following considerations.
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Figure 2.4: Stress-strain curve for an elasto-perfectly-plastic material

First, the stress is constrained within the closed interval S = [0y, 0]
which represents the union of the elastic region &£ plus the yield surface B
and can be regarded as the region of admissible stresses. This set is defined
through a scalar function ¢ = ¢(o) known as the yield function. We have

S={oceR: ¢(0) =|o|] —0y <0}

In general, ¢ depends on the stress and on the vector of thermodynamic forces
(cf. (1.107)) and can be further modified to account for hardening phenomena.
With the above definition at hand, we may distinguish between the following
cases

¢ <0 <= elastic range
¢ =0 <= elastoplastic threshold

Referring to the model illustrated in Figure 2.4, the plastic strain evolves
according to

»<0
e =0 if { or (2.2)
¢=0 and<ﬁ<0
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and
=0
e? #£0 if ¢ and (2.3)
$=0

Case (2.2) implies an elastic response of the material, according to which we
have

o=FE¢

while the plastic strain rate is zero. Because, by assumption, stress states o
such that ¢(o) > 0 are not admissible and € = 0 for ¢(o) < 0, a change in
eP can take place only if ¢(c) = 0. When condition (2.3) is met the material
experiences plastic flow in the direction of the applied stress, with constant
rate. This equals to say that (see Figure 2.4)

>0 ifo=0,>0
e ={ or (2.4)
-4 <0ifo=—-0,<0

It is noted that the two cases shown by (2.4) can be recast into the following
single equation

el =4sign (o) iff ¢(o) =|o] -0y, =0 (2.5)

where the scalar 7, called the plastic multiplier, is always nonnegative. Whether
4 > 0 is actually positive or zero depends on further conditions involving the
applied strain rate ¢ which are known as loading/unloading conditions.

It is possible, with the above positions, to show that the evaluation of
eP : [0,7] — R can be completely described, for any admissible stress state
with the single evolutionary Equation (2.5) provided that 4 and o are restricted
by certain unilateral constraints. First, it is noted that ¢ must be admissible,
i.e. 0 € §, and 4 must be nonnegative by assumption. Consequently

5 >0
P(o) <0

Second, by assumption, ¥ = 0 if ¢(c) < 0. On the other hand, P # 0 and,
therefore, 4 > 0 only if ¢(0) = 0. These observations imply the conditions

(2.6)

Plo) <0 = §=0
>0 = ¢(0)=0
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and the requirement that

6(0) =0 (2.7)

The conditions (2.6)-(2.7) express the physical requirements for the model
under consideration that the stress must be admissible and that the plastic
flow, in the sense of nonzero plastic strain rate éP # 0 can take place only
when the stress lies on the yield surface B. These conditions (i.e. (2.6)-(2.7))
are classical in the convex mathematical programming literature [58] and go
by the name of Kuhn-Tucker conditions.

A further relation which enables to determine the actual value of 4 at
any given t € [0,7] is known as consistency or persistency condition. First,
an introductory observation is in order. Let {e(t),eP(¢)} be given at time
t € [0,T], so that o(t) is also known by the elastic relationship (2.1), i.e.
o(t) = E[e(t) — €P(t)]. Assume that we prescribe the total strain rate £(t) at
time #. Further, consider the case where o(t) € B <= ¢(t) = ¢(c(t)) = 0 at

time ¢. Then, it follows that ¢(t) < 0, since should ¢(¢) be positive it would
imply that ¢(t + At) > 0 for some At > 0, which violates the admissibility

condition ¢ < 0. Further, we specify that 4 > 0 only if q%(t) =0andset ¥ =0
if q%(t) < 0, that is, dropping the hat to simplify the notation, we set

>0 = ¢=0
p<0 = 4=0

We are left with the following condition

46(0) =0 (2.8)

which is known as consistency condition in that it corresponds to the physical
requirement that for éP to be nonzero (i.e. 4 > 0) the stress point o € B must
“persist” on B, so that ¢(o(t)) = 0.

For the constitutive model under examination, once the condition (2.8)
holds, the expression of 4 takes a particular simple form. Applying the chain
rule and considering (2.1) and (2.5), we have

S TS T
gb—a—UE(e—a)—a—UEe—'ya—aEagn(a) (2.9)
It is noted that
0 0
Olo] = sign (o) = o = sign (o) (2.10)

Oo Oo
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and that, being [sign (¢)]? = 1, (2.9) and (2.10) imply

¢ =0= 4 =¢Esign (0) (2.11)
Substitution of (2.11) into (2.5) yields the result
P =¢ for ¢(0) =¢(0) =0 (2.12)

which essentially affirms that the plastic strain rate equals the applied strain
leading to a rate form of the constitutive equation (cf. (1.63)) of the type

6= {Ea ify=0 (2.13)
0 if >0
which allows to define the continuous elastoplastic tangent modulus as the
constant scalar F.
The flow rule given by (2.5) is related to the yield condition expressed by
the function ¢ = |o| — o, through the potential relationship

P4 2
e =195 (2.14)

since the second of (2.10). In the three-dimensional theory, for the case in
which (2.14) holds, one speaks of an associative flow rule and of associative
elastoplastic model.

As a next step in our presentation of the one-dimensional mathematical
theory of elastoplasticity, we examine an enhancement of the model discussed
so far which illustrates an effect experimentally observed in many metals, called
strain hardening. For the perfectly plastic model, the plastic flow takes place
at a constant value of the applied stress o, such that |o| = o, leading to the
stress-strain response shown in Figure 2.4. A strain-hardening model, on the
other hand, leads to a stress-strain curve of the type idealized in Figure 2.5(a)
or Figure 2.5(b). The essential difference between the two models lies in the
fact that for perfectly plastic materials the closure of the elastic range, i.e. the
yield surface B, remains unchanged, whereas for the strain hardening model B
expands with the amount of plastic flow in the system. A mathematical model
that capture this effect is considered here.

Our basic assumptions on the additive strain decomposition and on a
Hooke-type elastic relation are still valid. To illustrate the mathematical struc-
ture of strain-hardening we consider the simplest situation illustrated in Figure
2.5(a), which shows an expansion of the elastic range that obeys two condi-
tions:
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(a) The hardening is isotropic in the sense that at any state of loading, the
center of £ remains at the origin.

(b) The hardening is linear in the amount of plastic flow (i.e. linear in |£P|)
and independent of sign (¢P).

The first condition leads to a new yield function of the form
¢(o,x) = lo] = oy(x) = lo] = (y,0 + Hisof”) (2.15)

where the thermodynamic force x = —H;s,€°. The constant H;s, depends on
the material and is called the isotropic hardening modulus. The variable P is
a nonnegative function of the amount of the plastic flow called accumulated
plastic strain and is defined according to é” = |¢P|. The variable & plays the
role of a strain-type internal hardening variable. The flow rule in terms of
plastic strain, the Kuhn-Tucker complementarity conditions and the consis-
tency conditions expressed respectively in the forms (2.11), (2.6)-(2.8) remain
unchanged. With some developments analogous to the ones carried out for the
perfectly plastic constitutive model, it is possible to express the plastic rate
parameter 4 in terms of the total strain rate. Thus we have

. . sign (0)E¢
¢=10 V=L (2.16)
while the rate form of the constitutive relation becomes
E¢ if y=0
o= EHiso ©f A 0 (217)
—— ¢ i >
E + Hiso 7

In this case the continuous elastoplastic tangent modulus consists of the scalar
EHiso
E + Hiso.

A further refinement of the hardening mechanism is concerned with kine-
matic hardening. This effect which is of particular interest for metals can be
used alone or in conjunction with isotropic hardening and provides an im-
proved means of representing the behavior of metals under cyclic loading.
The basic phenomenological law is credited to Prager [66] with subsequent
improvements of Ziegler [78]. Within the present one-dimensional context the
model can be illustrated as follows. In many metals subjected to cyclic load-
ing, it is experimented a shifting of the yield surface in the direction of the
plastic flow. Figure 2.5(b) reproduces an idealization of this hardening be-
havior closely related to a phenomenon known as the Bauschinger effect [57].
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A simple phenomenological model that captures the aforementioned effect is
constructed by introducing an additional internal variable which is indeed the
plastic strain to which it corresponds a thermodynamic force « referred to as
the backstress. The backstress defines the actual location of the center of the
yield surface and enters the form of the yield function as a shifting stress term,
ie.

¢ =¢(o,a) =|oc—a]—oy (2.18)
According to Ziegler, the evolution of « is defined by
& = Hyine? (2.19)

where Hy;, is called the kinematic hardening modulus and is a constant de-
pending on the material. Usually the variable ¥ = ¢ — « is introduced and
called relative stress. In this way the yield function takes the form

P(X) = |Z] = oy (2.20)

which will be recalled in the following section in the three-dimensional context.
The addition of the Kuhn-Tucker conditions of the form (2.11) along with a
consistency condition analogous to (2.6)-(2.8) completes the formulation of the
model with linear kinematic hardening under consideration. In the present
case it is found that

sign (X)Ee€

— b= L = Dol AT 2.91
p=0p=0=7% . (2.21)

which implies the following rate constitutive equation

FEe ify=0
=0 Bl . . (2.22)
—_—c¢c 1 >
E+Hyn
admitting ﬁ as the continuous elastoplastic tangent modulus.
kin

In the case where both linear isotropic and kinematic hardening mecha-
nisms are considered, we obtain a yield function of the form

¢(E’ X) = |E| - (Uy,O + Hisoép) (223)
with a combined relations for the plastic multiplier given by:

b= d=0 5 sign (X)Ee (2.24)
= = = = .
7 E + Hiso + Hkm
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Figure 2.5: (a) Stress-strain curve for linear isotropic hardening; (b) Stress-
strain curve for linear kinematic hardening

The rate form of the constitutive equation reads

E¢ if y=0
0= E(Hiso + szn) . e . (225)
g if4>0
E+ Hz'so + szn
E(Hiso + szn)
and the continuous elastoplastic tangent modulus becomes .
8 E + Hiso + szn

2.3 Three-dimensional elastoplastic behavior

2.3.1 Thermodynamic foundations of elastoplasticity

The stage is ready for presenting the theory of elastoplasticity in the three-
dimensional case. This is achieved by setting up a generalization of the basic
features of the one-dimensional elastoplastic behavior discussed in the previous
section. There are more complex features, not appearing in the uniaxial situa-
tion, that are appropriately incorporated in this part of the development. Since
we are “constructing” the constitutive model, in what follows we present each
specific feature as an independent ingredient. The aim is to cast the elasto-
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plasticity theory within the Thermodynamics with internal variables setting
initially presented for elastic materials in Section 1.8.

Isothermal behavior

In the theory in argument it is assumed that all transformations are isothermal,
i.e. such that thermal effects as temperature variation or flux of heat are
negligible.

Rate-independence

The theory of plasticity developed in the following sections refers to a quasi-
static transformation (see Section 1.7) of a material body. In other words, the
material body transformation considered takes place sufficiently slow so that
the inertial term appearing in Equation (1.94) is negligible. Moreover, our
discussion is here limited to the case of a body undergoing a sufficiently slow
process such that the rate independent material response can be taken as a
good approximation of the real behavior.

Primary variables

In order to apply the internal variables thermodynamic theory (see Section 1.8)
to the context of elastoplasticity herein studied, it is appropriate to identify
the variables used to describe the constitutive behavior of the material. A
distinction following from the theoretical framework is also made between
primary variables and internal variables which, in turn, may have a kinematic
nature or a force-like nature.

The primary or fundamental kinematic variable is the strain &, which, as
already pointed out in Section 2.2, can be decomposed into two parts: the
elastic strain €°, due to the elastic behavior of the material and the plastic
strain €P, which represents the inelastic or irreversible part of the deformation
process. Along with these variables, the theory accounts for a set of inter-
nal variables & = (&) (1 < k < m) which are intended to describe internal
kinematic irreversible phenomena such as, for instance, material hardening.
It is to be remarked that the vector of strain-like internal variable can be in
general constituted of objects of different nature, namely second-order tensors
and scalars. For example, in the case in which the model presents three in-
ternal variables which are, in order, two scalars and a second-order tensor,
the generalized vector of the internal variable is defined as & = (£1,&2,€3). In
general we may define the space of the generalized vectors £ as

Z—{€=(&): & €L, 1<k<m)
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In compact notation and generalizing the above definition, one may refer to
the kinematic variables representing irreversible internal phenomena with the
ordered pair P = (P, &) called generalized plastic strain.

The choice of not grouping the plastic strain within the internal variables
class turns out to be a consequence of the thermodynamic theory adopted,
even if there are instances in which the specific model is so simple that € can
be identified as an internal variable. This is for instance the case of pure linear
kinematic hardening behavior (see Section 2.3.2).

Following thermodynamic arguments, the stress-like primary and internal
variables are the thermodynamically conjugates of the kinematic variables.
Then, we assume as stress-like primary and internal variables, respectively,
the stress o and the internal forces x = (x;) (1 < k <'m). According to the
above reasonings developed for the variables &€, the forces x are defined in the
space

T={x=(x): X €Lin®™" 1<k<m}

Hence, the ordered pair S = (o, x) is collectively referred to as generalized
stress. In this fashion, it is found that the scalar product S - P, defined as:

S~P:a:ép+x'ézaiép+inék (2.26)

represents either a rate of work done or the dissipation taking place as a result
of plastic deformation. In this sense we consider S and P thermodynamically
conjugate variables of the model under consideration.

Thermodynamic assumptions

As explained in Section 1.8, we assume in our developments that the free
energy and the stress are functions of the strain and of the strain-like internal
variables, which are thus regarded, in the following, as driving variables

¢ =19(e,§) (2.27)
o=o0(f) (2.28)

Moreover, in what follows, it is deduced that the free energy can be equivalently
written in terms of the elastic strain and of the internal variables.

In order to account for nonlinear irreversible effects, the model takes into
account an evolution law of the strain-like internal variables in terms of the
dependent variables

§£=p0(8) (2.29)
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Recalling again the derivations of Section 1.8 it is found that, as a consequence
of the second law of Thermodynamics, the stress is related to the free energy
function as

_

= 2.
o= (2.30)

Furthermore, the internal forces x = () are defined as conjugate quantities
to the internal variables in the following sense

oY

Xk =7 1<kE<m 2.31
T (2.31)

or, by recognizing that these variables enter the expressions xj : E L, appearing
in the second law of Thermodynamics (1.105), as internal dissipation contri-
butions. The variation

X €=x1:& 1<k<m (2.32)

which is defined as internal dissipation results nonnegative (cf. (1.109)).

Additive decomposition of strain

It is possible to show that the strain decomposition into elastic and plastic
parts can be viewed as a consequence of the thermodynamic framework herein
adopted. The approach followed is similar to the one presented in [56]. We
start by introducing the Gibbs free energy function

ho,§)=0c:e—1 (2.33)

defined through a Legendre transformation of the Helmoltz free energy, assum-
ing the stress as the independent variable. The relation conjugate to (2.30)
is

Deﬁning the fOurth—Order tensors
A=—: B,=— 1<k< 2.35
2 ) k aék ) = =m ( . )

the strain rate is given by

E=A6+Brf, 1<k<m (2.36)
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It is known that for crystalline materials the elastic compliance matrix A is
independent of irreversible processes and hence its dependence on the variables
& can be neglected [57]. Assuming A = A(0), it follows that By = B (§),
1 < k < m, since

0 Oe 0 8&:_6Bk

- - - _ " < k<
0= 5,90 000E, 0o LSk=m

It is then possible to decompose additively the strain tensor in the form
e =€%o) +€P(§) (2.37)

in which the elastic strain €® depends only on the stress and the plastic strain
eP is a function of the internal variables only. Integrating in time Equation
(2.36), we obtain the above strain quantities as

t o(t)
ee(a)(t):/o A(a’(s))d’(s)dsz/o A(o)do

and
t . &(1)
e7(,)(t) = /0 By (€ () (s)ds = / By (€)deé,

0

In the case where A is independent of o, the elastic strain is given as a linear
function of the stress by

e*=Aoc or o=Ce (2.38)

and it is clear from the inspection of relation (1.69) that the fourth-order
compliance tensor A is the inverse of the elastic tensor C.

Free energy as a function of elastic strain and internal variables

Since Equations (2.30) and (2.37) imply that

oec  O0e 0e" 09T
dc 0o 0do  Oo

recalling a multivariable calculus theorem [41], we may assert the existence of

a scalar potential function h® = h®(o) such that
Oh°

- Oo

e

€ (2.39)
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The above potential function in turn admits the Legendre transform ¢ defined
by

Ve =0:€°—h° (2.40)
which satisfies the following relation

s

= Dee

o (2.41)

Since (cf. (2.40))
o1&t = (e%) + b (o)
we have the following representation of the Gibbs free energy
ho.&) =0 (€ +€") — Y(e.&) = h*(0) + o €"(€) — vP(€)  (242)
by which the inelastic part of the free energy ¥P results defined as
PP(&) = (e, &) — v (e)
It is noted that the function ¢? depends only on the internal variables, since

_Oh ok P
€= 95 = a0 T8~ 55

whence it results that 9YP/0do = 0. In conclusion, the Helmoltz energy func-
tion ¢ and the Gibbs energy function h can be additively decomposed into
elastic and plastic parts, respectively, as

P(E, &) = V(%) +YP(€) = P(e% €) (2.43)
h(o.£) = he(o)+hP(€) (2.44)

where €¢ = & — P.

Recalling the second law of Thermodynamics (1.85) and using definition
(2.43), we obtain (2.41) which leads to the reduced dissipation inequality in
the alternative form

0P+ x: €, >0 1<k<m (2.45)
The above inequality, in view of (2.26), can be written in compact notation as

S-P>0 (2.46)
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Plastic incompressibility

The physical evidence shows that, for metallic materials, volume changes occur
almost exclusively as a consequence of elastic deformation [14]. Hence, it
is reasonable to assume that the plastic part of the deformation is only of
deviatoric or shearing type. Following the development of Section 1.3 and
recalling relation (1.35) we are lead to assume that the quantity

tr (e?) = &, (2.47)

is zero which implies that the tensor &P coincides with its deviatoric part. In
the rest of the work we then refer to the plastic strain tensor as the traceless
deviatoric tensor eP.

Using the above arguments on the additive decomposition of strain into an
elastic and a plastic part and the assumption on plastic incompressibility, it
is possible to generalize the linear elastic relations (1.73)-(1.74) developed in
Section 1.5 for the isotropic elastic material response. We have, in fact

p = K0 (2.48)
s = 2G(e—eP) =2Ge° (2.49)

where, €€ is the elastic strain deviatoric part, that is

e =e—¢€’

Elastic region and yield surface

Here we generalize to a three-dimensional context the basic concepts regarding
the elastoplastic behavior presented in Section 2.2 for the one-dimensional
case. In order to introduce the concepts of elastic region £ and yield surface B
within the three-dimensional framework, it is worth recalling Equation (2.18)
which represents the form of the yield function for the uniaxial elastoplastic
constitutive model with linear kinematic and isotropic hardening. Such a limit
function was shown to represent a constraint on the evolution of the stress
and of the thermodynamic forces, i.e. a constraint on the generalized stress
evolution.

The above discussion can be extended to the three-dimensional case stating
that at all times, the generalized stress S must lie in the closed connected set
S, the admissible generalized stress region. The interior of this set is called the
elastic region and is denoted by &£, while its boundary is denoted by B and is
known as the yield surface. The set §¢ represents the complement of the set of
the admissible stresses domain and is not attainable by the generalized stress.
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Whenever S lies within the interior of &, purely elastic behavior takes place,
while plastic loading may be observed only if S evolves on the boundary of S.

A convenient way to represent the constrained evolution mechanism of the
generalized stress tensor is to assume the yield surface to be described by a
scalar function ¢ such that

£=1{S:4(S) <0}
B={S:¢(S)=0}

With the above formalism we may collect a total of three possible cases in
regard to the evolution of the generalized stress S with respect to the region
of admissible generalized stresses. The first one, named purely elastic loading,
takes place when the evolution of S is such that S € &; the second case refers to
S moving from B to £ and is referred to as elastic unloading. In both the above
cases the material response is elastic. The third case refers to an evolution
of the generalized stress according to which S € B and goes by the name of
plastic loading. Clearly, the different kinds of movements described above and
characterizing the material point loading history can be subsequently coupled
leading to a sequence of loading and unloading phases, which are referred in
the sequel as elastoplastic or mized phases.

With the above definitions, recalling the simple uniaxial case discussed in
Section 2.2 (cf. (2.2)-(2.3)), we can make the following assumptions about the
rate of change of generalized plastic strain

¢(S) <0
P=0 if {or

$(S) =0 and ¢ < 0

(2.50)

| 5(8) =0
P#0 if and

¢(S) =0

The above positions implies that during plastic loading
¢=0=0

which is a fundamental requirement known as the plastic consistency condi-
tion. Another interesting feature characterizing the three-dimensional plasti-
city theory here developed is achievable with the following reasoning. Let us
consider the yield surface projection onto the stress space, i.e. the function
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Figure 2.6: The yield surface ¢(o, x) = 0 and its projection on the stress space

o(o) = ¢(a,x) for fixed x. Assume, for instance, that ¢(o,x) = 0 and that
the stress rate is such that

o¢
— 0 .01
9% C >0 (2.51)
Since for plastic loading it is
. 0¢ 0
=64 —"—-x=0 2.52
0= 55 T oy X (2.52)

it is clear that both a time variation of the forces x and of the projection of
the yield surface onto the stress space must occur. This change is interpreted
as the evolution of the yield surface in generalized stress space (see Figure 2.6
for a visualization of this argument in the case where x = x is a single scalar
variable). On the other hand, if ¢(o, x) = 0 and elastic unloading takes place,
then by the definition of elastic behavior there is no change in the internal
variables, nor in the forces conjugate to these variables. Consequently, from
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(2.50), it is found that

g&:g—i:(r«) (2.53)
meaning that the yield surface does not modify and that all x; (1 < k < m)
are zero.

In Section 2.3.2, in relation to specific kinds of hardening mechanisms, we
present a geometric interpretation of the evolution of the surface ¢ = 0 under
conditions of plastic loading. For completeness, it should be added that the
proper nature of a perfectly plastic material is that the yield surface depends

on the stress only. Hence, in this case, we have ¢(o) = ¢(o). When ¢(o) =0,
plastic behavior takes place when

ozg&:g—ﬁ;gf (2.54)
which implies that the stress evolves lying on the yield surface, while the yield
surface remains unchanged in the stress space. Such a behavior is known as
neutral loading to distinguish it by the situations in which, due to hardening,
the surface ¢ = 0 changes during plastic deformation.

The above considerations readily apply to the one-dimensional example
discussed earlier. In fact, as can be seen in Figure 2.2(b), the initial elastic
region in the stress space is simply the interval (0;70, 0y,0), but upon plastic
loading the elastic boundary expands to the new interval (O‘lyJ, Ty1)-

We can thus admit the double interpretation of the yield surface as a fixed
region in the generalized stress space or equivalently as an evolving closed

convex set in the space of stress.

Principle of maximum plastic work

The last law that is needed to complete the theory has its origin in the work
of von-Mises, Taylor, Bishop and Hill [56] and can be justified from the phys-
ical point of view by appealing to the behavior of crystals undergoing plastic
deformations. In its original version it can be stated as follows: given a stress
state o such that ¢(o) = 0 and a plastic rate éP associated with o, then

o:él>T1:¢éf (2.55)

for all admissible stresses T satisfying the yield constraint ¢(7) < 0. An
alternative form of the postulate of maximum plastic work follows by the
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definition of rate of plastic work W (éP) = o : éP associated with a plastic
strain rate éP and reads
W (éP) = max{T : & : ¢(t) <0} (2.56)

The principle of maximum plastic work is a key point of the theory of
plasticity. Depending on the viewpoint adopted, it may be regarded as a
postulate, as stated by (2.56), or as a consequence of the classical stability
postulate by Drucker (for such a deduction, see for example [30, 57, 61]).

In the present context, the postulate of maximum plastic work is presented
in a more general fashion [41], which incorporates the dissipation function D
due to the internal variables, defined by

D=DP)=S-P (2.57)

First, we assume that the zero generalized stress point S = 0 belongs to &
and second we extend the classical form of the postulate of maximum plastic
work by stating the following: given a generalized stress state S € S and an
associated generalized strain rate P, the inequality

S-P>T-P (2.58)

holds for all the admissible generalized stresses T € S. Choosing T = 0, which
is an admissible state by assumption, (2.58) gives

S-P>0
or, in terms of dissipation D,
D>0 (2.59)

It is noted that the reduced dissipation inequality in the form (2.46) is re-
covered by (2.59). A mathematical proof of the principle of maximum plastic
dissipation, as stated by relation (2.59), is presented in Section 2.5, where it is
carried out in the framework of a convex-analytic recasting of the fundamental
equations of elastoplasticity.

There are two major consequences arising from the above postulate. First,
it can be shown that the plastic strain rate P associated with a generalized
stress S lying on the yield surface B is normal to the tangent hyperplane at
the point S to the the yield surface B. This result is generally referred to as
normality law which, in the case of a non-smooth limit surface, states that P
belongs to the cone of normals at S. Second, it results that the region &€ (or S)
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is convex. A rigorous mathematical proof of these two properties is presented
in Section 2.5.

For the time being, following [41], we present a deduction of the normality
law in the simple case of a smooth yield surface. Let S’ be a unit tangent vector
of the tangent hyperplane of the yield surface at S. Consider a sequence of
generalized stresses T = S 4 S, that lie on the yield surface and satisfy the

property

!/

S.—0 and ————S as €—0
II'SE 1l

Applying (2.58) to the above relation one finds
SL-P<0

which, dividing by || S. ||, gives

!/

Se P<0
17—

Taking the limit of the above expression for € — 0, shows that
S"-P<0

which, observing that —S’ is also a unit tangent vector, implies
-8 P <0

From the last two conditions, it is concluded that
S"-P=0

for any vector S’ tangent to the yield surface at S. The above equation states
that P is normal to the yield surface at S.

To demonstrate that S is a convex set we must show that S lies to one
side of the tangent plane at any point S € B, as illustrated in Figure 2.7.
Equivalently, given the normality law, it suffices to show that the product
(S—T)- P is always non-negative for any T € S, which is easily derived from
(2.58)
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S+8S'

Figure 2.7: Convexity of the yield surface and normality law

Associative plasticity

When the yield surface is smooth, i.e. it presents a well-defined gradient at
each point, recalling that P lies parallel to the normal to B at S, we may write
the following important form of the normality law [57, 69, 79]

P =4V¢(S) (2.60)

where 7 is the non-negative scalar plastic multiplier. Separating the tensorial
components of the above evolution equation we obtain [4]

0
& = f'y% (2.61)
; 09

Equations (2.61)-(2.62) state that ¢ represents a flow potential for eP and
&. The above flow rule is said to be associated with the yield function in
generalized stress space. For convenience, we report here Equation (2.31),
written in compact form

o oyp

X:_a_g__a—g (2.63)

which, in rate form, reads

92yP

_8—525 (2.64)

X:
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Introducing the evolutive relation (2.62) into (2.64) and defining the fourth-
order tensors

%P
Dy, = Q’Z; 1<k<m (2.65)
9€,
we can recast the rate form of the hardening law (2.64) in the form
d¢
X = —YDr=— 2.66
Xk Tk DX ( )
or, equivalently
9¢
X = —YD— 2.67
X =—iDg (2.67)

where D is the (diagonal) generalized matrix operator containing the tensors
Dy. In view of the previous definitions, (2.66) can be regarded as a hardening
law associated with the function P, which clearly reveals to be a harden-
ing potential. Equivalently, (2.64) represents the rate form of the mentioned
hardening law which, admitting the normality law, leads to the generalized
associative hardening law in stress space (2.66). A constitutive model charac-
terized by the flow rule (2.61) and by the two evolutive Equations (2.62) and
(2.67) regarding the internal hardening variables is then referred to as associa-
tive plasticity [17]. In the following sections we present a yield function and
a set of hardening laws which readily satisfy the above notion of associative
elastoplastic model.

To complete the statement of our problem we need only to give the condi-
tions on the plastic multiplier 4 and on the yield function ¢ in concise form.
We have

720, ¢<0 =0 (2.68)

which are known as complementarity conditions or Kuhn-Tucker conditions
[4, 57, 69]. The first two conditions in (2.68) constrain the signs of 4 and ¢,
while the third one states that the above quantities are not simultaneously
nonzero; positive values for 4 require ¢ = 0, in which case plastic deformation
takes place, while negative values for ¢ imply that - is zero, that is the plastic
deformation rate is zero. In the case where ¢ = 0, the consistency condition
(2.68) can be equivalently formulated in terms of time derivative of the yield
function as

When ¢ =0, >0, ¢<0, 4<0 (2.69)
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since by the second inequality appearing in (2.68) the generalized stress is
always constraint to evolve towards the interior of S or at most to remain on
the yield surface, that is to say qﬁ < 0 [69]. The above consistency formulation
results of great importance in the derivation of integration schemes for the
elastoplastic model under consideration. These schemes are addressed in detail
in Chapter 4 and Chapter 5.

2.3.2 von-Mises yield criterion
Perfect plasticity

In this paragraph we first introduce the definition of the von-Mises yield func-
tion, indicated henceforth with F', for the simplest case of perfect plasticity.
Hence we choose F' = F(o). In the subsequent section, when different harden-
ing mechanisms are described, we generalize the expression of the von-Mises
yield criterion and of the relative flow and hardening laws to the case of harden-
ing materials. In this context, we also draw some considerations on the ensuing
form assumed by the flow rule and by the elastic and plastic potentials.

The primary consideration that needs to be drawn on the outset is that,
regardless of the type of hardening, the von-Mises yield function is independent
of the mean stress or pressure p = 1/3tr(o) and is an isotropic function. The
first assumption implies that the F' depends on the stress deviator only:

F =F(s)

while the second hypothesis indicates that, given any proper orthogonal second-
order tensor Q € Lin, it holds

F(s) = F(QsQ")
The von-Mises yield function then is defined by
F(s) = s [l —oy (2.70)

with oy, the yield stress. Equivalently, denoting by Jy = %(s : s) the second
scalar invariant of s, the von-Mises yield function may be expressed as

F(s) = /20 — o, (2.71)

In view of the last expression, a perfect elastoplastic model with a von-Mises
yield surface is usually referred to as Jo plasticity model. In the above expres-
sion the scalar quantity o, represents the initial uniaxial yield stress and is
therefore a quantity depending on the material.
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Applying (2.61), we can derive the plastic flow rule, which reads

OF(s) _ OFG) _ (2.72)

p
© i oo 7 0s

where n indicates the second-order normal tensor to the yield surface at s,
which with simple considerations [17], results

> (2.73)
n=-—— .
I's |
In the case of perfect Jy plasticity just presented the strain-like internal vari-
able can be identified with the plastic strain eP.

Linear isotropic hardening

This type of hardening is characterized by a single scalar strain-like internal
variable, denoted here by £ and by a single scalar thermodynamically conjugate
force indicated with x. In most cases, £ represents a measure of accumulated
plastic deformation. A typical choice is the accumulated plastic strain, defined
as [57]

el(t) = /0 | €°(T) || dr (2.74)

The above quantity indicates the total plastic strain accumulated from the
beginning of the loading history. The von-Mises yield function becomes

Fs,x) =l's | =oy(x) (2.75)

where o is not constant, rather it depends on the internal variable x through
a relation of the form

oy = oyo+ G(X) (2.76)

where oy ¢ is as usual the uniaxial initial yield stress, while G(x) is a monoton-
ically increasing function satisfying G(0) = 0. According to this rule, isotropic
hardening is viewable as the yield surface projection on the stress space which
expands retaining its original shape by an amount which is proportional to the
accumulated plastic deformation through the function G(x). Setting

YP(&) = PP (eP) = %Hiso(ep)z (2.77)
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where the material constant H;g, is known as the isotropic hardening modulus,
the expression of the free energy is thus

1 1
(e, eP) = 566 : Ce® + EHiso(ép)2 (2.78)

Invoking the definition (2.63), we immediately derive y as

oYP oyYP
=——=——" = _H,.,ée 2.79
X o€ 5o e (2.79)

Admitting, for simplicity, that G = —x, (2.75) becomes
F(S,X) :H S || —0y,0 — H;so€? (280)

The associated flow rule and hardening laws thus read

L O0F(s,x) .0F(s,x)

er = 5 e T as = An (2.81)
R (2.82)
X = —H;sel (2.83)

As a possible further generalization, we may take into consideration the case
of a yield surface that expands isotropically with a nonlinear dependence on
X. This possibility is anyway beyond the scope of this work and then is not
studied in detail.

Linear kinematic hardening

The kinematic hardening mechanism has been briefly presented for the one-
dimensional situation in Section 2.3.1. It was stated that, differing from
isotropic hardening which causes the yield domain to expand homogenously,
kinematic hardening produces a shifting of the initial yield surface in stress
space. Such a characteristic is still valid in the three-dimensional context. We
start by the case of linear kinematic hardening, whose description implies a
single internal tensorial variable §. Usually, & is taken to be the plastic strain
tensor e”, with an expression of the free energy in the form

1 1
P(e®, el) = 566 : Ce® + §ep : DeP (2.84)
where

D = Hy;l (2.85)
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The term Hy;, is the linear kinematic hardening modulus, a material property.
In correspondence to the internal variable & = eP, we have the conjugate force

0w owr

_6—5 = — Dep = —Hpine” (2'86)

X:

The yield condition is obtained by introducing the thermodynamic force x in
the yield function [41], according to

F(s,x) =lls+x | —oy (2.87)
Introducing the new internal stress variable
a=—x (2.88)

a deviatoric tensor defined in stress space called backstress, the yield function
(2.87) becomes

F(s,a) =[ls —all =0y = X | —0y (2.89)

The backstress tensor a represents the shifting of the center of the yield surface
in stress space due to the kinematic hardening effect. The tensor ¥ = s — «
appearing in the yield function (2.89) is called the relative stress and, de facto,
defines the generalized stress space also referred to as the relative stress space.
Applying (2.61) we can easily derive the plastic flow rule, which reads

., OF(s,a) OF(s,a)
& = = =i (2.90)

where n indicates the second-order normal tensor to the yield surface in stress
space. With some algebra, it can be shown that

S — o by

n— =
Is—ell %]

(2.91)

The associated flow rule and the hardening law are easily determined to be

. OF(s,a) OF(X) |
ek = 5 = =n (2.92)
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Combined linear isotropic and kinematic hardening

To assemble the effects of both linear kinematic and linear isotropic hardening
into a single model, it is necessary to sum up the hardening potential, in terms
of internal variables, relative to each single mechanism. The ensuing form of
the free energy is given by

1 1 1
G(e' e, &) = S Ce + 5 Hipo(&)? + 5 : De? (2.94)

which depends in an uncoupled manner on the internal variables eP,eP. The
conjugate forces are derived as done previously and are exactly the same ones
found in the case of pure isotropic and kinematic linear hardening mechanisms
as well as the flow rule which is still expressed by (2.90). The form of the
hardening law remains unchanged and, in compact notation, reads

x = —H¢ (2.95)

or, adopting the engineering notation also for the internal variables vectors
and for the hardening moduli operator,

co={ i hm=[f 0 w={2)  ew

The diagonal 2 x 2 matrix operator H appearing in (2.95) is known as linear
hardening operator or briefly linear hardening moduli and (cf. (2.96)) allows
to rewrite the total potential energy (2.94) as

1 1

P(e® el ef) = Eee : Ce® + 55 - HE (2.97)

With the above specifications, the yield function takes the form
F(S,OL,X) = F(27X) :H D) H —Oy,0 — Hisoe? (2'98)

with the flow rule and the hardening laws still given by
OF (3, x)

S A NI 2.99
é 5% m (2.99)
o= =4 (2.100)
a = H/m'nép = "yH;ﬂ-nn (2.101)

For the combined linear isotropic and kinematic hardening model under dis-
cussion the dissipation function (2.57) takes the following form
D=S-P=oc:&"+x-¢

.p _p Lp . (2.102)
=0c:&’—ePH; e’ — o : Hy;, e’
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Combined linear isotropic and linear /nonlinear kinematic hardening

The Thermodynamics with internal variables framework adopted so far needs
to be slightly generalized in order to include a nonlinear kinematic hardening
mechanism. The treatment, however, remains general inasmuch the preceding
case is perfectly recovered by canceling the nonlinear kinematic hardening
term. The thermodynamic setting that is presented mainly follows the work
of Chaboche and Jung [23] which applies to a wider class of viscoplasticity
models.

We begin by specifying the general form of the total Helmoltz free energy
which, in isothermal conditions, is still

Y =1P(e,§) (2.103)

In the present case the internal variables vector is not represented by (2.96)
but in a more general form

©-{¢ | (2.104)

where £ is a tensorial strain-like variable that corresponds to the thermody-
namic force a and in this case is distinguished by the traceless plastic strain
tensor eP. The above potential gives the stress and the thermodynamic forces
by means of the usual definitions

oY
o= (2.105)
oY

The basic assumption, at this point, regards the thermodynamic forces .
These are taken to be the entities corresponding to the hardening variables
that, in stress space, describe the present elastic domain and the relative
(nonlinear) plastic potential. According to the quasi-standard material the-
ory [24, 40], the von-Mises yield function F' remains unchanged, while a new
elastoplastic potential UP = WP(F, x) is introduced [23] in order to establish a
generalized normality Tule in the form

w = 5 (2.107)
e = 7 80‘ .

: oUP

E = 4 (2.108)

Tox
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The total potential, corresponding to elastic deformation and plastic deforma-
tion taking place due to linear hardening only reads

1 1
T,Z)(se,ep, ép) = 566 : Cee + 55 . ]H[§ (2109)
by which we infer the classical constitutive equations

o = Ce (2.110)
x = —H¢ (2.111)

The plastic potential, according to the nonlinear kinematic hardening mecha-
nism by Armstrong and Frederick [5] is expressed by

1 H,
\Ilp:F(E,X)+§a: «a

Hkin

(2.112)
_ 1 Hnl
:H 3 || —0y,0 — Hisoep + -o: o

where H,; is a nondimensional material parameter known as nonlinear kine-
matic hardening modulus. The choice for the plastic potential WP leads to the
following evolutive equations (cf. (2.107)-(2.108))

o = 2 (2.113)

& = j5—=19n .

e = |e|=7% (2.114)

. H

£ = in—3—"a (2.115)
Hkin

The evolution of the backstress tensor av can be found by taking the rate form
of (2.111). We have:

& = Hypin€ = Hpin€” — Hyyao = 4(Hypn — Hpyor) (2.116)

As observed at the outset, whenever the nonlinear hardening modulus H,;
is zero, the tensor £ coincides with e” and the linear hardening mechanisms
presented above are recovered by the previous combined model.

2.3.3 General von-Mises plasticity model

It is convenient to resume here the general version of the von-Mises constitutive
model analyzed hitherto. Combining the three hardening mechanisms, the
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equations which define the model are the following [17]

p = Kb (2.117)
s = 2G[e—é€’] (2.118)
Y = s—« (2.119)
F o= IS)-0, (2.120)
& = 4n (2.121)
oy = 0yo0+ Hisoy (2.122)
& = Y(Hginn — Hyo) (2.123)
4> 0, F<0, 4F =0 (2.124)

where p is the pressure and 6 the volumetric part of the strain tensor, K is
the material bulk elastic modulus, GG is the material shear modulus, eP is the
traceless plastic strain, 3 is the relative stress in terms of the backstress a,
the latter introduced to describe a kinematic hardening mechanism. Moreover,
F' is the von-Mises yield function, n is the normal to the yield surface, o is
the yield surface radius, o, the initial yield stress, H;s, and Hy;, are the
linear isotropic and kinematic hardening moduli, H,; is the nonlinear kine-
matic hardening modulus. Finally, Equations (2.124) are the Kuhn-Tucker
conditions; in particular, the second equation limits the relative stress within
the boundary defined by the yield surface F' = 0, while the other two are nec-
essary to determine the plastic behavior. With a slight over-simplification of
the model complexity, we may say that when 4 = 0 the system is in an elastic
phase, while when ¥ > 0 we say that the system is in a plastic phase.

For later convenience, we fix some labeling conventions taken from [17].
The above constitutive model, when encompassing all the three kinds of harden-
ing mechanisms, namely linear isotropic/kinematic hardening and nonlinear
kinematic hardening is labeled as NLK model. Instead, whenever the term
corresponding to nonlinear kinematic hardening is zero, the model is briefly
addressed as LP model.

Rate form of the stress-strain relation

The rate form of the stress-strain relation plays a key role in the discrete
approximation of the variational problem of elastoplastic equilibrium that is
addressed in Chapter 3. We find it appropriate to present such a form here,
for the associative models studied in Section 2.3.1.

Recall the flow rule in the form

P = 4Vo(S) (2.125)
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where the plastic multiplier 4 and the yield function ¢ are related through the
complementarity conditions

¥=>0, ¢<0, 99=0 (2.126)
and satisfy the consistency condition that when ¢ =0

¥20, $<0, 4¢=0 (2.127)
Consider the rate form of the constitutive law (2.38) and (2.95) which read

—e(u) — (2.128)
£=—-H 'y (2.129)

The inverse of the elastic tensor is guaranteed by its positive-definiteness and
the same holds true for H, in view of its definition (2.96). Combining (2.125),
(2.128) and (2.129) it is found that

é(u) —Cle = "yg—f_ (2.130)
)
—H lx = 'Vai (2.131)

Checking (2.126) and (2.127), it is evident that ¥ = 0if ¢ < 0 or, if ¢ = 0 and
¢ < 0. The aim is then to deduce an expression for the plastic rate parameter
4 in the case ¢ = ¢ = 0. In such a case it is

. 0 0
»(S) = a;b_ ’+£ x=0

which, introducing (2.128) and (2.129), implies

% : Ce(u)
4 = da (2.132)
00 00 96 06
0o 0o Ox Ox

The preceding formula is derived under the assumption that 4 > 0. Being the
tensors C and H positive definite this correspond to check if the numerator in
(2.132)

—_— >
Yo Ce(u) >0



2.3. THREE-DIMENSIONAL ELASTOPLASTIC BEHAVIOR 79

is nonnegative. There are three cases that may arise:
Case 1. The numerator is negative. Then 7§ can only be zero. In fact, it is

; op . 0 . 09 (09 09 0P 09
and, by the consistency condition (2.127), 4 = 0.

Case 2. The numerator is positive. Then 4 > 0. This can be shown supposing
by contradiction that ¥ = 0. Then

) ) )
¢(S)z£:d+£-kz£:@€(u)>0

which is not allowed, since ¢ = 0.

Case 3. The numerator is zero. Then 4 = 0 obviously in view of (2.132).

The above discussion, in which the consistency conditions plays a key role
in the determination of the plastic multiplier A, amounts to the following
formula

d¢ 9 09 ¢ _ 0¢ :
—: Ce —:C—+ — -H— f ,x) =10
A = <60' (u)>+/ <60' Jdo 0x Ox it ¢l x) (2.133)
0 if ¢(o,x) <0
where ()4 = max{0,-}. This formula, which has a general validity, was men-

tioned but not proved in [68] and is reported here following [41].
Recalling relations (2.133) and (2.130), is is found that when ¢(o,x) < 0

0
or when ¢(o,x) =0 and 8_¢ 10 <0, then
o

E(u)=Cle
. 09
whilst, when ¢(o,x) = 0 and 9 C > 0, then
o

é(u)=Clo

where

C=C-50 % o o0
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is an invertible fourth-order tensor, given the assumptions on C and H. The
rate form of the stress-strain relation is

& =C® e(a) (2.134)

with

0
C if ¢(o,x) <0 or ¢(o,x) =0 and —¢:é'§0
do (2.135)

cont

: 99 .
C if ¢(o,x)=0 and —:0 >0
oo

The continuous elastoplastic tangent operator C.P . can be computed in com-
pact explicit expression following [17], for the Jy elastoplastic model with
hardening under examination. It holds:

CP =K1®1)+2G[lqey — Acont(n @ n)] (2.136)

cont

e
The fourth-order tensor C> .

model and the NLK model

is specialized with a distinction between the LP

e LP model
G
Acont = ACLOit = G_l (2137)
e NLK model
2G
Agont = ANLE — 2.138
¢ cont 2G| — Hyn : af ( )
where

2le =2G + Hiso + szn

2.4 Initial boundary value problem of equilibrium
in J, elastoplasticity

In the same fashion adopted in Section 1.7, it is possible to formulate the initial
boundary value problem of quasi-static equilibrium for an isotropic material
body characterized by a J, elastoplastic model. This problem is modeled by
a set of partial differential equations posed on the domain €2 plus a set of
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boundary conditions assigned on the boundary 0f2 of the body and a set of
initial conditions.

Given a body with current configuration  C R3, we indicate for com-
pactness its boundary 9Q with I' such that ' =Tp UT'g, with TpNTg = @.
Suppose that, for ¢ € [0,7], a body force b(x,t) is assigned in 2, a displace-
ment field @i(x,t) is assigned on I'p and a surface traction t(x,t) is assigned
on ['g. Initial values for the displacement u(x,0) = ug and the velocity field
v(x,0) = v are known data as well. With the above specifications, the formu-
lation of the problem in argument for the material body under consideration
is: find the displacement field u(x,t) which, for any x € 2 and any ¢ € [0, 7],
solves the

e cquation of equilibrium

dive +b =0 (2.139)

e strain-displacement relation
1 T
g(u) = 3 Vu+ (Vu) (2.140)
e constitutive relation represented by relations (2.117)-(2.124) together
with the rate form of the stress-strain relationship (2.134)

and satisfies the

e boundary conditions

u=1u on I'p and on=t on Iy (2.141)

e initial conditions

u(x, 0) = up(x) (2.142)

It is observed that this problem results highly nonlinear for two main reasons.
First, the (time-)integration of the rate constitutive equations requires careful
consideration of the loading/unloading conditions relative to the choice of the
correct tangent operator. Second, the stress and the internal variables are con-
strained during their evolution by the yield limit. The object of investigation
of the next chapters is mainly concerned with the numerical solution of the
above stated problem, posed in variational form.
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2.5 Elastoplasticity in a convex-analytic setting

2.5.1 Results from convex analysis

Let X be a normed vector space, with its topological dual X’, the space of
the linear continuous functionals on X. For z € X and z* € X’, the action of
x* on z is denoted by (z*,z). In the finite dimensional case the space X’ is
isomorphic to X and thus can be identified with X itself. This is indeed the
case, for instance, of the Euclidean space R? for which the action of a vector
v € (R?) on a vector u € R? is usually defined to be the scalar product

(viu) =v-u

Examples of infinite dimensional spaces and their duals, in particular function
spaces, are given in Appendix A.

Convex sets

Let Y be a subset of X. The interior and the boundary of Y are denoted
respectively by int(Y') and bdy(Y). The subset Y is said to be convex if

forany z,y €Y and 0 <0< 1, Oz+(1—-0)yeY (2.143)

that is to say if and only if any line segment joining any two elements of Y
lies entirely in Y.
The normal cone to a convex set Y at its point z is a set in X’ defined as

Ny(z)={z* € X': (z*,y—2z)<0VyeY} (2.144)

The set Ny (x) is indeed a cone since for any z* € Ny(z) and any A > 0,
Az* € Ny (z). When the point  belongs to the interior of ¥ the normal cone
clearly reduces to the null set, while at least in the finite-dimensional case,
x € bdy(Y) identifies Ny (z) as the cone of normals at = in the space X.
These definitions are illustrated in Figure 2.8, where the two cases of smooth
boundary point z and non-smooth boundary point y are presented. In the
former case the normal cone degenerates to the one-dimensional set spanned
by the outward normal at =, while in the latter Ny (y) is a non-trivial cone.

Convex functions

In what follows it is admitted for a function f to attain the values doo. Let
f be a function on X, with values in R = R U {£o00}, the extended real line.
The effective domain of f, denoted by dom(f) is defined by

dom(f)={x e X: f(z) <oo}
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N, (x)

N,(»)

Figure 2.8: Normal cone to a convex set

The epigraph of f, denoted by epi(f), is the set formed by ordered pairs in
X X R defined by

epi(f) ={(z,0) e X xR : [f(z) <a}

that is the set of points that lie above the graph of f.
A function f is said to be convex if

f0z+ (1 —0)y) <O0f(x)+(1—0)f(y) Yo,y € X, VOe(0,1) (2.145)

and it is said to be strictly convex if the strict inequality in (2.145) holds
whenever = # y. We note that a function is convex if and only if its epigraph
is a convex set.

Also the following definitions, regarding functions defined on normed spaces,
will be of notable importance in subsequent paragraphs. A function f is said
to be positively homogeneous if

flaz) =af(z) Vre X, Va>0
proper if
f(x) < +oo for at least one z € X and f(z) > —c0 Vre X

and lower semicontinuous (l.s.c.) if

Tim f(zn) > f(2) (2.146)
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Jx%) \

1

Xo

(a) (b) (©)

Figure 2.9: (a) Strictly convex function; (b) Positively homogeneous function;
(¢) Lower semicontinuous function

for any sequence {z,} converging to x. The last notions are illustrated in
Figure 2.9 where the space X coincides with R. We observe that a continuous
functions is lower semicontinuous, but the converse is not true.

It can be seen that a function f is ls.c. if and only if its epigraph is
closed and that every proper convex function in a finite-dimensional space is
continuous on the interior of its effective domain.

A sequence {z,} in a normed space X converges weakly to an element
x € X if and only if

lim (x*,2,) = (z*,2) Vz*e X'

n—oo
The concepts of weak and strong convergence coincide whenever X is a finite-
dimensional space. Moreover a function is said to be weakly lower semicon-
tinuous (weakly ls.c.) if the inequality (2.146) holds for any sequence {z,}
converging weakly to z. Obviously, a weakly l.s.c. function is l.s.c. Inversely,
the following statement holds: if f is convex and l.s.c., then it is weakly L.s.c.

With a slight extension of the classical definition, which does not include
lower semicontinuity, we call a function g : X — [0, 00] a gauge if

glx) >0 Ve e X
g(x)=0 (2.147)

g(x) is convex, positively homogeneous and l.s.c.

For any set S C X, we define the indicator function Ig of S as

Is(z) = {ioo z Z 2 (2.148)



2.5. ELASTOPLASTICITY IN A CONVEX-ANALYTIC SETTING 85

The support function of S, og, is a function on X’ defined by
os(z*) = sup{(z*,z) : z €S} (2.149)

If fis a function on X with values in R, the Legendre-Fenchel conjugate
(or simply conjugate) function f* of f is defined by

@) = Slelg{@*,xm — f(x) 2" e X'} (2.150)

which allows to establish the equivalence
I =og (2.151)

between the support function and the conjugate to the indicator function.
Moreover, if f is proper, convex and l.s.c. then so is f*, i.e.

(fyr=rr=f (2.152)

In particular, if S is nonempty, convex and closed, its indicator function Ig is
proper, convex and l.s.c.. For such a set, we then have

Is=oh =I5 (2.153)

Given a convex function f on X, the subdifferential Of(x) of f at any z € X
is defined as the (possibly empty) following subset of X’

of(x) ={xxe X" fly) > f(x)+ (z*,y —z) Vye X} (2.154)

An element of Of(x) is called a subgradient of f at x. According to the
definition, when f(z) = +o0, df(z) = @. In f is a functions defined on R?
and differentiable at x, then

Of (x) ={V[f(2)}

At a corner point (zo, f(zo)), the subdifferential 0 f(zo) results in the set of the
slopes of all the lines lying below the graph of f and passing through the point
(xo, f(zg)) (see Figure 2.10). It is clear from (2.144) that the subdifferential
of the indicator function is given by

dIs(x) = Ng(z) Vz €S (2.155)

A result of great importance in later developments is that, for a proper,
convex and L.s.c. function f it holds true that

¥ € 0f(x) iff z € Of (x¥) (2.156)

We have the following fundamental results.
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of(xy)

Xo

Figure 2.10: Subgradient of a nonsmooth, convex function of a single variable

Lemma 2.5.1 Let f be a proper, converz, l.s.c. function defined on a normed
space X. Define

dom(df) ={z € X : 0f(x) # 2}
Then
(a) dom(3f) # @ and dom(df) is dense in dom(f)
(b) for any proper, convez, Ls.c. functions f and g, defined on X
Of(z) = 8g(z) Vre X
if and only if

f(x) =g(z) + constant

Lemma 2.5.2 Let g be a gauge on a reflexive Banach space X. Define a
closed convex set K in X' by

K={xz*eX': (z*,2) <g(x) Vo € X}
Then
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(a) g is the support function of K
(b) the function g* conjugate of g is the indicator function of K :

0 *e K
(@) = vER
+o00 otherwise

(¢) K = 09g(0)
(d) z* € 0g(z) & z € dg*(x*) = Ng(z*)

Maximal responsive relations

It is proper to consider and analyze the properties shared by a special class of
multivalued maps. Thanks to the concept exposed herein it will be possible to
cast the basic flow rules of elastoplasticity in the present analytic setting. Let
us consider a map G : z — G(x) that associates with each z € X a (possibly
empty) set in X’. The map G is said to be

e responsive if
0 € G(0) (2.157)
and if for any x1,x0 € X
(y1 —y2,71) >0 and (y2 —y1,72) >0 (2.158)
whenever y; € G(x1) and ys € G(z2).
e maximal responsive if the following condition
(y1 — y2,71) > 0 and (y2 — y1,22) > 0 Vyo € G(x9), Vo2 € X(2.159)

implies that y; € G(z1) or equivalently if there is no other responsive
map whose graph properly include the graph of G (see Figure 2.11).

We have the following important theorem regarding the significance of maximal
responsive maps in the present framework

Theorem 2.5.3 [33] If G is a multivalued map on X, with G(z) C X' for any
x € X, then the following statements are equivalent

(a) the mapping G is maximal responsive
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GX)

G(0)

Figure 2.11: Example of a maximal responsive map

(b) there exists a gauge g on X such that
G(z) =0g9(z) Vxe X

Furthermore, when G is maximal responsive, it determines g uniquely.
Setting dom(G) = {x € X : G(x) # @}, g(x) is given by

Gla) = {(x*,x> Va* € G(z), = € dom(G) (2.160)

+00 Vz ¢ dom(G)

Polar functions

From the viewpoint of convex analysis herein adopted, the admissible elastic
region can be conveniently interpreted as a closed convex set K whose bound-
ary (the yield surface) is the level set of a convex function g. K is hence
defined by

K={"eX': g(a") < o}

with ¢y a positive scalar. It results possible to construct g in a way that this
function is a gauge such that its epigraph is a closed convex set containing the
origin. Furthermore, it is found that the function g has an evident connection
to the support function og. Thus, g is defined according to

gr () =inf{u >0: 2™ € uK} (2.161)

where K = {uy : y € K}. Lemma 2.5.2(a) and definition (2.161) suggest the
following alternative form for gx

g (%) =inf{p > 0: (x*, x) < pog(z) Vre X} (2.162)
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K

Figure 2.12: Representation of the gauge gx corresponding to a set K C R

An illustration of the function gg is provided in Figure 2.12. Note that when
x* ¢ pK, for any p > 0, then g (z*) can take the value +00. Assuming also
that oy (z) = 0 if and only if x = 0, the following relationship is derived
» (x*, x)
gi(x¥) = sup
z€dom (o )\{0} JK('%')

(2.163)

or, equivalently, we are left with the following inequality relating gx and oy
(x*,x) < g (x™)ok(z) Vredom(ok), z* € dom(gk) (2.164)

Taking x* € bdy(K), one finds that

(x*,y)
sup

=1 (2.165)
yedom(or )\ {0} OK ()

which properly returns the supremum if y = x, the conjugate to x* according
to Lemma 2.5.2 (d). Relation (2.163), for z* € K and z* € dog(x), = # 0,
then gives

(z*,2) = g (2")ok (2) (2.166)

The functions o and gx are defined as polar conjugates of each other when-
ever the relationships (2.164) and (2.166) hold, whereas Ix and o are con-
jugate according to (2.151). With the symbolism gx = o it is meant that
gk is the polar function of ox. Moreover, when o}’ = o with ok a Ls.c.
function, it also holds that 0%’ = ox. The previous notions of polar conjugate
functions between pairs of functions have already been investigated by Hill
[43] who referred to such pairs as dual potentials.
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D(x)

X
aD(0)=G(0)

Figure 2.13: Support function D corresponding to the map G shown in Figure
2.11

We have the following important result which, in the next section, will
allow to state the normality law in a form involving the yield function (for the
proof refer to [41]).

Lemma 2.5.4 Let g be nonnegative and convezr, with g(0) = 0 and x €
int(dom(g)) such that g(x) > 0. Set C = {z: g(z) < g(x)}. Then y € N¢(x)
if and only if there exists a scalar v > 0 such that y € ¥0g(x).

2.5.2 Basic flow relations of elastoplasticity

With the mathematical instruments introduced in the previous section avail-
able, it is possible to re-examine the elastoplastic thermodynamic theory stud-
ied hitherto. In particular, adopting the standpoint of convex analysis we are
able to derive basic results like the yield function convexity, the normality law
in a more rigorous and more general fashion. As a result the yield surface
smoothness constraint can be avoided, permitting to obtain a set of alterna-
tive forms of the plastic flow law, which become of great importance for the
analysis of the variational problem of elastoplasticity carried out in Chapter
3.

For later developments and in view of the previous section notation we
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convene to establish the following substitutions

X «— set of generalized plastic strain rates

)
r — P= (ép,é)

X' «— set of generalized stresses
)
¥ — S=(o,x)

Moreover, it is assumed that K represents a closed set in the space of genera-
lized stresses S such that it admits the following representation

K ={S: ¢(8) <0}

through the yield function ¢. As done in Section 2.3.1, we refer the zone for
which ¢ < 0 as the elastic domain, while those points of K satisfying ¢ = 0
constitute the yield surface.

With these positions we are able to apply the results on maximal respon-
siveness and convex sets to the existence of a convex yield surface. Let us recall
Theorem 2.5.3 and consider a maximal responsive map G having as its values
subsets of X', First, it is found by (2.157) that the zero generalized stress
is contained within the set of thermodynamic forces S corresponding to zero
generalized plastic strain rate. Second, relation (2.158) constitutes a general-
ization of the mazimum plastic work inequality (2.58) in the case of perfectly
plastic materials and, admitting ¢ € G(€f) and o1 € G(é}), becomes

(6op—0o1):€)>0and (o1 —0g):€/ >0

that parallels (2.55).

Going a step further, we may inquire whether the maximal responsiveness
condition which permits deducing yield surface convexity can be derived as a
consequence of the Principle of maximum plastic dissipation inequality (2.59).
Apply Theorem 2.5.3 and Lemma 2.5.2. By the maximal responsiveness condi-
tion we are led to recognize the existence of a closed convex set K of admissible
generalized stresses and of a generalized normality rule stated in the form

P € Nk(S) (2.167)

Theorem 2.5.3, moreover, implies the equivalence between the normality rule
(2.167) and the following

S e G(P) (2.168)
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Since
S € int(K) = Nk (S) = {0}

it is clear from (2.167) that in the elastic region P = 0. Hence, it is stated
the equivalence between the existence of a convex yield surface satisfying the
normality rule and the property of maximal responsiveness.

At this point it is possible to draw some considerations on the dissipation
function. The dissipation function D, defined by (2.57) in Section 2.3.1, in the
present context becomes the function g that appears in Lemma 2.5.2 and is
characterized by being the support function of the set K. With this association
and inspecting (2.59) we are left with

DP)=sup{T:P: TeK}=S:P (2.169)

which indicates that S represents the point which returns the supremum of
the set of admissible plastic work rates.

If we consider the Legendre-Fenchel conjugate D* of the function D, that
is the indicator function of the set K; applying Lemma 2.5.2(d), we arrive at
the equivalent condition

S € 0D(P) (2.170)

which provides the connection existing between the support function D and
the maximal responsive map G through Theorem 2.5.3.

Going back for a moment to the example presented in Figure 2.11 which
shows the support function corresponding to G, we can derived the relationship

G =0D (2.171)

The last equation qualifies D as a pseudopotential for S [23].
The analytical considerations carried out in Section 2.5.1 make it possible
to derive the following equivalent formulations of the flow law in plasticity

(a) G maximal responsive
SeGP)
)

(b) G convex, positively homogeneous, ls.c.
D(P) >0, D(0)=0
S € 0D(P)

0
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(¢) K closed, convex, containing 0
D* = indicator function of K
P € 9D*(S) = Nk (S)

Relationship between the yield and dissipation functions

The analysis on polar functions presented in Section 2.5.1 permits to recognize
an enlightening relationship between the yield and dissipation function. Equa-
tion (2.161) authorizes to define a gauge function g (we omit for brevity the
subscript K with no ambiguity) corresponding to which the set of admissible
generalized stress can be expressed as

K ={S:4(8) <o}

The above representation of the yield function through a gauge is usually
termed the canonical yield function. The gauge g is defined according to

g(S) =inf{p>0:8 € uK}

and, by generalization, we infer that any yield surface may be represented in
this manner. In the sequel it is be assumed that f represents an arbitrary
representation of the yield function, while g refers to the canonical represen-
tation.

Assume that the dissipation D(A) = 0 (for convenience, we indicate mo-
mentarily the argument of D by A, a generalized plastic strain rate) if and
only if A = 0. It results clear from (2.163) that g and D are related by

(S) S: A
g(8)=  sup —
Acdom(D)\{0} D(A)

In the case where S € 0K, the boundary of K, then

S:A
sup — =1

Acdom(D)\{o} D(A)

The above expression reaches the supremum when A = P, being P conjugate
to S in the sense of an equality in (2.169). Hence, for S € K N 9D(P) and
P # 0, it holds

S:P =g(S)D(P) (2.172)



















































































































































































































































































































































































































































































































































































































































































































































