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Shape memory polymers (SMPs) 

• Ability to store a temporary shape and recover the original 

(processed) shape 

• Netpoints provide the permanent shape, switching domains 

provide the temporary shape 

• Chemical (covalent bonds) or physical (intermolecular interactions) 

crosslinking 

• Temperature activated shape 

memory polymers are the 

most common: the driving 

force is the micro-Brownian 

motion, i.e. the variation of the 

chain mobility with 

temperature 



Shape memory polymers (SMPs) 

Deformation at 

T > Tt 

and cooling 
Heating 



Shape memory polymers (SMPs) 
• Application examples: 

o Cardiovascular stents 

o Wound closure stitches 

o Drug delivery systems 

o Damping systems 

o Heat shrinkable tubes 

o Toys and items 

o Soft grippers 

o Smart fabrics 

o Deployable structures 

o Food packaging 

o Fasteners 

o … 

Intravenous syringe cannula 



Phononic crystal 

• Phononic crystals are periodic structures which display a wave 

band gap 

• The explanation for the band gap can be found in the multiple 

interference of sound waves scattered 

• Example applications: 

o Noise Cancelling 

o Vibration Insulation 

o Wave Filter 

o Wave Guide / Mirror 

o Acoustic Imaging 



Phononic crystal 

• Example of phononic crystal:  sculpture by Eusebio Sempere 

(1923-1985) in Madrid  two-dimensional periodical arrangement 

of steel tubes. 

• In 1995, measurements performed by 

Francisco Meseguer and colleagues 

showed that attenuation occurs at certain 

frequencies, a phenomenon that can not 

be explained by absorption, since the 

steels tubes are extremely stiff and behave 

as very efficient scatterers for sound 

waves. 



Phononic crystal 

• To identify the band gap, i.e., the range(s) of frequencies which are 

barred by the crystal, we need to perform a wave propagation 

analysis. 

• I considered 2 simulation types: the Bloch wave analysis and the 

steady-state dynamics analysis. 

• Analyses performed on Abaqus software. 



Goal 
• Obtaining a phononic structure which displays a tunable band-gap, 

along with good wave propagation properties 
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Goal 
• SMP vs rubbery material: pros and cons 

SMP Rubbery material 

(Shan 2013 paper) 
• Can be deformed until buckling 

(when hot) 

• Stiffer (when cold): better wave 

propagation 

• Partial shape memory recovery; 

need for reshaping (when hot) in 

order to completely recover 

original shape 

• While cold, it does not need 

continuous load to keep the 

buckled shape 

• Buckling at high temperature, 

wave propagation at room 

temperature 

• Can be deformed until 

buckling 

• Sloppy and dissipative: 

waves are damped 

• Elastic recovery of original 

shape when unloaded 

 

• Need to maintain the loading 

constraint to keep the 

buckled shape 

• All happens at room 

temperature 



SMP model 
• Two main constitutive modeling approaches: 

Phase-change Viscoelastic 

o Change of the material state 

according to temperature variation 

(“frozen” and “active” phases) 

o Variable indicating fraction of 

“frozen” phase 

o Rule of mixtures is usually used 

o Examples: 

 Liu et al. (2006) 

 Chen and Lagoudas (2008) 

 Reese et al. (2010) 

o Based on standard linear 

viscoelastic models commonly used 

to simulate polymers behavior 

o More close to the real mechanisms 

but usually more complex 

o Huge number of material parameters 

o Examples: 

 Diani et al. (2006) 

 Nguyen et al. (2008) 

 Srivastava et al. (2010) 



SMP model 
• 3D phenomenological finite-strain model for amorphous SMPs, 

based on Reese 2010 paper 

• Based on distinction between rubbery (subscript “r”) and glassy 

(subscript “g”) phase, and on frozen deformation storage 

• Assume the glass volume fraction (z) as a variable dependent only 

on temperature 

𝑧 =
1

1 + 𝐸𝑥𝑝(2 𝑤 (𝜃 − 𝜃𝑡))
 

• Consider Neo-Hookean model for both rubbery and glassy phases, 

with proper material parameters 

• Use rule of mixtures to derive the global Helmoltz potential 

Ψ = 1 − 𝑧  Ψ𝑟 + 𝑧 Ψ𝑔 

θ = current temperature 

θt = transformation temperature 

w = material parameter determining the 

slope of the transformation curve 



SMP model 
• Model implemented in an Abaqus UMAT 



SMP model 

Complete cycle 
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Traction test 
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Young’s modulus = 3000 MPa 

User material parameters: 

Young’s modulus glassy phase = 3000 MPa 

Poisson’s coefficient glassy phase = 0.35 

Young’s modulus glassy phase = 10 MPa 

Poisson’s coefficient glassy phase = 0.49 



Manufacturing 
• After MANY (!) trials …found the ideal way to manufacture the 

samples, using both the laser-cutter and the drilling machine 



Heating  buckling  cooling 
Square 

Diagonal 

• Optimized using FEA simulations  60% porosity 



Re-heating and …recovery? 

heating, 

compression, 

cooling 

heating, 

partial shape 

memory 

reshaping, 

cooling 



Simulations 

• Buckling 

• Post-buckling 

infinite structure 

+ 

periodic boundary 

conditions 

finite-size 

structure 

• Wave propagation analysis 
Bloch wave analysis for infinite 

Dynamics steady-state for finite-size 

both on infinite and finite-size 



Buckling 

ABAQUS PROCEDURE: 

• Linear perturbation  buckle 

• Load (0, 1) 

• Additional line in input file: 

*NODE FILE 

U 

Buckling modes 



Post-buckling 

ABAQUS PROCEDURE: 

• Static general step 

• Apply required load 

• Additional line in input file: 

*IMPERFECTION, … 

related to the buckling analysis file 



• The Bloch wave analysis considers an infinite periodic structure 

and is based on a RVE, which is the smaller unit-cell of the 

structure: 

RVE 

a2 

a1 

Bloch wave analysis 

Elastic plane waves propagation 

• The reciprocal lattice can be defined as the set of wave 

vectors k that creates plane waves that satisfy the spatial 

periodicity of the point lattice: 

= 



(In this case, a1=a2=a) 

RVE 

a1 

a2 

𝑏1 = 2𝜋
𝑎2 × 𝑧

𝑧 2  

𝑏2 = 2𝜋
𝑧 × 𝑎1

𝑧 2  

𝑧 = 𝑎1 × 𝑎2 

• The subset of wave vectors k that contains all the information 

about the propagation of plane waves in the structure is called the 

Brillouin zone. 

• The phononic band gaps are identified by checking all 

eigenfrequencies ω(k) for all k vectors in the irreducible Brillouin 

zone: the band gaps are the frequency ranges within which no 

ω(k) exists. 

b1 

b2 

G X 

M 

Bloch wave analysis 



• Bloch-Floquet conditions are applied to the boundaries:  

A B 

• Coupling of real and imaginary parts. 

k is the wave propagation direction  

Bloch wave analysis 



• These eigenvalues ω(k) are continuous functions of the 

vectors k (which individuate the wave direction), but they are 

discretized when computed through numerical methods such 

as FEA. 

• Once checked all the eigenvalues in the Brillouin zone, the 

eigenvalues ω(k) can be plotted vs k. 

• The ω(k) vs k plot is called dispersion diagram. 

Band gap 

Bloch wave analysis 

Normalized frequency: 

where cT is the wave 

propagation speed in 

the considered 

material. 



Bloch wave analysis example 

Compression = 0% 

Radius ≈ 4.37 mm  porosity = 60% 

Biaxial 



Bloch wave analysis example 

Compression = 25% 

Radius ≈ 4.37 mm  porosity = 60% 



Bloch wave analysis example 

Compression = 50% 

Radius ≈ 4.37 mm  porosity = 60% 



Bloch wave analysis example 

Compression = 75% 

Radius ≈ 4.37 mm  porosity = 60% 



Bloch wave analysis example 

Compression = 90% 

Radius ≈ 4.37 mm  porosity = 60% 



Bloch wave analysis example 

Compression = 100% 

Radius ≈ 4.37 mm  porosity = 60% 



Steady-state dynamics analysis 
• The steady-state dynamics analysis is performed on the finite-size 

sample. 

input displacement: U = 1. cos(ω t) 

input 

load 

output 

measure  



Steady-state dynamics analysis 
• The steady-state dynamics analysis is performed on the finite-size 

sample. 

input displacement: U = 1. cos(ω t) 

input 

load 

output 

measure  



Steady-state dynamics analysis 

Band gap 



Wave propagation analysis 
porosity = 60% 

• Bloch wave analysis on SMP phononic crystal 



Wave propagation analysis 
porosity = 60% 

• Bloch wave analysis on SMP phononic crystal 

(compressed configuration) 



Wave propagation analysis 
porosity = 60% 

Bloch wave analysis + finite size analysis 



Wave propagation analysis 
porosity = 60% 

Bloch wave analysis + finite size analysis 



Wave propagation analysis 
Finite-size: 

Normalized and not normalized frequency 

undeformed 

deformed 



Future work 

• Experimental tests on waves propagation 

• Find a SMP material with higher shape memory 

• Further trials on diagonal structure 



Thank you 


