

Modelling, Validation, and Design for Additive Manufacturing

Applications of numerical methods to 3D printing processes

Massimo Carraturo

Supervisors:

Prof. Alessandro Reali University of Pavia

Prof. Dr. rer. nat. Ernst Rank Technical University of Munich Co-advisors:

TECHNISCHE

UNIVERSITÄT MÜNCHEN

Prof. Ferdinando Auricchio University of Pavia

Dr.-Ing. habil. Stefan Kollmannsberger Technical University of Munich

Outline

- Introduction
- Adaptive Isogeometric Analysis for Heat Transfer Problems
- Physical Modelling and Experimental Validations
- Functionally Graded Material Design for Additive Manufacturing
- Conclusions

Outline

Introduction

- Adaptive Isogeometric Analysis for Heat Transfer Problems
- Physical Modelling and Experimental Validations
- Functionally Graded Material Design for Additive Manufacturing
- Conclusions

Additive Manufacturing generic production process

Laser powder bed fusion process

Image source: EOS Gmbh

NIVERSITÀ DI PAVIA 3/17/2020

LPBF Numerical simulations: Multi-scale

Outline

Introduction

- Adaptive Isogeometric Analysis for Heat Transfer Problems
- Physical Modelling and Experimental Validations
- Functionally Graded Material Design for Additive Manufacturing
- Conclusions

Why adaptive isogeometric analysis?

• The multi-scale nature of the problem calls for **adaptive numerical scheme** where refinement and coarsening can be efficiently performed.

• The high temperature gradients in the vicinity of the melt-pool regions can be well-approximated by means of high-order basis functions.

• **Goal**: Develop a multi-level, high-order and adaptive numerical method suitable to simulate heat transfer problems with a localized moving heat source.

Adaptive IGA for heat transfer problems

Truncated Hierarchical

B-splines (THB-splines)

THB-splines can be employed as a basis for adaptive isogeometric analysis, reducing interactions between different levels in the spline hierarchy.

Admissible meshes

A hierarchical mesh is admissible of class m if, for each element Q, the functions that do not vanish in Q belong to at most m successive levels

Giannelli, C., Jüttler, B., Speeler, H., THB-spline: the truncated basis for hierarchical splines, Comp. Aided Geom. Design. (2012)

3/17/2020

INIVERSIT

Admissible adaptive mesh

• Admissible refinement algorithm: Recursively refine the elements in the refinement neighborhood of the marked elements.

The final mesh automatically fulfills admissibility requirements!

UNIVERSITÀ DI PAVIA

A. Buffa, C. Giannelli, Adaptive isogeometric methods with hierarchical splines: Error estimator and convergence, Mathematical Models and Methods in Applied Sciences 26 (2016) 1–25

3/18/2020

M. Carraturo

Admissible adaptive mesh

• Admissible mesh coarsening: A recursive algorithm to efficiently perform coarsening and at the same time automatically fulfills the admissibility requirements.

The final mesh automatically fulfills admissibility requirements!

Carraturo, M., Giannelli, C., Reali, A., Vazguez, R., Suitably graded THB-spline refinement and coarsening: Towards an adaptive isogeometric analysis of additive manufacturing processes, CMAME (2019) 3/18/2020

M. Carraturo

Numerical example 2D

- Process parameters:
 - Laser power = 190 [W]
 - Laser speed = 800 [mm/s]
 - Laser radius = 0.05[mm]
 - Hatch distance = 0.05[mm]
 - Initial temperature = 25°
- Material parameters:
 - Absorptivity = 0.33
 - Conductivity = 29 [mW/m/K]
 - Heat capacity = 650 [J/kg/K]
 - Density = 8440[kg/m³]

DI PAVIA

Numerical example 2D

Non-admissible grid

Admissible grid

M. Carraturo

Numerical example 2D

Carraturo, M., Giannelli, C., Reali, A., Vazquez, R., Suitably graded THB-spline refinement and coarsening: Towards an adaptive isogeometric analysis of additive manufacturing processes, CMAME (2019) 3/18/2020

Outline

Introduction

- Adaptive Isogeometric Analysis for Heat Transfer Problems
- Physical Modelling and Experimental Validations
- Functionally Graded Material Design for Additive Manufacturing
- Conclusions

Physical modelling

• Temperature-based phase-change model:

• Heat equation is expressed in terms of enthalpy (H) and temperature (T):

$$\begin{aligned} \frac{\partial H}{\partial t} - \nabla(k\nabla T) &= Q & \text{in } \Omega \\ -k\nabla T &= q & \text{on } \Gamma_N \\ H(t) &= \int_{T_{ref}}^{T} \rho c(T) dT + \rho L f_{pc}(T) = H^c + H^l \\ f_{pc}(T) &= \frac{1}{2} \left[\tanh\left(S\frac{2}{T_l - T_s}\left(T - \frac{T_s - T_l}{2}\right)\right) + 1 \right] & \overset{f_{re}}{\overset{1}{=}} \int_{S=3}^{S=2} S = 4 \\ & \overset{f_{re}}{\overset{f_{re}}{=}} \int_{T_{ref}}^{T} \rho c(T) dT + \rho L f_{pc}(T) = H^c + H^l \\ & \overset{f_{re}}{\overset{f_{re}}{=}} \int_{T_{ref}}^{T} \rho c(T) dT + \rho L f_{pc}(T) = H^c + H^l \\ & \overset{f_{re}}{\overset{f_{re}}{=}} \int_{T_{ref}}^{T} \rho c(T) dT + \rho L f_{pc}(T) = H^c + H^l \\ & \overset{f_{re}}{\overset{f_{re}}{=}} \int_{T_{ref}}^{T} \rho c(T) dT + \rho L f_{pc}(T) = H^c + H^l \\ & \overset{f_{re}}{\overset{f_{re}}{=}} \int_{T_{ref}}^{T} \rho c(T) dT + \rho L f_{pc}(T) = H^c + H^l \\ & \overset{f_{re}}{\overset{f_{re}}{=}} \int_{T_{ref}}^{T} \rho c(T) dT + \rho L f_{pc}(T) = H^c + H^l \\ & \overset{f_{re}}{\overset{f_{re}}{=}} \int_{T_{ref}}^{T} \rho c(T) dT + \rho L f_{pc}(T) = H^c + H^l \\ & \overset{f_{re}}{\overset{f_{re}}{=}} \int_{T_{ref}}^{T} \rho c(T) dT + \rho L f_{pc}(T) = H^c + H^l \\ & \overset{f_{re}}{\overset{f_{re}}{=}} \int_{T_{ref}}^{T} \rho c(T) dT + \rho L f_{pc}(T) = H^c + H^l \\ & \overset{f_{re}}{\overset{f_{re}}{=}} \int_{T_{ref}}^{T} \rho c(T) dT + \rho L f_{pc}(T) = H^c + H^l \\ & \overset{f_{re}}{\overset{f_{re}}{=}} \int_{T_{ref}}^{T} \rho c(T) dT + \rho L f_{pc}(T) = H^c + H^l \\ & \overset{f_{re}}{\overset{f_{re}}{=}} \int_{T_{ref}}^{T} \rho c(T) dT + \rho L f_{pc}(T) = H^c + H^l \\ & \overset{f_{re}}{\overset{f_{re}}{=}} \int_{T_{ref}}^{T} \rho c(T) dT + \rho L f_{pc}(T) = H^c + H^c \\ & \overset{f_{re}}{\overset{f_{re}}{=}} \int_{T_{ref}}^{T} \rho c(T) dT + \rho L f_{pc}(T) = H^c + H^c \\ & \overset{f_{re}}{\overset{f_{re}}{=}} \int_{T_{ref}}^{T} \rho c(T) dT + \rho L f_{pc}(T) = H^c + H^c \\ & \overset{f_{re}}{\overset{f_{re}}{=}} \int_{T_{ref}}^{T} \rho c(T) dT + \rho L f_{pc}(T) = H^c + H^c \\ & \overset{f_{re}}{\overset{f_{re}}{=}} \int_{T_{ref}}^{T} \rho c(T) dT + \rho L f_{pc}(T) = H^c \\ & \overset{f_{re}}{\overset{f_{re}}{=}} \int_{T_{ref}}^{T} \rho c(T) dT + \rho L f_{pc}(T) \\ & \overset{f_{re}}{\overset{f_{re}}{=}} \int_{T_{ref}}^{T} \rho c(T) dT \\ & \overset{f_{re}}{\overset{f_{re}}{=} \int_{T_{ref}}^{T} \rho c(T) dT \\ & \overset{f_{re}}{\overset{f_{re}}{=}} \int_{T_{ref}}^{T} \rho c(T) dT \\ & \overset{f_{re}}{\overset{f_{re}}{=} \int_{T_{ref}}^{T} \rho c(T) dT \\ & \overset{f_{re}}{\overset{f_{re}}{=} \int_{T_{ref}}^{T} \rho c(T) dT \\ & \overset{f_{re}}}{\overset{f_{re}}{=} \int_{T_{ref}}^{T} \rho c(T) dT \\ & \overset{f_{re}}{\overset{$$

3/17/2020

DI PAVIA

M. Carraturo

Physical modelling

• Energy input from power density measurements:

UNIVERSITA

Physical modelling

• Anisotropic conductivity: allows to partially consider melt-pool dynamics in the model.

UNIVERSIT

Kollmannsberger, S., Carraturo, M., Auricchio, F. and Reali, A. (2019), Accurate Prediction of Melt Pool Shapes in Laser Powder Bed Fusion by the Non-Linear Temperature Equation Including Phase Changes. IMMI. 3/17/2020

M. Carraturo

Experimental validation (AMBench2018)

- Adjacent, independent laser scans using 3 different combinations (case A, B, and C) of laser power and speed
- Material:INCONEL 625 (a Nickelbased superalloy widely used in AM applications)
- No powder is involved

Source: https://www.nist.gov/ambench/amb2018-02-description

UNIVERSITÀ DI PAVIA

3/17/2020

Source: https://www.nist.gov/ambench/amb2018-02-description

Experimental validation (AMBench2018)

• *Ex-situ* measurements of the melt-pool cross section

• *In-situ* measurements of the meltpool length. Mod<u>elled</u> Equiv. Signal [DL] Optical Blur, Motion Blur, Spatial Digitization (3.3 µm/pixel)

Kollmannsberger, S., Carraturo, M., Auricchio, F. and Reali, A. (2019), Accurate Prediction of Melt Pool Shapes in Laser Powder Bed Fusion by the Non-Linear Temperature Equation Including Phase Changes. IMMI.

3/19/2020

M. Carraturo

Outline

Introduction

- Adaptive Isogeometric Analysis for Heat Transfer Problems
- Physical Modelling and Experimental Validations
- Functionally Graded Material Design for Additive Manufacturing
- Conclusions

Objective:

- Minimize the compliance (i.e., maximize the stiffness) of the structure for linear elastic problems
- Obtain a functionally graded lattice design with varying density

Phase-field Method:

- No filtering methods required (cfr. SIMP approaches)
- No function re-initialization required (cfr. Level-set method)

3/17/2020

Objective

Minimize the compliance of the structure defined as:

 $\int_{\Gamma_N} \mathbf{g} \cdot \mathbf{u}(\varphi, \chi) \mathrm{d}\Gamma$

Phase-field variables $0 \le \varphi \le 1$ a.e. in Ω Defines the material regions $0 < \chi < \varphi$ a.e. in Ω Defines the density of the material **Extended** objective functional Double-well potential $\mathcal{J}^{\varepsilon}(\mathbf{u},\varphi,\chi) = \kappa_{\varphi} \int_{\Omega} \left(\frac{\mathcal{W}(\varphi)}{\varepsilon_{\varphi}} + \varepsilon_{\varphi} \frac{|\nabla\varphi|^2}{2} \right) \mathrm{d}x + \kappa_{\chi} \int_{\Omega} \varepsilon_{\chi} \frac{|\nabla\chi|^2}{2} \mathrm{d}x + \int_{\Gamma_N} \mathbf{g} \cdot \mathbf{u} \mathrm{d}x$ Free-energy functional Density gradient term 3/17/2020 M. Carraturo 23

Objective

Minimize the extended objective functional: $\mathcal{J}^{\varepsilon}(\mathbf{u},\varphi,\chi)$

under the constraints:

• Volume constraint is introduced using the Lagrange multiplier $\lambda_{\varphi} \in \mathbb{R}$

$$\Longrightarrow \lambda_{\varphi} \left(\int_{\Omega} \varphi \mathrm{d}x - \int_{\Omega} m_{\varphi} \mathrm{d}x \right) =: \lambda_{\varphi} M_{\varphi} = 0$$

• Mass constraint is introduced using the Lagrange multiplier $\lambda_{\chi} \in \mathbb{R}$ and controlled by a mass fraction parameter $m_{\chi} < m_{\varphi}$ defining the target mass fraction in the optimized structure w.r.t. the mass of the initial volume filled with purely bulk material.

Objective

Minimize the extended objective functional: $\mathcal{J}^{\varepsilon}(\mathbf{u},\varphi,\chi)$

under the constraints:

• The mechanical equilibrium equations are satisfied:

$$-\nabla \cdot \boldsymbol{\sigma} = \mathbf{0} \quad \text{in } \Omega$$
$$\boldsymbol{\sigma} \cdot \mathbf{n} = \mathbf{g} \quad \text{on } \Gamma_g$$
$$\mathbf{u} = \mathbf{u}_0 \quad \text{on } \Gamma_d$$
$$\boldsymbol{\sigma} = \mathbf{C}(\varphi, \chi) : \boldsymbol{\varepsilon}(\mathbf{u}) \quad \text{in } \Omega$$

Obtained from **asymptotic homogenization** on a lattice RVE with periodic BCs

3/17/2020

MBB 2D example

- Messerschmitt-Bölkow-Blohm (MBB) beam problem:
 - g=25 N
 - Material: RGD851 rigid polymer from Stratasys (E=2.3GPa and v=0.3)
 - 3D printer machine: Stratasys Objet 260 Connex 3
 - Volume fraction = 0.6
 - Mass fraction = 0.4

MBB 2D example

From numerical analysis to 3D printing

Alaimo G., Carraturo M., Rocca E., Reali A., Auricchio F., Functionally graded material design for plane stress structures using phase field method, II International Conference on UNIVERSITÀ Simulation for Additive Manufacturing - Sim-AM 2019 3/17/2020

M. Carraturo

Experimental measurements

• **Objective:** Evaluate the improvement in terms of max. displacements obtained in the optimized specimen w.r.t. a uniform specimen of the same weight.

Outline

Introduction

- Adaptive Isogeometric Analysis for Heat Transfer Problems
- Physical Modelling and Experimental Validations
- Functionally Graded Material Design for Additive Manufacturing

• Conclusions

Conclusions

- Adaptive IGA is an attractive methodology to deal with heat transfer problem with moving heat source.
- A thermal model based on a **data fitting** of power density measurements and **anisotropic conductivity** is validated w.r.t. thermal camera measurements.
- A phase-field topology optimization approach can be used to design functionally graded lattice structures with higher stiffness compared to uniform lattice structures of the same weight.

Further outlook

IA 3/19/2020

Modelling, Validation, and Design for Additive Manufacturing

Applications of numerical methods to 3D printing processes

Massimo Carraturo

Supervisors:

Prof. Alessandro Reali University of Pavia

Prof. Dr. rer. nat. Ernst Rank Technical University of Munich Co-advisors:

TECHNISCHE

UNIVERSITÄT MÜNCHEN

Prof. Ferdinando Auricchio University of Pavia

Dr.-Ing. habil. Stefan Kollmannsberger Technical University of Munich

The 7 categories of AM (ASTM/ISO)

Fused deposition modeling (FDM)Materials: ABS, ceramics

• Applications: tissue/scaffolds

Binder jetting

- Materials: polymers, ceramics, and metals
- Applications: arts, prototyping

Material jetting

- Materials: polymers
- Applications: electrical and chemical industry

3/17/2020

Vat Photopolymerization

- Materials: polymers
- Applications: coating and printing industry

Sheet lamination

- Materials: metals
- Applications: prototyping

Direct energy deposition (DED)

- Materials: metals
- Applications: repairing/joining metal components

Laser powder bed fusion (LPBF)

- Materials: metals
- Applications: aerospace and biomedical industry

UNIVERSITÀ DI PAVIA

Laser powder bed fusion features

Benefits:

- Complex geometries
- Better material properties

Drawbacks:

- High residual stresses induced by the process
- Needs of supports
- Higher accuracy and surface finish
- High costs

LPBF Numerical simulations: Challenges

Complex geometrical features

LPBF Numerical simulations: Challenges

THB-splines features

- Key features:
 - Local Linear independence
 - Local and compact support
 - Two scale relation
 - Partition of unity
 - Non-negativity

Adaptive IGA

- From Buffa and Giannelli (2016) we take the definitions of multilevel *support extension* and *refinement neighborhood* of an active element *Q* of level *I*:
 - Definition support extension: the support of B-splines of level k which do not vanish on the element Q

$$S(\hat{Q},k) := \left\{ \hat{Q'} \in \hat{G}^k : \exists \hat{\beta} \in \hat{\mathcal{B}}^k, \operatorname{supp} \hat{\beta} \cap \hat{Q'} \neq \emptyset \land \operatorname{supp} \hat{\beta} \cap \hat{Q} \neq \emptyset \right\}.$$

• Definition refinement neighborhood: set of elements of level l - m + 1 with a child in the support extension of Q.

$$\mathcal{N}_r(\hat{Q},m) := \left\{ \hat{Q}' \in \hat{\mathcal{G}}^{\ell-m+1} : \exists \, \hat{Q}'' \in S(\hat{Q},\ell-m+2), \hat{Q}'' \subseteq \hat{Q}' \right\}.$$

A 3/18/202

39

Adaptive IGA

• Definition *coarsening neighborhood* of an element *Q* of level *l* : the set including all the active elements of level *l*+*m* which are in the support extension of the children of the element *Q*:

$$\mathcal{N}_c(\hat{\mathcal{Q}}, \hat{Q}, m) := \left\{ \hat{Q}' \in \hat{\mathcal{G}}^{\ell+m} : \exists \, \hat{Q}'' \in \hat{\mathcal{G}}^{\ell+1} \text{ and } \hat{Q}'' \subset \hat{Q}, \text{ with } \hat{Q}' \subset S(\hat{Q}'', \ell+1) \right\}.$$

• Property: When the coarsening neighborhood of an element to be reactivated turns out to be empty it ensures that all the re-activated functions are fully truncated on level *I*+1.

3/17/2020

40

Adaptive IGA

Algorithm 5 coarsen Input: Q, M_c, m Output: Q 1: for $Q \in \mathcal{M}_c$ do 2: $\mathcal{R}_c \leftarrow \mathcal{R}_c \cup \texttt{get_parent}(Q)$ 3: end for 4: for $Q \in \mathcal{R}_c$ do ▷ This loop must be done from the finest to the coarsest level $Q_c \leftarrow \texttt{get_children}(Q)$ 5: if $(Q_c \subset \mathcal{M}_c \text{ and } \mathcal{N}_c(\mathcal{Q}, Q, m) = \emptyset)$ then 6: update Q by activating Q and removing its children Q_c 7: end if 8: 9: end for

Thermografic measurement model

UNIVERSITÀ

43

Part-scale Additive Manufacturing Thermal Process Simulations using the Finite Cell Method

Standard AM-design process

FCM AM-design-through-analysis

• The thermo-mechanical analysis is performed directly on the CAD model.

• The STL repair step is required only once the final design is ready to be printed.

• Initial domain discretization

• Numerical integration using Quad/Octree partitioning

Other integration schemes could be used:

Х

Х

Х

- Smart-Octree (Kudela et al. 2016)
- Moment fitting (Hubrich et al. 2016)

- We distinguish between two different kind of layers:
 - 1. Cell layer: the layer of the finite cells supporting the basis functions
 - 2. Powder (or physical) layer: it corresponds to the actual layer of powder spread by the machine

DI PAVIA

• Growing domain

3/17/2020

Part-scale immersed thermal analysis

Carraturo M., Jomo J., Kollmannsberger S., Reali A., Auricchio, F. and Rank E. (*submitted*), Modeling and experimental validation of an immersed thermo-mechanical part-scale analysis for laser powder bed fusion processes. Additive Manufacturing. 3/17/2020 M. Carraturo 49

GE-bracket immersed thermal process analysis

GE-bracket:

- Optimized AM component
- Material: Stainless steel 316L
- Dimensions: 48.5x80.0x28.5 mm^3
- # cells: 60x100x72
- # integration voxels/cell: 4x4x4
- # GPs/voxel: 8
- # powder-layer/cycle: 5
- Powder-layer thickness: 50 μm
- Number of time steps: 120

GE-bracket immersed thermal process analysis

Growing domain thermo-mechanical problem solver

DI PAVIA 3/17/2020

UNIVERSITÀ

M. Carraturo

Experimental Validation

• Experimental setup

Experimental Validation

• Simulation vs. Experiment comparison

Max. deflection relative error < 5% Data correlation ~ 99%

Functional Design for AM

• Multi-step design process driven by optimization, taking advantages from Additive Manufacturing but also knowing the limitations of the process.

JNIVERSIT

Objective

Minimize the Lagrangian functional such that the admissibility conditions are fulfilled: $\min \mathcal{L}(\mathbf{u}, \mathbf{p}, \varphi, \chi, \lambda_{\varphi}, \lambda_{\chi}) = \mathcal{J}^{\varepsilon}(\mathbf{u}, \varphi, \chi) + \lambda_{\varphi} \mathcal{M}_{\varphi} + \lambda_{\chi} \mathcal{M}_{\chi} + \mathcal{S}(\mathbf{p}, \varphi, \chi)$

$$D_{\varphi} \mathcal{L}(\bar{\varphi}, \bar{\chi}, \bar{\mathbf{u}}, \bar{\mathbf{p}}, \bar{\lambda}_{\varphi}, \bar{\lambda}_{\chi}) (\varphi - \bar{\varphi}) \ge 0 \quad \forall \varphi \in \Phi_{ad}$$
$$D_{\chi} \mathcal{L}(\bar{\varphi}, \bar{\chi}, \bar{\mathbf{u}}, \bar{\mathbf{p}}, \bar{\lambda}_{\varphi}, \bar{\lambda}_{\chi}) (\chi - \bar{\chi}) \ge 0 \quad \forall \chi \in \Xi_{ad}$$

 $\Phi_{ad} := \{ \varphi \in H^1(\Omega) : 0 \le \varphi \le 1 \text{ a.e. in } \Omega \}$ $\Xi_{ad} := \{ \chi \in H^1(\Omega) : 0 \le \chi \le \phi \text{ a.e. in } \Omega \}$

Auricchio F., Carraturo M., Bonetti E., Hömberg D., Reali A. and Rocca, E. (submitted). A phase-field based graded-material topology optimization with stress constraint. M3AS.

3/17/2020

Homogenization

• Asymptotic homogenization using Ansys

3/19/2020

Topology Optimization

DI PAVIA

Phase-field based topology optimization of MBB-beam problem

3D virtual model reconstruction

