

MINI-COURSE Mechanical modeling of soft biological tissues

LESSON 2

Multiscale modeling of aorta mechanics and damage mechanisms

Michele Marino

DICAr, Pavia, Italy December 12^{th,} 2013

Biomechanics?

"Biomechanics is the study of the structure and function of biological systems by means of the methods of mechanics" *Herbert Hatze*, University of Vienna, 1974

Models to predict the mechanics:

- of biological structures
- in biological structures

Mechanical modeling of soft biological tissues – LESSON 2

The example of aneurysmal care

From *Biomechanics and Pathobiology of Aortic Aneurysms* by J.A. Phillippi, S. Pasta and D.A. Vorp

The **puzzle**:

"Our understanding of aortic diseases continues to advance as new partnerships between surgeons, biologists, engineers and mathematicians [...]."

Computer-Aided Diagnosis

The example of aneurysmal care

The **missing pieces**:

"[...] developing the enabling non-invasive technologies to measure wall stress and strain, refinement of the mathematical models and establishing links between the clinical manifestations and the biological mechanisms inciting them."

For an effective **patient-specific** simulation:

Constitutive modeling of biological tissues explicitly depending on actual histology, biological features and biochemical environment

Mechanical modeling of soft biological tissues – LESSON 2

Mechanical modeling of soft biological tissues – LESSON 2

MICHELE MARINO

M.K. O'Connell et al., The Three-dimensional Micro- and Nanostructure of the Aortic Medial Lamellar Unit Measured Using 3D Confocal and Electron Microscopy Imaging. *Matrix Biol.* 27, 2008

M.K. O'Connell et al., The Three-dimensional Micro- and Nanostructure of the Aortic Medial Lamellar Unit Measured Using 3D Confocal and Electron Microscopy Imaging. *Matrix Biol.* 27, 2008

... corresponding to relevant alterations in arterial mechanics

Correlation also between aortic dilation, aneurysm, rupture risk, etc. etc. and histo-chemical alterations (Bruel et al., 1998; Carmo et al., 2002; Lindeman et al. 2010)

STATE OF THE ART

Two main approaches:

1) Phenomenological laws (Fung, 1973; Yin and Elliott, 2004)

2) Structural models: incorporate structure-based parameters

(Comninou and Yannas, 1976; Lanir, 1979; Freed and Doehring, 2005; Holzapfel et al., 2000, 2002)

$$\overline{\Psi}(\bar{I}_1, \bar{I}_4, \bar{I}_6) = \overline{\Psi}_g(\bar{I}_1) + \overline{\Psi}_f(\bar{I}_4, \bar{I}_6)$$
$$\Psi_g(\bar{I}_1) = \frac{c}{2}(\bar{I}_1 - 3) \qquad \overline{\Psi}_f(\bar{I}_4, \bar{I}_6) = \frac{k_1}{2k_2} \sum_{i=4,6} \{\exp[k_2] \bar{I}_i - 1)^2] - 1\}$$

$$\bar{I}_4 = \mathbf{C} : \mathbf{A}_1 \qquad \bar{I}_6 = \mathbf{C} : \mathbf{A}_2$$

 $\mathbf{A}_1 = \mathbf{M} \otimes \mathbf{M} \qquad \mathbf{A}_2 = \mathbf{M}' \otimes \mathbf{M}'$

STATE OF THE ART

Two main approaches:

1) Phenomenological laws (Fung, 1973; Yin and Elliott, 2004)

2) Structural models: incorporate structure-based parameters

(Comninou and Yannas, 1976; Lanir, 1979; Freed and Doehring, 2005; Holzapfel et al., 2000, 2002)

The **microscale** is the lowest scale explicitly modeled only in terms of collagen orientation

$$\overline{\Psi}_{\rm f}(\bar{I}_4, \bar{I}_6) = \frac{k_1}{2k_2} \sum_{i=4,6} \left\{ \exp[k_2(\bar{I}_i - 1)^2] - 1 \right\}$$

- To date, nanomechanics is predicted by molecular dynamical simulations (MDS) (Buehler, 2008; Deriu et al., 2010)

Computational efforts of MDS make them completely useless at the macroscale

STATE OF THE ART

How does salt really

dissolve in water?

An ab initio molecular dynamics study

www.chem.ucl.ac.uk/ice

M. Marino, G. Vairo, "Multiscale Elastic Models of Collagen Bio-structures: From Cross-Linked Molecules to Soft Tissues", In: *Multiscale Computer Modeling in Biomechanics and Biomedical Engineering*, Springer 2013.

MLU_k

MLU_{k-1}

 MLU_{k+1}

AORTIC MODEL: MULTISCALE STRUCTURAL APPROACH

- Multi-layered thick cyinder
- Each layer is a MLU
- Each MLU is a laminate
- Nano-micro-macro homogenization

Helically-Arranged-Fiber-Reinforced-Composite-Materials: HFC

AORTIC MODEL: MULTISCALE STRUCTURAL APPROACH

AORTIC MODEL

Human aorta (media) – middle age (Hallock, 1937)

Nanoscale parameters:

	Value	Reference			
ℓ_c	285 nm	Sun, 2002			
ℓ_p	14.5 nm	Sun, 2002			
ℓ_{kinks}	22 nm	Graham, 2004			
\widehat{E}	80 GPa	Buehler, 2008			
λk_{cl}	10	-			

Microscale parameters:

	Value	Reference		
L _o	3.4 μm	O' Connell, 2008		
H_0/L_0	0.3	O' Connell, 2008		
r _F	100 nm	O' Connell, 2008		

Geometry:

	Value	Reference			
S ₀	1.42 μm	Ästrand, 2008			
Ν	60	Wolinsky, 1967			
r _{p=0}	6.2 mm	Ästrand, 2008			

Boundary conditions: Free estremities

....

Loading: Uniform internal pressure

Material properties: Multiscale model

Macroscale parameters:

	Value	Reference			
V _f	30%	Behmoaras, 2005			
E _M	24 kPa	Ästrand, 2008			
$F(\theta_f)$	-	O' Connell, 2008			

AORTIC MODEL: RESULTS

Quantitative and qualitative indications from experimental data:

Age	λk_{cl}	H_o/L_o	L _o	V _F	E _e	Φ_{e}	S _a	$r _{p=0}$
[yrs.]	[pN/nm]	[-]	[µm]	[%]	[kPa]	[-]	[mm]	[mm]
20-23	5	0,4	2,6	40	60	0,0	0,6	5,6
36-42	10	0,3	3,4	30	80	-0,3	0,6	6,2
71-78	100	0,2	3,7	20	100	-0,6	0,7	7,4

AORTIC MODEL: APPLICATIONS

TISSUE DEFECT

Cross-links density defect:
$$z=\lambda k_{cl}$$

M. Marino, G. Vairo, "Stress and strain localization in stretched collagenous tissues via a multiscale modelling approach", *Computer Methods in Biomechanics and Biomedical Engineering*, published online since 2012.

TISSUE DEFECT

Fiber equivalent along-the-chord tangent modulus vs. the fiber along-the-chord nominal strain

Distribution of the macroscale tissue tangent stiffness C_{cccc} (MPa)

TISSUE DEFECT

Distribution of the macroscale tissue tangent stiffness C_{cccc} (MPa)

A nanoscale alteration (reduction in cross-links) seems to couple with some other mechanism

REMODELING SUBMODELING TECHNIQUE

$$d\varepsilon_{f} = [\dot{\boldsymbol{\epsilon}}(\mathbf{x})\mathbf{c}(\mathbf{x})] \cdot \mathbf{c}(\mathbf{x}) d\tau$$
$$d\varepsilon_{n} = [\dot{\boldsymbol{\epsilon}}(\mathbf{x})\mathbf{n}(\mathbf{x})] \cdot \mathbf{n}(\mathbf{x}) d\tau$$
$$d\gamma_{f} = 2 [\dot{\boldsymbol{\epsilon}}(\mathbf{x})\mathbf{c}(\mathbf{x})] \cdot \mathbf{n}(\mathbf{x}) d\tau$$

The submodeling procedure consists in finding the local displacement field associated with $d\varepsilon_f$, $d\gamma_f$ and $d\varepsilon_n$

A series of linearly elastic equilibrium problems at the microscale: $\begin{cases} \nabla^* \cdot \dot{\sigma}^* = 0 \\ \dot{\epsilon}^* = \hat{\nabla}^* \dot{\mathbf{u}}^* & \text{ in } \Delta \Omega_T \\ \dot{\sigma}^* = \mathcal{C}^* \dot{\epsilon}^* \end{cases}$

B.C.
$$\dot{\mathbf{u}}^*(\mathbf{x}^*) = \dot{\mathbf{u}}^{*(d\varepsilon_f)} + \dot{\mathbf{u}}^{*(d\gamma_f)} + \dot{\mathbf{u}}^{*(d\varepsilon_n)}$$
 on $\Delta \Sigma_T$

REMODELING SUBMODELING TECHNIQUE

By the Principle of Virtual Works:

$$d\mathbf{s}^{(d\varepsilon_f)}(\xi) = \frac{E_{f,c}}{E_{F,1}} \left[a_1(\xi) \,\mathbf{c} + a_2(\xi) \,\mathbf{n} \right] \, d\varepsilon_f$$

REMODELING SUBMODELING TECHNIQUE

$$\dot{\mathbf{a}}^*(\mathbf{x}^*) = \dot{\mathbf{u}}^{*(d\varepsilon_f)} + \dot{\mathbf{u}}^{*(d\gamma_f)} + \dot{\mathbf{u}}^{*(d\varepsilon_n)} \text{ on } \Delta\Sigma_T$$

REMODELING SUBMODELING TECHNIQUE

weak-bonds induced

covalent-bonds induced interstrand delamination

From: Buehler, *Theoretical and computational hierarchical nanomechanics of protein materials,* Progress in Materials Science 53, 2008

INELASTIC MECHANISMS

$$\begin{split} F_{f} &= \bar{\beta}_{m} \mathcal{A}_{c} \{ \sigma_{m}(\bar{\varepsilon}_{m}^{e}) + E_{m}(\bar{\varepsilon}_{m}^{e}) [(1 - \alpha_{1})\ell^{(n)} dw_{1}^{\prime} / \ell_{m,o} - \alpha_{1} \kappa_{m} \bar{\varepsilon}_{m}^{e}] \} \\ F_{f} &= N_{a} \{ \lambda_{c} (k_{c} \bar{\delta}_{c} + k_{c} \ell^{(n)} f_{c}(\bar{w}_{2}) dw_{2}^{\prime}) + k_{w}^{e} \bar{\delta}_{w}^{e} + k_{w} \ell^{(n)} (1 - \alpha_{2}) dw_{2}^{\prime} \} \\ 0 &\in c_{m} \dot{\beta}_{m} + \Psi_{m}^{el}(\bar{\varepsilon}_{m}^{e}) - w_{m} + a_{f} + \partial I_{[0,1]}(\beta_{m}) + \partial I^{-}(\dot{\beta}_{m}) \\ 0 &\in c_{c} \dot{\beta}_{c} + \mathcal{E}_{c}^{el} - w_{c} + a_{f} + \partial I_{[0,1]}(\beta_{c}) + \partial I^{-}(\dot{\beta}_{c}) \\ 0 &\in c_{w} \dot{\beta}_{w} + \frac{k_{w}(\bar{\delta}_{w}^{e})^{2}}{2} - w_{w} + a_{f} + \partial I_{[0,1]}(\beta_{w}) \end{split}$$

INELASTIC MECHANISMS

Softening/brittle failure Dependence on nanoscale quantities

Svensson RB, Mulder H, Magnusson SP (2013) Fracture mechanics of collagen fibrils: influence of natural cross-links. *Biophysical Journal* 104:2476-2484

Uzel S, Buehler MJ (2011) Molecular structure, mechanical behavior and failure mechanism of the C-terminal cross-link domain in type I collagen. *Journal of the Mechanical Behavior of Biomedical Materials* 4:153-161

MINI-COURSE Mechanical modeling of soft biological tissues

Contacts: Michele MARINO, PhD, MSc Department of Civil Engineering and Computer Science University of Rome "Tor Vergata" E-mail: m.marino@ing.uniroma2.it Tel: +39 06 7259 7016