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Fig. 1 Hill-type lumped parameter scheme of the muscle–tendon unit

interstitial fluid flow and time-dependent mechanisms at the
nanoscale.

In agreement with in vivo evidences, a tendon can be
modeled as a one-dimensional structure subjected to uni-
axial traction along its main dimension. The nominal tissue
strain measure along traction direction will be denoted as εt .
Incidentally, loading direction coincides with the fiber axis,
so that the nominal apparent (i.e., along-the-chord) fiber’s
strain ε f (associated with a change in fiber period) coincides
with εt .

Tendon viscoelastic behavior is described by means of a
lumped parameter approach. Since the typical experimental
response at the macroscale and following the Kelvin–Voigt
rationale, an elastic passive (PT ) sub-element with stiffness
kt is interconnected in parallel with a viscous (DT ) sub-ele-
ment having ηt as damping coefficient (Fig. 1).

2.1 Elastic sub-element

In the framework of a one-dimensional approach, tendon
elastic response is described through the tissue equivalent
strain-dependent axial modulus Et (εt ). Accordingly, the
length-dependent tendon stiffness kt (x) can be introduced
as:

kt (x) = Et (x)At

xo
(1)

where xo is the tendon length at rest, At is a measure of
tendon cross-section area (assumed to be constant with ref-
erence to the tendon free-end portion, Finni et al. 2003) and
x = xo(1 + εt ) is the actual tendon length.

Following the multiscale model of soft collagenous tis-
sues recently proposed by the authors (Maceri et al. 2010a),
and addressing the actual value for ε f (or equivalently εt ),
the homogenized tissue modulus Et is computed through a
classical mixture rule, involving the fiber volume fraction
V f and the Young’s moduli of matrix (Em) and fiber (E f ).
Damage effects, fiber–fiber and fiber–matrix interactions are

herein neglected, as well as temperature effects for both col-
lagenous fibers and ground substance.

The apparent along-the-chord fiber modulus E f is non-
linearly dependent on fiber strain ε f , which in turn depends
on both the actual fiber geometry (i.e., on the actual tissue
strain) and the actual fiber material stretch. While the fiber
geometry significantly affects the initial low-stiffness region
of the tendon mechanical response (namely, the toe region),
the fiber material stretching highly influences tendon stiff-
ening behavior (the heel region), attributable to the entropic
straightening of molecular kinks (Fratzl et al. 1997).

Although collagen fibers are collections of cross-linked
fibrils, fibers are assumed to be curvilinear homogeneous
beams with a circular cross-section of radius r f , comprising
an elastic material. Therefore, fibrils slippage and defibrilla-
tion mechanisms are herein neglected. Moreover, mechani-
cal interactions among fibrils mediated by proteoglycans are
not included, in agreement with experimental evidences pro-
posed by Fessel and Snedeker (2011). Denoting as x f the
along-the-chord fiber coordinate, actual and reference con-
figurations of a collagen fiber are assumed to be described by
centerline periodic functions f (x f ) and fo(x f ), respectively,
with fo(x f ) = Ho sin(2πx f /Lo).

As a notation rule, let ra be the fiber aspect ratio Ho/Lo,
and denote with L and Lo the actual and reference curvilin-
ear lengths over a period, respectively. For a sinusoidal fiber,
Lo is equal to 2LoE (i2πra) /π , where E(x) is the complete
elliptic integral of the second kind and i the imaginary unit.
Since fiber aspect ratio in biological tissues is in the order of
10−1, a good approximation of Lo is provided by its series
expansion truncated at the third order in the neighborhood of
ra = 0. Accordingly, Lo ≈ Lo

(
1 + π2r2

a

)
.

The fiber curvilinear length over a period when crimp is
fully removed can be put in the form L∗ = Lo(1 + ε∗

f ),
where ε∗

f denotes the lowest value of the apparent fiber strain
corresponding to a straight configuration. Disregarding fiber
material stretch upon to the crimp removal, L∗ ≈ Lo and
the following approximated relation can be stated: Lo ≈
Lo

(
1 + π2r2

a

)
≈ Lo(1 + ε∗

f ), or equivalently:

ε∗
f = π2r2

a (2)

It is worth pointing out that Eq. (2) provides an approximated
quantitative correlation between reference crimp aspect of
collagenous fibers and the extension of toe-region in tendon
mechanical response.

In agreement with Potier-Ferry and Siad (1992) and
addressing an incremental approach, the homogenized along-
the-chord fiber elastic modulus (i.e., the elastic modulus of
an equivalent straight fiber) at the actual tissue strain level εt
results in:

E f = Ec ⟨cos α⟩
[〈

cos2 α
〉
+ 4

〈
f 2〉

r2
f

]−1

(3)
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Fig. 5 The fixed-end contraction case: equilibrium at the muscle-
tendon joint N

stiffening in the whole deformation range (as indicated in
Buchanan and Marsh 2002; Reeves et al. 2006).

3 Muscle-tendon unit model

With reference to Fig. 1 and following the Hill’s lumped
parameter scheme, skeletal MTU is described by a one-
dimensional dynamical structure, comprising two elements
mainly representatives for muscle and tendon response,
respectively.

3.1 Tendon element

Under the thrust F , the following equilibrium equation (see
Fig. 5) holds for the tendon element: F = Fit + Fkt + Fηt

where Fit (ẍ) is the corresponding inertial force, Fkt and Fηt

are the forces developed by the elastic and the viscous sub-
element, respectively equal to:

Fkt (x) =
∫ x(t)

xo

kt (q)dq, Fηt (ẋ) = ηt ẋ (10)

In order to show the influence of tendon elastic nonlineari-
ties on the whole MTU dynamics, both linear and nonlinear
tendon response is addressed.

In the nonlinear case, Eq. (1) is employed while, when a
linear spring element is considered, the constant stiffness is
assumed to be equal to:

klin
t = At

xo
[V f Ê + (1 − V f )Em] (11)

corresponding to the upper bound stiffness value of the ten-
don nonlinear model.

3.2 Muscle element

Concerning the muscle model, a classical Hill-type formula-
tion is addressed (Wittek et al. 2000). In detail, a contractile
sub-element C E , a passive elastic (P M) and a viscous (DM)

sub-element, whose stiffness and damping coefficients are

km and ηm , are interconnected into a parallel scheme. In the
following, fundamental equations are briefly reported for the
sake of completeness and for introducing necessary symbols.

The spring sub-element P M , producing the force Fkm ,
describes the muscle passive elasticity which resides in actin-
myosin cross-links, in cytoskeleton non-contractile proteins,
and in aponeurosis tissue (Gajdosik 2001). The viscous su-
belement DM develops the force Fηm in response to frictional
dissipation within the muscle. Finally, the contractile sub-
element C E produces the force Fc, developed by the actin-
myosin complex in response to a neuro-muscular excitation.
As it is customary, the following assumption is employed
(Wittek et al. 2000):

Fc(t, l, v) = Fmax · na(t) · fℓ(l) · fv(v) (12)

where Fmax is the isometric maximum muscle force at 100%
voluntary muscle activation, and the dimensionless functions
na, fv and fℓ are defined as follows:

– na(t) is the neuromuscular excitation function and can be
computed by integrating the following differential equa-
tions (Wittek et al. 2000):

Tneṅe(t) = u(t) − ne(t) (13)

Taṅa(t) = ne(t) − na(t) (14)

with na(0) = ne(0) = 0, Tne and Ta being time con-
stants, assumed equal to 0.035 and 0.01 s, respectively,
and u(t) is a neuro-control flag.

– fℓ(l) is the muscle length-dependent shape function, val-
ued in [0, 1], l(t) being the current length at time t of
muscle fibers (as a notation, l(0) = lo).

– fv(v) is the muscle stretch velocity-dependent shape
function, valued in [0, 1] when muscle contraction pro-
cesses are active (i.e., when the muscle stretch velocity
v = l̇ is not equal to zero).

The following equilibrium equation holds (see Fig. 5):

F(t) = Fc(t) + Fkm (l) + Fηm (v) + Fim(l̈) (15)

where Fim(l̈) is the inertial force relevant to the parallel ele-
ment, and Fkm (l) [respectively, Fηm (l)] is the thrust in P M
(respectively, DM) subelement.

A number of different approaches describing Fc, Fkm and
Fηm can be found in the specialized literature (Wittek et al.
2000; Ethier and Simons 2007). In present work, DM is
assumed as linear and P M is described by:

Fkm (l) = km(l)(l − lo)

=
{

0 l < lo
Fmax

[exp(Cpe)−1]
[
exp

(
Cpe
Cpm

l−lo
lo

)
− 1

]
l ≥ lo

(16)
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Fig. 1 Hill-type lumped parameter scheme of the muscle–tendon unit

interstitial fluid flow and time-dependent mechanisms at the
nanoscale.

In agreement with in vivo evidences, a tendon can be
modeled as a one-dimensional structure subjected to uni-
axial traction along its main dimension. The nominal tissue
strain measure along traction direction will be denoted as εt .
Incidentally, loading direction coincides with the fiber axis,
so that the nominal apparent (i.e., along-the-chord) fiber’s
strain ε f (associated with a change in fiber period) coincides
with εt .

Tendon viscoelastic behavior is described by means of a
lumped parameter approach. Since the typical experimental
response at the macroscale and following the Kelvin–Voigt
rationale, an elastic passive (PT ) sub-element with stiffness
kt is interconnected in parallel with a viscous (DT ) sub-ele-
ment having ηt as damping coefficient (Fig. 1).

2.1 Elastic sub-element

In the framework of a one-dimensional approach, tendon
elastic response is described through the tissue equivalent
strain-dependent axial modulus Et (εt ). Accordingly, the
length-dependent tendon stiffness kt (x) can be introduced
as:

kt (x) = Et (x)At

xo
(1)

where xo is the tendon length at rest, At is a measure of
tendon cross-section area (assumed to be constant with ref-
erence to the tendon free-end portion, Finni et al. 2003) and
x = xo(1 + εt ) is the actual tendon length.

Following the multiscale model of soft collagenous tis-
sues recently proposed by the authors (Maceri et al. 2010a),
and addressing the actual value for ε f (or equivalently εt ),
the homogenized tissue modulus Et is computed through a
classical mixture rule, involving the fiber volume fraction
V f and the Young’s moduli of matrix (Em) and fiber (E f ).
Damage effects, fiber–fiber and fiber–matrix interactions are

herein neglected, as well as temperature effects for both col-
lagenous fibers and ground substance.

The apparent along-the-chord fiber modulus E f is non-
linearly dependent on fiber strain ε f , which in turn depends
on both the actual fiber geometry (i.e., on the actual tissue
strain) and the actual fiber material stretch. While the fiber
geometry significantly affects the initial low-stiffness region
of the tendon mechanical response (namely, the toe region),
the fiber material stretching highly influences tendon stiff-
ening behavior (the heel region), attributable to the entropic
straightening of molecular kinks (Fratzl et al. 1997).

Although collagen fibers are collections of cross-linked
fibrils, fibers are assumed to be curvilinear homogeneous
beams with a circular cross-section of radius r f , comprising
an elastic material. Therefore, fibrils slippage and defibrilla-
tion mechanisms are herein neglected. Moreover, mechani-
cal interactions among fibrils mediated by proteoglycans are
not included, in agreement with experimental evidences pro-
posed by Fessel and Snedeker (2011). Denoting as x f the
along-the-chord fiber coordinate, actual and reference con-
figurations of a collagen fiber are assumed to be described by
centerline periodic functions f (x f ) and fo(x f ), respectively,
with fo(x f ) = Ho sin(2πx f /Lo).

As a notation rule, let ra be the fiber aspect ratio Ho/Lo,
and denote with L and Lo the actual and reference curvilin-
ear lengths over a period, respectively. For a sinusoidal fiber,
Lo is equal to 2LoE (i2πra) /π , where E(x) is the complete
elliptic integral of the second kind and i the imaginary unit.
Since fiber aspect ratio in biological tissues is in the order of
10−1, a good approximation of Lo is provided by its series
expansion truncated at the third order in the neighborhood of
ra = 0. Accordingly, Lo ≈ Lo

(
1 + π2r2

a

)
.

The fiber curvilinear length over a period when crimp is
fully removed can be put in the form L∗ = Lo(1 + ε∗

f ),
where ε∗

f denotes the lowest value of the apparent fiber strain
corresponding to a straight configuration. Disregarding fiber
material stretch upon to the crimp removal, L∗ ≈ Lo and
the following approximated relation can be stated: Lo ≈
Lo

(
1 + π2r2

a

)
≈ Lo(1 + ε∗

f ), or equivalently:

ε∗
f = π2r2

a (2)

It is worth pointing out that Eq. (2) provides an approximated
quantitative correlation between reference crimp aspect of
collagenous fibers and the extension of toe-region in tendon
mechanical response.

In agreement with Potier-Ferry and Siad (1992) and
addressing an incremental approach, the homogenized along-
the-chord fiber elastic modulus (i.e., the elastic modulus of
an equivalent straight fiber) at the actual tissue strain level εt
results in:

E f = Ec ⟨cos α⟩
[〈

cos2 α
〉
+ 4

〈
f 2〉

r2
f

]−1

(3)
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Table 2 Values of model parameters for a cat soleus muscle and relevant references

Fmax (N) Am (mm2) lopt (m) ηm (Ns/m) vm (m/s) Cs (−) Cl (−) Cm (−) Csh (−) Cpe(-) Cpm (−)

36.0a 1.33a 0.0408a 8.0b -0.19c 0.15d 0.0734e 1.5e 0.35b 10.0b 0.55b

a Prilutsky et al. (1996)
b Wittek et al. (2000)
c Spector et al. (1980)
d Murphy and Beardsley (1974)
e Joyce and Rack (1969)

Cpe and Cpm being model parameters. As regards C E , the
following equations apply:

fℓ(l) = exp

[

−
(

l − lopt

loptCsh

)2
]

(17)

fv(v) =

⎧
⎨

⎩

0 v ≤ vm
Cs(vm − v)/(Csvm + v) vm < v < 0
(Cmv − Clvm)/(v − Clvm) v ≥ 0

(18)

where vm is the maximum muscle shortening rate, Cs, Cl ,

Cm, Csh are model parameters, and lopt represents the muscle
length which produces fℓ = 1, referred to as the muscle opti-
mum length.

It is out of the purposes of this paper to discuss merits
and/or drawbacks of previous muscle model. We refer for
that to the specialized literature (Wittek et al. 2000; Ethier
and Simons 2007), employed also for identifying values of
model parameters used in numerical applications and sum-
marized in Table 2.

3.3 The MTU fixed-end contraction

Equations of motion for the whole MTU result in:

Fc(t, l, l̇) + Fkm (l) + Fηm (l̇) + Fim(l̈) = F(t) (19)

Fkt (x) + Fηt (ẋ) + Fit (ẍ) = F(t) (20)

For a fixed-end contraction (FEC) regime of MTU (Fig. 5),
the tetanic activation law na(t) is computed from Eqs. (13)
and (14) assuming u(t) = h(t) − h(t − 0.5) as the neuro-
control flag, h(t − to) being the Heaviside function centered
in t = to s. Moreover, in FEC, the MTU total length Lm =
lo + xo does not depend on time. Accordingly, by imposing
the following compatibility equation

l(t) = lo + xo − x(t) (21)

MTU reduces to a one degree-of-freedom system. There-
fore, disregarding as a first approximation any inertial effect
related to muscle and tendon masses, MTU dynamical

response is governed by the equation:

e(l, l̇, t) = Fmax · na(t) · fℓ(l) · fv(l̇) + Fkm (l)

+(ηm + ηt ) l̇ +
∫ l(t)

lo
kt (τ )dτ = 0 (22)

It is worth observing that F(t) can be thought as the reac-
tive force arising from the constraint (21).

3.4 Computational algorithms

Referring to Eq. (22), tendon stiffness kt is constant in the
linear case (see Eq. 11), while it results nonlinearly depen-
dent on l(t) when tendon elastic nonlinearities are taken into
account (Eq. 1). In this latter case and in the framework of
a large displacement approach, kt (l) is computed addressing
a succession of linear incremental equilibrium problems in a
strain-controlled scheme where the fiber geometry is updated
at each step by means of the Principle of Virtual Works.

Moreover, starting from the knowledge of kt (l) and
addressing the FEC case, the dynamical response of the MTU
is numerically computed by solving the integro-differential
equation (22) through the implicit damped Newton method
(Deuflhard 1974), wherein l̇ is assumed as the control vari-
able. Employed algorithms are sketched out in Fig. 6. These
algorithms have been implemented into a parametric home-
made code, embedded in MATLAB® environment, and as a
result of a convergence analysis, suitable iteration steps have
been chosen: dεt = 10−4, dt = 5 · 10−4 s.

4 Results

Addressing the dynamical response of cat soleus muscle–
tendon units, results referring to non-trained subjects will be
first obtained. As a second application, results focusing the
effects of physical training will be proposed and discussed.

4.1 MTU dynamical response

Values of model parameters of a cat soleus muscle are sum-
marized in Table 2, and it has been assumed that lo = lopt.
With the aim to highlight the influence of tendon model-
ing on the MTU dynamical response, linear and nonlinear
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Fig. 5 The fixed-end contraction case: equilibrium at the muscle-
tendon joint N

stiffening in the whole deformation range (as indicated in
Buchanan and Marsh 2002; Reeves et al. 2006).

3 Muscle-tendon unit model

With reference to Fig. 1 and following the Hill’s lumped
parameter scheme, skeletal MTU is described by a one-
dimensional dynamical structure, comprising two elements
mainly representatives for muscle and tendon response,
respectively.

3.1 Tendon element

Under the thrust F , the following equilibrium equation (see
Fig. 5) holds for the tendon element: F = Fit + Fkt + Fηt

where Fit (ẍ) is the corresponding inertial force, Fkt and Fηt

are the forces developed by the elastic and the viscous sub-
element, respectively equal to:

Fkt (x) =
∫ x(t)

xo

kt (q)dq, Fηt (ẋ) = ηt ẋ (10)

In order to show the influence of tendon elastic nonlineari-
ties on the whole MTU dynamics, both linear and nonlinear
tendon response is addressed.

In the nonlinear case, Eq. (1) is employed while, when a
linear spring element is considered, the constant stiffness is
assumed to be equal to:

klin
t = At

xo
[V f Ê + (1 − V f )Em] (11)

corresponding to the upper bound stiffness value of the ten-
don nonlinear model.

3.2 Muscle element

Concerning the muscle model, a classical Hill-type formula-
tion is addressed (Wittek et al. 2000). In detail, a contractile
sub-element C E , a passive elastic (P M) and a viscous (DM)

sub-element, whose stiffness and damping coefficients are

km and ηm , are interconnected into a parallel scheme. In the
following, fundamental equations are briefly reported for the
sake of completeness and for introducing necessary symbols.

The spring sub-element P M , producing the force Fkm ,
describes the muscle passive elasticity which resides in actin-
myosin cross-links, in cytoskeleton non-contractile proteins,
and in aponeurosis tissue (Gajdosik 2001). The viscous su-
belement DM develops the force Fηm in response to frictional
dissipation within the muscle. Finally, the contractile sub-
element C E produces the force Fc, developed by the actin-
myosin complex in response to a neuro-muscular excitation.
As it is customary, the following assumption is employed
(Wittek et al. 2000):

Fc(t, l, v) = Fmax · na(t) · fℓ(l) · fv(v) (12)

where Fmax is the isometric maximum muscle force at 100%
voluntary muscle activation, and the dimensionless functions
na, fv and fℓ are defined as follows:

– na(t) is the neuromuscular excitation function and can be
computed by integrating the following differential equa-
tions (Wittek et al. 2000):

Tneṅe(t) = u(t) − ne(t) (13)

Taṅa(t) = ne(t) − na(t) (14)

with na(0) = ne(0) = 0, Tne and Ta being time con-
stants, assumed equal to 0.035 and 0.01 s, respectively,
and u(t) is a neuro-control flag.

– fℓ(l) is the muscle length-dependent shape function, val-
ued in [0, 1], l(t) being the current length at time t of
muscle fibers (as a notation, l(0) = lo).

– fv(v) is the muscle stretch velocity-dependent shape
function, valued in [0, 1] when muscle contraction pro-
cesses are active (i.e., when the muscle stretch velocity
v = l̇ is not equal to zero).

The following equilibrium equation holds (see Fig. 5):

F(t) = Fc(t) + Fkm (l) + Fηm (v) + Fim(l̈) (15)

where Fim(l̈) is the inertial force relevant to the parallel ele-
ment, and Fkm (l) [respectively, Fηm (l)] is the thrust in P M
(respectively, DM) subelement.

A number of different approaches describing Fc, Fkm and
Fηm can be found in the specialized literature (Wittek et al.
2000; Ethier and Simons 2007). In present work, DM is
assumed as linear and P M is described by:

Fkm (l) = km(l)(l − lo)

=
{
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Fig. 5 The fixed-end contraction case: equilibrium at the muscle-
tendon joint N

stiffening in the whole deformation range (as indicated in
Buchanan and Marsh 2002; Reeves et al. 2006).

3 Muscle-tendon unit model

With reference to Fig. 1 and following the Hill’s lumped
parameter scheme, skeletal MTU is described by a one-
dimensional dynamical structure, comprising two elements
mainly representatives for muscle and tendon response,
respectively.

3.1 Tendon element

Under the thrust F , the following equilibrium equation (see
Fig. 5) holds for the tendon element: F = Fit + Fkt + Fηt

where Fit (ẍ) is the corresponding inertial force, Fkt and Fηt

are the forces developed by the elastic and the viscous sub-
element, respectively equal to:

Fkt (x) =
∫ x(t)

xo

kt (q)dq, Fηt (ẋ) = ηt ẋ (10)

In order to show the influence of tendon elastic nonlineari-
ties on the whole MTU dynamics, both linear and nonlinear
tendon response is addressed.

In the nonlinear case, Eq. (1) is employed while, when a
linear spring element is considered, the constant stiffness is
assumed to be equal to:

klin
t = At

xo
[V f Ê + (1 − V f )Em] (11)

corresponding to the upper bound stiffness value of the ten-
don nonlinear model.

3.2 Muscle element

Concerning the muscle model, a classical Hill-type formula-
tion is addressed (Wittek et al. 2000). In detail, a contractile
sub-element C E , a passive elastic (P M) and a viscous (DM)

sub-element, whose stiffness and damping coefficients are

km and ηm , are interconnected into a parallel scheme. In the
following, fundamental equations are briefly reported for the
sake of completeness and for introducing necessary symbols.

The spring sub-element P M , producing the force Fkm ,
describes the muscle passive elasticity which resides in actin-
myosin cross-links, in cytoskeleton non-contractile proteins,
and in aponeurosis tissue (Gajdosik 2001). The viscous su-
belement DM develops the force Fηm in response to frictional
dissipation within the muscle. Finally, the contractile sub-
element C E produces the force Fc, developed by the actin-
myosin complex in response to a neuro-muscular excitation.
As it is customary, the following assumption is employed
(Wittek et al. 2000):

Fc(t, l, v) = Fmax · na(t) · fℓ(l) · fv(v) (12)

where Fmax is the isometric maximum muscle force at 100%
voluntary muscle activation, and the dimensionless functions
na, fv and fℓ are defined as follows:

– na(t) is the neuromuscular excitation function and can be
computed by integrating the following differential equa-
tions (Wittek et al. 2000):
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with na(0) = ne(0) = 0, Tne and Ta being time con-
stants, assumed equal to 0.035 and 0.01 s, respectively,
and u(t) is a neuro-control flag.

– fℓ(l) is the muscle length-dependent shape function, val-
ued in [0, 1], l(t) being the current length at time t of
muscle fibers (as a notation, l(0) = lo).

– fv(v) is the muscle stretch velocity-dependent shape
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cesses are active (i.e., when the muscle stretch velocity
v = l̇ is not equal to zero).
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A number of different approaches describing Fc, Fkm and
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Fig. 5 The fixed-end contraction case: equilibrium at the muscle-
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stiffening in the whole deformation range (as indicated in
Buchanan and Marsh 2002; Reeves et al. 2006).
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mainly representatives for muscle and tendon response,
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are the forces developed by the elastic and the viscous sub-
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tendon response is addressed.
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element C E produces the force Fc, developed by the actin-
myosin complex in response to a neuro-muscular excitation.
As it is customary, the following assumption is employed
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where Fmax is the isometric maximum muscle force at 100%
voluntary muscle activation, and the dimensionless functions
na, fv and fℓ are defined as follows:
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with na(0) = ne(0) = 0, Tne and Ta being time con-
stants, assumed equal to 0.035 and 0.01 s, respectively,
and u(t) is a neuro-control flag.

– fℓ(l) is the muscle length-dependent shape function, val-
ued in [0, 1], l(t) being the current length at time t of
muscle fibers (as a notation, l(0) = lo).

– fv(v) is the muscle stretch velocity-dependent shape
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cesses are active (i.e., when the muscle stretch velocity
v = l̇ is not equal to zero).
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A number of different approaches describing Fc, Fkm and
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Fig. 5 The fixed-end contraction case: equilibrium at the muscle-
tendon joint N

stiffening in the whole deformation range (as indicated in
Buchanan and Marsh 2002; Reeves et al. 2006).

3 Muscle-tendon unit model

With reference to Fig. 1 and following the Hill’s lumped
parameter scheme, skeletal MTU is described by a one-
dimensional dynamical structure, comprising two elements
mainly representatives for muscle and tendon response,
respectively.

3.1 Tendon element

Under the thrust F , the following equilibrium equation (see
Fig. 5) holds for the tendon element: F = Fit + Fkt + Fηt

where Fit (ẍ) is the corresponding inertial force, Fkt and Fηt

are the forces developed by the elastic and the viscous sub-
element, respectively equal to:

Fkt (x) =
∫ x(t)
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kt (q)dq, Fηt (ẋ) = ηt ẋ (10)

In order to show the influence of tendon elastic nonlineari-
ties on the whole MTU dynamics, both linear and nonlinear
tendon response is addressed.

In the nonlinear case, Eq. (1) is employed while, when a
linear spring element is considered, the constant stiffness is
assumed to be equal to:

klin
t = At
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[V f Ê + (1 − V f )Em] (11)

corresponding to the upper bound stiffness value of the ten-
don nonlinear model.

3.2 Muscle element

Concerning the muscle model, a classical Hill-type formula-
tion is addressed (Wittek et al. 2000). In detail, a contractile
sub-element C E , a passive elastic (P M) and a viscous (DM)

sub-element, whose stiffness and damping coefficients are

km and ηm , are interconnected into a parallel scheme. In the
following, fundamental equations are briefly reported for the
sake of completeness and for introducing necessary symbols.

The spring sub-element P M , producing the force Fkm ,
describes the muscle passive elasticity which resides in actin-
myosin cross-links, in cytoskeleton non-contractile proteins,
and in aponeurosis tissue (Gajdosik 2001). The viscous su-
belement DM develops the force Fηm in response to frictional
dissipation within the muscle. Finally, the contractile sub-
element C E produces the force Fc, developed by the actin-
myosin complex in response to a neuro-muscular excitation.
As it is customary, the following assumption is employed
(Wittek et al. 2000):

Fc(t, l, v) = Fmax · na(t) · fℓ(l) · fv(v) (12)

where Fmax is the isometric maximum muscle force at 100%
voluntary muscle activation, and the dimensionless functions
na, fv and fℓ are defined as follows:

– na(t) is the neuromuscular excitation function and can be
computed by integrating the following differential equa-
tions (Wittek et al. 2000):

Tneṅe(t) = u(t) − ne(t) (13)

Taṅa(t) = ne(t) − na(t) (14)

with na(0) = ne(0) = 0, Tne and Ta being time con-
stants, assumed equal to 0.035 and 0.01 s, respectively,
and u(t) is a neuro-control flag.

– fℓ(l) is the muscle length-dependent shape function, val-
ued in [0, 1], l(t) being the current length at time t of
muscle fibers (as a notation, l(0) = lo).

– fv(v) is the muscle stretch velocity-dependent shape
function, valued in [0, 1] when muscle contraction pro-
cesses are active (i.e., when the muscle stretch velocity
v = l̇ is not equal to zero).

The following equilibrium equation holds (see Fig. 5):

F(t) = Fc(t) + Fkm (l) + Fηm (v) + Fim(l̈) (15)

where Fim(l̈) is the inertial force relevant to the parallel ele-
ment, and Fkm (l) [respectively, Fηm (l)] is the thrust in P M
(respectively, DM) subelement.

A number of different approaches describing Fc, Fkm and
Fηm can be found in the specialized literature (Wittek et al.
2000; Ethier and Simons 2007). In present work, DM is
assumed as linear and P M is described by:

Fkm (l) = km(l)(l − lo)

=
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Fig. 1 Hill-type lumped parameter scheme of the muscle–tendon unit

interstitial fluid flow and time-dependent mechanisms at the
nanoscale.

In agreement with in vivo evidences, a tendon can be
modeled as a one-dimensional structure subjected to uni-
axial traction along its main dimension. The nominal tissue
strain measure along traction direction will be denoted as εt .
Incidentally, loading direction coincides with the fiber axis,
so that the nominal apparent (i.e., along-the-chord) fiber’s
strain ε f (associated with a change in fiber period) coincides
with εt .

Tendon viscoelastic behavior is described by means of a
lumped parameter approach. Since the typical experimental
response at the macroscale and following the Kelvin–Voigt
rationale, an elastic passive (PT ) sub-element with stiffness
kt is interconnected in parallel with a viscous (DT ) sub-ele-
ment having ηt as damping coefficient (Fig. 1).

2.1 Elastic sub-element

In the framework of a one-dimensional approach, tendon
elastic response is described through the tissue equivalent
strain-dependent axial modulus Et (εt ). Accordingly, the
length-dependent tendon stiffness kt (x) can be introduced
as:

kt (x) = Et (x)At

xo
(1)

where xo is the tendon length at rest, At is a measure of
tendon cross-section area (assumed to be constant with ref-
erence to the tendon free-end portion, Finni et al. 2003) and
x = xo(1 + εt ) is the actual tendon length.

Following the multiscale model of soft collagenous tis-
sues recently proposed by the authors (Maceri et al. 2010a),
and addressing the actual value for ε f (or equivalently εt ),
the homogenized tissue modulus Et is computed through a
classical mixture rule, involving the fiber volume fraction
V f and the Young’s moduli of matrix (Em) and fiber (E f ).
Damage effects, fiber–fiber and fiber–matrix interactions are

herein neglected, as well as temperature effects for both col-
lagenous fibers and ground substance.

The apparent along-the-chord fiber modulus E f is non-
linearly dependent on fiber strain ε f , which in turn depends
on both the actual fiber geometry (i.e., on the actual tissue
strain) and the actual fiber material stretch. While the fiber
geometry significantly affects the initial low-stiffness region
of the tendon mechanical response (namely, the toe region),
the fiber material stretching highly influences tendon stiff-
ening behavior (the heel region), attributable to the entropic
straightening of molecular kinks (Fratzl et al. 1997).

Although collagen fibers are collections of cross-linked
fibrils, fibers are assumed to be curvilinear homogeneous
beams with a circular cross-section of radius r f , comprising
an elastic material. Therefore, fibrils slippage and defibrilla-
tion mechanisms are herein neglected. Moreover, mechani-
cal interactions among fibrils mediated by proteoglycans are
not included, in agreement with experimental evidences pro-
posed by Fessel and Snedeker (2011). Denoting as x f the
along-the-chord fiber coordinate, actual and reference con-
figurations of a collagen fiber are assumed to be described by
centerline periodic functions f (x f ) and fo(x f ), respectively,
with fo(x f ) = Ho sin(2πx f /Lo).

As a notation rule, let ra be the fiber aspect ratio Ho/Lo,
and denote with L and Lo the actual and reference curvilin-
ear lengths over a period, respectively. For a sinusoidal fiber,
Lo is equal to 2LoE (i2πra) /π , where E(x) is the complete
elliptic integral of the second kind and i the imaginary unit.
Since fiber aspect ratio in biological tissues is in the order of
10−1, a good approximation of Lo is provided by its series
expansion truncated at the third order in the neighborhood of
ra = 0. Accordingly, Lo ≈ Lo

(
1 + π2r2

a

)
.

The fiber curvilinear length over a period when crimp is
fully removed can be put in the form L∗ = Lo(1 + ε∗

f ),
where ε∗

f denotes the lowest value of the apparent fiber strain
corresponding to a straight configuration. Disregarding fiber
material stretch upon to the crimp removal, L∗ ≈ Lo and
the following approximated relation can be stated: Lo ≈
Lo

(
1 + π2r2

a

)
≈ Lo(1 + ε∗

f ), or equivalently:

ε∗
f = π2r2

a (2)

It is worth pointing out that Eq. (2) provides an approximated
quantitative correlation between reference crimp aspect of
collagenous fibers and the extension of toe-region in tendon
mechanical response.

In agreement with Potier-Ferry and Siad (1992) and
addressing an incremental approach, the homogenized along-
the-chord fiber elastic modulus (i.e., the elastic modulus of
an equivalent straight fiber) at the actual tissue strain level εt
results in:

E f = Ec ⟨cos α⟩
[〈

cos2 α
〉
+ 4

〈
f 2〉

r2
f

]−1

(3)
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Fig. 1 Hill-type lumped parameter scheme of the muscle–tendon unit
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axial traction along its main dimension. The nominal tissue
strain measure along traction direction will be denoted as εt .
Incidentally, loading direction coincides with the fiber axis,
so that the nominal apparent (i.e., along-the-chord) fiber’s
strain ε f (associated with a change in fiber period) coincides
with εt .

Tendon viscoelastic behavior is described by means of a
lumped parameter approach. Since the typical experimental
response at the macroscale and following the Kelvin–Voigt
rationale, an elastic passive (PT ) sub-element with stiffness
kt is interconnected in parallel with a viscous (DT ) sub-ele-
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length-dependent tendon stiffness kt (x) can be introduced
as:
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where xo is the tendon length at rest, At is a measure of
tendon cross-section area (assumed to be constant with ref-
erence to the tendon free-end portion, Finni et al. 2003) and
x = xo(1 + εt ) is the actual tendon length.

Following the multiscale model of soft collagenous tis-
sues recently proposed by the authors (Maceri et al. 2010a),
and addressing the actual value for ε f (or equivalently εt ),
the homogenized tissue modulus Et is computed through a
classical mixture rule, involving the fiber volume fraction
V f and the Young’s moduli of matrix (Em) and fiber (E f ).
Damage effects, fiber–fiber and fiber–matrix interactions are

herein neglected, as well as temperature effects for both col-
lagenous fibers and ground substance.

The apparent along-the-chord fiber modulus E f is non-
linearly dependent on fiber strain ε f , which in turn depends
on both the actual fiber geometry (i.e., on the actual tissue
strain) and the actual fiber material stretch. While the fiber
geometry significantly affects the initial low-stiffness region
of the tendon mechanical response (namely, the toe region),
the fiber material stretching highly influences tendon stiff-
ening behavior (the heel region), attributable to the entropic
straightening of molecular kinks (Fratzl et al. 1997).

Although collagen fibers are collections of cross-linked
fibrils, fibers are assumed to be curvilinear homogeneous
beams with a circular cross-section of radius r f , comprising
an elastic material. Therefore, fibrils slippage and defibrilla-
tion mechanisms are herein neglected. Moreover, mechani-
cal interactions among fibrils mediated by proteoglycans are
not included, in agreement with experimental evidences pro-
posed by Fessel and Snedeker (2011). Denoting as x f the
along-the-chord fiber coordinate, actual and reference con-
figurations of a collagen fiber are assumed to be described by
centerline periodic functions f (x f ) and fo(x f ), respectively,
with fo(x f ) = Ho sin(2πx f /Lo).

As a notation rule, let ra be the fiber aspect ratio Ho/Lo,
and denote with L and Lo the actual and reference curvilin-
ear lengths over a period, respectively. For a sinusoidal fiber,
Lo is equal to 2LoE (i2πra) /π , where E(x) is the complete
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The fiber curvilinear length over a period when crimp is
fully removed can be put in the form L∗ = Lo(1 + ε∗

f ),
where ε∗

f denotes the lowest value of the apparent fiber strain
corresponding to a straight configuration. Disregarding fiber
material stretch upon to the crimp removal, L∗ ≈ Lo and
the following approximated relation can be stated: Lo ≈
Lo

(
1 + π2r2

a

)
≈ Lo(1 + ε∗

f ), or equivalently:

ε∗
f = π2r2

a (2)

It is worth pointing out that Eq. (2) provides an approximated
quantitative correlation between reference crimp aspect of
collagenous fibers and the extension of toe-region in tendon
mechanical response.

In agreement with Potier-Ferry and Siad (1992) and
addressing an incremental approach, the homogenized along-
the-chord fiber elastic modulus (i.e., the elastic modulus of
an equivalent straight fiber) at the actual tissue strain level εt
results in:

E f = Ec ⟨cos α⟩
[〈

cos2 α
〉
+ 4

〈
f 2〉

r2
f

]−1

(3)

123

Author's personal copy
Quasi-‐staEc	  response	  



Mechanical	  modeling	  of	  soD	  biological	  Essues	  –	  LESSON	  1	  	   MICHELE	  MARINO	  

Is	  muscle	  mechanics	  affected	  by	  tendinous	  non-‐lineariEes?	  

Muscular	  compliance	  	  not	  reproduced	  

0,00 0,25 0,50 0,75 1,00
-15

-10

-5

0

5

10

15

St
ra

in
 (%

)

Time (sec)

 Linearly elastic tendon      
 Muscle

Experimental range

F.	  Maceri,	  M.	  Marino,	  G.	  Vairo	  (2012)	  An	  Insight	  on	  MulEscale	  Tendon	  Modelling	  in	  
Muscle-‐Tendon	  Integrated	  Behaviour,	  Biom	  Model	  Mechanobiol	  11	  

An insight on multiscale tendon modeling 511

Fig. 5 The fixed-end contraction case: equilibrium at the muscle-
tendon joint N

stiffening in the whole deformation range (as indicated in
Buchanan and Marsh 2002; Reeves et al. 2006).

3 Muscle-tendon unit model

With reference to Fig. 1 and following the Hill’s lumped
parameter scheme, skeletal MTU is described by a one-
dimensional dynamical structure, comprising two elements
mainly representatives for muscle and tendon response,
respectively.

3.1 Tendon element

Under the thrust F , the following equilibrium equation (see
Fig. 5) holds for the tendon element: F = Fit + Fkt + Fηt

where Fit (ẍ) is the corresponding inertial force, Fkt and Fηt

are the forces developed by the elastic and the viscous sub-
element, respectively equal to:

Fkt (x) =
∫ x(t)

xo

kt (q)dq, Fηt (ẋ) = ηt ẋ (10)

In order to show the influence of tendon elastic nonlineari-
ties on the whole MTU dynamics, both linear and nonlinear
tendon response is addressed.

In the nonlinear case, Eq. (1) is employed while, when a
linear spring element is considered, the constant stiffness is
assumed to be equal to:

klin
t = At

xo
[V f Ê + (1 − V f )Em] (11)

corresponding to the upper bound stiffness value of the ten-
don nonlinear model.

3.2 Muscle element

Concerning the muscle model, a classical Hill-type formula-
tion is addressed (Wittek et al. 2000). In detail, a contractile
sub-element C E , a passive elastic (P M) and a viscous (DM)

sub-element, whose stiffness and damping coefficients are

km and ηm , are interconnected into a parallel scheme. In the
following, fundamental equations are briefly reported for the
sake of completeness and for introducing necessary symbols.

The spring sub-element P M , producing the force Fkm ,
describes the muscle passive elasticity which resides in actin-
myosin cross-links, in cytoskeleton non-contractile proteins,
and in aponeurosis tissue (Gajdosik 2001). The viscous su-
belement DM develops the force Fηm in response to frictional
dissipation within the muscle. Finally, the contractile sub-
element C E produces the force Fc, developed by the actin-
myosin complex in response to a neuro-muscular excitation.
As it is customary, the following assumption is employed
(Wittek et al. 2000):

Fc(t, l, v) = Fmax · na(t) · fℓ(l) · fv(v) (12)

where Fmax is the isometric maximum muscle force at 100%
voluntary muscle activation, and the dimensionless functions
na, fv and fℓ are defined as follows:

– na(t) is the neuromuscular excitation function and can be
computed by integrating the following differential equa-
tions (Wittek et al. 2000):

Tneṅe(t) = u(t) − ne(t) (13)

Taṅa(t) = ne(t) − na(t) (14)

with na(0) = ne(0) = 0, Tne and Ta being time con-
stants, assumed equal to 0.035 and 0.01 s, respectively,
and u(t) is a neuro-control flag.

– fℓ(l) is the muscle length-dependent shape function, val-
ued in [0, 1], l(t) being the current length at time t of
muscle fibers (as a notation, l(0) = lo).

– fv(v) is the muscle stretch velocity-dependent shape
function, valued in [0, 1] when muscle contraction pro-
cesses are active (i.e., when the muscle stretch velocity
v = l̇ is not equal to zero).

The following equilibrium equation holds (see Fig. 5):

F(t) = Fc(t) + Fkm (l) + Fηm (v) + Fim(l̈) (15)

where Fim(l̈) is the inertial force relevant to the parallel ele-
ment, and Fkm (l) [respectively, Fηm (l)] is the thrust in P M
(respectively, DM) subelement.

A number of different approaches describing Fc, Fkm and
Fηm can be found in the specialized literature (Wittek et al.
2000; Ethier and Simons 2007). In present work, DM is
assumed as linear and P M is described by:

Fkm (l) = km(l)(l − lo)

=
{

0 l < lo
Fmax

[exp(Cpe)−1]
[
exp

(
Cpe
Cpm

l−lo
lo

)
− 1

]
l ≥ lo

(16)

123

Author's personal copyMUSCLE-‐TENDON	  UNIT	  

Muscular	  force	  is	  clearly	  altered	  



Mechanical	  modeling	  of	  soD	  biological	  Essues	  –	  LESSON	  1	  	   MICHELE	  MARINO	  

CURVILINEAR	  FIBER	  
HOMOGENIZATION	  

CLASSICAL	  THEORY	  OF	  	  
FIBER-‐REINFORCED	  COMPOSITES	  

	  	  	  	  	  micro 	  	  	   	  	  	  	  	  	  	  	  	   	   	   	  	  	  	  	  	  	  macro	  

Model:	  Tissue:	  

Double	  homogenizaEon	  step	  



Mechanical	  modeling	  of	  soD	  biological	  Essues	  –	  LESSON	  1	  	   MICHELE	  MARINO	  

The	  need	  of	  a	  consEtuEve	  relaEonship	  at	  the	  MACROSCALE:	  

The	  mechanical	  performance	  of	  locomotor	  system	  highly	  depend	  on	  tendinous	  mechanics	  

AlteraEon	  of	  fiber	  crimp	  (e.g.,	  scars)	  
	  

AlteraEon	  of	  volumetric	  fracEon	  	  
(e.g.,	  Ehlers-‐Danlos	  syndrome)	  

SEffening/laxity	  and	  higher	  rupture	  risks	  

STRUCTURE	   MECHANICS	  

BUT	  

CAUSE	  AT	  THE	  MICROSCALE	   MACROSCOPIC	  EFFECT	  

WHY	  MULTISCALE?	  



Mechanical	  modeling	  of	  soD	  biological	  Essues	  –	  LESSON	  1	  	   MICHELE	  MARINO	  

L	  

Fz	   Fz	  

-‐	  Beam	  theories	  	  	  
Frish-‐Fay,	  Flexible	  Bars,	  Bumerworths	  1962.	  

-‐	  AsymptoEc	  expansion	  homogenizaEon	  methods	  
M.	  Po(er-‐Ferry,	  L.	  Said,	  “Geometrical	  homogenizaEon	  of	  a	  corrugated	  beam”,	  
Comptes	  Rendus	  de	  l’Académie	  des	  Sciences	  314,	  1992.	  

-‐	  EnergeEc	  approach	  
M.	  Marino,	  G.	  Vairo,	  “Equivalent	  SEffness	  and	  Compliance	  of	  Curvilinear	  ElasEc	  
Fibers”,	  In:	  Mechanics,	  Models	  and	  Methods	  in	  Civil	  Engineering	  61,	  2012.	  
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In	  the	  global	  coordinate	  system:	  
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Few	  parameters,	  experimentally	  measurable	  

MACRO	  

} }	  

rf	  
Lo	  
Ho	  

	  
Vf	  

MICRO	  

Lo	  

Ho	  

rf	  

GEOMETRIC	  PARAMETERS:	  

MECHANICAL	  PARAMETERS:	  	  EM	  	  -‐	  	  Ec	  
Tendon	   Ref.	  

Lo	   240	  μm	   Hansen	  et	  al.,	  2002	  

Ho	   10.8	  μm	   Maceri	  et	  al.,	  2009	  

rf	   4.0	  μm	   Kannus,2000	  

Vf	   50%	   Silver	  et	  al.,	  2001	  

νm	   0.49	   Lavagnino	  et	  al.,	  2008	  

EM	   1	  MPa	   Lavagnino	  et	  al.,	  2008	  

Ec	  :	  0.1-‐40	  GPa	  (Fratzl,	  2008)	  

MICRO-‐MACRO	  MODEL	  
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-‐	  Molecular	  straightening:	  

-‐	  Cross-‐links	  straightening:	  
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NANO	  MECHANICS	  

KINEMATICS:	  Two	  deformaEon	  mechanisms	  

Non-‐linearly	  elasWc	  (Em)	
 Linearly	  elasWc	  (kcl)	




Mechanical	  modeling	  of	  soD	  biological	  Essues	  –	  LESSON	  1	  	   MICHELE	  MARINO	  

Unrolling	  of	  triple	  helices	  	  
and	  covalent	  bonds	  

stretching	  

z	  

z	  

Energe(c	  elas(city	  

Bozec	  (2005)	  

~	  pN	  

~	  nm	  

Entropic	  elas(city	  
Experimental	  data	  

Atomic	  Force	  Microscopy:	  

Bozec	  (2005)	  
Maceri,	  Marino,	  Vairo	  (2012)	  

NANO	  MECHANICS:	  COLLAGEN	  
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Non-‐linearity	  related	  to	  unrolling	  of	  triple	  helices	  
(Buehler	  and	  Wong,	  2009	  -‐	  Maceri	  et	  al.,	  2012)	  

Tangent	  elasEc	  modulus	  in	  entropic	  elasEcty:	  
Recovery	  of	  the	  classical	  	  

Worm-‐like	  chain	  formulaEon	  
(Marko	  and	  Siggia,	  1995)	  

Tangent	  elasEc	  modulus	  in	  energeEc	  elasEcity	  

s
mσ

h
mσ

Entropic	  
mechanism	  

EnergeEc	  
mechanism	  

NANO	  MECHANICS:	  COLLAGEN	  
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NANO	  MECHANICS:	  COLLAGEN	  

F.	  Maceri,	  M.	  Marino,	  G.	  Vairo	  “Elasto-‐damage	  modeling	  of	  biopolymer	  molecules	  response”,	  Computer	  Modeling	  in	  
Engineering	  and	  Sciences	  87,	  2012	  
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GEOMETRIC	  NON-‐LINEARITIES	  

MATERIAL	  NON-‐LINEARITIES	  

collecEon	  of	  fibrils	   

L 

c	  

CompaEbility	  solved	  by	  the	  differenEal	  problem 

with	  El = Ef (εf) 

MULTISCALE	  APPROACH	  

M.	  Marino,	  G.	  Vairo,	  “MulEscale	  ElasEc	  Models	  of	  Collagen	  Bio-‐structures:	  From	  Cross-‐Linked	  Molecules	  to	  SoD	  Tissues”,	  In:	  MulWscale	  
Computer	  Modeling	  in	  Biomechanics	  and	  Biomedical	  Engineering,	  Springer	  2013.	  
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TENDON	  MODEL:	  VALIDATION	  

F.	  Maceri,	  M.	  Marino,	  G.	  Vairo,	  “A	  unified	  mulEscale	  mechanical	  model	  for	  soD	  collagenous	  Essues	  with	  regular	  fiber	  arrangement”,	  
Journal	  of	  Biomechanics	  43,	  2010.	  
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P.M.H.	  Rack,	  D.R.	  Westbury,	  “ElasEc	  properEes	  of	  the	  cat	  soleus	  tendon	  and	  their	  
funcEonal	  importance”,	  J.	  Physiol	  347,	  1984.	  
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RESULTS	  

An insight on multiscale tendon modeling 507

Fig. 1 Hill-type lumped parameter scheme of the muscle–tendon unit

interstitial fluid flow and time-dependent mechanisms at the
nanoscale.

In agreement with in vivo evidences, a tendon can be
modeled as a one-dimensional structure subjected to uni-
axial traction along its main dimension. The nominal tissue
strain measure along traction direction will be denoted as εt .
Incidentally, loading direction coincides with the fiber axis,
so that the nominal apparent (i.e., along-the-chord) fiber’s
strain ε f (associated with a change in fiber period) coincides
with εt .

Tendon viscoelastic behavior is described by means of a
lumped parameter approach. Since the typical experimental
response at the macroscale and following the Kelvin–Voigt
rationale, an elastic passive (PT ) sub-element with stiffness
kt is interconnected in parallel with a viscous (DT ) sub-ele-
ment having ηt as damping coefficient (Fig. 1).

2.1 Elastic sub-element

In the framework of a one-dimensional approach, tendon
elastic response is described through the tissue equivalent
strain-dependent axial modulus Et (εt ). Accordingly, the
length-dependent tendon stiffness kt (x) can be introduced
as:

kt (x) = Et (x)At

xo
(1)

where xo is the tendon length at rest, At is a measure of
tendon cross-section area (assumed to be constant with ref-
erence to the tendon free-end portion, Finni et al. 2003) and
x = xo(1 + εt ) is the actual tendon length.

Following the multiscale model of soft collagenous tis-
sues recently proposed by the authors (Maceri et al. 2010a),
and addressing the actual value for ε f (or equivalently εt ),
the homogenized tissue modulus Et is computed through a
classical mixture rule, involving the fiber volume fraction
V f and the Young’s moduli of matrix (Em) and fiber (E f ).
Damage effects, fiber–fiber and fiber–matrix interactions are

herein neglected, as well as temperature effects for both col-
lagenous fibers and ground substance.

The apparent along-the-chord fiber modulus E f is non-
linearly dependent on fiber strain ε f , which in turn depends
on both the actual fiber geometry (i.e., on the actual tissue
strain) and the actual fiber material stretch. While the fiber
geometry significantly affects the initial low-stiffness region
of the tendon mechanical response (namely, the toe region),
the fiber material stretching highly influences tendon stiff-
ening behavior (the heel region), attributable to the entropic
straightening of molecular kinks (Fratzl et al. 1997).

Although collagen fibers are collections of cross-linked
fibrils, fibers are assumed to be curvilinear homogeneous
beams with a circular cross-section of radius r f , comprising
an elastic material. Therefore, fibrils slippage and defibrilla-
tion mechanisms are herein neglected. Moreover, mechani-
cal interactions among fibrils mediated by proteoglycans are
not included, in agreement with experimental evidences pro-
posed by Fessel and Snedeker (2011). Denoting as x f the
along-the-chord fiber coordinate, actual and reference con-
figurations of a collagen fiber are assumed to be described by
centerline periodic functions f (x f ) and fo(x f ), respectively,
with fo(x f ) = Ho sin(2πx f /Lo).

As a notation rule, let ra be the fiber aspect ratio Ho/Lo,
and denote with L and Lo the actual and reference curvilin-
ear lengths over a period, respectively. For a sinusoidal fiber,
Lo is equal to 2LoE (i2πra) /π , where E(x) is the complete
elliptic integral of the second kind and i the imaginary unit.
Since fiber aspect ratio in biological tissues is in the order of
10−1, a good approximation of Lo is provided by its series
expansion truncated at the third order in the neighborhood of
ra = 0. Accordingly, Lo ≈ Lo

(
1 + π2r2

a

)
.

The fiber curvilinear length over a period when crimp is
fully removed can be put in the form L∗ = Lo(1 + ε∗

f ),
where ε∗

f denotes the lowest value of the apparent fiber strain
corresponding to a straight configuration. Disregarding fiber
material stretch upon to the crimp removal, L∗ ≈ Lo and
the following approximated relation can be stated: Lo ≈
Lo

(
1 + π2r2

a

)
≈ Lo(1 + ε∗

f ), or equivalently:

ε∗
f = π2r2

a (2)

It is worth pointing out that Eq. (2) provides an approximated
quantitative correlation between reference crimp aspect of
collagenous fibers and the extension of toe-region in tendon
mechanical response.

In agreement with Potier-Ferry and Siad (1992) and
addressing an incremental approach, the homogenized along-
the-chord fiber elastic modulus (i.e., the elastic modulus of
an equivalent straight fiber) at the actual tissue strain level εt
results in:

E f = Ec ⟨cos α⟩
[〈

cos2 α
〉
+ 4

〈
f 2〉

r2
f

]−1

(3)
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Fig. 2 Force–stiffness elastic behavior of cat soleus tendons.
Comparison among experimental measures (Rack et al. 1984) and
numerical response computed via present tendon model considering
different values of collagen volume fraction V f and fiber radius r f . Hor-
izontal dotted line indicates the stiffness value obtained via Eq. (11) and
considering a simple tendon linear element. Lines without labels refer
to reference parameters summarized in Table 1 where Ê = Êo and
ra = ra,o

effective for describing the main viscous effects at the mac-
roscale (Fig. 3a), reproducing the characteristic loop in the
tendon stress–strain behavior. The hysteresis, defined as the
ratio of the area in the stress–strain loop to the area beneath
the loading portion of the curve, is a well-established param-
eter for measuring tissue viscous features. Figure 3b shows
that proposed model with ηt ∈ (2, 6)Ns/m reproduces the
hysteresis values within physiological ranges (i.e., 10–30%,
De Zee at al. 2000; Reeves et al. 2003a).

2.3 Toward the modeling of physical activity effects

As experimental tests confirm, physical activity in tendons
induces an increase in tissue tensile strength and stiffness.
Even if neither evident change in collagen content nor ten-
don hypertrophy have been reported (Buchanan and Marsh
2002; Reeves et al. 2003a), the increase in concentration of
collagen cross-links (Buchanan and Marsh 2002) and the
reduction of the toe-region limit (i.e., of fiber’s crimp ampli-
tude, Miles et al. 1992; Reeves et al. 2003b) have been

Table 1 Values employed for tendon model parameters and relevant references

ra,o (−) Lo (µm) r f (µm) Êo (GPa) V f (%) Em ( MPa) xo ( mm) At (mm2)

Cat soleus 0.075a 200b 4c 1d 50e 1 55f 2.4f

Human patellar 0.075a 100g 10g 2.5d 50e 1 48h 84.0h

a Yamamoto et al. (2007)
b Hansen et al. (2002)
c Kannus (2000)
d Fung (1981)
e Sasaki and Odajima (1996)
f Rack et al. (1984)
g Yahia and Drouin (1988)
h Maganaris et al. (2004)

(a) (b)

Fig. 3 Tendon viscoelastic response computed via proposed tendon
model. Symbol σt = F(t)/At in figure denotes the tissue nominal
stress measure, where the time-dependent force-profile F(t) has been
assumed as in De Zee at al. (2000). a Computed stress–strain hysteretic

loop; b hysteresis measure versus ηt . The nonlinearly elastic stiffness
kt refers to a cat soleus tendon, whose reference parameters are listed
in Table 1
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Fig. 5 The fixed-end contraction case: equilibrium at the muscle-
tendon joint N

stiffening in the whole deformation range (as indicated in
Buchanan and Marsh 2002; Reeves et al. 2006).

3 Muscle-tendon unit model

With reference to Fig. 1 and following the Hill’s lumped
parameter scheme, skeletal MTU is described by a one-
dimensional dynamical structure, comprising two elements
mainly representatives for muscle and tendon response,
respectively.

3.1 Tendon element

Under the thrust F , the following equilibrium equation (see
Fig. 5) holds for the tendon element: F = Fit + Fkt + Fηt

where Fit (ẍ) is the corresponding inertial force, Fkt and Fηt

are the forces developed by the elastic and the viscous sub-
element, respectively equal to:

Fkt (x) =
∫ x(t)

xo

kt (q)dq, Fηt (ẋ) = ηt ẋ (10)

In order to show the influence of tendon elastic nonlineari-
ties on the whole MTU dynamics, both linear and nonlinear
tendon response is addressed.

In the nonlinear case, Eq. (1) is employed while, when a
linear spring element is considered, the constant stiffness is
assumed to be equal to:

klin
t = At

xo
[V f Ê + (1 − V f )Em] (11)

corresponding to the upper bound stiffness value of the ten-
don nonlinear model.

3.2 Muscle element

Concerning the muscle model, a classical Hill-type formula-
tion is addressed (Wittek et al. 2000). In detail, a contractile
sub-element C E , a passive elastic (P M) and a viscous (DM)

sub-element, whose stiffness and damping coefficients are

km and ηm , are interconnected into a parallel scheme. In the
following, fundamental equations are briefly reported for the
sake of completeness and for introducing necessary symbols.

The spring sub-element P M , producing the force Fkm ,
describes the muscle passive elasticity which resides in actin-
myosin cross-links, in cytoskeleton non-contractile proteins,
and in aponeurosis tissue (Gajdosik 2001). The viscous su-
belement DM develops the force Fηm in response to frictional
dissipation within the muscle. Finally, the contractile sub-
element C E produces the force Fc, developed by the actin-
myosin complex in response to a neuro-muscular excitation.
As it is customary, the following assumption is employed
(Wittek et al. 2000):

Fc(t, l, v) = Fmax · na(t) · fℓ(l) · fv(v) (12)

where Fmax is the isometric maximum muscle force at 100%
voluntary muscle activation, and the dimensionless functions
na, fv and fℓ are defined as follows:

– na(t) is the neuromuscular excitation function and can be
computed by integrating the following differential equa-
tions (Wittek et al. 2000):

Tneṅe(t) = u(t) − ne(t) (13)

Taṅa(t) = ne(t) − na(t) (14)

with na(0) = ne(0) = 0, Tne and Ta being time con-
stants, assumed equal to 0.035 and 0.01 s, respectively,
and u(t) is a neuro-control flag.

– fℓ(l) is the muscle length-dependent shape function, val-
ued in [0, 1], l(t) being the current length at time t of
muscle fibers (as a notation, l(0) = lo).

– fv(v) is the muscle stretch velocity-dependent shape
function, valued in [0, 1] when muscle contraction pro-
cesses are active (i.e., when the muscle stretch velocity
v = l̇ is not equal to zero).

The following equilibrium equation holds (see Fig. 5):

F(t) = Fc(t) + Fkm (l) + Fηm (v) + Fim(l̈) (15)

where Fim(l̈) is the inertial force relevant to the parallel ele-
ment, and Fkm (l) [respectively, Fηm (l)] is the thrust in P M
(respectively, DM) subelement.

A number of different approaches describing Fc, Fkm and
Fηm can be found in the specialized literature (Wittek et al.
2000; Ethier and Simons 2007). In present work, DM is
assumed as linear and P M is described by:

Fkm (l) = km(l)(l − lo)

=
{

0 l < lo
Fmax

[exp(Cpe)−1]
[
exp

(
Cpe
Cpm

l−lo
lo

)
− 1

]
l ≥ lo

(16)
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Fig. 1 Hill-type lumped parameter scheme of the muscle–tendon unit

interstitial fluid flow and time-dependent mechanisms at the
nanoscale.

In agreement with in vivo evidences, a tendon can be
modeled as a one-dimensional structure subjected to uni-
axial traction along its main dimension. The nominal tissue
strain measure along traction direction will be denoted as εt .
Incidentally, loading direction coincides with the fiber axis,
so that the nominal apparent (i.e., along-the-chord) fiber’s
strain ε f (associated with a change in fiber period) coincides
with εt .

Tendon viscoelastic behavior is described by means of a
lumped parameter approach. Since the typical experimental
response at the macroscale and following the Kelvin–Voigt
rationale, an elastic passive (PT ) sub-element with stiffness
kt is interconnected in parallel with a viscous (DT ) sub-ele-
ment having ηt as damping coefficient (Fig. 1).

2.1 Elastic sub-element

In the framework of a one-dimensional approach, tendon
elastic response is described through the tissue equivalent
strain-dependent axial modulus Et (εt ). Accordingly, the
length-dependent tendon stiffness kt (x) can be introduced
as:

kt (x) = Et (x)At

xo
(1)

where xo is the tendon length at rest, At is a measure of
tendon cross-section area (assumed to be constant with ref-
erence to the tendon free-end portion, Finni et al. 2003) and
x = xo(1 + εt ) is the actual tendon length.

Following the multiscale model of soft collagenous tis-
sues recently proposed by the authors (Maceri et al. 2010a),
and addressing the actual value for ε f (or equivalently εt ),
the homogenized tissue modulus Et is computed through a
classical mixture rule, involving the fiber volume fraction
V f and the Young’s moduli of matrix (Em) and fiber (E f ).
Damage effects, fiber–fiber and fiber–matrix interactions are

herein neglected, as well as temperature effects for both col-
lagenous fibers and ground substance.

The apparent along-the-chord fiber modulus E f is non-
linearly dependent on fiber strain ε f , which in turn depends
on both the actual fiber geometry (i.e., on the actual tissue
strain) and the actual fiber material stretch. While the fiber
geometry significantly affects the initial low-stiffness region
of the tendon mechanical response (namely, the toe region),
the fiber material stretching highly influences tendon stiff-
ening behavior (the heel region), attributable to the entropic
straightening of molecular kinks (Fratzl et al. 1997).

Although collagen fibers are collections of cross-linked
fibrils, fibers are assumed to be curvilinear homogeneous
beams with a circular cross-section of radius r f , comprising
an elastic material. Therefore, fibrils slippage and defibrilla-
tion mechanisms are herein neglected. Moreover, mechani-
cal interactions among fibrils mediated by proteoglycans are
not included, in agreement with experimental evidences pro-
posed by Fessel and Snedeker (2011). Denoting as x f the
along-the-chord fiber coordinate, actual and reference con-
figurations of a collagen fiber are assumed to be described by
centerline periodic functions f (x f ) and fo(x f ), respectively,
with fo(x f ) = Ho sin(2πx f /Lo).

As a notation rule, let ra be the fiber aspect ratio Ho/Lo,
and denote with L and Lo the actual and reference curvilin-
ear lengths over a period, respectively. For a sinusoidal fiber,
Lo is equal to 2LoE (i2πra) /π , where E(x) is the complete
elliptic integral of the second kind and i the imaginary unit.
Since fiber aspect ratio in biological tissues is in the order of
10−1, a good approximation of Lo is provided by its series
expansion truncated at the third order in the neighborhood of
ra = 0. Accordingly, Lo ≈ Lo

(
1 + π2r2

a

)
.

The fiber curvilinear length over a period when crimp is
fully removed can be put in the form L∗ = Lo(1 + ε∗

f ),
where ε∗

f denotes the lowest value of the apparent fiber strain
corresponding to a straight configuration. Disregarding fiber
material stretch upon to the crimp removal, L∗ ≈ Lo and
the following approximated relation can be stated: Lo ≈
Lo

(
1 + π2r2

a

)
≈ Lo(1 + ε∗

f ), or equivalently:

ε∗
f = π2r2

a (2)

It is worth pointing out that Eq. (2) provides an approximated
quantitative correlation between reference crimp aspect of
collagenous fibers and the extension of toe-region in tendon
mechanical response.

In agreement with Potier-Ferry and Siad (1992) and
addressing an incremental approach, the homogenized along-
the-chord fiber elastic modulus (i.e., the elastic modulus of
an equivalent straight fiber) at the actual tissue strain level εt
results in:

E f = Ec ⟨cos α⟩
[〈

cos2 α
〉
+ 4

〈
f 2〉

r2
f

]−1

(3)
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Fig. 1 Hill-type lumped parameter scheme of the muscle–tendon unit

interstitial fluid flow and time-dependent mechanisms at the
nanoscale.

In agreement with in vivo evidences, a tendon can be
modeled as a one-dimensional structure subjected to uni-
axial traction along its main dimension. The nominal tissue
strain measure along traction direction will be denoted as εt .
Incidentally, loading direction coincides with the fiber axis,
so that the nominal apparent (i.e., along-the-chord) fiber’s
strain ε f (associated with a change in fiber period) coincides
with εt .

Tendon viscoelastic behavior is described by means of a
lumped parameter approach. Since the typical experimental
response at the macroscale and following the Kelvin–Voigt
rationale, an elastic passive (PT ) sub-element with stiffness
kt is interconnected in parallel with a viscous (DT ) sub-ele-
ment having ηt as damping coefficient (Fig. 1).

2.1 Elastic sub-element

In the framework of a one-dimensional approach, tendon
elastic response is described through the tissue equivalent
strain-dependent axial modulus Et (εt ). Accordingly, the
length-dependent tendon stiffness kt (x) can be introduced
as:

kt (x) = Et (x)At

xo
(1)

where xo is the tendon length at rest, At is a measure of
tendon cross-section area (assumed to be constant with ref-
erence to the tendon free-end portion, Finni et al. 2003) and
x = xo(1 + εt ) is the actual tendon length.

Following the multiscale model of soft collagenous tis-
sues recently proposed by the authors (Maceri et al. 2010a),
and addressing the actual value for ε f (or equivalently εt ),
the homogenized tissue modulus Et is computed through a
classical mixture rule, involving the fiber volume fraction
V f and the Young’s moduli of matrix (Em) and fiber (E f ).
Damage effects, fiber–fiber and fiber–matrix interactions are

herein neglected, as well as temperature effects for both col-
lagenous fibers and ground substance.

The apparent along-the-chord fiber modulus E f is non-
linearly dependent on fiber strain ε f , which in turn depends
on both the actual fiber geometry (i.e., on the actual tissue
strain) and the actual fiber material stretch. While the fiber
geometry significantly affects the initial low-stiffness region
of the tendon mechanical response (namely, the toe region),
the fiber material stretching highly influences tendon stiff-
ening behavior (the heel region), attributable to the entropic
straightening of molecular kinks (Fratzl et al. 1997).

Although collagen fibers are collections of cross-linked
fibrils, fibers are assumed to be curvilinear homogeneous
beams with a circular cross-section of radius r f , comprising
an elastic material. Therefore, fibrils slippage and defibrilla-
tion mechanisms are herein neglected. Moreover, mechani-
cal interactions among fibrils mediated by proteoglycans are
not included, in agreement with experimental evidences pro-
posed by Fessel and Snedeker (2011). Denoting as x f the
along-the-chord fiber coordinate, actual and reference con-
figurations of a collagen fiber are assumed to be described by
centerline periodic functions f (x f ) and fo(x f ), respectively,
with fo(x f ) = Ho sin(2πx f /Lo).

As a notation rule, let ra be the fiber aspect ratio Ho/Lo,
and denote with L and Lo the actual and reference curvilin-
ear lengths over a period, respectively. For a sinusoidal fiber,
Lo is equal to 2LoE (i2πra) /π , where E(x) is the complete
elliptic integral of the second kind and i the imaginary unit.
Since fiber aspect ratio in biological tissues is in the order of
10−1, a good approximation of Lo is provided by its series
expansion truncated at the third order in the neighborhood of
ra = 0. Accordingly, Lo ≈ Lo

(
1 + π2r2

a

)
.

The fiber curvilinear length over a period when crimp is
fully removed can be put in the form L∗ = Lo(1 + ε∗

f ),
where ε∗

f denotes the lowest value of the apparent fiber strain
corresponding to a straight configuration. Disregarding fiber
material stretch upon to the crimp removal, L∗ ≈ Lo and
the following approximated relation can be stated: Lo ≈
Lo

(
1 + π2r2

a

)
≈ Lo(1 + ε∗

f ), or equivalently:

ε∗
f = π2r2

a (2)

It is worth pointing out that Eq. (2) provides an approximated
quantitative correlation between reference crimp aspect of
collagenous fibers and the extension of toe-region in tendon
mechanical response.

In agreement with Potier-Ferry and Siad (1992) and
addressing an incremental approach, the homogenized along-
the-chord fiber elastic modulus (i.e., the elastic modulus of
an equivalent straight fiber) at the actual tissue strain level εt
results in:

E f = Ec ⟨cos α⟩
[〈

cos2 α
〉
+ 4

〈
f 2〉
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f
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Fig. 1 Hill-type lumped parameter scheme of the muscle–tendon unit

interstitial fluid flow and time-dependent mechanisms at the
nanoscale.

In agreement with in vivo evidences, a tendon can be
modeled as a one-dimensional structure subjected to uni-
axial traction along its main dimension. The nominal tissue
strain measure along traction direction will be denoted as εt .
Incidentally, loading direction coincides with the fiber axis,
so that the nominal apparent (i.e., along-the-chord) fiber’s
strain ε f (associated with a change in fiber period) coincides
with εt .

Tendon viscoelastic behavior is described by means of a
lumped parameter approach. Since the typical experimental
response at the macroscale and following the Kelvin–Voigt
rationale, an elastic passive (PT ) sub-element with stiffness
kt is interconnected in parallel with a viscous (DT ) sub-ele-
ment having ηt as damping coefficient (Fig. 1).

2.1 Elastic sub-element

In the framework of a one-dimensional approach, tendon
elastic response is described through the tissue equivalent
strain-dependent axial modulus Et (εt ). Accordingly, the
length-dependent tendon stiffness kt (x) can be introduced
as:

kt (x) = Et (x)At

xo
(1)

where xo is the tendon length at rest, At is a measure of
tendon cross-section area (assumed to be constant with ref-
erence to the tendon free-end portion, Finni et al. 2003) and
x = xo(1 + εt ) is the actual tendon length.

Following the multiscale model of soft collagenous tis-
sues recently proposed by the authors (Maceri et al. 2010a),
and addressing the actual value for ε f (or equivalently εt ),
the homogenized tissue modulus Et is computed through a
classical mixture rule, involving the fiber volume fraction
V f and the Young’s moduli of matrix (Em) and fiber (E f ).
Damage effects, fiber–fiber and fiber–matrix interactions are

herein neglected, as well as temperature effects for both col-
lagenous fibers and ground substance.

The apparent along-the-chord fiber modulus E f is non-
linearly dependent on fiber strain ε f , which in turn depends
on both the actual fiber geometry (i.e., on the actual tissue
strain) and the actual fiber material stretch. While the fiber
geometry significantly affects the initial low-stiffness region
of the tendon mechanical response (namely, the toe region),
the fiber material stretching highly influences tendon stiff-
ening behavior (the heel region), attributable to the entropic
straightening of molecular kinks (Fratzl et al. 1997).

Although collagen fibers are collections of cross-linked
fibrils, fibers are assumed to be curvilinear homogeneous
beams with a circular cross-section of radius r f , comprising
an elastic material. Therefore, fibrils slippage and defibrilla-
tion mechanisms are herein neglected. Moreover, mechani-
cal interactions among fibrils mediated by proteoglycans are
not included, in agreement with experimental evidences pro-
posed by Fessel and Snedeker (2011). Denoting as x f the
along-the-chord fiber coordinate, actual and reference con-
figurations of a collagen fiber are assumed to be described by
centerline periodic functions f (x f ) and fo(x f ), respectively,
with fo(x f ) = Ho sin(2πx f /Lo).

As a notation rule, let ra be the fiber aspect ratio Ho/Lo,
and denote with L and Lo the actual and reference curvilin-
ear lengths over a period, respectively. For a sinusoidal fiber,
Lo is equal to 2LoE (i2πra) /π , where E(x) is the complete
elliptic integral of the second kind and i the imaginary unit.
Since fiber aspect ratio in biological tissues is in the order of
10−1, a good approximation of Lo is provided by its series
expansion truncated at the third order in the neighborhood of
ra = 0. Accordingly, Lo ≈ Lo

(
1 + π2r2
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)
.

The fiber curvilinear length over a period when crimp is
fully removed can be put in the form L∗ = Lo(1 + ε∗

f ),
where ε∗

f denotes the lowest value of the apparent fiber strain
corresponding to a straight configuration. Disregarding fiber
material stretch upon to the crimp removal, L∗ ≈ Lo and
the following approximated relation can be stated: Lo ≈
Lo

(
1 + π2r2
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)
≈ Lo(1 + ε∗

f ), or equivalently:

ε∗
f = π2r2

a (2)

It is worth pointing out that Eq. (2) provides an approximated
quantitative correlation between reference crimp aspect of
collagenous fibers and the extension of toe-region in tendon
mechanical response.

In agreement with Potier-Ferry and Siad (1992) and
addressing an incremental approach, the homogenized along-
the-chord fiber elastic modulus (i.e., the elastic modulus of
an equivalent straight fiber) at the actual tissue strain level εt
results in:
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Fig. 5 The fixed-end contraction case: equilibrium at the muscle-
tendon joint N

stiffening in the whole deformation range (as indicated in
Buchanan and Marsh 2002; Reeves et al. 2006).

3 Muscle-tendon unit model

With reference to Fig. 1 and following the Hill’s lumped
parameter scheme, skeletal MTU is described by a one-
dimensional dynamical structure, comprising two elements
mainly representatives for muscle and tendon response,
respectively.

3.1 Tendon element

Under the thrust F , the following equilibrium equation (see
Fig. 5) holds for the tendon element: F = Fit + Fkt + Fηt

where Fit (ẍ) is the corresponding inertial force, Fkt and Fηt

are the forces developed by the elastic and the viscous sub-
element, respectively equal to:

Fkt (x) =
∫ x(t)

xo

kt (q)dq, Fηt (ẋ) = ηt ẋ (10)

In order to show the influence of tendon elastic nonlineari-
ties on the whole MTU dynamics, both linear and nonlinear
tendon response is addressed.

In the nonlinear case, Eq. (1) is employed while, when a
linear spring element is considered, the constant stiffness is
assumed to be equal to:

klin
t = At

xo
[V f Ê + (1 − V f )Em] (11)

corresponding to the upper bound stiffness value of the ten-
don nonlinear model.

3.2 Muscle element

Concerning the muscle model, a classical Hill-type formula-
tion is addressed (Wittek et al. 2000). In detail, a contractile
sub-element C E , a passive elastic (P M) and a viscous (DM)

sub-element, whose stiffness and damping coefficients are

km and ηm , are interconnected into a parallel scheme. In the
following, fundamental equations are briefly reported for the
sake of completeness and for introducing necessary symbols.

The spring sub-element P M , producing the force Fkm ,
describes the muscle passive elasticity which resides in actin-
myosin cross-links, in cytoskeleton non-contractile proteins,
and in aponeurosis tissue (Gajdosik 2001). The viscous su-
belement DM develops the force Fηm in response to frictional
dissipation within the muscle. Finally, the contractile sub-
element C E produces the force Fc, developed by the actin-
myosin complex in response to a neuro-muscular excitation.
As it is customary, the following assumption is employed
(Wittek et al. 2000):

Fc(t, l, v) = Fmax · na(t) · fℓ(l) · fv(v) (12)

where Fmax is the isometric maximum muscle force at 100%
voluntary muscle activation, and the dimensionless functions
na, fv and fℓ are defined as follows:

– na(t) is the neuromuscular excitation function and can be
computed by integrating the following differential equa-
tions (Wittek et al. 2000):

Tneṅe(t) = u(t) − ne(t) (13)

Taṅa(t) = ne(t) − na(t) (14)

with na(0) = ne(0) = 0, Tne and Ta being time con-
stants, assumed equal to 0.035 and 0.01 s, respectively,
and u(t) is a neuro-control flag.

– fℓ(l) is the muscle length-dependent shape function, val-
ued in [0, 1], l(t) being the current length at time t of
muscle fibers (as a notation, l(0) = lo).

– fv(v) is the muscle stretch velocity-dependent shape
function, valued in [0, 1] when muscle contraction pro-
cesses are active (i.e., when the muscle stretch velocity
v = l̇ is not equal to zero).

The following equilibrium equation holds (see Fig. 5):

F(t) = Fc(t) + Fkm (l) + Fηm (v) + Fim(l̈) (15)

where Fim(l̈) is the inertial force relevant to the parallel ele-
ment, and Fkm (l) [respectively, Fηm (l)] is the thrust in P M
(respectively, DM) subelement.

A number of different approaches describing Fc, Fkm and
Fηm can be found in the specialized literature (Wittek et al.
2000; Ethier and Simons 2007). In present work, DM is
assumed as linear and P M is described by:

Fkm (l) = km(l)(l − lo)

=
{

0 l < lo
Fmax

[exp(Cpe)−1]
[
exp

(
Cpe
Cpm

l−lo
lo

)
− 1

]
l ≥ lo

(16)
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Fig. 1 Hill-type lumped parameter scheme of the muscle–tendon unit

interstitial fluid flow and time-dependent mechanisms at the
nanoscale.

In agreement with in vivo evidences, a tendon can be
modeled as a one-dimensional structure subjected to uni-
axial traction along its main dimension. The nominal tissue
strain measure along traction direction will be denoted as εt .
Incidentally, loading direction coincides with the fiber axis,
so that the nominal apparent (i.e., along-the-chord) fiber’s
strain ε f (associated with a change in fiber period) coincides
with εt .

Tendon viscoelastic behavior is described by means of a
lumped parameter approach. Since the typical experimental
response at the macroscale and following the Kelvin–Voigt
rationale, an elastic passive (PT ) sub-element with stiffness
kt is interconnected in parallel with a viscous (DT ) sub-ele-
ment having ηt as damping coefficient (Fig. 1).

2.1 Elastic sub-element

In the framework of a one-dimensional approach, tendon
elastic response is described through the tissue equivalent
strain-dependent axial modulus Et (εt ). Accordingly, the
length-dependent tendon stiffness kt (x) can be introduced
as:

kt (x) = Et (x)At

xo
(1)

where xo is the tendon length at rest, At is a measure of
tendon cross-section area (assumed to be constant with ref-
erence to the tendon free-end portion, Finni et al. 2003) and
x = xo(1 + εt ) is the actual tendon length.

Following the multiscale model of soft collagenous tis-
sues recently proposed by the authors (Maceri et al. 2010a),
and addressing the actual value for ε f (or equivalently εt ),
the homogenized tissue modulus Et is computed through a
classical mixture rule, involving the fiber volume fraction
V f and the Young’s moduli of matrix (Em) and fiber (E f ).
Damage effects, fiber–fiber and fiber–matrix interactions are

herein neglected, as well as temperature effects for both col-
lagenous fibers and ground substance.

The apparent along-the-chord fiber modulus E f is non-
linearly dependent on fiber strain ε f , which in turn depends
on both the actual fiber geometry (i.e., on the actual tissue
strain) and the actual fiber material stretch. While the fiber
geometry significantly affects the initial low-stiffness region
of the tendon mechanical response (namely, the toe region),
the fiber material stretching highly influences tendon stiff-
ening behavior (the heel region), attributable to the entropic
straightening of molecular kinks (Fratzl et al. 1997).

Although collagen fibers are collections of cross-linked
fibrils, fibers are assumed to be curvilinear homogeneous
beams with a circular cross-section of radius r f , comprising
an elastic material. Therefore, fibrils slippage and defibrilla-
tion mechanisms are herein neglected. Moreover, mechani-
cal interactions among fibrils mediated by proteoglycans are
not included, in agreement with experimental evidences pro-
posed by Fessel and Snedeker (2011). Denoting as x f the
along-the-chord fiber coordinate, actual and reference con-
figurations of a collagen fiber are assumed to be described by
centerline periodic functions f (x f ) and fo(x f ), respectively,
with fo(x f ) = Ho sin(2πx f /Lo).

As a notation rule, let ra be the fiber aspect ratio Ho/Lo,
and denote with L and Lo the actual and reference curvilin-
ear lengths over a period, respectively. For a sinusoidal fiber,
Lo is equal to 2LoE (i2πra) /π , where E(x) is the complete
elliptic integral of the second kind and i the imaginary unit.
Since fiber aspect ratio in biological tissues is in the order of
10−1, a good approximation of Lo is provided by its series
expansion truncated at the third order in the neighborhood of
ra = 0. Accordingly, Lo ≈ Lo

(
1 + π2r2

a

)
.

The fiber curvilinear length over a period when crimp is
fully removed can be put in the form L∗ = Lo(1 + ε∗

f ),
where ε∗

f denotes the lowest value of the apparent fiber strain
corresponding to a straight configuration. Disregarding fiber
material stretch upon to the crimp removal, L∗ ≈ Lo and
the following approximated relation can be stated: Lo ≈
Lo

(
1 + π2r2

a

)
≈ Lo(1 + ε∗

f ), or equivalently:

ε∗
f = π2r2

a (2)

It is worth pointing out that Eq. (2) provides an approximated
quantitative correlation between reference crimp aspect of
collagenous fibers and the extension of toe-region in tendon
mechanical response.

In agreement with Potier-Ferry and Siad (1992) and
addressing an incremental approach, the homogenized along-
the-chord fiber elastic modulus (i.e., the elastic modulus of
an equivalent straight fiber) at the actual tissue strain level εt
results in:

E f = Ec ⟨cos α⟩
[〈

cos2 α
〉
+ 4

〈
f 2〉

r2
f

]−1

(3)

123

Author's personal copy

RESULTS	  



Contacts:	  Michele	  MARINO,	  PhD,	  MSc	  
Department	  of	  Civil	  Engineering	  and	  Computer	  Science	  
University	  of	  Rome	  “Tor	  Vergata”	  
E-‐mail:	  m.marino@ing.uniroma2.it	  
Tel:	  +39	  06	  7259	  7016	  

MINI-‐COURSE	  
Mechanical	  modeling	  of	  so7	  biological	  (ssues	  	  

Lesson	  2	  	  Mul@scale	  modeling	  of	  aorta	  mechanics	  and	  damage	  mechanisms	  	  

…	  to	  be	  con@nued	  


