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Fig. 1 Hill-type lumped parameter scheme of the muscle–tendon unit

interstitial fluid flow and time-dependent mechanisms at the
nanoscale.

In agreement with in vivo evidences, a tendon can be
modeled as a one-dimensional structure subjected to uni-
axial traction along its main dimension. The nominal tissue
strain measure along traction direction will be denoted as εt .
Incidentally, loading direction coincides with the fiber axis,
so that the nominal apparent (i.e., along-the-chord) fiber’s
strain ε f (associated with a change in fiber period) coincides
with εt .

Tendon viscoelastic behavior is described by means of a
lumped parameter approach. Since the typical experimental
response at the macroscale and following the Kelvin–Voigt
rationale, an elastic passive (PT ) sub-element with stiffness
kt is interconnected in parallel with a viscous (DT ) sub-ele-
ment having ηt as damping coefficient (Fig. 1).

2.1 Elastic sub-element

In the framework of a one-dimensional approach, tendon
elastic response is described through the tissue equivalent
strain-dependent axial modulus Et (εt ). Accordingly, the
length-dependent tendon stiffness kt (x) can be introduced
as:

kt (x) = Et (x)At

xo
(1)

where xo is the tendon length at rest, At is a measure of
tendon cross-section area (assumed to be constant with ref-
erence to the tendon free-end portion, Finni et al. 2003) and
x = xo(1 + εt ) is the actual tendon length.

Following the multiscale model of soft collagenous tis-
sues recently proposed by the authors (Maceri et al. 2010a),
and addressing the actual value for ε f (or equivalently εt ),
the homogenized tissue modulus Et is computed through a
classical mixture rule, involving the fiber volume fraction
V f and the Young’s moduli of matrix (Em) and fiber (E f ).
Damage effects, fiber–fiber and fiber–matrix interactions are

herein neglected, as well as temperature effects for both col-
lagenous fibers and ground substance.

The apparent along-the-chord fiber modulus E f is non-
linearly dependent on fiber strain ε f , which in turn depends
on both the actual fiber geometry (i.e., on the actual tissue
strain) and the actual fiber material stretch. While the fiber
geometry significantly affects the initial low-stiffness region
of the tendon mechanical response (namely, the toe region),
the fiber material stretching highly influences tendon stiff-
ening behavior (the heel region), attributable to the entropic
straightening of molecular kinks (Fratzl et al. 1997).

Although collagen fibers are collections of cross-linked
fibrils, fibers are assumed to be curvilinear homogeneous
beams with a circular cross-section of radius r f , comprising
an elastic material. Therefore, fibrils slippage and defibrilla-
tion mechanisms are herein neglected. Moreover, mechani-
cal interactions among fibrils mediated by proteoglycans are
not included, in agreement with experimental evidences pro-
posed by Fessel and Snedeker (2011). Denoting as x f the
along-the-chord fiber coordinate, actual and reference con-
figurations of a collagen fiber are assumed to be described by
centerline periodic functions f (x f ) and fo(x f ), respectively,
with fo(x f ) = Ho sin(2πx f /Lo).

As a notation rule, let ra be the fiber aspect ratio Ho/Lo,
and denote with L and Lo the actual and reference curvilin-
ear lengths over a period, respectively. For a sinusoidal fiber,
Lo is equal to 2LoE (i2πra) /π , where E(x) is the complete
elliptic integral of the second kind and i the imaginary unit.
Since fiber aspect ratio in biological tissues is in the order of
10−1, a good approximation of Lo is provided by its series
expansion truncated at the third order in the neighborhood of
ra = 0. Accordingly, Lo ≈ Lo

(
1 + π2r2

a

)
.

The fiber curvilinear length over a period when crimp is
fully removed can be put in the form L∗ = Lo(1 + ε∗

f ),
where ε∗

f denotes the lowest value of the apparent fiber strain
corresponding to a straight configuration. Disregarding fiber
material stretch upon to the crimp removal, L∗ ≈ Lo and
the following approximated relation can be stated: Lo ≈
Lo

(
1 + π2r2

a

)
≈ Lo(1 + ε∗

f ), or equivalently:

ε∗
f = π2r2

a (2)

It is worth pointing out that Eq. (2) provides an approximated
quantitative correlation between reference crimp aspect of
collagenous fibers and the extension of toe-region in tendon
mechanical response.

In agreement with Potier-Ferry and Siad (1992) and
addressing an incremental approach, the homogenized along-
the-chord fiber elastic modulus (i.e., the elastic modulus of
an equivalent straight fiber) at the actual tissue strain level εt
results in:

E f = Ec ⟨cos α⟩
[〈

cos2 α
〉
+ 4

〈
f 2〉

r2
f

]−1

(3)
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Fig. 5 The fixed-end contraction case: equilibrium at the muscle-
tendon joint N

stiffening in the whole deformation range (as indicated in
Buchanan and Marsh 2002; Reeves et al. 2006).

3 Muscle-tendon unit model

With reference to Fig. 1 and following the Hill’s lumped
parameter scheme, skeletal MTU is described by a one-
dimensional dynamical structure, comprising two elements
mainly representatives for muscle and tendon response,
respectively.

3.1 Tendon element

Under the thrust F , the following equilibrium equation (see
Fig. 5) holds for the tendon element: F = Fit + Fkt + Fηt

where Fit (ẍ) is the corresponding inertial force, Fkt and Fηt

are the forces developed by the elastic and the viscous sub-
element, respectively equal to:

Fkt (x) =
∫ x(t)

xo

kt (q)dq, Fηt (ẋ) = ηt ẋ (10)

In order to show the influence of tendon elastic nonlineari-
ties on the whole MTU dynamics, both linear and nonlinear
tendon response is addressed.

In the nonlinear case, Eq. (1) is employed while, when a
linear spring element is considered, the constant stiffness is
assumed to be equal to:

klin
t = At

xo
[V f Ê + (1 − V f )Em] (11)

corresponding to the upper bound stiffness value of the ten-
don nonlinear model.

3.2 Muscle element

Concerning the muscle model, a classical Hill-type formula-
tion is addressed (Wittek et al. 2000). In detail, a contractile
sub-element C E , a passive elastic (P M) and a viscous (DM)

sub-element, whose stiffness and damping coefficients are

km and ηm , are interconnected into a parallel scheme. In the
following, fundamental equations are briefly reported for the
sake of completeness and for introducing necessary symbols.

The spring sub-element P M , producing the force Fkm ,
describes the muscle passive elasticity which resides in actin-
myosin cross-links, in cytoskeleton non-contractile proteins,
and in aponeurosis tissue (Gajdosik 2001). The viscous su-
belement DM develops the force Fηm in response to frictional
dissipation within the muscle. Finally, the contractile sub-
element C E produces the force Fc, developed by the actin-
myosin complex in response to a neuro-muscular excitation.
As it is customary, the following assumption is employed
(Wittek et al. 2000):

Fc(t, l, v) = Fmax · na(t) · fℓ(l) · fv(v) (12)

where Fmax is the isometric maximum muscle force at 100%
voluntary muscle activation, and the dimensionless functions
na, fv and fℓ are defined as follows:

– na(t) is the neuromuscular excitation function and can be
computed by integrating the following differential equa-
tions (Wittek et al. 2000):

Tneṅe(t) = u(t) − ne(t) (13)

Taṅa(t) = ne(t) − na(t) (14)

with na(0) = ne(0) = 0, Tne and Ta being time con-
stants, assumed equal to 0.035 and 0.01 s, respectively,
and u(t) is a neuro-control flag.

– fℓ(l) is the muscle length-dependent shape function, val-
ued in [0, 1], l(t) being the current length at time t of
muscle fibers (as a notation, l(0) = lo).

– fv(v) is the muscle stretch velocity-dependent shape
function, valued in [0, 1] when muscle contraction pro-
cesses are active (i.e., when the muscle stretch velocity
v = l̇ is not equal to zero).

The following equilibrium equation holds (see Fig. 5):

F(t) = Fc(t) + Fkm (l) + Fηm (v) + Fim(l̈) (15)

where Fim(l̈) is the inertial force relevant to the parallel ele-
ment, and Fkm (l) [respectively, Fηm (l)] is the thrust in P M
(respectively, DM) subelement.

A number of different approaches describing Fc, Fkm and
Fηm can be found in the specialized literature (Wittek et al.
2000; Ethier and Simons 2007). In present work, DM is
assumed as linear and P M is described by:

Fkm (l) = km(l)(l − lo)

=
{

0 l < lo
Fmax

[exp(Cpe)−1]
[
exp

(
Cpe
Cpm

l−lo
lo

)
− 1

]
l ≥ lo

(16)
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Fig. 1 Hill-type lumped parameter scheme of the muscle–tendon unit

interstitial fluid flow and time-dependent mechanisms at the
nanoscale.

In agreement with in vivo evidences, a tendon can be
modeled as a one-dimensional structure subjected to uni-
axial traction along its main dimension. The nominal tissue
strain measure along traction direction will be denoted as εt .
Incidentally, loading direction coincides with the fiber axis,
so that the nominal apparent (i.e., along-the-chord) fiber’s
strain ε f (associated with a change in fiber period) coincides
with εt .

Tendon viscoelastic behavior is described by means of a
lumped parameter approach. Since the typical experimental
response at the macroscale and following the Kelvin–Voigt
rationale, an elastic passive (PT ) sub-element with stiffness
kt is interconnected in parallel with a viscous (DT ) sub-ele-
ment having ηt as damping coefficient (Fig. 1).

2.1 Elastic sub-element

In the framework of a one-dimensional approach, tendon
elastic response is described through the tissue equivalent
strain-dependent axial modulus Et (εt ). Accordingly, the
length-dependent tendon stiffness kt (x) can be introduced
as:

kt (x) = Et (x)At

xo
(1)

where xo is the tendon length at rest, At is a measure of
tendon cross-section area (assumed to be constant with ref-
erence to the tendon free-end portion, Finni et al. 2003) and
x = xo(1 + εt ) is the actual tendon length.

Following the multiscale model of soft collagenous tis-
sues recently proposed by the authors (Maceri et al. 2010a),
and addressing the actual value for ε f (or equivalently εt ),
the homogenized tissue modulus Et is computed through a
classical mixture rule, involving the fiber volume fraction
V f and the Young’s moduli of matrix (Em) and fiber (E f ).
Damage effects, fiber–fiber and fiber–matrix interactions are

herein neglected, as well as temperature effects for both col-
lagenous fibers and ground substance.

The apparent along-the-chord fiber modulus E f is non-
linearly dependent on fiber strain ε f , which in turn depends
on both the actual fiber geometry (i.e., on the actual tissue
strain) and the actual fiber material stretch. While the fiber
geometry significantly affects the initial low-stiffness region
of the tendon mechanical response (namely, the toe region),
the fiber material stretching highly influences tendon stiff-
ening behavior (the heel region), attributable to the entropic
straightening of molecular kinks (Fratzl et al. 1997).

Although collagen fibers are collections of cross-linked
fibrils, fibers are assumed to be curvilinear homogeneous
beams with a circular cross-section of radius r f , comprising
an elastic material. Therefore, fibrils slippage and defibrilla-
tion mechanisms are herein neglected. Moreover, mechani-
cal interactions among fibrils mediated by proteoglycans are
not included, in agreement with experimental evidences pro-
posed by Fessel and Snedeker (2011). Denoting as x f the
along-the-chord fiber coordinate, actual and reference con-
figurations of a collagen fiber are assumed to be described by
centerline periodic functions f (x f ) and fo(x f ), respectively,
with fo(x f ) = Ho sin(2πx f /Lo).

As a notation rule, let ra be the fiber aspect ratio Ho/Lo,
and denote with L and Lo the actual and reference curvilin-
ear lengths over a period, respectively. For a sinusoidal fiber,
Lo is equal to 2LoE (i2πra) /π , where E(x) is the complete
elliptic integral of the second kind and i the imaginary unit.
Since fiber aspect ratio in biological tissues is in the order of
10−1, a good approximation of Lo is provided by its series
expansion truncated at the third order in the neighborhood of
ra = 0. Accordingly, Lo ≈ Lo

(
1 + π2r2

a

)
.

The fiber curvilinear length over a period when crimp is
fully removed can be put in the form L∗ = Lo(1 + ε∗

f ),
where ε∗

f denotes the lowest value of the apparent fiber strain
corresponding to a straight configuration. Disregarding fiber
material stretch upon to the crimp removal, L∗ ≈ Lo and
the following approximated relation can be stated: Lo ≈
Lo

(
1 + π2r2

a

)
≈ Lo(1 + ε∗

f ), or equivalently:

ε∗
f = π2r2

a (2)

It is worth pointing out that Eq. (2) provides an approximated
quantitative correlation between reference crimp aspect of
collagenous fibers and the extension of toe-region in tendon
mechanical response.

In agreement with Potier-Ferry and Siad (1992) and
addressing an incremental approach, the homogenized along-
the-chord fiber elastic modulus (i.e., the elastic modulus of
an equivalent straight fiber) at the actual tissue strain level εt
results in:

E f = Ec ⟨cos α⟩
[〈

cos2 α
〉
+ 4

〈
f 2〉

r2
f

]−1

(3)
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the-chord fiber elastic modulus (i.e., the elastic modulus of
an equivalent straight fiber) at the actual tissue strain level εt
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Table 2 Values of model parameters for a cat soleus muscle and relevant references

Fmax (N) Am (mm2) lopt (m) ηm (Ns/m) vm (m/s) Cs (−) Cl (−) Cm (−) Csh (−) Cpe(-) Cpm (−)

36.0a 1.33a 0.0408a 8.0b -0.19c 0.15d 0.0734e 1.5e 0.35b 10.0b 0.55b

a Prilutsky et al. (1996)
b Wittek et al. (2000)
c Spector et al. (1980)
d Murphy and Beardsley (1974)
e Joyce and Rack (1969)

Cpe and Cpm being model parameters. As regards C E , the
following equations apply:

fℓ(l) = exp

[

−
(

l − lopt

loptCsh

)2
]

(17)

fv(v) =

⎧
⎨

⎩

0 v ≤ vm
Cs(vm − v)/(Csvm + v) vm < v < 0
(Cmv − Clvm)/(v − Clvm) v ≥ 0

(18)

where vm is the maximum muscle shortening rate, Cs, Cl ,

Cm, Csh are model parameters, and lopt represents the muscle
length which produces fℓ = 1, referred to as the muscle opti-
mum length.

It is out of the purposes of this paper to discuss merits
and/or drawbacks of previous muscle model. We refer for
that to the specialized literature (Wittek et al. 2000; Ethier
and Simons 2007), employed also for identifying values of
model parameters used in numerical applications and sum-
marized in Table 2.

3.3 The MTU fixed-end contraction

Equations of motion for the whole MTU result in:

Fc(t, l, l̇) + Fkm (l) + Fηm (l̇) + Fim(l̈) = F(t) (19)

Fkt (x) + Fηt (ẋ) + Fit (ẍ) = F(t) (20)

For a fixed-end contraction (FEC) regime of MTU (Fig. 5),
the tetanic activation law na(t) is computed from Eqs. (13)
and (14) assuming u(t) = h(t) − h(t − 0.5) as the neuro-
control flag, h(t − to) being the Heaviside function centered
in t = to s. Moreover, in FEC, the MTU total length Lm =
lo + xo does not depend on time. Accordingly, by imposing
the following compatibility equation

l(t) = lo + xo − x(t) (21)

MTU reduces to a one degree-of-freedom system. There-
fore, disregarding as a first approximation any inertial effect
related to muscle and tendon masses, MTU dynamical

response is governed by the equation:

e(l, l̇, t) = Fmax · na(t) · fℓ(l) · fv(l̇) + Fkm (l)

+(ηm + ηt ) l̇ +
∫ l(t)

lo
kt (τ )dτ = 0 (22)

It is worth observing that F(t) can be thought as the reac-
tive force arising from the constraint (21).

3.4 Computational algorithms

Referring to Eq. (22), tendon stiffness kt is constant in the
linear case (see Eq. 11), while it results nonlinearly depen-
dent on l(t) when tendon elastic nonlinearities are taken into
account (Eq. 1). In this latter case and in the framework of
a large displacement approach, kt (l) is computed addressing
a succession of linear incremental equilibrium problems in a
strain-controlled scheme where the fiber geometry is updated
at each step by means of the Principle of Virtual Works.

Moreover, starting from the knowledge of kt (l) and
addressing the FEC case, the dynamical response of the MTU
is numerically computed by solving the integro-differential
equation (22) through the implicit damped Newton method
(Deuflhard 1974), wherein l̇ is assumed as the control vari-
able. Employed algorithms are sketched out in Fig. 6. These
algorithms have been implemented into a parametric home-
made code, embedded in MATLAB® environment, and as a
result of a convergence analysis, suitable iteration steps have
been chosen: dεt = 10−4, dt = 5 · 10−4 s.

4 Results

Addressing the dynamical response of cat soleus muscle–
tendon units, results referring to non-trained subjects will be
first obtained. As a second application, results focusing the
effects of physical training will be proposed and discussed.

4.1 MTU dynamical response

Values of model parameters of a cat soleus muscle are sum-
marized in Table 2, and it has been assumed that lo = lopt.
With the aim to highlight the influence of tendon model-
ing on the MTU dynamical response, linear and nonlinear
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Fig. 5 The fixed-end contraction case: equilibrium at the muscle-
tendon joint N

stiffening in the whole deformation range (as indicated in
Buchanan and Marsh 2002; Reeves et al. 2006).

3 Muscle-tendon unit model

With reference to Fig. 1 and following the Hill’s lumped
parameter scheme, skeletal MTU is described by a one-
dimensional dynamical structure, comprising two elements
mainly representatives for muscle and tendon response,
respectively.

3.1 Tendon element

Under the thrust F , the following equilibrium equation (see
Fig. 5) holds for the tendon element: F = Fit + Fkt + Fηt

where Fit (ẍ) is the corresponding inertial force, Fkt and Fηt

are the forces developed by the elastic and the viscous sub-
element, respectively equal to:

Fkt (x) =
∫ x(t)

xo

kt (q)dq, Fηt (ẋ) = ηt ẋ (10)

In order to show the influence of tendon elastic nonlineari-
ties on the whole MTU dynamics, both linear and nonlinear
tendon response is addressed.

In the nonlinear case, Eq. (1) is employed while, when a
linear spring element is considered, the constant stiffness is
assumed to be equal to:

klin
t = At

xo
[V f Ê + (1 − V f )Em] (11)

corresponding to the upper bound stiffness value of the ten-
don nonlinear model.

3.2 Muscle element

Concerning the muscle model, a classical Hill-type formula-
tion is addressed (Wittek et al. 2000). In detail, a contractile
sub-element C E , a passive elastic (P M) and a viscous (DM)

sub-element, whose stiffness and damping coefficients are

km and ηm , are interconnected into a parallel scheme. In the
following, fundamental equations are briefly reported for the
sake of completeness and for introducing necessary symbols.

The spring sub-element P M , producing the force Fkm ,
describes the muscle passive elasticity which resides in actin-
myosin cross-links, in cytoskeleton non-contractile proteins,
and in aponeurosis tissue (Gajdosik 2001). The viscous su-
belement DM develops the force Fηm in response to frictional
dissipation within the muscle. Finally, the contractile sub-
element C E produces the force Fc, developed by the actin-
myosin complex in response to a neuro-muscular excitation.
As it is customary, the following assumption is employed
(Wittek et al. 2000):

Fc(t, l, v) = Fmax · na(t) · fℓ(l) · fv(v) (12)

where Fmax is the isometric maximum muscle force at 100%
voluntary muscle activation, and the dimensionless functions
na, fv and fℓ are defined as follows:

– na(t) is the neuromuscular excitation function and can be
computed by integrating the following differential equa-
tions (Wittek et al. 2000):

Tneṅe(t) = u(t) − ne(t) (13)

Taṅa(t) = ne(t) − na(t) (14)

with na(0) = ne(0) = 0, Tne and Ta being time con-
stants, assumed equal to 0.035 and 0.01 s, respectively,
and u(t) is a neuro-control flag.

– fℓ(l) is the muscle length-dependent shape function, val-
ued in [0, 1], l(t) being the current length at time t of
muscle fibers (as a notation, l(0) = lo).

– fv(v) is the muscle stretch velocity-dependent shape
function, valued in [0, 1] when muscle contraction pro-
cesses are active (i.e., when the muscle stretch velocity
v = l̇ is not equal to zero).

The following equilibrium equation holds (see Fig. 5):

F(t) = Fc(t) + Fkm (l) + Fηm (v) + Fim(l̈) (15)

where Fim(l̈) is the inertial force relevant to the parallel ele-
ment, and Fkm (l) [respectively, Fηm (l)] is the thrust in P M
(respectively, DM) subelement.

A number of different approaches describing Fc, Fkm and
Fηm can be found in the specialized literature (Wittek et al.
2000; Ethier and Simons 2007). In present work, DM is
assumed as linear and P M is described by:

Fkm (l) = km(l)(l − lo)

=
{

0 l < lo
Fmax

[exp(Cpe)−1]
[
exp

(
Cpe
Cpm

l−lo
lo

)
− 1

]
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Fig. 5 The fixed-end contraction case: equilibrium at the muscle-
tendon joint N

stiffening in the whole deformation range (as indicated in
Buchanan and Marsh 2002; Reeves et al. 2006).

3 Muscle-tendon unit model

With reference to Fig. 1 and following the Hill’s lumped
parameter scheme, skeletal MTU is described by a one-
dimensional dynamical structure, comprising two elements
mainly representatives for muscle and tendon response,
respectively.

3.1 Tendon element

Under the thrust F , the following equilibrium equation (see
Fig. 5) holds for the tendon element: F = Fit + Fkt + Fηt

where Fit (ẍ) is the corresponding inertial force, Fkt and Fηt

are the forces developed by the elastic and the viscous sub-
element, respectively equal to:

Fkt (x) =
∫ x(t)

xo

kt (q)dq, Fηt (ẋ) = ηt ẋ (10)

In order to show the influence of tendon elastic nonlineari-
ties on the whole MTU dynamics, both linear and nonlinear
tendon response is addressed.

In the nonlinear case, Eq. (1) is employed while, when a
linear spring element is considered, the constant stiffness is
assumed to be equal to:

klin
t = At

xo
[V f Ê + (1 − V f )Em] (11)

corresponding to the upper bound stiffness value of the ten-
don nonlinear model.

3.2 Muscle element

Concerning the muscle model, a classical Hill-type formula-
tion is addressed (Wittek et al. 2000). In detail, a contractile
sub-element C E , a passive elastic (P M) and a viscous (DM)

sub-element, whose stiffness and damping coefficients are

km and ηm , are interconnected into a parallel scheme. In the
following, fundamental equations are briefly reported for the
sake of completeness and for introducing necessary symbols.

The spring sub-element P M , producing the force Fkm ,
describes the muscle passive elasticity which resides in actin-
myosin cross-links, in cytoskeleton non-contractile proteins,
and in aponeurosis tissue (Gajdosik 2001). The viscous su-
belement DM develops the force Fηm in response to frictional
dissipation within the muscle. Finally, the contractile sub-
element C E produces the force Fc, developed by the actin-
myosin complex in response to a neuro-muscular excitation.
As it is customary, the following assumption is employed
(Wittek et al. 2000):

Fc(t, l, v) = Fmax · na(t) · fℓ(l) · fv(v) (12)

where Fmax is the isometric maximum muscle force at 100%
voluntary muscle activation, and the dimensionless functions
na, fv and fℓ are defined as follows:

– na(t) is the neuromuscular excitation function and can be
computed by integrating the following differential equa-
tions (Wittek et al. 2000):

Tneṅe(t) = u(t) − ne(t) (13)

Taṅa(t) = ne(t) − na(t) (14)

with na(0) = ne(0) = 0, Tne and Ta being time con-
stants, assumed equal to 0.035 and 0.01 s, respectively,
and u(t) is a neuro-control flag.

– fℓ(l) is the muscle length-dependent shape function, val-
ued in [0, 1], l(t) being the current length at time t of
muscle fibers (as a notation, l(0) = lo).

– fv(v) is the muscle stretch velocity-dependent shape
function, valued in [0, 1] when muscle contraction pro-
cesses are active (i.e., when the muscle stretch velocity
v = l̇ is not equal to zero).

The following equilibrium equation holds (see Fig. 5):

F(t) = Fc(t) + Fkm (l) + Fηm (v) + Fim(l̈) (15)

where Fim(l̈) is the inertial force relevant to the parallel ele-
ment, and Fkm (l) [respectively, Fηm (l)] is the thrust in P M
(respectively, DM) subelement.

A number of different approaches describing Fc, Fkm and
Fηm can be found in the specialized literature (Wittek et al.
2000; Ethier and Simons 2007). In present work, DM is
assumed as linear and P M is described by:
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Fig. 5 The fixed-end contraction case: equilibrium at the muscle-
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stiffening in the whole deformation range (as indicated in
Buchanan and Marsh 2002; Reeves et al. 2006).

3 Muscle-tendon unit model

With reference to Fig. 1 and following the Hill’s lumped
parameter scheme, skeletal MTU is described by a one-
dimensional dynamical structure, comprising two elements
mainly representatives for muscle and tendon response,
respectively.

3.1 Tendon element

Under the thrust F , the following equilibrium equation (see
Fig. 5) holds for the tendon element: F = Fit + Fkt + Fηt

where Fit (ẍ) is the corresponding inertial force, Fkt and Fηt

are the forces developed by the elastic and the viscous sub-
element, respectively equal to:

Fkt (x) =
∫ x(t)

xo

kt (q)dq, Fηt (ẋ) = ηt ẋ (10)

In order to show the influence of tendon elastic nonlineari-
ties on the whole MTU dynamics, both linear and nonlinear
tendon response is addressed.

In the nonlinear case, Eq. (1) is employed while, when a
linear spring element is considered, the constant stiffness is
assumed to be equal to:

klin
t = At
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[V f Ê + (1 − V f )Em] (11)

corresponding to the upper bound stiffness value of the ten-
don nonlinear model.

3.2 Muscle element

Concerning the muscle model, a classical Hill-type formula-
tion is addressed (Wittek et al. 2000). In detail, a contractile
sub-element C E , a passive elastic (P M) and a viscous (DM)

sub-element, whose stiffness and damping coefficients are

km and ηm , are interconnected into a parallel scheme. In the
following, fundamental equations are briefly reported for the
sake of completeness and for introducing necessary symbols.

The spring sub-element P M , producing the force Fkm ,
describes the muscle passive elasticity which resides in actin-
myosin cross-links, in cytoskeleton non-contractile proteins,
and in aponeurosis tissue (Gajdosik 2001). The viscous su-
belement DM develops the force Fηm in response to frictional
dissipation within the muscle. Finally, the contractile sub-
element C E produces the force Fc, developed by the actin-
myosin complex in response to a neuro-muscular excitation.
As it is customary, the following assumption is employed
(Wittek et al. 2000):

Fc(t, l, v) = Fmax · na(t) · fℓ(l) · fv(v) (12)

where Fmax is the isometric maximum muscle force at 100%
voluntary muscle activation, and the dimensionless functions
na, fv and fℓ are defined as follows:

– na(t) is the neuromuscular excitation function and can be
computed by integrating the following differential equa-
tions (Wittek et al. 2000):

Tneṅe(t) = u(t) − ne(t) (13)

Taṅa(t) = ne(t) − na(t) (14)

with na(0) = ne(0) = 0, Tne and Ta being time con-
stants, assumed equal to 0.035 and 0.01 s, respectively,
and u(t) is a neuro-control flag.

– fℓ(l) is the muscle length-dependent shape function, val-
ued in [0, 1], l(t) being the current length at time t of
muscle fibers (as a notation, l(0) = lo).

– fv(v) is the muscle stretch velocity-dependent shape
function, valued in [0, 1] when muscle contraction pro-
cesses are active (i.e., when the muscle stretch velocity
v = l̇ is not equal to zero).

The following equilibrium equation holds (see Fig. 5):

F(t) = Fc(t) + Fkm (l) + Fηm (v) + Fim(l̈) (15)

where Fim(l̈) is the inertial force relevant to the parallel ele-
ment, and Fkm (l) [respectively, Fηm (l)] is the thrust in P M
(respectively, DM) subelement.

A number of different approaches describing Fc, Fkm and
Fηm can be found in the specialized literature (Wittek et al.
2000; Ethier and Simons 2007). In present work, DM is
assumed as linear and P M is described by:
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=
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Fig. 5 The fixed-end contraction case: equilibrium at the muscle-
tendon joint N

stiffening in the whole deformation range (as indicated in
Buchanan and Marsh 2002; Reeves et al. 2006).

3 Muscle-tendon unit model

With reference to Fig. 1 and following the Hill’s lumped
parameter scheme, skeletal MTU is described by a one-
dimensional dynamical structure, comprising two elements
mainly representatives for muscle and tendon response,
respectively.

3.1 Tendon element

Under the thrust F , the following equilibrium equation (see
Fig. 5) holds for the tendon element: F = Fit + Fkt + Fηt

where Fit (ẍ) is the corresponding inertial force, Fkt and Fηt

are the forces developed by the elastic and the viscous sub-
element, respectively equal to:

Fkt (x) =
∫ x(t)

xo

kt (q)dq, Fηt (ẋ) = ηt ẋ (10)

In order to show the influence of tendon elastic nonlineari-
ties on the whole MTU dynamics, both linear and nonlinear
tendon response is addressed.

In the nonlinear case, Eq. (1) is employed while, when a
linear spring element is considered, the constant stiffness is
assumed to be equal to:

klin
t = At

xo
[V f Ê + (1 − V f )Em] (11)

corresponding to the upper bound stiffness value of the ten-
don nonlinear model.

3.2 Muscle element

Concerning the muscle model, a classical Hill-type formula-
tion is addressed (Wittek et al. 2000). In detail, a contractile
sub-element C E , a passive elastic (P M) and a viscous (DM)

sub-element, whose stiffness and damping coefficients are

km and ηm , are interconnected into a parallel scheme. In the
following, fundamental equations are briefly reported for the
sake of completeness and for introducing necessary symbols.

The spring sub-element P M , producing the force Fkm ,
describes the muscle passive elasticity which resides in actin-
myosin cross-links, in cytoskeleton non-contractile proteins,
and in aponeurosis tissue (Gajdosik 2001). The viscous su-
belement DM develops the force Fηm in response to frictional
dissipation within the muscle. Finally, the contractile sub-
element C E produces the force Fc, developed by the actin-
myosin complex in response to a neuro-muscular excitation.
As it is customary, the following assumption is employed
(Wittek et al. 2000):

Fc(t, l, v) = Fmax · na(t) · fℓ(l) · fv(v) (12)

where Fmax is the isometric maximum muscle force at 100%
voluntary muscle activation, and the dimensionless functions
na, fv and fℓ are defined as follows:

– na(t) is the neuromuscular excitation function and can be
computed by integrating the following differential equa-
tions (Wittek et al. 2000):

Tneṅe(t) = u(t) − ne(t) (13)

Taṅa(t) = ne(t) − na(t) (14)

with na(0) = ne(0) = 0, Tne and Ta being time con-
stants, assumed equal to 0.035 and 0.01 s, respectively,
and u(t) is a neuro-control flag.

– fℓ(l) is the muscle length-dependent shape function, val-
ued in [0, 1], l(t) being the current length at time t of
muscle fibers (as a notation, l(0) = lo).

– fv(v) is the muscle stretch velocity-dependent shape
function, valued in [0, 1] when muscle contraction pro-
cesses are active (i.e., when the muscle stretch velocity
v = l̇ is not equal to zero).

The following equilibrium equation holds (see Fig. 5):

F(t) = Fc(t) + Fkm (l) + Fηm (v) + Fim(l̈) (15)

where Fim(l̈) is the inertial force relevant to the parallel ele-
ment, and Fkm (l) [respectively, Fηm (l)] is the thrust in P M
(respectively, DM) subelement.

A number of different approaches describing Fc, Fkm and
Fηm can be found in the specialized literature (Wittek et al.
2000; Ethier and Simons 2007). In present work, DM is
assumed as linear and P M is described by:

Fkm (l) = km(l)(l − lo)

=
{

0 l < lo
Fmax

[exp(Cpe)−1]
[
exp
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Fig. 1 Hill-type lumped parameter scheme of the muscle–tendon unit

interstitial fluid flow and time-dependent mechanisms at the
nanoscale.

In agreement with in vivo evidences, a tendon can be
modeled as a one-dimensional structure subjected to uni-
axial traction along its main dimension. The nominal tissue
strain measure along traction direction will be denoted as εt .
Incidentally, loading direction coincides with the fiber axis,
so that the nominal apparent (i.e., along-the-chord) fiber’s
strain ε f (associated with a change in fiber period) coincides
with εt .

Tendon viscoelastic behavior is described by means of a
lumped parameter approach. Since the typical experimental
response at the macroscale and following the Kelvin–Voigt
rationale, an elastic passive (PT ) sub-element with stiffness
kt is interconnected in parallel with a viscous (DT ) sub-ele-
ment having ηt as damping coefficient (Fig. 1).

2.1 Elastic sub-element

In the framework of a one-dimensional approach, tendon
elastic response is described through the tissue equivalent
strain-dependent axial modulus Et (εt ). Accordingly, the
length-dependent tendon stiffness kt (x) can be introduced
as:

kt (x) = Et (x)At

xo
(1)

where xo is the tendon length at rest, At is a measure of
tendon cross-section area (assumed to be constant with ref-
erence to the tendon free-end portion, Finni et al. 2003) and
x = xo(1 + εt ) is the actual tendon length.

Following the multiscale model of soft collagenous tis-
sues recently proposed by the authors (Maceri et al. 2010a),
and addressing the actual value for ε f (or equivalently εt ),
the homogenized tissue modulus Et is computed through a
classical mixture rule, involving the fiber volume fraction
V f and the Young’s moduli of matrix (Em) and fiber (E f ).
Damage effects, fiber–fiber and fiber–matrix interactions are

herein neglected, as well as temperature effects for both col-
lagenous fibers and ground substance.

The apparent along-the-chord fiber modulus E f is non-
linearly dependent on fiber strain ε f , which in turn depends
on both the actual fiber geometry (i.e., on the actual tissue
strain) and the actual fiber material stretch. While the fiber
geometry significantly affects the initial low-stiffness region
of the tendon mechanical response (namely, the toe region),
the fiber material stretching highly influences tendon stiff-
ening behavior (the heel region), attributable to the entropic
straightening of molecular kinks (Fratzl et al. 1997).

Although collagen fibers are collections of cross-linked
fibrils, fibers are assumed to be curvilinear homogeneous
beams with a circular cross-section of radius r f , comprising
an elastic material. Therefore, fibrils slippage and defibrilla-
tion mechanisms are herein neglected. Moreover, mechani-
cal interactions among fibrils mediated by proteoglycans are
not included, in agreement with experimental evidences pro-
posed by Fessel and Snedeker (2011). Denoting as x f the
along-the-chord fiber coordinate, actual and reference con-
figurations of a collagen fiber are assumed to be described by
centerline periodic functions f (x f ) and fo(x f ), respectively,
with fo(x f ) = Ho sin(2πx f /Lo).

As a notation rule, let ra be the fiber aspect ratio Ho/Lo,
and denote with L and Lo the actual and reference curvilin-
ear lengths over a period, respectively. For a sinusoidal fiber,
Lo is equal to 2LoE (i2πra) /π , where E(x) is the complete
elliptic integral of the second kind and i the imaginary unit.
Since fiber aspect ratio in biological tissues is in the order of
10−1, a good approximation of Lo is provided by its series
expansion truncated at the third order in the neighborhood of
ra = 0. Accordingly, Lo ≈ Lo

(
1 + π2r2

a

)
.

The fiber curvilinear length over a period when crimp is
fully removed can be put in the form L∗ = Lo(1 + ε∗

f ),
where ε∗

f denotes the lowest value of the apparent fiber strain
corresponding to a straight configuration. Disregarding fiber
material stretch upon to the crimp removal, L∗ ≈ Lo and
the following approximated relation can be stated: Lo ≈
Lo

(
1 + π2r2

a

)
≈ Lo(1 + ε∗

f ), or equivalently:

ε∗
f = π2r2

a (2)

It is worth pointing out that Eq. (2) provides an approximated
quantitative correlation between reference crimp aspect of
collagenous fibers and the extension of toe-region in tendon
mechanical response.

In agreement with Potier-Ferry and Siad (1992) and
addressing an incremental approach, the homogenized along-
the-chord fiber elastic modulus (i.e., the elastic modulus of
an equivalent straight fiber) at the actual tissue strain level εt
results in:

E f = Ec ⟨cos α⟩
[〈

cos2 α
〉
+ 4

〈
f 2〉

r2
f

]−1

(3)
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Fig. 1 Hill-type lumped parameter scheme of the muscle–tendon unit

interstitial fluid flow and time-dependent mechanisms at the
nanoscale.

In agreement with in vivo evidences, a tendon can be
modeled as a one-dimensional structure subjected to uni-
axial traction along its main dimension. The nominal tissue
strain measure along traction direction will be denoted as εt .
Incidentally, loading direction coincides with the fiber axis,
so that the nominal apparent (i.e., along-the-chord) fiber’s
strain ε f (associated with a change in fiber period) coincides
with εt .

Tendon viscoelastic behavior is described by means of a
lumped parameter approach. Since the typical experimental
response at the macroscale and following the Kelvin–Voigt
rationale, an elastic passive (PT ) sub-element with stiffness
kt is interconnected in parallel with a viscous (DT ) sub-ele-
ment having ηt as damping coefficient (Fig. 1).

2.1 Elastic sub-element

In the framework of a one-dimensional approach, tendon
elastic response is described through the tissue equivalent
strain-dependent axial modulus Et (εt ). Accordingly, the
length-dependent tendon stiffness kt (x) can be introduced
as:

kt (x) = Et (x)At

xo
(1)

where xo is the tendon length at rest, At is a measure of
tendon cross-section area (assumed to be constant with ref-
erence to the tendon free-end portion, Finni et al. 2003) and
x = xo(1 + εt ) is the actual tendon length.

Following the multiscale model of soft collagenous tis-
sues recently proposed by the authors (Maceri et al. 2010a),
and addressing the actual value for ε f (or equivalently εt ),
the homogenized tissue modulus Et is computed through a
classical mixture rule, involving the fiber volume fraction
V f and the Young’s moduli of matrix (Em) and fiber (E f ).
Damage effects, fiber–fiber and fiber–matrix interactions are

herein neglected, as well as temperature effects for both col-
lagenous fibers and ground substance.

The apparent along-the-chord fiber modulus E f is non-
linearly dependent on fiber strain ε f , which in turn depends
on both the actual fiber geometry (i.e., on the actual tissue
strain) and the actual fiber material stretch. While the fiber
geometry significantly affects the initial low-stiffness region
of the tendon mechanical response (namely, the toe region),
the fiber material stretching highly influences tendon stiff-
ening behavior (the heel region), attributable to the entropic
straightening of molecular kinks (Fratzl et al. 1997).

Although collagen fibers are collections of cross-linked
fibrils, fibers are assumed to be curvilinear homogeneous
beams with a circular cross-section of radius r f , comprising
an elastic material. Therefore, fibrils slippage and defibrilla-
tion mechanisms are herein neglected. Moreover, mechani-
cal interactions among fibrils mediated by proteoglycans are
not included, in agreement with experimental evidences pro-
posed by Fessel and Snedeker (2011). Denoting as x f the
along-the-chord fiber coordinate, actual and reference con-
figurations of a collagen fiber are assumed to be described by
centerline periodic functions f (x f ) and fo(x f ), respectively,
with fo(x f ) = Ho sin(2πx f /Lo).

As a notation rule, let ra be the fiber aspect ratio Ho/Lo,
and denote with L and Lo the actual and reference curvilin-
ear lengths over a period, respectively. For a sinusoidal fiber,
Lo is equal to 2LoE (i2πra) /π , where E(x) is the complete
elliptic integral of the second kind and i the imaginary unit.
Since fiber aspect ratio in biological tissues is in the order of
10−1, a good approximation of Lo is provided by its series
expansion truncated at the third order in the neighborhood of
ra = 0. Accordingly, Lo ≈ Lo

(
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.

The fiber curvilinear length over a period when crimp is
fully removed can be put in the form L∗ = Lo(1 + ε∗

f ),
where ε∗

f denotes the lowest value of the apparent fiber strain
corresponding to a straight configuration. Disregarding fiber
material stretch upon to the crimp removal, L∗ ≈ Lo and
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(
1 + π2r2

a

)
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It is worth pointing out that Eq. (2) provides an approximated
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mechanical response.

In agreement with Potier-Ferry and Siad (1992) and
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the-chord fiber elastic modulus (i.e., the elastic modulus of
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Fig. 5 The fixed-end contraction case: equilibrium at the muscle-
tendon joint N

stiffening in the whole deformation range (as indicated in
Buchanan and Marsh 2002; Reeves et al. 2006).

3 Muscle-tendon unit model

With reference to Fig. 1 and following the Hill’s lumped
parameter scheme, skeletal MTU is described by a one-
dimensional dynamical structure, comprising two elements
mainly representatives for muscle and tendon response,
respectively.

3.1 Tendon element

Under the thrust F , the following equilibrium equation (see
Fig. 5) holds for the tendon element: F = Fit + Fkt + Fηt

where Fit (ẍ) is the corresponding inertial force, Fkt and Fηt

are the forces developed by the elastic and the viscous sub-
element, respectively equal to:

Fkt (x) =
∫ x(t)

xo

kt (q)dq, Fηt (ẋ) = ηt ẋ (10)

In order to show the influence of tendon elastic nonlineari-
ties on the whole MTU dynamics, both linear and nonlinear
tendon response is addressed.

In the nonlinear case, Eq. (1) is employed while, when a
linear spring element is considered, the constant stiffness is
assumed to be equal to:

klin
t = At

xo
[V f Ê + (1 − V f )Em] (11)

corresponding to the upper bound stiffness value of the ten-
don nonlinear model.

3.2 Muscle element

Concerning the muscle model, a classical Hill-type formula-
tion is addressed (Wittek et al. 2000). In detail, a contractile
sub-element C E , a passive elastic (P M) and a viscous (DM)

sub-element, whose stiffness and damping coefficients are

km and ηm , are interconnected into a parallel scheme. In the
following, fundamental equations are briefly reported for the
sake of completeness and for introducing necessary symbols.

The spring sub-element P M , producing the force Fkm ,
describes the muscle passive elasticity which resides in actin-
myosin cross-links, in cytoskeleton non-contractile proteins,
and in aponeurosis tissue (Gajdosik 2001). The viscous su-
belement DM develops the force Fηm in response to frictional
dissipation within the muscle. Finally, the contractile sub-
element C E produces the force Fc, developed by the actin-
myosin complex in response to a neuro-muscular excitation.
As it is customary, the following assumption is employed
(Wittek et al. 2000):

Fc(t, l, v) = Fmax · na(t) · fℓ(l) · fv(v) (12)

where Fmax is the isometric maximum muscle force at 100%
voluntary muscle activation, and the dimensionless functions
na, fv and fℓ are defined as follows:

– na(t) is the neuromuscular excitation function and can be
computed by integrating the following differential equa-
tions (Wittek et al. 2000):

Tneṅe(t) = u(t) − ne(t) (13)

Taṅa(t) = ne(t) − na(t) (14)

with na(0) = ne(0) = 0, Tne and Ta being time con-
stants, assumed equal to 0.035 and 0.01 s, respectively,
and u(t) is a neuro-control flag.

– fℓ(l) is the muscle length-dependent shape function, val-
ued in [0, 1], l(t) being the current length at time t of
muscle fibers (as a notation, l(0) = lo).

– fv(v) is the muscle stretch velocity-dependent shape
function, valued in [0, 1] when muscle contraction pro-
cesses are active (i.e., when the muscle stretch velocity
v = l̇ is not equal to zero).

The following equilibrium equation holds (see Fig. 5):

F(t) = Fc(t) + Fkm (l) + Fηm (v) + Fim(l̈) (15)

where Fim(l̈) is the inertial force relevant to the parallel ele-
ment, and Fkm (l) [respectively, Fηm (l)] is the thrust in P M
(respectively, DM) subelement.

A number of different approaches describing Fc, Fkm and
Fηm can be found in the specialized literature (Wittek et al.
2000; Ethier and Simons 2007). In present work, DM is
assumed as linear and P M is described by:

Fkm (l) = km(l)(l − lo)

=
{

0 l < lo
Fmax

[exp(Cpe)−1]
[
exp

(
Cpe
Cpm

l−lo
lo

)
− 1

]
l ≥ lo

(16)

123

Author's personal copyMUSCLE-­‐TENDON	
  UNIT	
  

Muscular	
  force	
  is	
  clearly	
  altered	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

CURVILINEAR	
  FIBER	
  
HOMOGENIZATION	
  

CLASSICAL	
  THEORY	
  OF	
  	
  
FIBER-­‐REINFORCED	
  COMPOSITES	
  

	
  	
  	
  	
  	
  micro 	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  macro	
  

Model:	
  Tissue:	
  

Double	
  homogenizaEon	
  step	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

The	
  need	
  of	
  a	
  consEtuEve	
  relaEonship	
  at	
  the	
  MACROSCALE:	
  

The	
  mechanical	
  performance	
  of	
  locomotor	
  system	
  highly	
  depend	
  on	
  tendinous	
  mechanics	
  

AlteraEon	
  of	
  fiber	
  crimp	
  (e.g.,	
  scars)	
  
	
  

AlteraEon	
  of	
  volumetric	
  fracEon	
  	
  
(e.g.,	
  Ehlers-­‐Danlos	
  syndrome)	
  

SEffening/laxity	
  and	
  higher	
  rupture	
  risks	
  

STRUCTURE	
   MECHANICS	
  

BUT	
  

CAUSE	
  AT	
  THE	
  MICROSCALE	
   MACROSCOPIC	
  EFFECT	
  

WHY	
  MULTISCALE?	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

L	
  

Fz	
   Fz	
  

-­‐	
  Beam	
  theories	
  	
  	
  
Frish-­‐Fay,	
  Flexible	
  Bars,	
  Bumerworths	
  1962.	
  

-­‐	
  AsymptoEc	
  expansion	
  homogenizaEon	
  methods	
  
M.	
  Po(er-­‐Ferry,	
  L.	
  Said,	
  “Geometrical	
  homogenizaEon	
  of	
  a	
  corrugated	
  beam”,	
  
Comptes	
  Rendus	
  de	
  l’Académie	
  des	
  Sciences	
  314,	
  1992.	
  

-­‐	
  EnergeEc	
  approach	
  
M.	
  Marino,	
  G.	
  Vairo,	
  “Equivalent	
  SEffness	
  and	
  Compliance	
  of	
  Curvilinear	
  ElasEc	
  
Fibers”,	
  In:	
  Mechanics,	
  Models	
  and	
  Methods	
  in	
  Civil	
  Engineering	
  61,	
  2012.	
  

f(x)=Hosin(2πx/Lo)	
  

F F

MICRO	
  MECHANICS	
  
Ho	
  

Lo	
  

α	





Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

L	
  
T

Transversely	
  isotropic	
  fiber:	
  

Linearly	
  elasEc	
  
isotropic	
  matrix	
  

EM,	
  νM	
  

Collagen	
  volume	
  fracEon:	
  Vf	
  

Mixture	
  rule	
  

CURVILINEAR	
  FIBER	
  
HOMOGENIZATION	
  

MICRO	
  MECHANICS	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

-­‐	
  TRANSVERSELY	
  ISOTROPIC	
  MATERIAL	
  IN	
  LOCAL	
  FRAME	
  

In	
  the	
  global	
  coordinate	
  system:	
  

Stress	
  and	
  strain	
  transformaWon	
  matrices	
  

L	
  
T

MACRO	
  MECHANICS	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

Few	
  parameters,	
  experimentally	
  measurable	
  

MACRO	
  

} }	
  

rf	
  
Lo	
  
Ho	
  

	
  
Vf	
  

MICRO	
  

Lo	
  

Ho	
  

rf	
  

GEOMETRIC	
  PARAMETERS:	
  

MECHANICAL	
  PARAMETERS:	
  	
  EM	
  	
  -­‐	
  	
  Ec	
  
Tendon	
   Ref.	
  

Lo	
   240	
  μm	
   Hansen	
  et	
  al.,	
  2002	
  

Ho	
   10.8	
  μm	
   Maceri	
  et	
  al.,	
  2009	
  

rf	
   4.0	
  μm	
   Kannus,2000	
  

Vf	
   50%	
   Silver	
  et	
  al.,	
  2001	
  

νm	
   0.49	
   Lavagnino	
  et	
  al.,	
  2008	
  

EM	
   1	
  MPa	
   Lavagnino	
  et	
  al.,	
  2008	
  

Ec	
  :	
  0.1-­‐40	
  GPa	
  (Fratzl,	
  2008)	
  

MICRO-­‐MACRO	
  MODEL	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

Non-­‐constant	
  collagen	
  elasEc	
  modulus?	
  

0 1 2 3 4 5
0

2

4

6

8

10

σ t
 (M

Pa
)

εt (%)

 Dati sperimentali   
 Ec = 0.2 GPa       
 Ec = 0.5 GPa
 Ec = 1 GPa

Exp.	
  data	
  
Ec	
  =	
  0.2	
  GPa	
  
Ec	
  =	
  0.5	
  GPa	
  
Ec	
  =	
  1	
  GPa	
  

MICRO-­‐MACRO	
  MODEL:	
  RESULTS	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

?



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

CROSS-­‐LINK	
  

MOLECULAR	
  
KINKS	
  

COLLAGEN	
  FIBRIL	
  

COLLAGEN	
  FIBER	
  

macro 	
   	
   	
  	
  	
  	
  	
  micro 	
   	
  	
  	
  	
  	
  	
  	
  	
  nano	
  

~	
  mm	
   ~	
  nm	
  ~	
  mm	
  

FROM	
  MACRO	
  TO	
  NANO	
  STRUCTURE	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

F	
  

F	
  

TOE	
   HEEL	
   LINEAR	
  

2%	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  5%	
   STRAIN	
  

ST
RE

SS
	
  

“TOE	
  REGION”:	
  microscopic	
  crimp	
  removal	
  

FROM	
  MACRO	
  TO	
  NANO	
  MECHANICS	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

KINKS	
  

TOE	
   HEEL	
   LINEAR	
  

2%	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  5%	
  

“HEEL	
  REGION”:	
  molecular	
  kinks	
  
straightening	
  (entropic	
  mechanisms)	
  

STRAIN	
  

ST
RE

SS
	
  

“TOE	
  REGION”:	
  microscopic	
  crimp	
  removal	
  

FROM	
  MACRO	
  TO	
  NANO	
  MECHANICS	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

“LINEAR	
  REGION”:	
  molecular	
  and	
  cross-­‐
links	
  straightening	
  	
  

KINKS	
  

TOE	
   HEEL	
   LINEAR	
  

2%	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  5%	
   STRAIN	
  

ST
RE

SS
	
  

“TOE	
  REGION”:	
  microscopic	
  crimp	
  removal	
  

FROM	
  MACRO	
  TO	
  NANO	
  MECHANICS	
  

“HEEL	
  REGION”:	
  molecular	
  kinks	
  
straightening	
  (entropic	
  mechanisms)	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

Analysis	
  and	
  modeling	
  of	
  Wssue	
  mechanics	
  at	
  different	
  length	
  scales	
  
	
  allow	
  to	
  understand	
  a	
  number	
  of	
  physio-­‐pathological	
  processes	
  

NANOSCALE:	
  
	
  

GeneEc	
  defects	
  
	
  

Decrease	
  of	
  cross-­‐links	
  

MICROSCALE:	
  
	
  

Histological	
  alteraEon	
  

Higher	
  rupture	
  risks	
  

Laxity	
  (arEcular	
  hyper-­‐extensibility)	
  

Altered	
  mechanical	
  response	
  

NON	
  MACRO	
  CAUSE	
   MACROSCOPIC	
  EFFECT	
  

The	
  need	
  of	
  a	
  consEtuEve	
  relaEonship	
  at	
  the	
  MACROSCALE:	
  

The	
  mechanical	
  performance	
  of	
  locomotor	
  system	
  highly	
  depend	
  on	
  tendinous	
  mechanics	
  

STRUCTURE	
   MECHANICS	
  

BUT	
  

WHY	
  MULTISCALE?	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

Analysis	
  and	
  modeling	
  of	
  Wssue	
  mechanics	
  at	
  different	
  length	
  scales	
  
	
  allow	
  to	
  understand	
  a	
  number	
  of	
  physio-­‐pathological	
  processes	
  

NANOSCALE:	
  
	
  

GeneEc	
  defects	
  
	
  

Decrease	
  of	
  cross-­‐links	
  

MICROSCALE:	
  
	
  

Histological	
  alteraEon	
  

Higher	
  rupture	
  risks	
  

Laxity	
  (arEcular	
  hyper-­‐extensibility)	
  

Altered	
  mechanical	
  response	
  

NON	
  MACRO	
  CAUSE	
   MACROSCOPIC	
  EFFECT	
  

The	
  need	
  of	
  a	
  consEtuEve	
  relaEonship	
  at	
  the	
  MACROSCALE:	
  

The	
  mechanical	
  performance	
  of	
  locomotor	
  system	
  highly	
  depend	
  on	
  tendinous	
  mechanics	
  

STRUCTURE	
   MECHANICS	
  

BUT	
  

WHY	
  MULTISCALE?	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

nano 	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  micro	
  

NANO	
  
MODEL	
  

NANO-­‐MICRO	
  HOMOGENIZATION	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

z 
Af 

ℓf 

1D	
  

Nm : !number!of!molecules

ni
c : !number!of!cross-links!acting!upon!the!ith!molecule

λ = ni
c (2Nm )i=1

Nm∑ : !average!covalent-bonds!occurrence

Nc = λNm : !total!number!of!covalent!bonds

fc

mca

AA
AAN

7.0
/

≈

=

Am 

z	
  :	
  material	
  symmetry	
  
axis	
  for	
  fibril	
  

ℓm,o 

FIBRIL	
  

NANO	
  STRUCTURE	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

F	
   F	
  

-­‐	
  Molecular	
  straightening:	
  

-­‐	
  Cross-­‐links	
  straightening:	
  

CONSTITUTIVE	
  RESPONSE	
  

NANO	
  MECHANICS	
  

KINEMATICS:	
  Two	
  deformaEon	
  mechanisms	
  

Non-­‐linearly	
  elasWc	
  (Em)	

 Linearly	
  elasWc	
  (kcl)	





Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

Unrolling	
  of	
  triple	
  helices	
  	
  
and	
  covalent	
  bonds	
  

stretching	
  

z	
  

z	
  

Energe(c	
  elas(city	
  

Bozec	
  (2005)	
  

~	
  pN	
  

~	
  nm	
  

Entropic	
  elas(city	
  
Experimental	
  data	
  

Atomic	
  Force	
  Microscopy:	
  

Bozec	
  (2005)	
  
Maceri,	
  Marino,	
  Vairo	
  (2012)	
  

NANO	
  MECHANICS:	
  COLLAGEN	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

s
mσ

h
mσ

Entropic	
  
mechanism	
  

EnergeEc	
  
mechanism	
  

z	
  

Energe(c	
  elas(city	
  

~	
  pN	
  

~	
  nm	
  

Entropic	
  elas(city	
  
Experimental	
  data	
  

NANO	
  MECHANICS:	
  COLLAGEN	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

Non-­‐linearity	
  related	
  to	
  unrolling	
  of	
  triple	
  helices	
  
(Buehler	
  and	
  Wong,	
  2009	
  -­‐	
  Maceri	
  et	
  al.,	
  2012)	
  

Tangent	
  elasEc	
  modulus	
  in	
  entropic	
  elasEcty:	
  
Recovery	
  of	
  the	
  classical	
  	
  

Worm-­‐like	
  chain	
  formulaEon	
  
(Marko	
  and	
  Siggia,	
  1995)	
  

Tangent	
  elasEc	
  modulus	
  in	
  energeEc	
  elasEcity	
  

s
mσ

h
mσ

Entropic	
  
mechanism	
  

EnergeEc	
  
mechanism	
  

NANO	
  MECHANICS:	
  COLLAGEN	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

s
mσ

h
mσ

Entropic	
  
mechanism	
  

EnergeEc	
  
mechanism	
  

NANO	
  MECHANICS:	
  COLLAGEN	
  

F.	
  Maceri,	
  M.	
  Marino,	
  G.	
  Vairo	
  “Elasto-­‐damage	
  modeling	
  of	
  biopolymer	
  molecules	
  response”,	
  Computer	
  Modeling	
  in	
  
Engineering	
  and	
  Sciences	
  87,	
  2012	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

GEOMETRIC	
  NON-­‐LINEARITIES	
  

MATERIAL	
  NON-­‐LINEARITIES	
  

collecEon	
  of	
  fibrils	
   

L 

c	
  

CompaEbility	
  solved	
  by	
  the	
  differenEal	
  problem 

with	
  El = Ef (εf) 

MULTISCALE	
  APPROACH	
  

M.	
  Marino,	
  G.	
  Vairo,	
  “MulEscale	
  ElasEc	
  Models	
  of	
  Collagen	
  Bio-­‐structures:	
  From	
  Cross-­‐Linked	
  Molecules	
  to	
  SoD	
  Tissues”,	
  In:	
  MulWscale	
  
Computer	
  Modeling	
  in	
  Biomechanics	
  and	
  Biomedical	
  Engineering,	
  Springer	
  2013.	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

CLASSICAL	
  THEORY	
  OF	
  	
  
FIBER-­‐REINFORCED	
  COMPOSITES	
  

nano 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  micro 	
  	
  	
   	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  macro	
  

NANO	
  
MODEL	
  

CURVILINEAR	
  FIBERS	
  
HOMOGENIZATION	
  

TENDON	
  MODEL	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

MACRO	
  

} }	
  

rf	
  
Lo	
  
Ho	
   }	
  

NANO	
  

	
  
Vf	
  
EM	
  

MICRO	
  

Lo	
  

rf	
  

Molecular	
  parameters	
  

Few	
  parameters,	
  experimentally	
  measurable	
  

TENDON	
  MODEL	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

0 1 2 3 4 5
0

2

4

6

8

10

σ t
 (M

Pa
)

εt (%)

Experimental	
  data	
   Model	
  

TENDON	
  MODEL:	
  VALIDATION	
  

F.	
  Maceri,	
  M.	
  Marino,	
  G.	
  Vairo,	
  “A	
  unified	
  mulEscale	
  mechanical	
  model	
  for	
  soD	
  collagenous	
  Essues	
  with	
  regular	
  fiber	
  arrangement”,	
  
Journal	
  of	
  Biomechanics	
  43,	
  2010.	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

0 2 4 6 8 10
0

5

10

15

20

25

30

 Exp. data

 Vf = 35 %       rf = 3.0 µm
 Vf = 65 %       rf = 3.5 µm

St
iff

ne
ss

 (N
/m

m
)

Force (N)

ks
lin

Experimental	
  data	
  on	
  6	
  different	
  subjects	
  obtained	
  by	
  means	
  of	
  ultrasonic	
  
non-­‐invasive	
  techniques	
  
P.M.H.	
  Rack,	
  D.R.	
  Westbury,	
  “ElasEc	
  properEes	
  of	
  the	
  cat	
  soleus	
  tendon	
  and	
  their	
  
funcEonal	
  importance”,	
  J.	
  Physiol	
  347,	
  1984.	
  

Non-­‐invasive	
  
techniques	
  

Inverse	
  approach	
  

PredicEve	
  
model	
  

DIAGNOSIS	
  	
  
TERAPEUTIC	
  INDICATIONS	
  

TENDON	
  MODEL:	
  APPLICATION	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

Disorder	
  in	
  collagen	
  metabolism	
  	
  
(e.g.,	
  Ehlers-­‐Danlos	
  Syndrome)	
  

0 1 2 3 4 5 6
0

2

4

6

8

10

σ t (M
Pa

)

εt (%)

 Vf = 25 % (diseased)     
 Vf = 50 % (healthy)

25 30 35 40 45 50
0

5

10

15

20

25

30

Δε
t / 
ε re

f  (
%

)

Vf (%)

 σt = 1 MPa
 σt  = 3 MPa
 σt  = 6 MPa

ReducEon	
  of	
  collagen	
  content	
  	
  
(Mao	
  et	
  al.,	
  2002)	
  

Tissue	
  hyper-­‐extensibility	
  
(Mao	
  and	
  Bristow,	
  2001)	
  

MODEL	
  

TENDON	
  MODEL:	
  APPLICATION	
  



Mechanical	
  modeling	
  of	
  soD	
  biological	
  Essues	
  –	
  LESSON	
  1	
  	
   MICHELE	
  MARINO	
  

RESULTS	
  

An insight on multiscale tendon modeling 507

Fig. 1 Hill-type lumped parameter scheme of the muscle–tendon unit

interstitial fluid flow and time-dependent mechanisms at the
nanoscale.

In agreement with in vivo evidences, a tendon can be
modeled as a one-dimensional structure subjected to uni-
axial traction along its main dimension. The nominal tissue
strain measure along traction direction will be denoted as εt .
Incidentally, loading direction coincides with the fiber axis,
so that the nominal apparent (i.e., along-the-chord) fiber’s
strain ε f (associated with a change in fiber period) coincides
with εt .

Tendon viscoelastic behavior is described by means of a
lumped parameter approach. Since the typical experimental
response at the macroscale and following the Kelvin–Voigt
rationale, an elastic passive (PT ) sub-element with stiffness
kt is interconnected in parallel with a viscous (DT ) sub-ele-
ment having ηt as damping coefficient (Fig. 1).

2.1 Elastic sub-element

In the framework of a one-dimensional approach, tendon
elastic response is described through the tissue equivalent
strain-dependent axial modulus Et (εt ). Accordingly, the
length-dependent tendon stiffness kt (x) can be introduced
as:

kt (x) = Et (x)At

xo
(1)

where xo is the tendon length at rest, At is a measure of
tendon cross-section area (assumed to be constant with ref-
erence to the tendon free-end portion, Finni et al. 2003) and
x = xo(1 + εt ) is the actual tendon length.

Following the multiscale model of soft collagenous tis-
sues recently proposed by the authors (Maceri et al. 2010a),
and addressing the actual value for ε f (or equivalently εt ),
the homogenized tissue modulus Et is computed through a
classical mixture rule, involving the fiber volume fraction
V f and the Young’s moduli of matrix (Em) and fiber (E f ).
Damage effects, fiber–fiber and fiber–matrix interactions are

herein neglected, as well as temperature effects for both col-
lagenous fibers and ground substance.

The apparent along-the-chord fiber modulus E f is non-
linearly dependent on fiber strain ε f , which in turn depends
on both the actual fiber geometry (i.e., on the actual tissue
strain) and the actual fiber material stretch. While the fiber
geometry significantly affects the initial low-stiffness region
of the tendon mechanical response (namely, the toe region),
the fiber material stretching highly influences tendon stiff-
ening behavior (the heel region), attributable to the entropic
straightening of molecular kinks (Fratzl et al. 1997).

Although collagen fibers are collections of cross-linked
fibrils, fibers are assumed to be curvilinear homogeneous
beams with a circular cross-section of radius r f , comprising
an elastic material. Therefore, fibrils slippage and defibrilla-
tion mechanisms are herein neglected. Moreover, mechani-
cal interactions among fibrils mediated by proteoglycans are
not included, in agreement with experimental evidences pro-
posed by Fessel and Snedeker (2011). Denoting as x f the
along-the-chord fiber coordinate, actual and reference con-
figurations of a collagen fiber are assumed to be described by
centerline periodic functions f (x f ) and fo(x f ), respectively,
with fo(x f ) = Ho sin(2πx f /Lo).

As a notation rule, let ra be the fiber aspect ratio Ho/Lo,
and denote with L and Lo the actual and reference curvilin-
ear lengths over a period, respectively. For a sinusoidal fiber,
Lo is equal to 2LoE (i2πra) /π , where E(x) is the complete
elliptic integral of the second kind and i the imaginary unit.
Since fiber aspect ratio in biological tissues is in the order of
10−1, a good approximation of Lo is provided by its series
expansion truncated at the third order in the neighborhood of
ra = 0. Accordingly, Lo ≈ Lo

(
1 + π2r2

a

)
.

The fiber curvilinear length over a period when crimp is
fully removed can be put in the form L∗ = Lo(1 + ε∗

f ),
where ε∗

f denotes the lowest value of the apparent fiber strain
corresponding to a straight configuration. Disregarding fiber
material stretch upon to the crimp removal, L∗ ≈ Lo and
the following approximated relation can be stated: Lo ≈
Lo

(
1 + π2r2

a

)
≈ Lo(1 + ε∗

f ), or equivalently:

ε∗
f = π2r2

a (2)

It is worth pointing out that Eq. (2) provides an approximated
quantitative correlation between reference crimp aspect of
collagenous fibers and the extension of toe-region in tendon
mechanical response.

In agreement with Potier-Ferry and Siad (1992) and
addressing an incremental approach, the homogenized along-
the-chord fiber elastic modulus (i.e., the elastic modulus of
an equivalent straight fiber) at the actual tissue strain level εt
results in:

E f = Ec ⟨cos α⟩
[〈

cos2 α
〉
+ 4

〈
f 2〉

r2
f

]−1

(3)
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Fig. 2 Force–stiffness elastic behavior of cat soleus tendons.
Comparison among experimental measures (Rack et al. 1984) and
numerical response computed via present tendon model considering
different values of collagen volume fraction V f and fiber radius r f . Hor-
izontal dotted line indicates the stiffness value obtained via Eq. (11) and
considering a simple tendon linear element. Lines without labels refer
to reference parameters summarized in Table 1 where Ê = Êo and
ra = ra,o

effective for describing the main viscous effects at the mac-
roscale (Fig. 3a), reproducing the characteristic loop in the
tendon stress–strain behavior. The hysteresis, defined as the
ratio of the area in the stress–strain loop to the area beneath
the loading portion of the curve, is a well-established param-
eter for measuring tissue viscous features. Figure 3b shows
that proposed model with ηt ∈ (2, 6)Ns/m reproduces the
hysteresis values within physiological ranges (i.e., 10–30%,
De Zee at al. 2000; Reeves et al. 2003a).

2.3 Toward the modeling of physical activity effects

As experimental tests confirm, physical activity in tendons
induces an increase in tissue tensile strength and stiffness.
Even if neither evident change in collagen content nor ten-
don hypertrophy have been reported (Buchanan and Marsh
2002; Reeves et al. 2003a), the increase in concentration of
collagen cross-links (Buchanan and Marsh 2002) and the
reduction of the toe-region limit (i.e., of fiber’s crimp ampli-
tude, Miles et al. 1992; Reeves et al. 2003b) have been

Table 1 Values employed for tendon model parameters and relevant references

ra,o (−) Lo (µm) r f (µm) Êo (GPa) V f (%) Em ( MPa) xo ( mm) At (mm2)

Cat soleus 0.075a 200b 4c 1d 50e 1 55f 2.4f

Human patellar 0.075a 100g 10g 2.5d 50e 1 48h 84.0h

a Yamamoto et al. (2007)
b Hansen et al. (2002)
c Kannus (2000)
d Fung (1981)
e Sasaki and Odajima (1996)
f Rack et al. (1984)
g Yahia and Drouin (1988)
h Maganaris et al. (2004)

(a) (b)

Fig. 3 Tendon viscoelastic response computed via proposed tendon
model. Symbol σt = F(t)/At in figure denotes the tissue nominal
stress measure, where the time-dependent force-profile F(t) has been
assumed as in De Zee at al. (2000). a Computed stress–strain hysteretic

loop; b hysteresis measure versus ηt . The nonlinearly elastic stiffness
kt refers to a cat soleus tendon, whose reference parameters are listed
in Table 1
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Fig. 5 The fixed-end contraction case: equilibrium at the muscle-
tendon joint N

stiffening in the whole deformation range (as indicated in
Buchanan and Marsh 2002; Reeves et al. 2006).

3 Muscle-tendon unit model

With reference to Fig. 1 and following the Hill’s lumped
parameter scheme, skeletal MTU is described by a one-
dimensional dynamical structure, comprising two elements
mainly representatives for muscle and tendon response,
respectively.

3.1 Tendon element

Under the thrust F , the following equilibrium equation (see
Fig. 5) holds for the tendon element: F = Fit + Fkt + Fηt

where Fit (ẍ) is the corresponding inertial force, Fkt and Fηt

are the forces developed by the elastic and the viscous sub-
element, respectively equal to:

Fkt (x) =
∫ x(t)

xo

kt (q)dq, Fηt (ẋ) = ηt ẋ (10)

In order to show the influence of tendon elastic nonlineari-
ties on the whole MTU dynamics, both linear and nonlinear
tendon response is addressed.

In the nonlinear case, Eq. (1) is employed while, when a
linear spring element is considered, the constant stiffness is
assumed to be equal to:

klin
t = At

xo
[V f Ê + (1 − V f )Em] (11)

corresponding to the upper bound stiffness value of the ten-
don nonlinear model.

3.2 Muscle element

Concerning the muscle model, a classical Hill-type formula-
tion is addressed (Wittek et al. 2000). In detail, a contractile
sub-element C E , a passive elastic (P M) and a viscous (DM)

sub-element, whose stiffness and damping coefficients are

km and ηm , are interconnected into a parallel scheme. In the
following, fundamental equations are briefly reported for the
sake of completeness and for introducing necessary symbols.

The spring sub-element P M , producing the force Fkm ,
describes the muscle passive elasticity which resides in actin-
myosin cross-links, in cytoskeleton non-contractile proteins,
and in aponeurosis tissue (Gajdosik 2001). The viscous su-
belement DM develops the force Fηm in response to frictional
dissipation within the muscle. Finally, the contractile sub-
element C E produces the force Fc, developed by the actin-
myosin complex in response to a neuro-muscular excitation.
As it is customary, the following assumption is employed
(Wittek et al. 2000):

Fc(t, l, v) = Fmax · na(t) · fℓ(l) · fv(v) (12)

where Fmax is the isometric maximum muscle force at 100%
voluntary muscle activation, and the dimensionless functions
na, fv and fℓ are defined as follows:

– na(t) is the neuromuscular excitation function and can be
computed by integrating the following differential equa-
tions (Wittek et al. 2000):

Tneṅe(t) = u(t) − ne(t) (13)

Taṅa(t) = ne(t) − na(t) (14)

with na(0) = ne(0) = 0, Tne and Ta being time con-
stants, assumed equal to 0.035 and 0.01 s, respectively,
and u(t) is a neuro-control flag.

– fℓ(l) is the muscle length-dependent shape function, val-
ued in [0, 1], l(t) being the current length at time t of
muscle fibers (as a notation, l(0) = lo).

– fv(v) is the muscle stretch velocity-dependent shape
function, valued in [0, 1] when muscle contraction pro-
cesses are active (i.e., when the muscle stretch velocity
v = l̇ is not equal to zero).

The following equilibrium equation holds (see Fig. 5):

F(t) = Fc(t) + Fkm (l) + Fηm (v) + Fim(l̈) (15)

where Fim(l̈) is the inertial force relevant to the parallel ele-
ment, and Fkm (l) [respectively, Fηm (l)] is the thrust in P M
(respectively, DM) subelement.

A number of different approaches describing Fc, Fkm and
Fηm can be found in the specialized literature (Wittek et al.
2000; Ethier and Simons 2007). In present work, DM is
assumed as linear and P M is described by:

Fkm (l) = km(l)(l − lo)

=
{

0 l < lo
Fmax

[exp(Cpe)−1]
[
exp

(
Cpe
Cpm

l−lo
lo

)
− 1

]
l ≥ lo

(16)
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Fig. 1 Hill-type lumped parameter scheme of the muscle–tendon unit

interstitial fluid flow and time-dependent mechanisms at the
nanoscale.

In agreement with in vivo evidences, a tendon can be
modeled as a one-dimensional structure subjected to uni-
axial traction along its main dimension. The nominal tissue
strain measure along traction direction will be denoted as εt .
Incidentally, loading direction coincides with the fiber axis,
so that the nominal apparent (i.e., along-the-chord) fiber’s
strain ε f (associated with a change in fiber period) coincides
with εt .

Tendon viscoelastic behavior is described by means of a
lumped parameter approach. Since the typical experimental
response at the macroscale and following the Kelvin–Voigt
rationale, an elastic passive (PT ) sub-element with stiffness
kt is interconnected in parallel with a viscous (DT ) sub-ele-
ment having ηt as damping coefficient (Fig. 1).

2.1 Elastic sub-element

In the framework of a one-dimensional approach, tendon
elastic response is described through the tissue equivalent
strain-dependent axial modulus Et (εt ). Accordingly, the
length-dependent tendon stiffness kt (x) can be introduced
as:

kt (x) = Et (x)At

xo
(1)

where xo is the tendon length at rest, At is a measure of
tendon cross-section area (assumed to be constant with ref-
erence to the tendon free-end portion, Finni et al. 2003) and
x = xo(1 + εt ) is the actual tendon length.

Following the multiscale model of soft collagenous tis-
sues recently proposed by the authors (Maceri et al. 2010a),
and addressing the actual value for ε f (or equivalently εt ),
the homogenized tissue modulus Et is computed through a
classical mixture rule, involving the fiber volume fraction
V f and the Young’s moduli of matrix (Em) and fiber (E f ).
Damage effects, fiber–fiber and fiber–matrix interactions are

herein neglected, as well as temperature effects for both col-
lagenous fibers and ground substance.

The apparent along-the-chord fiber modulus E f is non-
linearly dependent on fiber strain ε f , which in turn depends
on both the actual fiber geometry (i.e., on the actual tissue
strain) and the actual fiber material stretch. While the fiber
geometry significantly affects the initial low-stiffness region
of the tendon mechanical response (namely, the toe region),
the fiber material stretching highly influences tendon stiff-
ening behavior (the heel region), attributable to the entropic
straightening of molecular kinks (Fratzl et al. 1997).

Although collagen fibers are collections of cross-linked
fibrils, fibers are assumed to be curvilinear homogeneous
beams with a circular cross-section of radius r f , comprising
an elastic material. Therefore, fibrils slippage and defibrilla-
tion mechanisms are herein neglected. Moreover, mechani-
cal interactions among fibrils mediated by proteoglycans are
not included, in agreement with experimental evidences pro-
posed by Fessel and Snedeker (2011). Denoting as x f the
along-the-chord fiber coordinate, actual and reference con-
figurations of a collagen fiber are assumed to be described by
centerline periodic functions f (x f ) and fo(x f ), respectively,
with fo(x f ) = Ho sin(2πx f /Lo).

As a notation rule, let ra be the fiber aspect ratio Ho/Lo,
and denote with L and Lo the actual and reference curvilin-
ear lengths over a period, respectively. For a sinusoidal fiber,
Lo is equal to 2LoE (i2πra) /π , where E(x) is the complete
elliptic integral of the second kind and i the imaginary unit.
Since fiber aspect ratio in biological tissues is in the order of
10−1, a good approximation of Lo is provided by its series
expansion truncated at the third order in the neighborhood of
ra = 0. Accordingly, Lo ≈ Lo

(
1 + π2r2

a

)
.

The fiber curvilinear length over a period when crimp is
fully removed can be put in the form L∗ = Lo(1 + ε∗

f ),
where ε∗

f denotes the lowest value of the apparent fiber strain
corresponding to a straight configuration. Disregarding fiber
material stretch upon to the crimp removal, L∗ ≈ Lo and
the following approximated relation can be stated: Lo ≈
Lo

(
1 + π2r2

a

)
≈ Lo(1 + ε∗

f ), or equivalently:

ε∗
f = π2r2

a (2)

It is worth pointing out that Eq. (2) provides an approximated
quantitative correlation between reference crimp aspect of
collagenous fibers and the extension of toe-region in tendon
mechanical response.

In agreement with Potier-Ferry and Siad (1992) and
addressing an incremental approach, the homogenized along-
the-chord fiber elastic modulus (i.e., the elastic modulus of
an equivalent straight fiber) at the actual tissue strain level εt
results in:

E f = Ec ⟨cos α⟩
[〈

cos2 α
〉
+ 4

〈
f 2〉

r2
f

]−1

(3)
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interstitial fluid flow and time-dependent mechanisms at the
nanoscale.

In agreement with in vivo evidences, a tendon can be
modeled as a one-dimensional structure subjected to uni-
axial traction along its main dimension. The nominal tissue
strain measure along traction direction will be denoted as εt .
Incidentally, loading direction coincides with the fiber axis,
so that the nominal apparent (i.e., along-the-chord) fiber’s
strain ε f (associated with a change in fiber period) coincides
with εt .

Tendon viscoelastic behavior is described by means of a
lumped parameter approach. Since the typical experimental
response at the macroscale and following the Kelvin–Voigt
rationale, an elastic passive (PT ) sub-element with stiffness
kt is interconnected in parallel with a viscous (DT ) sub-ele-
ment having ηt as damping coefficient (Fig. 1).

2.1 Elastic sub-element

In the framework of a one-dimensional approach, tendon
elastic response is described through the tissue equivalent
strain-dependent axial modulus Et (εt ). Accordingly, the
length-dependent tendon stiffness kt (x) can be introduced
as:

kt (x) = Et (x)At

xo
(1)

where xo is the tendon length at rest, At is a measure of
tendon cross-section area (assumed to be constant with ref-
erence to the tendon free-end portion, Finni et al. 2003) and
x = xo(1 + εt ) is the actual tendon length.

Following the multiscale model of soft collagenous tis-
sues recently proposed by the authors (Maceri et al. 2010a),
and addressing the actual value for ε f (or equivalently εt ),
the homogenized tissue modulus Et is computed through a
classical mixture rule, involving the fiber volume fraction
V f and the Young’s moduli of matrix (Em) and fiber (E f ).
Damage effects, fiber–fiber and fiber–matrix interactions are

herein neglected, as well as temperature effects for both col-
lagenous fibers and ground substance.

The apparent along-the-chord fiber modulus E f is non-
linearly dependent on fiber strain ε f , which in turn depends
on both the actual fiber geometry (i.e., on the actual tissue
strain) and the actual fiber material stretch. While the fiber
geometry significantly affects the initial low-stiffness region
of the tendon mechanical response (namely, the toe region),
the fiber material stretching highly influences tendon stiff-
ening behavior (the heel region), attributable to the entropic
straightening of molecular kinks (Fratzl et al. 1997).

Although collagen fibers are collections of cross-linked
fibrils, fibers are assumed to be curvilinear homogeneous
beams with a circular cross-section of radius r f , comprising
an elastic material. Therefore, fibrils slippage and defibrilla-
tion mechanisms are herein neglected. Moreover, mechani-
cal interactions among fibrils mediated by proteoglycans are
not included, in agreement with experimental evidences pro-
posed by Fessel and Snedeker (2011). Denoting as x f the
along-the-chord fiber coordinate, actual and reference con-
figurations of a collagen fiber are assumed to be described by
centerline periodic functions f (x f ) and fo(x f ), respectively,
with fo(x f ) = Ho sin(2πx f /Lo).

As a notation rule, let ra be the fiber aspect ratio Ho/Lo,
and denote with L and Lo the actual and reference curvilin-
ear lengths over a period, respectively. For a sinusoidal fiber,
Lo is equal to 2LoE (i2πra) /π , where E(x) is the complete
elliptic integral of the second kind and i the imaginary unit.
Since fiber aspect ratio in biological tissues is in the order of
10−1, a good approximation of Lo is provided by its series
expansion truncated at the third order in the neighborhood of
ra = 0. Accordingly, Lo ≈ Lo

(
1 + π2r2

a

)
.

The fiber curvilinear length over a period when crimp is
fully removed can be put in the form L∗ = Lo(1 + ε∗

f ),
where ε∗

f denotes the lowest value of the apparent fiber strain
corresponding to a straight configuration. Disregarding fiber
material stretch upon to the crimp removal, L∗ ≈ Lo and
the following approximated relation can be stated: Lo ≈
Lo

(
1 + π2r2

a

)
≈ Lo(1 + ε∗

f ), or equivalently:

ε∗
f = π2r2

a (2)

It is worth pointing out that Eq. (2) provides an approximated
quantitative correlation between reference crimp aspect of
collagenous fibers and the extension of toe-region in tendon
mechanical response.

In agreement with Potier-Ferry and Siad (1992) and
addressing an incremental approach, the homogenized along-
the-chord fiber elastic modulus (i.e., the elastic modulus of
an equivalent straight fiber) at the actual tissue strain level εt
results in:

E f = Ec ⟨cos α⟩
[〈

cos2 α
〉
+ 4

〈
f 2〉

r2
f

]−1

(3)
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Fig. 1 Hill-type lumped parameter scheme of the muscle–tendon unit

interstitial fluid flow and time-dependent mechanisms at the
nanoscale.

In agreement with in vivo evidences, a tendon can be
modeled as a one-dimensional structure subjected to uni-
axial traction along its main dimension. The nominal tissue
strain measure along traction direction will be denoted as εt .
Incidentally, loading direction coincides with the fiber axis,
so that the nominal apparent (i.e., along-the-chord) fiber’s
strain ε f (associated with a change in fiber period) coincides
with εt .

Tendon viscoelastic behavior is described by means of a
lumped parameter approach. Since the typical experimental
response at the macroscale and following the Kelvin–Voigt
rationale, an elastic passive (PT ) sub-element with stiffness
kt is interconnected in parallel with a viscous (DT ) sub-ele-
ment having ηt as damping coefficient (Fig. 1).

2.1 Elastic sub-element

In the framework of a one-dimensional approach, tendon
elastic response is described through the tissue equivalent
strain-dependent axial modulus Et (εt ). Accordingly, the
length-dependent tendon stiffness kt (x) can be introduced
as:

kt (x) = Et (x)At

xo
(1)

where xo is the tendon length at rest, At is a measure of
tendon cross-section area (assumed to be constant with ref-
erence to the tendon free-end portion, Finni et al. 2003) and
x = xo(1 + εt ) is the actual tendon length.

Following the multiscale model of soft collagenous tis-
sues recently proposed by the authors (Maceri et al. 2010a),
and addressing the actual value for ε f (or equivalently εt ),
the homogenized tissue modulus Et is computed through a
classical mixture rule, involving the fiber volume fraction
V f and the Young’s moduli of matrix (Em) and fiber (E f ).
Damage effects, fiber–fiber and fiber–matrix interactions are

herein neglected, as well as temperature effects for both col-
lagenous fibers and ground substance.

The apparent along-the-chord fiber modulus E f is non-
linearly dependent on fiber strain ε f , which in turn depends
on both the actual fiber geometry (i.e., on the actual tissue
strain) and the actual fiber material stretch. While the fiber
geometry significantly affects the initial low-stiffness region
of the tendon mechanical response (namely, the toe region),
the fiber material stretching highly influences tendon stiff-
ening behavior (the heel region), attributable to the entropic
straightening of molecular kinks (Fratzl et al. 1997).

Although collagen fibers are collections of cross-linked
fibrils, fibers are assumed to be curvilinear homogeneous
beams with a circular cross-section of radius r f , comprising
an elastic material. Therefore, fibrils slippage and defibrilla-
tion mechanisms are herein neglected. Moreover, mechani-
cal interactions among fibrils mediated by proteoglycans are
not included, in agreement with experimental evidences pro-
posed by Fessel and Snedeker (2011). Denoting as x f the
along-the-chord fiber coordinate, actual and reference con-
figurations of a collagen fiber are assumed to be described by
centerline periodic functions f (x f ) and fo(x f ), respectively,
with fo(x f ) = Ho sin(2πx f /Lo).

As a notation rule, let ra be the fiber aspect ratio Ho/Lo,
and denote with L and Lo the actual and reference curvilin-
ear lengths over a period, respectively. For a sinusoidal fiber,
Lo is equal to 2LoE (i2πra) /π , where E(x) is the complete
elliptic integral of the second kind and i the imaginary unit.
Since fiber aspect ratio in biological tissues is in the order of
10−1, a good approximation of Lo is provided by its series
expansion truncated at the third order in the neighborhood of
ra = 0. Accordingly, Lo ≈ Lo

(
1 + π2r2

a

)
.

The fiber curvilinear length over a period when crimp is
fully removed can be put in the form L∗ = Lo(1 + ε∗

f ),
where ε∗

f denotes the lowest value of the apparent fiber strain
corresponding to a straight configuration. Disregarding fiber
material stretch upon to the crimp removal, L∗ ≈ Lo and
the following approximated relation can be stated: Lo ≈
Lo

(
1 + π2r2

a

)
≈ Lo(1 + ε∗

f ), or equivalently:

ε∗
f = π2r2

a (2)

It is worth pointing out that Eq. (2) provides an approximated
quantitative correlation between reference crimp aspect of
collagenous fibers and the extension of toe-region in tendon
mechanical response.

In agreement with Potier-Ferry and Siad (1992) and
addressing an incremental approach, the homogenized along-
the-chord fiber elastic modulus (i.e., the elastic modulus of
an equivalent straight fiber) at the actual tissue strain level εt
results in:

E f = Ec ⟨cos α⟩
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Fig. 5 The fixed-end contraction case: equilibrium at the muscle-
tendon joint N

stiffening in the whole deformation range (as indicated in
Buchanan and Marsh 2002; Reeves et al. 2006).

3 Muscle-tendon unit model

With reference to Fig. 1 and following the Hill’s lumped
parameter scheme, skeletal MTU is described by a one-
dimensional dynamical structure, comprising two elements
mainly representatives for muscle and tendon response,
respectively.

3.1 Tendon element

Under the thrust F , the following equilibrium equation (see
Fig. 5) holds for the tendon element: F = Fit + Fkt + Fηt

where Fit (ẍ) is the corresponding inertial force, Fkt and Fηt

are the forces developed by the elastic and the viscous sub-
element, respectively equal to:

Fkt (x) =
∫ x(t)

xo

kt (q)dq, Fηt (ẋ) = ηt ẋ (10)

In order to show the influence of tendon elastic nonlineari-
ties on the whole MTU dynamics, both linear and nonlinear
tendon response is addressed.

In the nonlinear case, Eq. (1) is employed while, when a
linear spring element is considered, the constant stiffness is
assumed to be equal to:

klin
t = At

xo
[V f Ê + (1 − V f )Em] (11)

corresponding to the upper bound stiffness value of the ten-
don nonlinear model.

3.2 Muscle element

Concerning the muscle model, a classical Hill-type formula-
tion is addressed (Wittek et al. 2000). In detail, a contractile
sub-element C E , a passive elastic (P M) and a viscous (DM)

sub-element, whose stiffness and damping coefficients are

km and ηm , are interconnected into a parallel scheme. In the
following, fundamental equations are briefly reported for the
sake of completeness and for introducing necessary symbols.

The spring sub-element P M , producing the force Fkm ,
describes the muscle passive elasticity which resides in actin-
myosin cross-links, in cytoskeleton non-contractile proteins,
and in aponeurosis tissue (Gajdosik 2001). The viscous su-
belement DM develops the force Fηm in response to frictional
dissipation within the muscle. Finally, the contractile sub-
element C E produces the force Fc, developed by the actin-
myosin complex in response to a neuro-muscular excitation.
As it is customary, the following assumption is employed
(Wittek et al. 2000):

Fc(t, l, v) = Fmax · na(t) · fℓ(l) · fv(v) (12)

where Fmax is the isometric maximum muscle force at 100%
voluntary muscle activation, and the dimensionless functions
na, fv and fℓ are defined as follows:

– na(t) is the neuromuscular excitation function and can be
computed by integrating the following differential equa-
tions (Wittek et al. 2000):

Tneṅe(t) = u(t) − ne(t) (13)

Taṅa(t) = ne(t) − na(t) (14)

with na(0) = ne(0) = 0, Tne and Ta being time con-
stants, assumed equal to 0.035 and 0.01 s, respectively,
and u(t) is a neuro-control flag.

– fℓ(l) is the muscle length-dependent shape function, val-
ued in [0, 1], l(t) being the current length at time t of
muscle fibers (as a notation, l(0) = lo).

– fv(v) is the muscle stretch velocity-dependent shape
function, valued in [0, 1] when muscle contraction pro-
cesses are active (i.e., when the muscle stretch velocity
v = l̇ is not equal to zero).

The following equilibrium equation holds (see Fig. 5):

F(t) = Fc(t) + Fkm (l) + Fηm (v) + Fim(l̈) (15)

where Fim(l̈) is the inertial force relevant to the parallel ele-
ment, and Fkm (l) [respectively, Fηm (l)] is the thrust in P M
(respectively, DM) subelement.

A number of different approaches describing Fc, Fkm and
Fηm can be found in the specialized literature (Wittek et al.
2000; Ethier and Simons 2007). In present work, DM is
assumed as linear and P M is described by:

Fkm (l) = km(l)(l − lo)

=
{

0 l < lo
Fmax

[exp(Cpe)−1]
[
exp

(
Cpe
Cpm

l−lo
lo

)
− 1

]
l ≥ lo

(16)
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Fig. 1 Hill-type lumped parameter scheme of the muscle–tendon unit

interstitial fluid flow and time-dependent mechanisms at the
nanoscale.

In agreement with in vivo evidences, a tendon can be
modeled as a one-dimensional structure subjected to uni-
axial traction along its main dimension. The nominal tissue
strain measure along traction direction will be denoted as εt .
Incidentally, loading direction coincides with the fiber axis,
so that the nominal apparent (i.e., along-the-chord) fiber’s
strain ε f (associated with a change in fiber period) coincides
with εt .

Tendon viscoelastic behavior is described by means of a
lumped parameter approach. Since the typical experimental
response at the macroscale and following the Kelvin–Voigt
rationale, an elastic passive (PT ) sub-element with stiffness
kt is interconnected in parallel with a viscous (DT ) sub-ele-
ment having ηt as damping coefficient (Fig. 1).

2.1 Elastic sub-element

In the framework of a one-dimensional approach, tendon
elastic response is described through the tissue equivalent
strain-dependent axial modulus Et (εt ). Accordingly, the
length-dependent tendon stiffness kt (x) can be introduced
as:

kt (x) = Et (x)At

xo
(1)

where xo is the tendon length at rest, At is a measure of
tendon cross-section area (assumed to be constant with ref-
erence to the tendon free-end portion, Finni et al. 2003) and
x = xo(1 + εt ) is the actual tendon length.

Following the multiscale model of soft collagenous tis-
sues recently proposed by the authors (Maceri et al. 2010a),
and addressing the actual value for ε f (or equivalently εt ),
the homogenized tissue modulus Et is computed through a
classical mixture rule, involving the fiber volume fraction
V f and the Young’s moduli of matrix (Em) and fiber (E f ).
Damage effects, fiber–fiber and fiber–matrix interactions are

herein neglected, as well as temperature effects for both col-
lagenous fibers and ground substance.

The apparent along-the-chord fiber modulus E f is non-
linearly dependent on fiber strain ε f , which in turn depends
on both the actual fiber geometry (i.e., on the actual tissue
strain) and the actual fiber material stretch. While the fiber
geometry significantly affects the initial low-stiffness region
of the tendon mechanical response (namely, the toe region),
the fiber material stretching highly influences tendon stiff-
ening behavior (the heel region), attributable to the entropic
straightening of molecular kinks (Fratzl et al. 1997).

Although collagen fibers are collections of cross-linked
fibrils, fibers are assumed to be curvilinear homogeneous
beams with a circular cross-section of radius r f , comprising
an elastic material. Therefore, fibrils slippage and defibrilla-
tion mechanisms are herein neglected. Moreover, mechani-
cal interactions among fibrils mediated by proteoglycans are
not included, in agreement with experimental evidences pro-
posed by Fessel and Snedeker (2011). Denoting as x f the
along-the-chord fiber coordinate, actual and reference con-
figurations of a collagen fiber are assumed to be described by
centerline periodic functions f (x f ) and fo(x f ), respectively,
with fo(x f ) = Ho sin(2πx f /Lo).

As a notation rule, let ra be the fiber aspect ratio Ho/Lo,
and denote with L and Lo the actual and reference curvilin-
ear lengths over a period, respectively. For a sinusoidal fiber,
Lo is equal to 2LoE (i2πra) /π , where E(x) is the complete
elliptic integral of the second kind and i the imaginary unit.
Since fiber aspect ratio in biological tissues is in the order of
10−1, a good approximation of Lo is provided by its series
expansion truncated at the third order in the neighborhood of
ra = 0. Accordingly, Lo ≈ Lo

(
1 + π2r2

a

)
.

The fiber curvilinear length over a period when crimp is
fully removed can be put in the form L∗ = Lo(1 + ε∗

f ),
where ε∗

f denotes the lowest value of the apparent fiber strain
corresponding to a straight configuration. Disregarding fiber
material stretch upon to the crimp removal, L∗ ≈ Lo and
the following approximated relation can be stated: Lo ≈
Lo

(
1 + π2r2

a

)
≈ Lo(1 + ε∗

f ), or equivalently:

ε∗
f = π2r2

a (2)

It is worth pointing out that Eq. (2) provides an approximated
quantitative correlation between reference crimp aspect of
collagenous fibers and the extension of toe-region in tendon
mechanical response.

In agreement with Potier-Ferry and Siad (1992) and
addressing an incremental approach, the homogenized along-
the-chord fiber elastic modulus (i.e., the elastic modulus of
an equivalent straight fiber) at the actual tissue strain level εt
results in:

E f = Ec ⟨cos α⟩
[〈

cos2 α
〉
+ 4

〈
f 2〉

r2
f

]−1

(3)
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