Symbolic Methods and
AceGen

Joze Korelc
University of Ljubljana, Slovenia
Mercator Visiting Professor at Leibniz Universitdt Hannover

/ N S v /
’/ | \J;/

3

-
I.“.il
1 1y
17
]

Computational Solution Environments

e General problem solving environment (PSE)
— general solvers for ODE-s or PDE-s

— user templates are provided for certain class of problems -
ELLPACK, DIFPACK, SCIRun, FlexPDE

— numerical libraries with compiled functions - NAG
— interactive numerical environments - MATLAB, FEMLAB
— symbolic systems Mathematica, Maple
e QObject oriented environments
— collection of objects, clases, methods
— DIFPACK, FEMTheory
e Specialized finite element enviroments
— ABAQUS, FEAP, ANSYS, ...

3

N
"“ii"
1 1y
11
]

e Hybrid approaches

Pavia, 2011

Hybrid approaches

e Steering application provides interfaces to the tools
— Alice, SCIRun
— popular for multi-physics, multi-field

e Hybrid object-oriented approach
— domain-specific language
— built-in C++ libraries for symbolic manipulation and AD
— FeniCS, FreeFem++

e Hybrid symbolic—numeric approach
— general computer algebra system for code generation

— general finite element environment
— AceGen, AceFEM

Pavia, 2011

Automatic code generation - AceGen

Multi-language, Multi-
environment Numerical Code
Generation
www.fgg.uni-lj.si/symech/

Key features: AceGen

* simultar\eous derivation of -symbolic input - interface code
expressions - FE formulation - initialization

o automatic selection of the appropriate - user subroutines - numerical integration
intermediate variables

e forward and backward mode of element source file
automatic differentiation technique A

e multi-language code generation
(Fortran/Fortran90, C, C++,CH, - 4 - ™

Pavia, 2011

Y
Mathematica®© language, Matlab© ELFEN \FEAP |
language) S AceFEM v
’ CDriver l lM Driver l ABAQUS]

_ FE environment

automatic interface to FEM
environments

Multi-language code generation

1. Mathematical description << AceGen”;

SMSInitialize ["filename™,
"Language' -> ""Mathematica"
SMSModule ["Gradf', Real [u$$[3], x$$, L$$, g$$(37117;
{X, L} r {SMSReal [x3], SMSReal [L$$] } ;
uh - SMSReal [Table [u$$ (1], {i, 3}]];
X X X X
Nne{=,1-—, - (1-—)};
L L L L
ueNh.uh;

"Mathematica"

HC++"
void Test(double v[501], Test[]:=Module[{},

"Fortran"

SUBROUTINE Test(v,ul,x,L,g) double ul[3],double *x,

REAL*8 v(500),u1(3).%.L.9(3) gouple *L,double g[3]) $W[6]=x$$/L$$;

v(6)=x/L { $WI[7]=1 - $VV[6];
v(7)=1d0 - v(6) VIE]=x/*L: $SVV[B]=$W[6]*$W[71;
V(S):_/(6):V(7) « V[?]:leo - V[6]; $VV[12]:2*(U$$[1]*$VV[6] +
v(lg);ng (2(1)3V£6)8+ v[8]=v[61*V[7]; u$$[2]*$VV[7]+u$$[3]*$VV[8;|);
T ey P V[12]=2e0*UIOT*VIE] + g$S[L]=SVWIET*SVV[12]; it
(v (1D (D) ULLTVITIE U2IPVIED: g$S[2]=$W[7]*SVV[12]; i
g(3)=v(12)*v(8) gh} ;xhz}*xh} g$$[3]=$VV[8]*$VV[12];
=ND g[2]=v[12]*v[8];]

};

Pavia, 2011

Multi-environment code generation

FEAP AceFEM

<<AceGen"; <<AceGen";
SMSInitialize["test", SMSInitialize["test",
"Environment"-"FEAP"]; "Environment"-"AceFEM"];
SMSTemplate['"SMSTopology'-"Q1"]; SMSTemplate[''SMSTopology'-"Q1"];
SMSStandardModule["*Tangent and SMSStandardModule[""Tangent and
residual']; residual'];
SMSExport[1,s$ 111; SMSExport[1,s$$[1H1;
SMSWrite[]; SMSWrite[];

subroutine elmtl0(d,ul,xl,ix,tl,s,p)
& ndfe,ndme,nste, isw)]
!mpI|C|t.none . dtic int p[51={1, 2, 3, 4, O}
include "sms.h) Suplementary atic int dof[4]=(5, 5, 5, 5}

logical DEBUG,symmetric ic char *gdcs[]={""Const 1","'Const 2''};

character*50 SELEM,datades(0),postdes((routines gtic char *gpcs[]={"""};static char *npcs[1={"};
parameter (DEBUG=.false., >Code=""test'';es->id.NoDimensions=2;es->id.NoDOFGlobal=20;

SUBROUTINE SKR10(v,d,ul,ul0,xl,s,p,ht,kp)
IMPLICIT NONE
include "sms.h"
DOUBLE PRECISION v(5001),d(0),ul(2,4), user
z (g;?ﬁigig;§;§354)’S(8’8)'p subroutines
s(1,1)=1d0
END

| SKR(double v[501],ElementSpec *es,
Ele | entData *ed,NodeData **nd,
dagvle*rdata, int *idata,double *p,double **s)

=nd[0]->X[0];

Pavia, 2011

Mathematica

Expression optimization

Pavia, 2011

Simultaneous optimization of the expressions

e expressions are optimize immediately after they are derived
 special procedures are needed for non-local operations

 appropriate for large problems where also intermediate results
can be subjected to the uncontrolled swell of expressions

Vector of 7 new auxiliary variables:

12v,v 6v,v, 4v,v, v
v = E717L7 1327_ 1227 L 27_6
. . Us Us vy 2
Original matrix T
1B 6Bl 12EI oEI Result is
r o o r AceGen v v —v v optimized matrix,
GBI AEI GBI 2EI 1% T % _
K,—| [L L > v, v, —v, v | =3 expressed with
0 12EI 6EI 12EI 6EI I(O = .
Y 7 I —v, —v, v, v the new auxiliary
6FEI 2ET 6FEI 4F1 .
S v v vy v | variables

Optimized matrix

Pavia, 2011

Automatic theorem proving

How to prove arbitrary (mathematical) statement automatically ?
-1
KeK'=1
-1
KeK™' =2K //

Automatic theorem proving is essential when large expressions
derived by a symbolic system need to be simplified.

General symbolic matrices A and B: K[l, 2]
A - all|al2 |, al2 (allbll +a21bl2) +
- 221 [a22 £ a22 (allbl2 +a21b22)
metricxs’ K[2, 1]
bll [b12 ' all (al2 bll + a22 bl12) =
B = 515 1522 |’ a2l (al2bl2 +a22b22)

K[l, 2] === K2, 1]

False

K = Transpose[A].B.A;

Pavia, 2011

Deterministic methods
e general solution is not available

e statements that can be expressed as a system of algebraic
equations

— statement is correct if the corresponding system of algebraic equations has a
solution

— Grobner bases

e technique provides algorithmic solution to a system of algebraic (polynomial) equations

e Grobner bases are computed by the Buchberger”s algorithm

e Buchbergers algorithm is equivalent to Gauss elimination for the system of polynomial equations

e Mathematica | Expand[K[[1, 2]1]] === Expand[K[[2, 1]]]

True

Simplify([K[[1, 2]] - K[[2, 1]]]

0

PolynomialReduce[K [[1, 2]1, {K[[2, 1]11}.]

{{1}, 0}

Pavia, 2011

Heuristic methods

e Numerical identification of relations between expressions
— the simplest way of automatic theorem proving

— the problem of equivalence testing is determining whether two
expressions (different in appearance) are indeed mathematically

the same.
f(x)=2x>-2%0
f(X)=x"-1+1-x>)(x>+1)=0?

e The correctness can be numerically determined only with a
certain degree of probability

XxNM10-1+ (1 -x75) (x*5+1) // Expand
0

XNM0-1+ (1-x"5) (x*5+1) /. x> RandomReal []
~1.11022x10°%°

-y)
== (2
| -

Pavia, 2011

Signature functions

Numerical identification of relations between set of expressions

0:z 0:8, =5(x) ... random signature
1:y, = fi(x) 1:5 =85(5,)
2: Yy — f2(:1:,y1) 2

n:y, = fn(xaylv’“?yn—l) n:S = S(SlaSQ7Sn_1)

0 = Yy, #Y j
S, — Sj = with a probability that can
=0 = Y«=Y; betuned

Possible signature functions:

1. every expression is mapped into an integer of arbitrary length
— complex implementation
— general method

2. every expression is evaluated with the set of real random
numbers of arbitrary precission

Pavia, 2011

Heuristic code optimization

Example 1:
f=x"—x°+1
_ 2
f2 _| X | X critical x where
X € [—4 4] / simplification fails

2 4

Probability of wrong simplification is for this case is defined by:
e probability that polynomial equation has roots on interval

« floating point precision

Pavia, 2011

Mathematica

Auxiliary variables

Pavia, 2011

Assignment operators

General algorithm Four additional assignment ope:\rators _in AceGen
) replace the standard Mathematica assignment operator
<< AceGen"; lhs=rhs

SMSInitialize["test",

"Language" -> ""Mathematica'] ;
SMSModule["test", Real [x0$$, r$$]1];
X0 r SMSReal [x0%$%] ;
X a X0;

SMSDO[

lhserhs Evaluates and optimizes rhs
and assigns the result to be the
value of /hs. New auxiliary
variable 1s introduced if needed.

lhskrhs A new auxiliary

2 . 37.
feEX +2SIn [X] ; variable 1s introduced
f
_ — : regardless on contents of 7/s.
[T, x] lhs 4 rhs1 Evaluates and optimizes rhs!
X 4 X +dXx;

and assigns the result to be the
value of /hs. The [hs variable can
appear after the initialization
more than once on a left—

hand side of equation.

SMSIF[Abs [AX o~-10,
SMSBreak[];:];
SMSIf[1 == 15, SMSReturn
1;

L {i, 1,30, 1, {x}}];

R
’

(-.‘/‘ =

-

lhs 4 rhs2 A new value rhs2 is assigned to the

SMSExport[x, r$$]; previously created variable /hs.
SMSWrite[];

-
=
B2

-
'—l

Pavia, 2011

Conditional statements

. y = If[X > O

If" construct 2

, X
Mathematica input , SIN[X]

B 7 x>0]

v Sin(x) = <0
y = SMSIF[x 2 0
, X2
In-cell AceGen input , SIN[X]

(auxiliary variable ;y ($V[i,1])]

SMSIf[x 2 0]

- /
y 4 X°; auxiliary variable ,y ($V[i,2])]
Cross-cell AceGen input ~ SMSElse[];
y 4 SIn[X]; e T

SMSEnd1f[y] :ﬁ auxiliary variable 5y ($V/[i3])

Pavia, 2011

Loops

y =0; n=10;
Do[

Mathematica input Y=Y+ x';
b {i, 1’ n’ 1}

I:

e "Do" construct
n .
y= > &
1=1

ya0;
SMSDo |
In-cell AceGen input v,y 4 x';
, {1,1,n,1,vy}

|E
Y=0;/1y [ZV

Cross-cell AceGen input OMSDO[i_, 1,n,1,yi1;
ya4Yy+X';

Pavia, 2011

Automatic Differentiation

Differentiation

symbolic differentiation

o differentiation of isolated formulas with the symbolic manipulation system
or manually i(e) 9(e)

e exact (chain rule) d(e) 9(e) o(e)

numerical differentiation

finite difference approximation

e approximation of _ flz+ Axy) — flz — Az,y)
Ox 2A\x

automatic differentiation (AD) => "computational derivative"

e differentiation of the algorithm by the use of chain rule
e exact (except for the round off errors)

let define "computational derivative" with the following formalism

A

6(e)

= computational derivative

6(e)

Pavia, 2011

Automatic differentiation

e Automatic differentiation technique (AD):
— differentiation of the whole program

— automatic differentiation tool generates a program code for the
derivative from a program code for the basic function

— control structures (If, Do,..) are left unchanged

e Two basic methods of AD:
— forward mode of AD

e standard "chain rule" on a level of the algorithm

— backward mode of AD

e also named: reverse mode, inverse method, adjoint code construction,
adjoint sensitivity,

Pavia, 2011

Forward versus backward mode

x — vector of nindependent variables y(x)—dependent variable Vy=7?

forward mode

n Vb = j—b = {Qx = 1,2,...,n} n
€T !
]. b p— Zx2 >dcl:
=1 Vc:<—>:{Cos(b)Vbl;lzl,Z,...,n} n
2 ¢ := Sin(b) | dz; |
3 y:=bc Vy:<g»:{Vblc+chl;l:1,2,...,n} n
| dz, |
backward mode 1y Y,C,b - adjoint values
reversal of the flow of the program |y = i 1 1
Y
_dy oy _ _
[— = —= — :b]_
1 y:==0bc c=—"= 20 7
2 ¢ := Sin(b) - _dy Oy_ Odc_ _ _
b =2 =27+ —C = c + Cos(b 1],
i b qp! T T Y Costh)e i
d 0b — — i
3 b= z? Vy=12 =z =12 5l =12z b:1=12.., ¥
; l ’ {dxz { l Ty { K }

Pavia, 2011

Efficiency of automatic differentiation

wratio(f) - work ratio

wratio(f) = CO:Zi{&;f)

cost(f) - the number of arithmetic operations for evaluating f

cost(f, Vf) - the number of arithmetic operations for evaluating fand it’s
gradient with n components

forward mode

Computational cost proportional to n wratio(f) ~a(n + 1)

backward mode

If care is taken in handling quantities which are common to the function

and derivative, the cost ratio is usually around 1.5, not n+1"

(Wolfe, 1982)
 formal proof by Baur and Strassen (1983) wratio(f) < 5

Pavia, 2011

L FZER

Implementation of AD

e Source-to-source translator
— original source is transformed into derivative code
— compile-time solution
— ADIFOR, Odyssee, TAMC

— minimal changes in original code (declaration of input and output
variables)

e QOperator overloading

— modern compilers accept user-defined data types and operator
overloading

— run-time solution a+b = V(a + b)
— low numerical efficiency

— ADOL-C

Pavia, 2011

Automatic differentiation in AceGen

AceGen enhancements with respect to the standard AD
technique:

e AD procedure can be initiated at any time and at any point and
as many times as required within the same user subroutine

e AD as code-to-code translator consistently extends current
code rather than produce a new one

e the results of all previous uses of AD have to be accounted for
when AD is used several times

e mechanism to include exceptions within the AD procedur,}g_
easily

=2 22—

EEED

1221

Pavia, 2011

Interaction AD and expression optimization

Interaction of automatic differentiation and simultaneous
optimisation of expressions my lead to wrong results!

Original Simplification A | Simplification B
X:=L(a) X:=L(a) v, '=L(a)
y:=L(a)+x° V= X+ X X =V,
d d
Y _ 2x Y 14 2x Y=V, +X°
dx dx
d
._él = 2X
dx
All the independent variables have to have an unique signature in order to
prevent simplification A! PO
<< AceGen" ; SMSInitialize["test"];
SMSInitialize["test"]; SMSModule["test", Real[x$$]];
SMSModule["test", Real[x$$]]; X + SMSReal[x$8];
X + SMSReal [x$85]; W|-SMSFreeze|x2-+1|;
SMSD [Sin[x], x] SMSD [Sin[w], W]
Cos [ﬂ] Cos [M]

Pavia, 2011

Automatic differentiation — Exceptions

AD produces values of derivatives of what is actually computed,
rather than what one intends to compute.

* How to translate mathematical formalisms into AD procedure?
e partial, total, directional, Lee, covariant, consistent, ...
e various notations D(e) 9(e) 5(9)

D(s) (%)

e Extended automatic differentiation technique (Korelc, 2002)

e Control of "exceptions" in AD is crucial to relate to mathematical
formalisms

Pavia, 2011

AD — Exception

Formalism for introduction of AD exceptions

a ... independent variables a V/ A
b ... intermediate variables 1 Y ; back .
* propagation
f(a,b(a)) ... function : of AD
M ... arbitrary matrix program - adjoints
flow -
5f(a,b(a b * definition
Vf = f(l (a)) *¥ of AD
oa Dby exceptions
Da
b
Da

AceGen input - option "Dependency"

V f = SMSD[f[a, b], a, "Dependency” » {b, a, M}] f(a, b(a))

Pavia, 2011

Local/Global definition of AD exception

e Local AD exception
— AD exception is introduced when AD procedure is executed

" a r SMSReal [a$$]
6f(a,b

Vi, = f(aé (a)) o b + SMSFreeze[G[a]]

R VT eSMSD[f[a, b], a, "Dependency™ » {b, a, M}]

Global AD exception

— AD exception is introducued together with intermediate

variables b
b — G(a)‘pb a r SMSReal [a$$]
X Da M b + SMSFreeze[G[a], "Dependency” -» {a, M}]
Vi, = 8f(a,b(a)) V¥ f = SMSD[F[a, b], a]
da

Pavia, 2011

Types of AD exception

The basic situations that have to be considered are:

A. Basic case: The total derivatives of intermediate variables a with respect to
independent variables b are set to be equal to matrix M.

6f(a,b(@))

Vi, =
Ja ba

Db_
Da

B. Special case: There exists explicit dependency between variables that has to
be neglected for the differentiation

S 5f<g,(:)<a>>

M

Db
Da

=0

C. Implicit case: There exists implicit dependency between variables that has
to be considered for the differentiation

D. Generalization: The total derivatives of intermediate variables a with
respect to intermediate variables c are set to be equal to matrix M.

_ §J(a,blc(a)))
2

Vi :

L M
Dc

Pavia, 2011

AD — Exception Type C

e AD can "see" only explicit
dependencies!

e implicit dependency between
variables has to be specified as
exception in AD

Pavia, 2011

back
propagatio

n of AD
program adjoints

flow

A
AD exception

Db

- M
Da

f(b)

Example - exception Type C

Nonlinear mapping from reference coordinates to initial coordinates in FEM

Reference frame Actual frame

== {{n,(} reference coordinates y L1l —
X(E) = ZN (8),X, actual coordinates ¢ A - .1 7
: = A
u(E) = ZN (B),u, displacements |
: L
ou , i M
= — displacement gradient y :
0X
kx

H = iSu(:.) =0 wrong AD formulation

ADB notation
automatic differentiation based notation

Higher level symbolic language
(Mathematica + AceGen)

SMSD|[u,X,"Dependency"->{=,Inverse[SMSD[X ,Z] }]

Pavia, 2011

Pl

ADB form and AceFEM

Ve 4\\ ~ /
}/ uj\ - ‘
-

Finite element solution procedure

V(k Vé)+Q =0
strong form of boundary-value problem o1 = [[(V766 k76— b6 Qo .

2. weak form I = fé(w)T KV 6d) — ..
3. FE approximation of field variables Automation of formulation
. at the individual
4. enforcement of local constraints clement I
5. element quantities (K, R, ...) - fevel o _ 00
: 90,
6. programming of steps 3, 4,5 %R
K = s
i Y0,

7. generation of mesh and boundary conditions
8. contact search algorithm
9. solution of the global problem

10. presentation and analysis of results

Pavia, 2011 J

ADB Notation

The unification of the classical mathematical
notation of computational models and the actual
computer implementation can be achieved by
means of automatic differentiation combined with
the automatic code generation.

e ADB (Automatic Differentiation Based) form of computational model

Automatic differentiation ADB
+ (Automatic Differentiation Based)
AD exceptions form of computational model

e ADB form bridges mathematical notation of computational models and actuaﬁ
computer implementation.

}ﬁi“émﬂﬁ
e ADB form can be directly translated into the program code and the deriveéﬁljjﬁ!ﬁl|
program code is numerically efficient.

Pavia, 2011

Example: 3D hyperelastic element

Problem is defined by:

e Hyperelastic strain energy function
5 (-1-1,1)
A (tTC — 3) — :
W = 5(detF — 1% + — Log(det F)) \i s
F=1+H R
_ Ou
- 0X Y

e FE approximation of coordinates and displacements
— Nonlinear mapping from reference coordinates to initial coordinates

reference coordinates

&n,¢}

X(E) = ZN(E)ka actual coordinates Su(=)
k . _ ou(E
u(E) = ZN(E)kuk displacements Automation H = ixX o= ox(E®)" =0
k 2
DX 0=
Sn(= _
H = An() =0 wrong ADB notation
(SX(E) Higher level symbolic language (Mathematica + AceGen)
SMSD|[u, X,"Dependency"->{Z,Inverse[SMSD[X ,E] }] I

Pavia, 2011

ADB form: Hyperelastic material - A

p, = {p;;Py,...,p,} Vvector of elements generalized d.o.f.

Wi(p,) hyperelastic strain energy function
R, the contribution of the e-th element to the global residual
R integration point contribution of the residual of the e-th element

9

(A) Solution is a stationary point of the hyperelastic potential
H:Hint+Hext—>6H:O

Hint:E[WdVHcSE[WdV

& [&

oW (p,)

~ Snl e T

6deV ~ op, E[Jg 5 0| = op, Zngg

Q, g 2 g
R, =) Ruw,
g
oW : sW
R, =J (P.) Automation R, =J, 445
g g ape 5pe

Pavia, 2011

ADB form: Hyperelastic material - B

(B) Virtual work principle

STI = STI™ + ST1¢% = ()

oI = [P-6FdV ~ > (J, P 6F Ju,
Q

g

OF
6F = (p€>5pe
op,
. OF
STI™ = §p! ZJgP- <pe)wg = 6p! Zngg
g ape g
OF S
R =J P. (P,) R —jp.F
‘ Automation ¢
ow p. oW
OF " 4F

Pavia, 2011

Numerical cost : Hyperelastic material

(A) Solution is a stationary point of the hyperelastic potential

backward mode AD
cost(R,) ~ acost(W)

optimal ADB form 1lh<a<h

(B) Virtual work principle

p— W
F backward mode AD
) cost(R) ~ a(cost(W) + 9cost(F })
j__
g g 5Pe —]

Pavia, 2011

Algorithm for primal analysis of hyperelastic problems

Newton-Raphson scheme for nonlinear hyperelastic problems
subjected to quasi-static proportional load

with constants load stepping Automation of the scheme
n = 0; Py = Pinitial n = 0; Po = Pinitial
A = 0 AN = l/nmc A =0 AN = 1/nmc
» .
i=0p¥ =p A=A + A = 0p" = p A=+ AN

@) 0 (@). p@) (1) _ ref
R > w,R;RO = ARD - AR
0 . (@), @) — (@)
K; ‘ g K; K = AK‘}
KOAp® = —R® — Ap(d) ir=it1

i=i+1

n:=n+1
n:=n+1
No No
_ i+l _ (1), —
pn+1 - 7)\n+1 =A pn+1 =P 7)\n+1 = A

Yes n < N, Yes n < e |

1

Y

No No K

v v 1

Pavia, 2011

Small strain plasticity - definitions

Model: elasto-plastic theory that assumes elastic isotropic response

defined by the additive decomposition of strain tensor
e vector of element d.o.f. D,
e vector of unknown state variables h, ={e".,] g - Gauss point
e elastic strain e =€—¢
e elastic free energy function per unit volume wW=w(,)

e vyield function f(a):\/g[g_%tr(a)}:[a_%w)]_%

e evolution equations for c»

e’ —e —Ae? =0
Ae? =\ of
Oo

e () -set of additional set of algebraic equations per Gauss point that has to

be solved for unknown h, rp N

f

Q:

e Solution: local Newton-Raphson iterations at Gauss point
— consequence: dependency of state variables on displacement h, (pe)

Pavia, 2011

ADB form of small strain plasticity

: Sg
Virtual work: R, =06 =
op,
| SWi(g,h)
trial . gn
/ f(e™*) <0 | elastic 6 = 5
&
G w| Je dw
i > elon, op, p.jon,
| _ W(zh,h,) D, O,
f(6™") =0 | plastic - be |om,
Dp,
suppress implicit dependency
due to the local NR loop
ADB form of plasticity problems
SW
Rg = Jg(§ .
P, ™ _,
Dp, .. :
efficient form of consistent
iR linearization . -
K, = 5 g A (dependency due to the L&Y
P ZE:—(AQ)N?EQ local NR loop) 2]

PakQRELGJoze. Automation of primal and sensitivity analysis of transient coupled problems. Comput. mech., 2009, 44:631-649.

Newton iterative procedure

Nested Newton iterative procedure ADB form of tangent and residual
n = 0; Py = Pinisias
>
4 e = &(p,)
next time oA (0) trial .__
e i=0;p" =p, = e gn)
n:=n-+1 et fma 0{ hgvn
>
' h(g) =h
repeat
4>th) =h,,
(7)(5. p0)
v A0 09,)

T TR R
el > 0] ARD = _(AU)‘1Q<)(e,hl),h,)
h{t) = h) 4 ARY)
ARY) | < TOL
(*define global AD exception of type D for h g*)

until

hg = hg ‘Dhg__<A)fléQg(s,hg,hM)
De g be

(*define local AD exception of type B for h *)

§W(eh, b,)
g = Jg lpn
p, —4=0
p —) Dp,
hg,nJrl = g KTg = —91
op,
g

4Yes No

Pavia, 2011

Comparison of code size and numerical efficiency

The presented comparison is based on an example where a rectangular bar is
stretched, thus all the Gauss points are either in elastic or in plastic state.

Pavia, 2011

Element Constitutive model Code size Evaluation AceGen
time time
(Kbytes) | (normalized) | (normalized)

Q1 linear elastic 9 1 1

Q1 hyperelastic 9 1.6 1.3

Q1 small strain elasto-plastic 24 3.0 7.4

Q1 finite strain elasto-plastic 48 9.5 25 2D
Q1E4 linear elastic 10 1.6 2.11
QIE4 hyperelastic 15 3.4 3.5
QI1E4 small strain elasto-plastic 27 3.7 12
Q1E4 finite strain elasto-plastic 66 11.8 49

HI linear elastic 18 1 4.2

H1 hyperelastic 21 1.5 4.5

H1 small strain elasto-plastic 46 2.2 23.2

H1 finite strain elasto-plastic 105 6.9 69.0 3D
H1E9 linear elastic 25 1.9 10.6
HI1E9 hyperelastic 46 4.3 16.5
H1E9 small strain elasto-plastic 953 3.4 40.5
H1E9 finite strain elasto-plastic 134 10.0 117.8

AceFEM

The Mathematica Finite
Element Environment

AceFEM

Key features:
e hybrid symbolic-numeric
FEM environment

General procedure

- input data processing

- mesh generation

- solution strategies

- command language

- graphic post-processing

CDriver

aluation of element quantities
- assembly of element contributions
- various linear solvers

e AceFEM combines use of
Mathematica’s features
with external handling of
intensive computations |
by compiled modules

e support for web-based
FEM

e fast sparse solvers, exact
sensitivity analysis, etc.

MDriver

- Mathematica language

- data base in MMA

- evaluation of element quantities

- assembly of element contributions
- MMA linear algebra

il
dil filg/ | .dIl filg
dll filg

Pavia, 2011

Pavia, 2011

AceFEM and AceGEN

Symbolic FEM

AceGen

symbolic input
problem formulation
derivation of formulas
code generation

YV VY

Environment interface

» interface code

> Initialization

» numerical integration

rules N
N

v

Numerical user subroutines

<C/C++/C#< <Mathematica< <FORTRAN<< Matlab (

——

T

v AceFEM

CDriver MDriver

v

v v

ELFEN Matlab

ABAQUS FEAP

h 4

Numerical FEM environment

Data structures

AceFEM data structures:

1.

Pavia, 2011

environment data defines a general information common to all
nodes and elements idata$$, rdata$$

nodal data structure contains all the data that is associated with the
node nd$$

node specification data structure contains information common
for all nodes of particular type ns$$

element data structure contains all the data that is associated with
the specific element ed$$

element specification data structure contains information common
for all elements of particular type es$$

YV V VYV V

Advanced examples

Debugging, verification, validation, ..
Semi-analytical solution
Optimization

Coupled problems

,/'4\\ ~1 /
/ uj\ N ‘
oo \\ ’

Verification & Validation of Numerical Codes

e \erification of Numerical Code

Is code correct? /

benchmark tests (patch test, element eigenvalues tests, invariance tests)

code verification are ongoing activities of accumulating evidence that the
code is correct

e Validation

e Verification of Calculation
— Are the equations solved correctly?

Are the righ equations solved?

validation with more accurate physical models
validation with experiments

— grid convergence studies relative to an unknown solution

— error estimation

Pavia, 2011

Advanced verifivation and validation procedure

|

N

Pavia, 2011

Pavia, 2011

Generic one element test

Generic one element test

>

>

to determine convergence characteristics of the element for
the standard Newton-Raphson iterative scheme

to apprise behavior of the element in constrained conditions
as material incompressibility and extremely distorted or
elongated element shapes

to verify objectivity with respect to the superimposed rigid
body motion on a deformed state of the element

to verify objectivity with respect to the translation and
rotation of the reference coordinate system

analytical sensitivity analysis is independently verified by
comparison with the finite difference method

to verify the correctness of the automatically generated code
when ported on various machines and for various finite
element environments

Limit load optimisation of cantilever beam

e Task: find the shape of cantilever beam that has:
— minimal volume
— given ultimate load
— ideal elasto-plastic material
— 2D quadrilateral element

g, ultimate load

A LLELLT T

Pavia, 2011

Formulation of the problem

e Three finite elemnts are needed to describe the problem:
— 2D elasto plastic element
— surface load element
— prescribed displacement constrain element

pe - {ue’A}
u, displacements
A load factor

" ln

el.-plast.

R, =R, +R™

el.-plast.

~

AU E%A AN -_I{A

R, elasto-plastic formulation equations
8(f T\ udQ)
R = - load element equations
Ue é‘pe
DT,
Dp,

R, =v, — Y, prescribedldisplacement constrain element equations
v, displacementin node A
v, prescdribed displacement in node A

~ path following parameter

Pavia, 2011

Formulation of the problem

e Sensitivity problem - load element is path-independent

R(p(¢),¢) =0
K2P _g
D¢

R =— DR = DR DX ... shape sensitivity

D¢ DX D¢
DX . -
Ei; design velocity field - problem dependent
X SR
R, = — (A) ... element contribution

b¢ %XZDX

e QObijective function
min®, ; &, = w, (A — \,)* + w,Volume + wgzcb
k

penalty constrain h(z)>0

A, prescribed limit load factor
A calculated limit load factor

Wy, Wy, Wy Weights

Pavia, 2011

Design velocity field

... design velocity field - problem dependent

B
J‘j ll—l\
.\—l\:kI!
e L

- g—

FE

direct differentiation of symbolically parameterized mesh
based on hybrid symbolic-numeric AceFEM environment

Pavia, 2011

Large scale engineering optimisation

3000

initial shape

1000

: gradient based optimization 4
(FindMinimum)

—-500

500

optimal shape

Pavia, 2011

